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Abstract. — This survey paper studies some properties of finitely generated groups that
are invariant by quasi-isometry, with an emphasis on the case of relatively hyperbolic groups,
and on the sub-case of non-uniform lattices in rank one semisimple groups. It also contains
a discussion of the group of outer automorphisms of a relatively hyperbolic group, as well
as a description of the structure of asymptotic cones of relatively hyperbolic groups. The
paper ends with a list of open questions.

Résumé ( Rigidité quasi-isométrique des groupes). — Ce survol étudie quelques
propriétés des groupes de type fini qui sont invariantes par quasi-isométrie, en mettant
l’accent sur le cas des groupes relativement hyperboliques, et le sous-cas des réseaux non-
uniformes des groupes semisimples de rang un. Il contient également une discussion du
groupe d’automorphismes extérieurs d’un groupe relativement hyperbolique, ainsi qu’une
déscription des cônes asymptotiques des groupes relativement hyperboliques. A la fin de
l’article on donne une liste de question ouvertes.
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Many of the open questions formulated in the paper do not belong to the author and

have been asked by other people before. Note that some questions are merely rhetorical

and answered later in the text; when a question is still open this is specified, with the

exception of Section 7, in which all questions are open.

Acknowledgement. I would like to thank the referee for his/her comments, correc-

tions and useful references that lead to the improvement of the paper.

1. Preliminaries on quasi-isometries

Nota bene: In order to ensure some coherence in the exposition, many notions are not

defined in the text, but in a Dictionary at the end of the text.

1.1. Basic definitions. — A quasi-isometric embedding of a metric space (X, distX)

into a metric space (Y, distY ) is a map q : X → Y such that for every x1, x2 ∈ X,

(1)
1

L
distX(x1, x2) − C ≤ distY (q(x1), q(x2)) ≤ LdistX(x1, x2) + C ,

for some constants L ≥ 1 and C ≥ 0.

If X is a finite interval [a, b] then q is called quasi-geodesic (segment). If a = −∞ or

b = +∞ then q is called quasi-geodesic ray. If both a = −∞ and b = +∞ then q is called

quasi-geodesic line. The same names are used for the image of q.

If moreover Y is contained in the C–tubular neighborhood of q(X) then q is called a

quasi-isometry. In this case there exists q̄ : Y → X quasi-isometry such that q̄ ◦ q and

q ◦ q̄ are at uniformly bounded distance from the respective identity maps (see [GH2] for

a proof). We call q̄ quasi-converse of q.

The objects of study are the finitely generated groups. We first recall how to make

them into geometric objects. Given a group G with a finite set of generators S containing

together with every element its inverse, one can construct the Cayley graph Cayley(G, S)

as follows:

– its set of vertices is G;

– every pair of elements g1, g2 ∈ G such that g1 = g2s, with s ∈ S, is joined by an

edge. The oriented edge (g1, g2) is labelled by s.

We suppose that every edge has length 1 and we endow Cayley(G, S) with the length

metric. Its restriction to G is called the word metric associated to S and it is denoted by

distS. See Figure 1 for the Cayley graph of the free group of rank two F2 = 〈a, b〉.

Remark 1.1. — A Cayley graph can be constructed also for an infinite set of generators.

In this case the graph has infinite valence in each point.

We note that if S and S̄ are two finite generating sets of G then distS and distS̄ are

bi-Lipschitz equivalent. In Figure 2 are represented the Cayley graph of Z2 with set of

generators {(1, 0), (0, 1)} and the Cayley graph of Z2 with set of generators {(1, 0), (1, 1)}.
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Figure 1. Cayley graph of F2.

1.2. Examples of quasi-isometries. —

1. The main example, which partly justifies the interest in quasi-isometries, is the

following. Given M a compact Riemannian manifold, let M̃ be its universal covering

and let π1(M) be its fundamental group. The group π1(M) is finitely generated, in

fact even finitely presented [BrH, Corollary I.8.11, p.137].

The metric space M̃ with the Riemannian metric is quasi-isometric to π1(M) with

some word metric. This can be clearly seen in the case when M is the n-dimensional

flat torus Tn. In this case M̃ is Rn and π1(M) is Zn. They are quasi-isometric, as

Rn is a thickening of Zn.

