

MASTER 1 DE MATHÉMATIQUES

2016 – 2017

PROGRAMME D'APPROFONDISSEMENT MASTER 1 DE MATHÉMATIQUES

Année 2016 – 2017

SOMMAIRE

4 Programme d'approfondissement/Master 1 de mathématiques

11 Programmes des modules

- 12 Systèmes dynamiques MAT551
- 16 Théorie algébrique des nombres MAT552
- 18 Topologie différentielle MAT553
- 20 Analyse non linéaire MAT554
- 22 Modules et groupes finis MAT556
- 24 Groupe de symétrie en physique subatomique MAT575/PHY575
- 25 Équation de Schrödinger non linéaire: des condensats de Bose Einstein aux supersolides MAT561
- 26 Introduction à la géométrie algébrique et courbes elliptiques MAT562
- 28 Groupes compacts et groupes de Lie MAT563
- 30 Surfaces de Riemann MAT565
- 32 Transport et diffusion MAT567/MAP567
- 34 Relativité générale MAT568

PROGRAMME D'APPROFONDISSEMENT

Master 1 de mathématiques

Responsables:

Anna Cadoret

anna.cadoret@polytechnique.edu

Les mathématiques ont toujours un rôle fondamental dans le développement des sciences. L'une des spécificités de l'École polytechnique a d'ailleurs été, dès le début du xix^e siècle, la place centrale attribuée aux mathématiques.

Les mathématiques ne sont pas seulement le langage universel des sciences, mais elles sont un instrument incontournable dans un nombre croissant d'entre elles. La chimie, la biologie, l'économie ne peuvent se passer de bases mathématiques solides. Parallèlement les élèves sont reconnus, en France comme à l'étranger, pour la solidité et la largeur du spectre de leurs connaissances mathématiques.

Les cours proposés dans le programme d'approfondissement de Mathématiques couvrent des domaines divers de l'analyse, de l'algèbre et de la géométrie. Avec leur mélange de théories fondamentales et d'applications d'une grande actualité, ils constituent un cursus qui sera apprécié à la fois par ceux qui souhaitent une formation par la recherche au plus haut niveau, et par ceux qui veulent poursuivre une

formation d'ingénieur dans le cadre d'une École en convention avec l'École polytechnique. Elle est indispensable à ceux qui envisagent une carrière de recherche à fort contenu mathématique.

Les sujets des cours ont été choisis à la fois pour leur importance théorique, leur beauté et pour leur ouverture aux applications.

Règles de choix et de validation

Le Programme d'Approfondissement se compose de trois périodes:

- Période 1 (septembre-décembre): enseignements fondamentaux
 (5 ECTS/module)
- Période 2 (janvier-mars): enseignements fondamentaux (5 ECTS/module)
- ➤ Période 3 (avril-juillet): stage de recherche (15 ECTS)

Pour les périodes 1 et 2, les élèves doivent choisir au minimum 3 modules parmi ceux proposés. S'y ajoutent pour chacune des périodes, un module d'approfondissement consistant en un travail personnel en relation avec l'un des cours suivis, effectué sous la direction de l'enseignant

concerné. Enfin, les élèves doivent faire le choix d'un projet d'approfondissement, courant sur les deux périodes.

Certains modules sont proposés en collaboration avec d'autres départements:

- ➤ Informatique : Combinatoire, Arithmétique et codes.
- ➤ Physique: Équation de Schrödinger non linéaire: des condensats de Bose Einstein aux supersolides/Relativité générale/Groupes de symétrie en physique subatomique.
- Mathématiques Appliquées: Analyse non linéaire/Transport et diffusion.

La filière d'excellence « voie Hadamard » de l'Université de Paris-Saclay (site de l'École polytechnique)

Les étudiants non polytechniciens qui souhaitent obtenir un Master 1 de l'université de Paris-Saclay ont la possibilité de demander leur inscription dans une filière d'excellence: la « voie Hadamard ». Il s'agit d'une filière sélective pour laquelle l'inscription est soumise à approbation après examen préliminaire d'un dossier de candidature. Les exigences pédagogiques se situent entre celles d'un master 1 traditionnel et le Parcours d'Approfondissement décrit dans ce document. Pour les modalités de cette filière d'excellence en Master 1, voir la page web du département de mathématiques de l'École polytechnique:

http://www.mathematiques.polytechnique.edu (rubrique Enseignement / Master 1).

Compatibilité avec les autres Parcours d'approfondissement du M1 de l'École polytechnique.

Le cas des élèves inscrits au Programme d'approfondissement de Mathématiques et désirant choisir un module dans une autre discipline pourra être examiné.

Informatique

En collaboration avec le département d'Informatique, le département de Mathématiques propose dans son programme d'approfondissement/Master 1 un parcours mathématiques et informatique, destinés aux étudiants désirant se spécialiser dans les domaines de l'informatique fondamentale et de la cryptographie. Les modules de mathématiques Théorie algébrique des nombres, Modules et groupes finis, Introduction à la géométrie algébrique et courbes elliptiques et les modules d'informatique Algorithmique avancée, Computer-aided reasoning, Utilisation de l'aléatoire en algorithmique, Théorie de l'information, Randomization in Computer Science, Cryptologie font partie de ce parcours. Les enseignements d'approfondissement (EA) peuvent s'effectuer soit en relation avec l'un des cours de mathématiques suivi (MAT570), soit selon les modalités définies par le département d'informatique (INF571).

Mathématiques appliquées

Un élève s'inscrivant au Programme d'approfondissement de Mathématiques pourra choisir un des modules parmi ceux offerts par le Département de Mathématiques appliquées et réciproquement, un élève s'inscrivant au Programme d'approfondissement de Mathématiques appliquées pourra choisir un des modules parmi ceux proposés ci-dessus. Le module *Transport et Diffusion* est commun avec le PA de Mathématiques Appliquées.

Physique

Le module *Relativité Générale* est commun avec le Programme d'Approfondissement du 2° trimestre de Physique.

Physique – Mécanique

Le module *Equation de Schrödinger non-linéaire*: des condensats de Bose Einstein aux supersolides est commun avec le Programme d'Approfondissement du 2^e trimestre de Physique et Mécanique.

Il est à noter que les offres des périodes 1 et 2 restent incomplètes, d'autres cours pourront s'ajouter à la liste existante.

