Mathematical interests.
Kac-Moody
groups and their twin buildings.
Tits
systems and buildings in general.
S-arithmetic
groups and discrete groups in general; related
linearity, rigidity and simplicity problems.
Some
aspects of geometric group theory.
Bruhat-Tits
buildings and their compactifications via various methods.
Totally
disconnected locally compact groups.
Positions.
Professor of mathematics at École polytechnique (on leave from Univ.
Lyon) (École polytechnique
& CMLS).
Junior
member of the Institut Universitaire de France, 2009-2014 (Institut
Universitaire de France).
Professor
at the Mathematics Institute of the University Lyon 1, 2004-2014 (Institut
Camille Jordan).
Habilitation à diriger les recherches (December 2003): Fourier Institute (Grenoble 1) - France (Institut Fourier).
Previous
position (September 2001-September 2004): Maître de conférences at the
Mathematics Institute of the University Grenoble 1 - France (Institut
Fourier).
Academic
year 2000/2001: postdoc at the Mathematics
Institute of the Hebrew University, Jerusalem
- Israel (Einstein
Institute).
PhD
(September 1999): Mathematics Institute (Élie Cartan Institute) of the
University Nancy 1 - France (Institut
Élie Cartan).
Vita.
You
may have a look at my curriculum vitae,
in pdf form here.
Works.
1.
Construction de réseaux en théorie de Kac-Moody. C. R.
Acad. Sc. Paris 329 (1999) 475-478, pdf file here.
2.
Immeubles
de
Kac-Moody hyperboliques. Isomorphismes abstraits entre groupes de
même immeuble. Geometriae Dedicata 90,
pdf file here.
(2002) 29-44
3. Groupes de Kac-Moody déployés et presque déployés. Astérisque 277 (2002) Société Mathématique de France, 348 pages, pdf file here.
4. Classical and non-linearity properties of Kac-Moody lattices. In "Rigidity in Dynamics and Geometry" (Newton Institute 2000), M. Burger and A. Iozzi eds, Springer (2002) 391-405, pdf file here.6. Topological simplicity, commensurator superrigidity and non linearity of Kac-Moody groups. Appendix by Patrick Bonvin: Strong boundaries and commensurator superrigidity. Geometric and Functional Analysis 14 (2004) 810-852, pdf file here.
7. Integrability of induction cocycles for Kac-Moody groups. Mathematische Annalen 333 (2005) 29-43, pdf file here.9. with M. Ronan: Topological groups of Kac-Moody type, right-angled twinnings and their lattices. Commentarii Mathematici Helvetici 81 (2006) 191-219, pdf file here.
10. with P.-E. Caprace: Simplicité abstraite des groupes de Kac-Moody non affines. C. R. Acad. Sc. Paris 342 (2006) 539-544, pdf file here.
11. with Y. Guivarch: Group-theoretic compactification of Bruhat-Tits buildings. Ann. Sci. École Norm. Sup. 39 (2006) 871-920, pdf file here.12. with U. Baumgartner and George Willis: Flat rank of automorphism groups of buildings. Transf. Groups 12 (2007) 413-436, pdf file here.
13. with U. Baumgartner and J. Ramagge: Contraction groups in complete Kac-Moody groups. Groups, Geometry, and Dynamics 2, pdf file here. (2008) 337–352
14. with P.-E. Caprace: Simplicity and superrigidity of twin buildings lattices. Inventiones Math 176 (2009) 169-221, pdf file here.
15. with P.-E. Caprace: Groups with a root group datum. Innovations in Incidence Geometry 9 (2009) 5-77, pdf file here.
16. with P. Abramenko: Commensurators of some non-uniform tree lattices and Moufang twin trees. Ramanujan Math. Soc. Lecture Note Series 9 (2009) 79-104, pdf file here.
17. Kac-Moody groups as discrete groups. Ramanujan Math. Soc. Lecture Note Series 9 (2009) 105-124, pdf file here.20.
with P.-E. Caprace: Non-distortion
of twin building lattices. Geometriae Dedicata 147
(2010) 397-408, pdf file here.
21. with A. Thuillier and A. Werner: Bruhat-Tits theory from Berkovich's point of view. II: Satake compactifications. J. Inst. Math Jussieu11 (2012) 421-465, pdf file here.
22. Groupes algébriques pseudo-réductifs et applications, d’après J. Tits et B. Conrad-O. Gabber-G. Prasad. Séminaire Bourbaki, exposé 1021 (mars 2010), in Astérisque 339 (2011) 259–304, pdf file here.
23. Buildings and Kac-Moody groups, in the proceedings of the conference "Buildings, Finite geometries and Groups" (Bangalore, August 2010), Springer Proceedings in Mathematics 10 (2012), N.S. Narasimha Sastry ed., pp. 222-241, pdf file here.