2. More generally, if a group Γ acts properly discontinuously and with compact quotient

by isometries on a complete locally compact length metric space (X, distℓ) then Γ

is finitely generated [BrH, Theorem I.8.10, p. 135] and Γ endowed with any word

metric is quasi-isometric to (X , distℓ).

Consequently two groups acting as above on the same length metric space are

quasi-isometric.

3. Given a finitely generated group G and a finite index subgroup G1 in it, G and G1

endowed with arbitrary word metrics are quasi-isometric. This may be seen as a

particular case of the previous example, with Γ = G1 and X a Cayley graph of G.
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Figure 2. Cayley graph of Z2.

In terms of Riemannian manifolds, if M is a finite covering of N then π1(M) and

π1(N) are quasi-isometric.

4. Given a finite normal subgroup N in a finitely generated group G, G and G/N (both

endowed with arbitrary word metrics) are quasi-isometric.

Thus, in arguments where we study behavior of groups with respect to quasi-

isometry, we can always replace a group with a finite index subgroup or with a

quotient by a finite normal subgroups.

5. All non-Abelian free groups of finite rank are quasi-isometric to each other. This

follows from the fact that the Cayley graph of the free group of rank n with respect

to a set of n generators and their inverses is the regular simplicial tree of valence 2n.

Now all regular simplicial trees of valence at least 3 are quasi-isometric. We denote

by Tk the regular simplicial tree of valence k and we show that T3 is quasi-isometric

to Tk for every k ≥ 4.

We define the map q : T3 → Tk as in Figure 3, sending all edges drawn in thin

lines isometrically onto edges and all paths of length k − 3 drawn in thick lines onto

one vertex. The map q thus defined is surjective and it satisfies the inequality

1

k − 2
dist(x, y) − 1 ≤ dist(q(x), q(y)) ≤ dist(x, y) .

6. Let M be a non-compact hyperbolic two-dimensional orbifold of finite area. This is

the same thing as saying that M = Γ\H2
R
, where Γ is a discrete subgroup of PSL2(R)

with fundamental domain of finite area.
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Figure 3. All regular simplicial trees are quasi-isometric.

Nota bene: We assume that all the actions of groups by isometries on spaces are to

the left, as in the particular case when the space is the Cayley graph. This means

that the quotient will be always taken to the left. We feel sorry for all people which

are accustomed to the quotients to the right.

We can apply the following result.

Lemma 1.2 (Selberg’s Lemma). — A finitely generated group which is linear

over a field of characteristic zero has a torsion free subgroup of finite index.

We recall that torsion free group means a group which does not have finite non-

trivial subgroups. For an elementary proof of Selberg’s Lemma see [Al].

We conclude that Γ has a finite index subgroup Γ1 which is torsion free. It follows

that N = Γ1\H2
R

is a hyperbolic surface which is a finite covering of M , hence it is of

finite area but non-compact. On the other hand, it is known that the fundamental

group of such a surface is a free group of finite rank (see for instance [Mass]).

Conclusion: The fundamental groups of all hyperbolic two-dimensional orbifolds

are quasi-isometric to each other.

At this point one may start thinking that the quasi-isometry is too weak a relation for

groups, and that it does not distinguish too well between groups with different algebraic

structure. It goes without saying that we are discussing here only infinite finitely generated

groups, because we need a word metric and because finite groups are all quasi-isometric

to the trivial group.

We can begin by asking if the result in Example 6 is true for any rank one symmetric

space.
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Question 1.3. — Given M and N orbifolds of finite volume covered by the same rank

one symmetric space, is it true that π1(M) and π1(N) are quasi-isometric ?

It is true if N is obtained from M by means of a sequence of operations obviously

leaving the fundamental group Γ = π1(M) in the same quasi-isometry class :

– going up or down a finite covering, which at the level of fundamental groups means

changing Γ with a finite index subgroup or a finite extension;

– replacing a manifold with another one isometric to it, which at the level of groups

means changing Γ with a conjugate Γg, where g is an isometry of the universal

covering.

Above we have used the following

Notation: For A an element or a subgroup in a group G and g ∈ G, we denote by Ag its

image gAg−1 under conjugacy by g.

In the sequel we also use the following

Convention: In a group G we denote its neutral element by id if we consider an action of

the group on a space, and by 1 otherwise.