Offre de première période – P1

MAT551	Systèmes dynamiques	Jérôme Buzzi	Cours
MAT552	Théorie algébrique des nombres	Gaetan Chenevier	Cours
MAT553	Topologie différentielle	Patrick Massot	Cours
MAT554	Analyse non linéaire	Raphaël Danchin, Pierre Raphaël	Cours
MAT556	Modules et groupes finis	Anna Cadoret	Cours

Offre de deuxième période – P2

MAT561	Équation de Schrödinger non linéaire: des condensats de Bose Einstein aux supersolides	Amandine Aftalion	Cours
MAT562	Introduction à la géométrie algébrique et courbes elliptiques	Alena Pirutka	Cours
MAT563	Groupes compacts et groupes de Lie	Benoît Stroh	Cours
MAT565	Surfaces de Riemann	Charles Favre	Cours
MAP/ MAT567	Transport et diffusion	Grégoire Allaire François Golse	Cours
MAT568	Relativité générale	Jérémie Szeftel	Cours

Enseignements d'approfondissement

Un enseignement d'approfondissement correspond soit à un travail personnel (en général la lecture d'un article scientifique) en liaison avec l'un des cours suivis pendant le trimestre soit la validation du module MAT/PHY575.

1re période:

MAT570 (J. Buzzi, G. Chenevier, P. Massot, R. Danchin, P. Raphaël, A. Cadoret) en relation avec un des cours suivis et sous la direction de l'enseignant concerné, l'élève effectue un travail personnel donnant lieu à la rédaction d'un mémoire et à une soutenance orale.

MAT/PHY575: Groupes de symétrie en physique subatomique. Des séances animées par les enseignants mathématiciens et physiciens exposent les principes théoriques de base. Les élèves effectuent parallèlement un travail personnel donnant lieu à la rédaction d'un mémoire et à une soutenance orale.

2^e période:

MAT580 (A. Aftalion, A. Pirutka, B. Stroh, C. Favre, J. Szeftel): Même modalités que les EA de la 1^{re} période.

PHY568 EA: Les élèves suivant le cours de Relativité Générale (MAT568) ont la possibilité de choisir comme EA le cours de physique (PHY568) qui se déroule en parallèle. L'évaluation consistera soit à passer l'examen de PHY568, soit en un travail personnel autour d'un texte scientifique faisant l'objet d'une soutenance orale. Réciproquement, les élèves du PA

de Physique suivant le cours de PHY568 peuvent choisir comme EA le cours de MAT568.

Projet d'approfondissement

Le projet d'approfondissement court sur les périodes 1 et 2. Il est validé par une note finale. En mathématiques le projet d'approfondissement peut prendre l'une des formes suivantes (après accord du responsable de PA):

- ➤ Validation de deux cours de PA supplémentaires (la note finale est la moyenne des notes obtenues dans ces deux cours). Cette option permet aux élèves d'élargir leur socle de connaissances en mathématiques.
- ➤ Validation d'un cours de Master 2 (la note finale est évaluée par le responsable de PA en fonction de la note obtenue à l'examen de M2). Cette option est plutôt destinée aux élèves souhaitant faire une 4A en mathématiques et ayant déjà une idée relativement précise des thématiques vers lesquelles ils comptent s'orienter.
- ➤ Un projet de type recherche, en groupe (au plus trois) ou individuel (le projet est validé par la rédaction d'un mémoire et une soutenance orale). Cette option est destinée aux élèves souhaitant faire une 4A en mathématiques et poursuivre en thèse. Elle demande un investissement personnel conséquent.

En accord avec la DE, les élèves peuvent aussi valider des projets d'approfondissement `atypique'. Ceux-ci ne relèvent pas du département de mathématiques.

Pré-requis:

Certains cours présupposent de maîtriser le contenu de MAT431- Systèmes dynamiques ou du cours de MAT433-Distributions.

- ➤ Le cours de MAT551-Systèmes dynamiques suppose d'avoir maîtrisé le contenu du cours MAT431-Systèmes dynamiques.
- ➤ Le cours de MAT554-Analyse non linéaire suppose d'avoir maîtrisé le cours de MAT433-Distributions.
- ➤ Le cours de MAP/MAT567-Transport et Diffusion suppose d'avoir suivi un des 4 cours suivants: MAP411-Modélisation mathématique, MAP431-Analyse numérique et optimisation, MAT431-Distributions, MAT433-Systèmes dynamiques ou MAT432-Analyse de Fourier et Théorie Spectrale.

Offre de troisième période - P3 (Stage de recherche)

Le stage de recherche s'effectue sur une période de 3 à 5 mois débutant début avril. Il s'effectue dans un laboratoire universitaire ou d'institut de recherche.

en France ou à l'étranger. Il donne lieu à la rédaction d'un mémoire et à une soutenance.

MAT591	Groupes et représentations	David Renard	Stage
MAT592	Analyse et applications	François Golse	Stage
MAT593	Géométrie et Systèmes dynamiques	Charles Favre	Stage
MAT594	Théorie des nombres et géométrie algébrique	Gaëtan Chenevier	Stage

Débouchés

Parcours MAT

Ce programme s'adresse aux élèves souhaitant une formation avancée en mathématiques pour la poursuite de leur cursus scientifique.

Cette formation est un pré-requis pour suivre une formation de Master 2 en Mathématiques à l'École polytechnique.

En France:

Le département de Mathématiques propose deux parcours dans la mention Mathématiques et Applications de l'université Paris-Saclay.

- ➤ AAG « Analyse, Arithmétique et Géométrie »
- ➤ AMS « Analyse, Modélisation et Simulation »

Voir le site « Zoom Métiers » pour une liste des Masters de Mathématiques Fondamentales.

A l'étranger:

MPhil, DPhil, PhD Mathematics

Parcours MAT-INFO

En France:

- ➤ Master Parisien de Recherche en Informatique (MPRI), co-habilité École polytechnique (Parcours Transverse, MAT-INFO, Algorithmique efficace, Conception des Systèmes Informatiques)
- ➤ Master Parisien de Recherche Operationnelle (MPRO), co-habilité École polytechnique (Parcours MAP-INFO Optimisation, Algorithmique efficace)
- ➤ Master Mathématiques/Vision/ Apprentissage, co-habilité École polytechnique (Parcours MAP-INFO « Image-Vision-Apprentissage », Algorithmique efficace)
- ➤ Master Conception et Management des Systèmes Informatiques Complexes (COMASIC), co-habilité École polytechnique (Parcours Conception des Systèmes Informatiques, Transverse)

- ➤ Master Logique Mathématique et Fondements de l'Informatique (LMFI), Paris 7 (Parcours MAT-INFO, Transverse)
- ➤ Master Mathématique et Informatique appliqués à la Cryptologie (MIC), Paris 7 (Parcours MAT-INFO, Transverse)
- ➤ Autres Master 2, spécialité Informatique.

A l'étranger:

Tous les M.Sc. en Computer Science, Computer Engineering, Computing, Systèmes de communication...

Par exemple à ETH Zürich, EPF Lausanne, TU Karlsruhe, UPC Barcelona, Technion, RWTH Aachen, TU Delft, Oxford, Imperial College, Berkeley, MIT, Stanford, University of Michigan at Ann Harbor, University of Washington at Seattle, Carnegie Mellon University, Cornell University

Quelques exemples plus précis

- ➤ Parcours MAT-INFO et Transverse: M.Sc. Mathematics & the Foundations of Computer Science (MFoCS) Oxford University M.Sc. Computational Logic, Université de Dresde
- ➤ Thématique Algorithmique efficace: Master of Science in Computation for Design and Optimization, ou Electrical Engineering and Computer Science, pour prendre l'exemple des intitulés du MIT.

PROGRAMMES DES MODULES

Bathsheba Grossman

SYSTÈMES DYNAMIQUES MAT551

Jérôme Buzzi

es systèmes dynamiques occupent une place déterminante dans les mathématiques comme dans leurs applications: « il est important de résoudre les équations différentielles » selon la devise secrète de Newton. C'était vrai à la fondation de la mécanique céleste et de la physique moderne, c'est encore le cas aujourd'hui avec l'utilisation de modèles dont l'analyse relève souvent de la théorie des systèmes dynamiques (évolution d'une population, états d'un cristal...).

Si l'analyse fonctionnelle et l'analyse numérique étudient l'existence, l'unicité et les procédés d'approximation des solutions de tels modèles, la théorie des systèmes dynamiques cherche à en établir les propriétés à long terme (par exemple: prévisibilité statistique à long terme malgré l'imprévisibilité à moyen terme).

De façon moins évidente pour le néophyte, les systèmes dynamiques apparaissent également en mathématiques pures. Certains problèmes de géométrie et de théorie des nombres se traduisent ainsi élégamment et fructueusement en questions de dynamique. L'ambition de ce cours est de présenter les notions de bases de la théorie moderne des systèmes dynamiques en lien avec quelques questions de géométrie et de théorie des nombres.

Programme

Dynamique topologique:

- notions d'irréductibilité: transitivité, mélange, minimalité;
- ➤ théorème de récurrence de Birkhoff;
- ➤ ensemble limites et attracteurs;
- exemples de codage par la dynamique symbolique;
- chaos topologique et notion d'entropie.

Dynamique mesurée (ou théorie ergodique):

- ➤ théorème de récurrence de Poincaré;
- notions d'irréductibilité: ergodicité, mélange, unique ergodicité;
- ➤ théorèmes ergodiques de von Neumann et de Birkhoff:
- > systèmes Bernoulli. Applications

Champ de plans non intégrable et courbe tangente à ce champ de plans.



Géométrie hyperbolique:

- ➤ le plan hyperbolique et isométries;
- ➤ la surface modulaire;
- ➤ flots géodésiques et horocycliques;
- ➤ ergodicité du flot géodésique;
- ➤ unique ergodicité du flot horocyclique.

Théorie des nombres:

- ➤ équirépartition des valeurs de P(n), n décrivant les entiers et P étant un polynôme non constant ayant un coefficient irrationnel;
- développement en base entière de nombres typiques ou bien choisis;
- ➤ développement en fraction continue et application de Gauss;
- ➤ application de Gauss et surface modulaire

Organisation

L'enseignement s'appuiera sur le polycopié, les transparents pour chacune des neufs séances ainsi que la préparation et la présentation d'exercices donnés d'une séance sur l'autre. Il y aura au moins un devoir à la maison.

Niveau requis: Le contenu du cours MAT431 (Systèmes dynamiques) ne sera pas utilisé directement, à quelques rares mais notables exceptions (comme le théorème de Cauchy- Lipschitz). Mais la maturité mathématique correspondant à ce cours sera, elle, nécessaire.

Les outils indispensables (en théorie de la mesure notamment) seront brièvement rappelés ou introduits. Une certaine familiarité avec les notions de base de la topologie sera un avantage.

Bibliographie

Arnold V.I., (1980). Chapitres Supplémentaires de la Théorie des Équations Différentielles Ordinaires, Ed. Mir.

Arnold V.I., (1976). Méthodes Mathématiques de la Mécanique Classique, Ed. Mir.

Hirsch M.W., et Smale, S., (1974). Differential Equations, Dynamical Systems, and Linear Algebra, Pure and Applied Mathematics, Vol. 60, Academic Press.

Lefschetz S., (1977). Differential Equations: Geometric Theory, Dover.

Moser J., Zehnder E., (2005). Notes on dynamical systems, Courant Lecture Notes, AMS.

Fathi A., Systèmes dynamiques, Cours de l'École polytechnique.

Shub M., (1987). Stabilité globale des systèmes dynamiques, Astérisque, SMF.

Approfondissements

Ces approfondissements sont une occasion de compléter et d'enrichir le cours MAT551 « Introduction aux Systèmes dynamiques ». Les sujets seront choisis après discussion et donneront lieu à un bref cours introductif. Voici quelques sujets proposés ou traités les années précédentes:

- Stabilité des dynamiques hyperboliques et exemples de systèmes robustement instables
- 2. Orbites homoclines et comportement chaotique en mécanique classique
- Théorème de Furstenberg: preuve ergodique du théorème combinatoire de Szemerédi
- 4. Théorème KAM et diffusion d'Arnold: stabilité et instabilité dans les systèmes hamiltoniens
- 5. Actions de groupes sur le cercle
- 6. Comptage des géodésiques
- 7. Théorème de Ratner pour SL(3,Z) et applications en théorie des nombres
- 8. Théorème d'Elkies-McMullen: dynamique des réseaux plans et répartition de n1/2 mod 1
- 9. Dimension de Hausdorff et formalisme thermodynamique

Toutes les propositions ayant un composant mathématique significatif, notamment en lien avec d'autres cours (par exemple: théorie du contrôle, probabilités, mécanique...), sont les bienvenues.

La structure de ces enseignement est souple, le travail personnel sur documents jouant un rôle prépondérant. L'évaluation portera sur la rédaction d'un mémoire détaillé et une soutenance orale permettant de faire la preuve de son esprit synthétique comme de sa capacité à répondre à des questions précises.