2. Rigidity of non-uniform rank one lattices

It turns out that the answer to the Question 1.3 is “very much negative”, so to speak,

that is: apart from the exceptional case of two dimensional hyperbolic orbifolds, in the

other cases finite volume rank one locally symmetric spaces which are not compact have

quasi-isometric fundamental groups if and only if the locally symmetric spaces are ob-

tained one from the other by means of a sequence of three of the operations described

previously. More precisely, the theorem below, formulated in terms of groups, holds.

2.1. Theorems of Richard Schwartz. — We recall that a discrete group of isometries

Γ of a symmetric space X such that Γ\X has finite volume is called a lattice. If Γ\X is

compact, the lattice is called uniform, otherwise it is called non-uniform.

Theorem 2.1 (R. Schwartz, [Sch1]). — (1) (quasi-isometric lattices) Let Gi be a

non-uniform lattice of isometries of the rank one symmetric space Xi, i = 1, 2.

Suppose that G1 is quasi-isometric to G2. Then X1 = X2 = X and one of the

following holds:

(a) X = H2
R
;

(b) there exists an isometry g of X such that Gg
1 ∩ G2 has finite index both in Gg

1

and in G2.

(2) (finitely generated groups quasi-isometric to lattices) Let Λ be a finitely generated

group and let G be a non-uniform lattice of isometries of a rank one symmetric

space X 6= H2
R
. If Λ is quasi-isometric to G then there exists a non-uniform lattice
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G1 of isometries of X and a finite group F such that one has the following exact

sequence:

0 → F → Λ → G1 → 0 .

The notion of commensurability is recalled in Section 8. The particular case of com-

mensurability described in Theorem 2.1, (1), (b), means that the locally symmetric spaces

G1\X and G2\X have isometric finite coverings.

We note that Theorem 2.1 is in some sense a much stronger result than Mostow The-

orem. Mostow Theorem requires the isomorphism of fundamental groups - which is an

algebraic relation between groups, also implying their quasi-isometry. Theorem 2.1 only

requires that the groups are quasi-isometric, which is a relation between “large scale ge-

ometries” of the two groups, and has a priori nothing to do with the algebraic structure

of the groups.

Since Mostow rigidity holds for all kinds of lattices, a first natural question to ask is:

Question 2.2. — Are the two statements in Theorem 2.1 also true for uniform lattices ?

Concerning statement (1), the following can be said: given Gi uniform lattices of isome-

tries of the rank one symmetric spaces Xi, i = 1, 2, G1 quasi-isometric to G2 implies that

X1 = X2 = X.

Now one can ask if in case X 6= H2
R

there exists an isometry g of X such that Gg
1 ∩ G2

has finite index both in Gg
1 and in G2 ? In other words is it true that all uniform lattices

of isometries of the same rank one symmetric space X 6= H2
R

are commensurable ?

A weaker variant of the previous question is whether all arithmetic uniform lattices of

isometries of X 6= H2
R

are commensurable.

The answer to both questions is negative, as shown by the following counter-example.

Counter-example:

All the details for the statements below can be found in [GPS].

Let Q be a quadratic form of the type
√

2x2
n+1−a1x

2
1−· · ·−anx2

n, where ai are positive

rational numbers. The set

HQ = {(x1, . . . , xn+1) ∈ Rn+1 | Q(x1, . . . , xn+1) = 1 , xn+1 > 0}
is a model of the hyperbolic n-dimensional space. Its group of isometries is SOId(Q), the

connected component containing the identity of the stabilizer of the form Q in SL(n+1, R).

The discrete subgroup GQ = SOId(Q) ∩ SL(n + 1, Z(
√

2)) is a uniform lattice. Now if

two such lattices GQ1
and GQ2

are commensurable then there exist g ∈ GL(n + 1, Q[
√

2])

and λ ∈ Q[
√

2] such that Q1 ◦ g = λQ2. In particular, if n is odd then the ratio between

the discriminant of Q1 and the discriminant of Q2 is a square in Q[
√

2]. It now suffices

to take two forms such that this is not possible, for instance (like in [GPS]):

Q1 =
√

2x2
n+1 − x2

1 − x2
2 − · · · − x2

n and Q2 =
√

2x2
n+1 − 3x2

1 − x2
2 − · · · − x2

n .