THÉORIE ALGÉBRIQUE DES NOMBRES MAT552

Gaëtan Chenevier

a théorie algébrique des nombres est l'étude des propriétés algé-√bro-arithmétiques des nombres algébriques. On s'intéresse notamment à la propriété de factorialité, c'est à dire de « factorisation unique des éléments comme produits d'éléments premiers », dans les anneaux de la forme Z[x] où x est un « entier algébrique », comme par exemple Z[i] (entiers de Gauss), Z[2^{1/3}] etc. Cette question intervient de manière cruciale dans l'étude des équations diophantiennes, l'exemple historique le plus fameux étant l'approche de Kummer (et Fermat?) pour démontrer le « dernier théorème » de Fermat, mais aussi dans de nombreuses autres questions comme la théorie entière des formes quadratiques, la réduction des endomorphismes à coefficients entiers, la théorie de la multiplication complexe... Il se trouve que la propriété de factorialité ne persiste en général qu'au sens des idéaux (Kummer, Dedekind), et que le défaut de factorialité peut être mesuré par un groupe abélien fini « le groupe des classes d'idéaux » dont les mystères sont encore au coeur de l'arithmétique moderne.

Le cas des « entiers quadratiques », c'est à dire de Z[x] avec $x^2=d$ entier, est historiquement le plus important et sera

étudié en détail. La théorie contient alors celle des formes quadratiques binaires entières (Lagrange, Legendre, Gauss). Par exemple, il est connu depuis Fermat que si p est un nombre premier avec p = 1 modulo 4, c'est a dire si -1 est un carré modulo p, alors p est somme de deux carrés. Comment expliquer que si -5 est un carré modulo p, c'est a dire p = 1,3,7,9 modulo 20, alors p est exclusivement soit de la forme $x^2 + 5y^2$, soit de la forme $2 \times^2 + 2 \times y + 3 \times^2$ (avec x,y entiers)? (Euler, Lagrange). Nous obtiendrons de multiples énoncés de ce type. Cela nous conduira enfin à la notion de « genre » des formes quadratiques (Lagrange, Gauss), point de départ de la fameuse théorie du corps de classes.

Quelques notions abordées: corps de nombres, entiers algébriques, anneau de Dedekind, groupe des classes d'idéaux, théorème des unités de Dirichlet, formes quadratiques binaires entières, formules du nombre de classes et du nombre de genre.

$$\left(\frac{p}{q}\right) \ \left(\frac{q}{p}\right) = (-1)^{(p-1)(q-1)/4}$$

Loi de réciprocité quadratique de Gauss

Bibliographie

K. Ireland and M. Rosen, Springer, « A Classical Introduction to Modern Number Theory », GTM 84

David A. Cox., J. Wiley & Sons, « Primes of the form x + ny; Fermat, class field theory, and complex multiplication ».

P. Samuel, Hermann, « Théorie algebrique des nombres ».

TOPOLOGIE DIFFÉRENTIELLEMAT553

Patrick Massot

a topologie algébrique s'attache à décrire partiellement la forme d'un espace topologique en lui associant des objets algébriques (nombres, groupes, espaces vectoriels...). Dans ce cours on se concentrera sur le cas des espaces pour lesquels une telle association peut se faire via du calcul différentiel.

Voici un exemple de façon dont le calcul différentiel voit la forme globale d'un espace topologique. Le dessin de la cascade d'Escher est une illusion d'optique qui montre un cours d'eau formant une boucle fermée. L'eau s'écoule bien sûr en suivant le gradient de la fonction d'altitude. Localement il n'y a aucune obstruction à construire une fonction d'altitude ayant le gradient prescrit par le dessin mais globalement une telle fonction n'existe pas. Dans ce cours on expliquera comment la topologie du cercle (ou d'un voisinage d'un cercle déformé) permet l'existence de ce phénomène.

Dans la première partie du cours, on étudiera les formes différentielles sur un ouvert d'un espace euclidien en généralisant la notion de gradient d'une fonction et les autres opérateurs différentiels apparaissant en électromagnétisme

(divergence et rotationnel). Le phénomène de la cascade d'Escher sera décrit par une algèbre appelée cohomologie de de Rham.

L'objectif suivant sera de remplacer les ouverts d'un espace euclidien par les variétés différentielles, des espaces plus généraux qui ne ressemblent que localement à une espace euclidien mais permettent toujours le calcul différentiel. Ces exemples incluent les courbes ou surfaces dans l'espace mais aussi des espaces n'ayant pas de réalisation immédiate comme partie d'un espace euclidien, par exemple l'ensemble des droites du plan (qui se trouve être homéomorphe à un ruban de Möbius).

La théorie des variétés différentielles est un cadre géométrique très utilisé à la fois en mathématiques et en physique, c'est par exemple le cadre de la relativité générale. L'idée de cohomologie est d'une portée encore plus vaste, elle apparaît à la fois en géométrie, en algèbre et en analyse.

Niveau requis

Aucun pré-requis n'est nécessaire pour suivre ce cours, à part les bases du calcul différentiel dans Rⁿ.

The Waterfall par M.C. Escher

Approfondissement

Exemples de thèmes qui pourraient être traités en approfondissement:

- ➤ Applications de la cohomologie de de Rham en physique: effet Aharonov-Bohm, monopoles magnétiques... Lien avec la théorie des distributions: courants de de Rham
- ➤ Théorie de Morse: par exemple, pour un ouvert dense de fonctions d'altitude d'une île homéomorphe a un disque, le nombre de sommets moins le nombre de cols plus le nombres de cuvettes est bien défini et vaut toujours un.
- ➤ Lien avec d'autres théories cohomologiques: cohomologie singulière, cohomologie des faisceaux
- ➤ Applications à la géométrie algébrique
- ➤ Applications aux systèmes dynamiques

Bibliographie

Bott et Tu, Differential forms in algebraic topology. Lafontaine, Introduction aux variétés différentielles.

ANALYSE NON LINÉAIREMAT554

Raphaël Danchin, Pierre Raphaël

'analyse des équations aux dérivées partielles a connu ces trente dernières années un essor considérable lié à l'apport de multiples domaines des mathématiques: la théorie des systèmes dynamiques, l'analyse harmonique, l'analyse fonctionnelle ou les méthodes variationnelles par exemple. La puissance de ces nouveaux outils permet de considérer des systèmes d'équations (souvent issus de la modélisation physique) de plus en plus complexes, et d'en décrire les solutions de plus en plus précisément.

Ce cours est dédié à un objet central dans l'étude des ondes non linéaires, pertinent dans de nombreuses situations physiques allant de la dynamique des fluides à l'astrophysique en passant par la physique des plasmas ou la physique des particules: le soliton ou onde solitaire. Cet objet exceptionnel découvert au début du vingtième siècle en mécanique des fluides est une onde qui se propage sans déformation ni atténuation dans un milieu non linéaire.

Le but du cours est de démontrer de manière auto-contenue le résultat de stabilité orbitale de l'onde solitaire obtenu par T. Cazenave et P.-L. Lions en 1983 pour l'équation de Schrödinger cubique en dimension deux. La démonstration

de ce résultat nécessitera la mise en œuvre de nombreux outils importants pour l'étude des équations aux dérivées partielles non linéaires, au cœur des techniques de l'analyse moderne.