Statement (2) of Theorem 2.1, on the other hand, also holds for uniform lattices. See

the discussion in the beginning of Section 3.
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A main step in the proof of Theorem 2.1 is the following rigidity result, interesting by

itself.

Theorem 2.3 (Rigidity Theorem [Sch1]). — Let Γ and G be two non-uniform lat-

tices of isometries of Hn
F
6= H2

R
, F = R or C. An (L, C)–quasi-isometry q between Γ and

G is at finite distance from an isometry g of Hn
F

with the property that Γg ∩ G has finite

index in both Γg and G.

The meaning of the statement “q is at finite distance from g” is the following:

For every compact K in G\Hn
F

there exists D = D(L, C,K, Γ, G) such that for every x0

with Gx0 ∈ K, one has

dist(q(γ)x0 , gγx0) ≤ D, ∀γ ∈ Γ .

As it is, it does not look very enlightening. We shall come back to this statement in

Section 2.3, after recalling what is the structure of finite volume real hyperbolic manifolds

in Section 2.2. Also in Section 2.3 we shall give an outline of the proof of Theorem 2.3 in

the particular case when Hn
F

= H3
R
. All the ideas of the general proof are already present

in this particular case, and we avoid some technical difficulties that are irrelevant in a

first approach.

According to Selberg’s Lemma, we may suppose, without loss of generality, that both

Γ and G are without torsion.

2.2. Finite volume real hyperbolic manifolds. — Let M be a finite volume real

hyperbolic manifold, that is a manifold with universal covering Hn
R
, for some n ≥ 2. Let

Γ be its fundamental group.

Given a point x ∈ M denote by r(x) the injectivity radius of M at x.

For every ε > 0 the manifold can be decomposed into two parts:

– the ε-thick part : M≥ε = {x ∈ M | r(x) ≥ ε};
– the ε-thin part : M<ε = {x ∈ M | r(x) < ε}.
The following theorem describes the structure of M . We refer to [Th, §4.5] for details.

Theorem 2.4. — (1) There exists a universal constant ε0 = ε0(n) > 0 such that for

every complete manifold M of universal covering Hn
R

and of fundamental group Γ,

the ε0-thin part M<ε0
is a disjoint union of

• tubular neighborhoods of short closed geodesics;

• neighborhoods of cusps, that is sets of the form Γα\Hbo(α), where Hbo(α) is

an open horoball of basepoint α ∈ ∂∞Hn
R

and Γα is the stabilizer of α in Γ.

(2) A complete hyperbolic manifold M has finite volume if and only if for every ε > 0

the ε-thick part M≥ε is compact.

Note that the fact that M≥ε0
is compact implies that

• M<ε0
has finitely many components;

• for every neighborhood of a cusp, Γα\Hbo(α), its boundary Γα\H(α), where

H(α) is the boundary horosphere of Hbo(α), is compact.
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Let now M be a finite volume real hyperbolic manifold and Γ = π1(M). Consider the

finite set of tubular neighborhoods of cusps

{Γαi
\Hbo(αi) | i ∈ {1, 2, . . . , m}} .

According to Theorem 2.4, the set

M0 = M \
m∐

i=1

Γαi
\Hbo(αi)

is compact. The pre-image of each cusp Γαi
\Hbo(αi) is the Γ–orbit of Hbo(αi) and the

open horoballs composing this orbit are pairwise disjoint. Thus, the space

X0 = H3
R \

m∐

i=1

∐

γ∈Γ/Γαi

γHbo(αi)

satisfies Γ\X0 = M0.

Hbα

X
0

Hb\ αΓα
M =  H\Γ

3

0Γ X\

α

Figure 4. Finite volume hyperbolic manifold, space X0.

Remarks 2.5. — The group Γ endowed with a word metric distw is quasi-isometric to

the space X0 with the length metric distℓ according to the example (2) of quasi-isometry

given in Section 1.2. In particular, since for every x0 ∈ X0, Γx0 is a net in X0, we also

have that (Γ , distw) is quasi-isometric to (Γx0 , distℓ).