Voici un plan indicatif du cours:

Cours 1.

Analyse fonctionnelle: espaces L^p, espaces de Hilbert, convergence faible.

Cours 2.

Espaces de Sobolev sur R^N: définition, premières propriétés.

Cours 3.

Inclusions de Sobolev, compacité, inégalités de Hardy-Littlewood-Sobolev et de Hardy.

Cours 4.

Equation d'ondes linéaires sur R^N : le phénomène de dispersion.

Cours 5.

Estimations de Strichartz pour l'équation de Schrödinger linéaire.

Cours 6.

Existence locale/globlale pour le problème non linéaire: notion d'espace critique.

Cours 7.

Ondes solitaires: existence par la méthode variationnelle.

Cours 8.

Le lemme de concentration compacité.

Cours 9.

Stabilité orbitale du soliton.

Tourbillons vus par Hiroshige.

Niveau requis

Il est préférable d'avoir suivi le cours MAT433 pour suivre ce module. Le cours MAT432 peut à la rigueure suffire à condition de fournir un travail personnel important durant le trimestre.

Approfondissement

Les techniques introduites dans ce cours sont centrales dans l'étude d'une large classe de problèmes au cœur d'un domaine de recherche très actif. Voici quelques exemples d'EA:

- ➤ Concentration et explosion pour l'équation de Schrödinger.
- Transport non linéaire et minimiseurs de l'énergie: sur la stabilité des galaxies.
- ➤ Existence globale pour des équations non linéaires critiques.
- ➤ Existence et stabilité des multi-solitons pour l'équation des vagues dans un canal.
- ➤ Étude des poches de tourbillon pour les fluides parfaits incompressibles.
- ➤ Étude des solitons pour l'équation de Camassa-Holm.
- ➤ L'équation d'Euler incompressible.

Bibliographie

- G. Allaire, P.-L. Lions, Analyse numérique et optimisation, cours de l'École polytechnique.
- F. Bethuel, Méthodes géométriques et topologiques en EDP, École polytechnique.
- H. Brezis, Analyse fonctionnelle. Théorie et applications, Masson.
- T. Cazenave, Semilinear Schrodinger equations, Courant Lecture notes, NYU.
- R. Danchin, Notes de cours d'analyse fonctionnelle, http://perso-math.univ-mlv.fr/users/danchin.raphael/teaching.html
- R. Danchin, Cours d'analyse non linéaire MAT554 (ancienne version), http://perso-math.univ-mlv.fr/users/danchin.raphael/teaching.html
- F. Golse, Distributions, analyse de Fourier, EDP. Cours de l'École polytechnique, MAT431.
- P. Raphael, Stability and blow up for the nonlinear Schrodinger equation, http://perso-math.univ-mlv.fr/users/danchin.raphael/ananonlin08.pdf
- Y. Martel, P. Raphael, Sur la dynamique des solitons: stabilité, collision et explosion.

MODULES ET GROUPES FINIS MAT556

Anna Cadoret

e cours introduit les notions notions - fondamentales en mathématiques - de modules sur un anneau, de groupes et d'actions de groupe.

Pour comprendre un groupe G, on cherche à le faire opérer de façon naturelle sur certains objets, notamment par automorphismes linéaires sur les espaces vectoriels de dimension finie. On parle alors de représentations linéaires de G ou de k[G]-modules. Le concept de dualité de Tannaka, qui dit qu'on peut reconstruire un groupe à partir de la catégorie de ses représentations linéaires, illustre l'importance de ces actions.

Nous introduirons d'abord la notion générale de module sur un anneau A (non nécessairement commutatif) et développerons sous certaines hypothèses de finitude, quelques méthodes de classification (suites de composition, étude des extensions etc.) Nous considérerons ensuite deux cas où l'on sait classifier les modules sur A: celui où A est principal et celui où A est semisimple. Lorsque A est principal, nous en déduirons, par exemple, la classification des groupes abéliens de type fini (A = Z) ou des classes de conjugaison de GLn(k) (A = k[X]). Lorsque A est semisimple, nous en déduirons la classification des représentations linéaires de G dont nous étudierons de nombreux exemples et applications, notamment le théorème p^a. q^b de Burnside (« baby case » du théorème de Feit-Thompson). Afin de disposer de suffisamment de matière, nous procéderons d'abord à une étude élémentaire de la structure des groupes finis. Nous commencerons par la structure « locale » ou théorie de Sylow, qui décrit les p-sousgroupes de G (p premier) et permet parfois de ramener des problèmes sur G à des problèmes sur les p-groupes. Nous passerons ensuite à la structure 'normale' via la notion d'extension et de suite de composition. Le théorème de Jordan-Holder dit qu'un groupe fini G est extensions successives de groupes finis simples (essentiellement uniques). Lorsque ces groupes finis simples sont tous cycliques, cela conduit aux notions de groupes résolubles et nilpotents (dont les p-groupes sont des exemples importants). Plus généralement, cela conduit au problème de comprendre les extensions possibles d'un groupe Q par un groupe K. Un cas favorable est celui des extensions scindées (ou produits semidirects). Le théorème de Schur-Zassenhauss dit que si K et Q sont d'ordre premier entre eux alors toute extension de Q par K est scindée mais, en général, les extensions ne sont pas scindées et on les comprend encore mal. Nous verrons cependant que lorsque K est abélien et muni d'une action

Boîte en laque à symétrie S_3 (Chine, 16° siècle, musée de Münster).

de Q, les extensions de Q par K sont classifiées par un groupe abélien noté H2(Q;K) et appelé le second groupe de cohomologie de Q à valeurs dans K. 3.3 Restriction et induction. Exemples: Produits semidirects de noyau abélien, GL2(Fq), Sn etc.

Plan du cours

- 1. Modules sur un anneau
- 1.1 Définitions et exemples.
- 1.2 Opération sur les modules
- 1.3 Atomisation et reconstruction
- 1.4 Modules sur un anneau principal. Théorème de structure et applications (classification des groupes abéliens de type fini, classes de conjugaison de GLn(k) etc.)
- 2. Compléments sur la structure des groupes finis
- 2.1 Groupes symétriques
- 2.2 p-groupes, théorème de Sylow
- 2.3 Extensions. Suites de composition et théorème de Jordan-Holder, groupes nilpotents, groupes résolubles
- 2.4 Produits semi-directs, classification des extensions abéliennes par le H2, théorème de Schur-Zassenhaus
- 3. Représentations linéaires des groupes finis
- 3.1 Anneaux semisimples
- 3.2 Applications aux représentations linéaires des groupes finis (nombres et dimension des représentations irréductibles, table des caractères etc.); exemples et applications (théorème p^aq^b de Burnisde).

Approfondissements

Des approfondissements en liaison avec le module Groupes et Représentations seront proposés. Leur structure sera souple, le travail personnel sur documents jouera un rôle prépondérant, éventuellement précédé de quelques cours d'introduction. Ils conduiront à la rédaction d'un mémoire et à une soutenance orale.

- ➤ Dualité de Tannaka pour les groupes finis
- Représentations des groupes symétriques
- ➤ Représentations des groupes linéaires sur les corps finis
- ➤ Systèmes de racine, poids : représentations des algèbres de Lie semisimples et des groupes de Lie compact
- ➤ Étude des sous-groupes finis des groupes linéaires
- ➤ Théorie des caractères et théorie des nombres appliqués à l'étude des groupes finis.

Niveau requis

Il est préférable d'avoir déjà manipulé les objets algébriques de base (algèbre linéaire, groupes, anneaux, corps) par exemple dans le cadre du cours MAT 451 (Algèbre et théorie de Galois).

Bibliographie

Notes de cours et bibliographie disponibles sur: http://www.math. polytechnique. fr/-cadoret/Enseignement.html.

GROUPE DE SYMÉTRIE EN PHYSIQUE SUBATOMIQUE

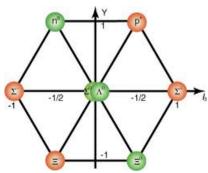
MAT575/PHY575

es séances animées par les enseignants mathématiciens et physiciens exposent les principes théoriques de base. Les élèves effectuent parallèlement un travail personnel donnant lieu à la rédaction d'un mémoire et à une soutenance orale.

Base de la théorie des représentations des groupes de Lie, des algèbres de Lie ainsi que des groupes finis, illustrées par de nombreux exemples.

Applications en physique subatomique: symétries en mécanique quantique; permutations, principe de Pauli; groupe de Lorentz, spin et équation de Dirac; groupes et algèbres de Lie en physique des particules: modèles des quarks et théorie de jauge.

- ➤ Introduction: théorème de Noether et applications, version quantiques (Phy)
- ➤ Généralités sur les groupes et représentations de SU(2) (Math)
- ➤ SU(3) et quarks (Phy)
- ➤ Groupes compacts linéaires (Math)
- ➤ Algèbres de Lies semi-simples complexes et représentations (Math)
- ➤ Groupe de Poincaré-Lorentz et équation de Dirac (Phy)
- ➤ Algèbre de Heisenberg et Virasoro (Math)
- ➤ Physique derrière Heisenberg et Virasoro (bosons-fermions) (Phy)
- ➤ Théorie de jauge

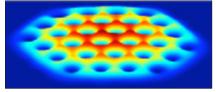


« Eightfold way»

ÉQUATION DE SCHRÖDINGER NON LINÉAIRE:

des condensats de Bose Einstein aux supersolides MAT561

Amandine Aftalion, Frédéric Chevy



e but de ce cours est de montrer comment l'étude d'un même **⊿**modèle mathématique apporter des informations pertinentes pour des phénomènes aussi variés que la physique de la matière condensée, l'optique non linéaire, la mécanique ou les phénomènes d'invasion biologiques. Nous introduirons certains outils d'analyse mathématique non linéaire: calcul des variations, analyse spectrale, théorie des perturbations, étude d'ondes progressives, principe du maximum, théorie des fonctions holomorphes. Nous nous intéresserons tout particulièrement au cas des fluides quantiques (condensats de Bose Einstein) pour lesquels nous décrirons quelques expériences récentes portant sur l'observation de tourbillons quantiques.

Le niveau de ce cours est introductif et ne nécessite aucun prérequis particulier. Il est destiné aussi bien à des étudiants venant d'autres disciplines et souhaitant apprendre un peu de mathématiques, qu'à des gens souhaitant compléter leur connaissance des équations aux dérivées partielles, grâce aux nombreuses pistes d'approfondissement qu'ouvre ce cours. Le polycopié a été rédigé en collaboration avec Jean Dalibard (Physique) et Christophe Josserand (Mécanique). Frédéric Chevy interviendra dans ce cours. Réseau de vortex dans un condensat de Bose Einstein

Approfondissements

Chaque séance pourra donner lieu à des approfondissements soit côté mathématiques, soit côté physique.

Leur structure sera souple, le travail personnel sur documents jouera un rôle prépondérant, éventuellement précédé de quelques cours d'introduction. Ils conduiront à la rédaction d'un mémoire et à une soutenance orale.

Bibliographie

Polycopié du cours « Équation de Schrödinger non linéaire: des condensats de Bose Einstein aux supersolides ».

INTRODUCTION À LA GÉOMÉTRIE ALGÉBRIQUE

et courbes elliptiques MAT562

Alena Pirutka

a géométrie algébrique s'intéresse à l'étude des systèmes d'équations polynomiales, par exemple: (i) x2 + y2 + z2 - w2 = 0;

(ii) y2 = x3 - 2x;

(iii) x2 + y2 = u2; x2 + z2 = v2, y2 + z2= w2; x2 + y2 + z2 = t2:

L'équation (i) définit une quadrique projective, l'équation (ii) donne un exemple d'une courbe elliptique. Les solutions sur Q du système (iii) donnent un pavé droit, dont les longueurs de toutes les arêtes et les diagonales sont des nombres rationnels; l'existence d'un tel pavé est un problème ouvert.

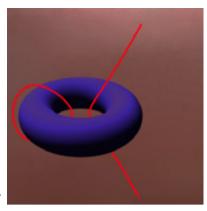
Dans ce cours introductif, après avoir discuté quelques résultats classiques (en particulier, le fameux Nullstellensatz de Hilbert), on s'intéressera à l'étude des cas particuliers et explicites: le cas des polynômes à deux variables (courbes planes), les équations quadratiques. Une grande partie du cours sera consacrée à l'étude des courbes elliptiques, définies par une équation y2 = x3 + ax + b dans k[x; y]; et à la structure de l'ensemble E(k) des points (x,y) k2 de E. Cet ensemble peut être muni d'une structure de groupe, ce qui rend les courbes elliptiques particulièrement

pertinentes pour des applications cryptographiques, en particulier dans le cas des courbes elliptiques sur des corps finis. Un théorème de Hasse, que l'on va démontrer dans ce cours, donne l'estimation du nombre des points d'une courbe elliptique E sur un corps fini. On va démontrer ce théorème dans quelques cas particuliers, le cas général utilise des outils sophistiqués de la géométrie algébrique. Pour les courbes elliptiques à coefficients rationnels un théorème célèbre de Mordell-Weil décrit précisément la structure du groupe E(Q): c'est un groupe abélien de type fini. On terminera le cours par la preuve complète de ce résultat, et on donnera aussi des exemples concrets où l'on peut décrire ce groupe.