2.3. Proof of Theorem 2.3. — According to Section 2.2, there exists X0 comple-

mentary set in H3
R

of countably many pairwise disjoint open horoballs such that Γ\X0 is

compact. Consequently, Γ with any word metric is quasi-isometric to X0 with the length

metric. Similarly, one can associate to G a complementary set Y0 of countably many

pairwise disjoint open horoballs such that G\Y0 is compact and such that G with a word

metric is quasi-isometric to Y0 with the length metric.
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The quasi-isometry q : Γ → G induces a quasi-isometry between (Γx0, distℓ) and

(Gy0, distℓ), for every x0 ∈ X0 , y0 ∈ Y0, hence also between X0 and Y0 (each quasi-

isometry having different parameters L and C). For simplicity, we denote all these quasi-

isometries by q and all their constants by L and C.

In these terms, the conclusion of Theorem 2.3 means that q seen as a quasi-isometry

between X0 and Y0 is at distance at most D from the restriction to X0 of an isometry g

in Comm(Γ, G), where D = D(L, C, X0, Y0).

We now give an outline of proof of Theorem 2.3.

Step 1. The following general statement holds.

Lemma 2.6 (Quasi-Flat Lemma [Sch1], §3.2). — Let Γ be a non-uniform lattice of

isometries of H3
R
. For every L ≥ 1 and C ≥ 0 there exists M = M(L, C) such that every

quasi-isometric embedding

q : Z2 → Γ

has its range in NM(γΓα), where Γα is a cusp group and γ ∈ Γ.

Let us apply Lemma 2.6 to the (L, C)–quasi-isometry q from Γ to G, and to its quasi-

converse q̄ : G → Γ.

– For every γ ∈ Γ and α ∈ ∂∞H3
R

corresponding to a cusp of Γ\H3
R
,

q(γΓα) ⊂ NM(gGβ) ,

for some g ∈ G and β ∈ ∂∞H3
R

corresponding to a cusp of G\H3
R
;

– For every g ∈ G and β ∈ ∂∞H3
R

corresponding to a cusp of G\H3
R
,

q̄(gGβ) ⊂ NM(γ′Γα′) ,

for some γ′ ∈ Γ and α′ ∈ ∂∞H3
R

corresponding to a cusp of Γ\H3
R
.

Combining both and noticing that if the left coset γΓα is contained in the tubular

neighborhood of another left coset γ′Γα′ then the two coincide, a bijection is obtained

between left cosets γΓα and left cosets gGβ such that

(2) distH(q(γΓα), gGβ) ≤ M ′ .

Here distH denotes the Hausdorff distance (see the Dictionary for a definition).

The situation is represented in Figure 5.

Step 2. The map q seen as a quasi-isometry between Γx0, net in X0 and Gy0, net in

Y0, is extended to a quasi-isometry qe between a net N1 in H3
R

and a net N2 in H3
R
. This

is done horoball by horoball. Let γΓα and gGβ satisfying (2). Let γHbα and gHbβ be

the corresponding horoballs. We divide each of them into strips of constant width, by

means of countably many horospheres. We note that γΓαx0 is δ-separated, and that the

horosphere γHα is contained in Nǫ(γΓαx0), for some δ > 0 and ǫ > 0.

We project γΓαx0 onto the first horosphere H1. We get a (δ′ , ǫ′)–net, N (1)
1 , for some

δ′ < δ and ǫ′ < ǫ. We choose a maximal δ-separated subset N
(1)
1 in N (1)

1 , hence a (δ, δ)–net

in N (1)
1 and a (δ, δ + ǫ′)–net in H1. We extend q to N

(1)
1 by q(n1) = π ◦ q ◦ π−1(n1), where

π denotes the projection in each of the spaces onto the first horosphere H1.
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q

X
0

X
0

Figure 5. Quasi-isometric embeddings of Z2.

We repeat the argument and extend q to a net in H2, H3, etc. A global quasi-isometry

is thus obtained. Indeed, given two points A ∈ Hn and B ∈ Hm, with m ≥ n, if

B′ is the projection of B onto Hn, the distance dist(A, B) is bi-Lipschitz equivalent to

dist(A, B′) + dist(B′, B).

We finally obtain a quasi-isometry qe between nets of H3
R
, hence a quasi-isometry of

H3
R
.

Nota bene: In the case of the Mostow rigidity theorem also a quasi-isometry of the

whole space is obtained, but it has the extra property that it is equivariant with respect to

a given isomorphism between the two groups Γ and G. Here, the property of equivariance

is replaced by the extra geometric information that q sends the space X0 at uniformly

bounded distance from Y0, by sending each boundary horosphere at bounded distance

from a boundary horosphere.