Les sujets qui seront abordés dans le cours:

1. théorème des zéros de Hilbert et quelques éléments de l'algèbre commutative, idéaux dans k[x; y], variétés projectives, quelques résultats de la géométrie projective, courbes planes et intersections:

2. équations cubiques et courbes elliptiques: lois de groupe, estimations



Courbe elliptique

pour le nombre des points sur les corps finis, théorème de Hasse, applications cryptographiques; courbes elliptiques sur Q, hauteurs et le théorème de Mordell-Weil.

Niveau requis

Connaissances des structures fondamentales d'algèbre (groupes, anneaux, modules, corps) et quelques éléments de la théorie algébrique des nombres (corps de nombres, l'anneau des entiers, le nombre des classes d'idéaux), l'idéal serait d'avoir suivi les cours MAT451 et MAT552.

Bibliographie

- K. Ireland, M. Rosen, (1990). A classical introduction to modern number theory. Graduate Texts in Mathematics, 84. Springer-Verlag, New York.
- L. C. Washington, (2008). Elliptic curves, Number theory and cryptography. Second edition. Discrete Mathematics and its Applications, Chapman & Hall/CRC, Boca Raton, FL.
- M. Hindry, (2008). Arithmétique, Calvage & Mounet, Cambridge University Press.

GROUPES COMPACTS ET GROUPES DE LIE

MAT563

Benoît Stroh

e cours d'Anna Cadoret «Modules et groupes finis» MAT556, mais en se plaçant dans une optique plus géométrique et analytique qu'algébrique.

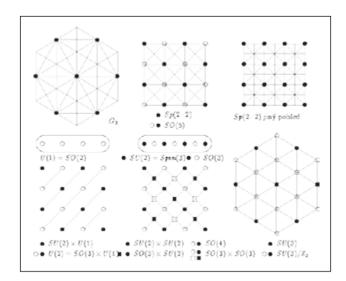
L'étude des groupes de matrices compacts permet à la fois d'illustrer la théorie générale mais également de la raffiner en obtenant une classification complète des représentations irréductibles. Cette théorie est centrale aussi bien en arithmétique (via les représentations automorphes et le programme de Langlands) qu'en physique. La connaissance du cours MAT556 paraît indispensable, et celle de MAT553 pourra être utile.

Nous commencerons par étudier la théorie générale des représentations des groupes compacts. Une fois acquise l'existence de la mesure de Haar, cette théorie est complètement parallèle à celle des représentations des groupes finis abordée dans le cours MAT556. En effet, la mesure permet de moyenner des fonctions sur le groupe, phénomène à l'origine de toutes les proprié-

tés agréables des représentations des groupes compacts.

Toutefois, on peut dans certains cas aller beaucoup plus loin et obtenir une classification précise des représentations irréductibles. Nous donnerons l'exemple des deux groupes compacts non abéliens les plus simples, SU2(C) et SO3(R), qui sont presque les mêmes. Nous donnerons des applications à la théorie des représentations des groupes non compacts SL2(R) et SL2(C).

Nous aborderons ensuite la théorie des groupes et des algèbres de Lie comme outil pour la théorie des représentations. Un groupe de Lie n'est autre qu'un groupe de matrices, et son algèbre de Lie est son plan tangent en l'origine. Les algèbres de Lie capturent donc des phénomènes au premier ordre. Permettant de linéariser la théorie des groupes, elles sont omniprésentes en mathématiques et en physique. Nous introduirons surtout du vocabulaire nécessaire pour la suite : caractères et systèmes de racine.



Systèmes de Racines

Nous définirons enfin les groupes de Lie compacts, comme par exemple SOn(R) et SUn(C), et classifierons complètement leurs représentations irréductibles.

On terminera si le temps le permet par quelques indications sur la suite de la théorie dans le cas non compact (qui est beaucoup plus difficile et constitue un sujet de recherche toujours actuel).

Bibliographie

- T. Bröcker et T. tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics 98, Springer.
- J. F. Dat, (2012). Cours introductif de M2 Groupes et Algèbres de Lie, note de cours sur internet.
- A. Kirillov, An introduction to Lie groups and Lie Algebras, Cambridge Studies in Advanced Mathematics 113.
- E. Kowalski, Representation theory, note de cours sur internet.
- F. Murnaghan, Representations of locally compact group, Fall 2013, notes de cours sur internet.
- M. Sepanski, Compact Lie groups, Graduate Texts in Mathematics 235, Springer.

SURFACES DE RIEMANN MAT565

Charles Favre

Les surfaces de Riemann sont les espaces sur lesquels on peut définir la notion de fonction holomorphe. Ces objets sont au carrefour de nombreux domaines des mathématiques: la géométrie différentielle (métrique hyperbolique), la théorie des nombres (formes modulaires), les systèmes dynamiques (espaces de Teichmüller), ou la géométrie algébrique (courbes projectives).

Le but de ce cours est de proposer une introduction à divers aspects géométriques des surfaces de Riemann. Nous introduirons aussi la notion de revêtement et de groupe fondamental, et discuterons plus particulièrement la topologie des surfaces de Riemann compactes.

Niveau requis

La connaissance de la notion de variété sera utile mais pas nécessaire. Tous les outils adéquats seront développés durant le cours.

Plan du cours

- ➤ Rappels sur les fonctions holomorphes;
- ➤ Surfaces de Riemann: définition et exemples;

- ➤ Théorie des revêtements: et correspondance de Galois;
- ➤ Groupe fondamental;
- ➤ Topologie des surfaces de Riemann compactes.

Approfondissements

En relation avec le cours de MAT565 et sous la direction de l'enseignant, l'élève effectue un travail personnel donnant lieu à la rédaction d'un mémoire et à une soutenance orale.

Voici quelques thèmes qui pourront être abordés:

- ➤ Les surfaces modulaires.
- ➤ Le théorème d'uniformisation.
- ➤ Le théorème de Belyi.
- ➤ Les groupes d'automorphismes des surfaces de Riemann compactes.
- ➤ Le théorème de Van Kampen.
- ➤ La Jacobienne d'une surface de Riemann compacte

Bernhard Riemann

Bibliographie

Allen Hatcher, Algebraic topology.

Eric Reyssat, Quelques aspects des surfaces de Riemann. Un polycopié sera de plus distribué au début du cours.

TRANSPORT ET DIFFUSION

MAT567/MAP567

François Golse, Grégoire Allaire

e cours organisé conjointement par les départements de Mathématiques Appliquées et Mathématiques est aussi référencé MAP567.

Le but de ce cours est de présenter des modèles de transport et de diffusion de particules que l'on retrouve dans de nombreux domaines d'applications pertinents sur le plan énergétique. Par exemple, le mécanisme de réaction en chaîne dans les réacteurs nucléaires, l'effet de serre en climatologie, le transfert radiatif en thermique ou en astrophysique, certains modèles de dynamique des populations structurées en biologie relevant de cette thématique.

Après une présentation mathématique de ces modèles, on montrera que la diffusion est la limite du transport dans un régime fortement collisionnel, et on expliquera la notion de masse ou de taille critique. On introduira des méthodes de résolution numérique de type differences finies et Monte-Carlo.

Ce cours peut accepter un maximum de 60 élèves.

Niveau requis

Un des 4 cours suivants : MAP411-Modélisation mathématique,

MAP431-Analyse numérique et optimisation,

MAT431-Systèmes dynamiques, MAT432-Analyse de Fourier et Théorie spectrale,

MAT433-Distributions.

Approfondissements

Des approfondissements en liaison avec le module Transport et Diffusion seront proposés.

Leur structure sera souple, le travail personnel sur documents jouera un rôle prépondérant, éventuellement précédé de quelques cours d'introduction. Ils conduiront à la rédaction d'un mémoire et à une soutenance orale.

➤ Optimisation de formes et application à un problème de l'énergie nucléaire. Le but de ce projet est l'étude d'une méthode d'optimisation de formes pour un problème de rechargement du combustible dans un réacteur nucléaire. Il s'agit de positionner différents types de combustible nucléaire en quantité fixée pour optimiser le fonctionnement du réacteur. L'originalité de l'approche proposée ici est d'utiliser une méthode d'optimisation de formes basée sur la

Assemblage combustible

théorie de l'homogénéisation. Grosso modo, on suppose que les différents types de combustible peuvent se « mélanger » et on optimise leur proportion en tout point. Les calculs (en théorie de la diffusion) seront réalisés avec le logiciel FreeFem++.

➤ Homogénéisation d'un modèle de diffusion. Le but de ce projet est l'homogénéisation, c'est-à-dire la moyennisation, d'un modèle de diffusion dans un milieu périodique. On étudiera d'abord la stratégie de factorisation dans un milieu purement périodique (en 1-d avec Scilab, éventuellement en 2-d avec Free-Fem++), puis on fera des expériences numériques sur le cas, beaucoup plus délicat, de la juxtaposition de deux milieux périodiques. Une application typique est le calcul de criticité d'un réacteur nucléaire.

Bibliographie

Dautray R., (1989). Méthodes probabilistes pour les équations de la physique, Eyrolles, Paris

Dautray R., Lions J.-L., (1988). Analyse mathématique et calcul numérique pour les sciences et les techniques, Masson, Paris.

Perthame B., (2007). Transport equations in biology, Birkhäuser, Bâle.

Planchard J., (1995). Méthodes mathématiques en neutronique, Collection de la Direction des Études et Recherches d'EDF, Eyrolles.

Pomraning G., (1973). The equations of radiation hydrodynamics, Pergamon Press, Oxford, New York.

RELATIVITÉ GÉNÉRALE MAT568

Jérémie Szeftel

a Relativité générale est une des grandes théories physiques développées au cours du xx° siècle à l'instigation d'Albert Einstein. Elle propose une révision radicale de la conception newtonienne de la gravitation en assimilant les effets de cette interaction à des conséquences de la présence de courbure dans l'espace-temps, dont la géométrie est modifiée par les masses. C'est à ce titre qu'elle est exemplaire de l'apport de théories mathématiques élaborées aux problématiques de la physique théorique.

Cette théorie fondamentalement nonlinéaire permet une présentation assez complète des outils de la géométrie différentielle moderne avec de spectaculaires et substantielles applications. Comme, sans nuire à la compréhension, il est possible de développer parallèlement les géométries riemannienne et lorentzienne (avec sa signature (-+++) modélisant les cônes de lumière, c'est elle qui sert de cadre à la théorie d'Einstein), ce cours peut attirer des élèves intéressés tant par les mathématiques que par la physique.

Cet enseignement a été conçu comme un enseignement intégré de mathématiques et de physique, ce qui signifie que les élèves sont encouragés à suivre en même temps le cours portant le même nom en physique, soit PHY568.

Voici un plan indicatif du cours:

Cours 1.

Variétés différentielles, espace tangent.

Cours 2

Fibré tangent, fibré cotangent, tenseurs. Cours 3.

Cours 5.

Dérivée de Lie, dérivée covariante.

Cours 4

Métrique, transport parallèle, géodésiques.

Cours 5.

Tenseur de courbure, isométries, métriques conformes.

Cours 6.

Symétries de l'espace-temps de Minkowski, formalisme lagrangien de l'électromagnétisme.

Cours 7.

Dérivation des équations d'Einstein à partir de l'action d'Einstein-Hilbert.

Cours 8

La géométrie des solutions de Schwarzschild et de Kerr.

Cours 9.

Formulation du problème de Cauchy pour les équations d'Einstein.

Approfondissements

PHY568 EA: Les élèves suivant le cours de Relativité Générale (MAT568) ont la possibilité de choisir comme EA le cours de physique (PHY568) qui se déroule en parallèle. L'évaluation consistera soit à passer l'examen de PHY568, soit en un travail personnel autour d'un texte scientifique faisant l'objet d'une soutenance orale. Réciproquement, les élèves du PA de Physique suivant le cours de PHY568 peuvent choisir comme EA le cours de MAT568.

Exemples d'EA:

- ➤ La rigidité des trous noirs d'après Carter, Robinson et Hawking.
- ➤ Les théorèmes de singularité de Hawking-Penrose.
- ➤ Les solutions de de Sitter et anti de Sitter.
- ➤ La stabilité non linéaire de l'espacetemps de Minkowski.
- ➤ La résolution des équations de contrainte.
- ➤ Les équations de Yang-Mills classiques.

Bibliographie

Gallot S., Hulin D., Lafontaine J., (2004). Riemannian Geometry, Springer-Verlag Universitext (3^e édition).

Hawking S.W., Ellis G.F.R., (1973). The Large Scale Structure of Space-Time, Cambridge University Press.

Petersen P., (1998). Riemannian geometry, Graduate Texts in Mathematics, 171, Springer.

Wald R., (1984). General Relativity, The University of Chicago Press.

Département de Mathématiques École polytechnique 91128 Palaiseau cedex T. +33 (0)1 69 33 49 59 ou 49 99 secret@math.polytechnique.fr

IMPRIMÉ EN FRANCE

ÉCOLE POLYTECHNIQUE 91128 PALAISEAU CEDEX www.polytechnique.edu