The quasi-isometry qe extends, according to the Theorem of Efremovitch-Tikhomirova

to a map between boundaries

∂qe : S2
∞ → S2

∞ ,

which is a quasi-conformal homeomorphism.

Next, two theorems are used.

Theorem 2.7 (Rademacher-Stepanov, see [LV]). — Every quasi-conformal homeo-

morphism between open sets in S2 is differentiable almost everywhere.

Theorem 2.8 ([LV]). — A quasi-conformal homeomorphism h : S2 → S2 whose differ-

ential is almost everywhere a similarity is a Möbius transformation.

Step 3. It is shown that in almost every point in the set of differentiability of ∂q the

differential is a similarity.

Let Ω1 be the set of points ξ in S2
∞ such that the geodesic ray [x0, ξ) returns in X0

infinitely often. The set of such ξ has full Lebesgue measure in S2
∞. This can be seen for
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instance by projecting onto Γ\H3
R

and noting that almost every locally geodesic ray in it

is equidistributed, hence it returns infinitely often in the compact Γ\X0.

Likewise, let Ω2 be the set of points ζ in S2
∞ such that the geodesic ray [y0, ζ) returns

in Y0 infinitely often.

Let Ω be the set of points in Ω1 ∩ ∂q−1
e (Ω2) in which ∂qe is differentiable. Let us

show that in every ξ ∈ Ω the differential of ∂qe is a similarity. Denote by ζ the image

∂qe(ξ). Also, denote by ξ′ the image of ξ under the geodesic symmetry of center x0 and

by ζ ′ the image of ζ under the geodesic symmetry of center y0. In the sequel consider

the two stereographic projections of H3
R

sending (ξ, ξ′, x0) and respectively (ζ, ζ ′, y0) onto

(O,∞, (0, 0, 1)). We work in the corresponding half-space models of H3
R

for the domain

and the range of qe, respectively. In these models, ∂qe(O) = O, ∂qe(∞) = ∞ and the

differential dξ∂qe becomes dO∂qe. The goal is to show that the latter is a similarity.

Let (xn) be a sequence of points on [x0, ξ)∩X0 diverging to ξ. Let tn be the hyperbolic

isometry of axis containing [x0, ξ) such that tn(x0) = xn.

Similarly, let (yn) be a sequence of points on [y0, ζ) ∩ Y0 diverging to ζ . Let τn be the

hyperbolic isometry of axis containing [y0, ζ) such that τn(y0) = yn.

Consider the sequence of (L, C)–quasi-isometries qn = τ−1
n ◦ q ◦ tn : t−1

n (X0) → τ−1
n (Y0).

Since t−1
n (X0) are isometric copies of X0 containing x0, by Ascoli Theorem they converge

to an isometric copy X1 of X0. A similar argument can be done for τ−1
n (Y0), which

converge to an isometric copy Y1 of Y0, therefore qn converges to an (L, C)–quasi-isometry

q̃ : X1 → Y1. Also, the extensions qe
n = τ−1

n ◦ qe ◦ tn of qn to H3
R

converge to an extension

q̃e of q̃.

On the other hand, since tn and τn restricted to C ⊂ ∂∞H3
R

are homotheties of center

O, the restrictions of the boundary maps ∂qe
n : C → C converge to the differential dO∂qe.

Thus, dO∂qe is the restriction to C of ∂q̃e. From this it can be deduced that dO∂qe is a

similarity. We give the sketch of proof below. The full proof is more elaborate and can

be found in [Sch1].

The argument in Step 1 implies that q̃ sends every boundary horosphere of X1 at

uniformly bounded distance of a boundary horosphere of Y1. From this it can be deduced

that all horospheres having a certain Euclidean height h are sent at uniformly bounded

distance from horospheres having an Euclidean height in [h/λ, λh] (for some constant

λ ≥ 1 depending on the constant M given by Step 1 for q̃). Note that the basepoints

of horospheres of heights at least h in X1 compose nets Nh in C with the corresponding

constants δ and ǫ smaller and smaller as h decreases to zero. Thus, dO∂qe sends each of

these nets Nh of C into a net Nh/λ of C. Up to now, nothing surprising, since dO∂qe is a

linear map.

Now we change stereographic projection, and in both the domain and the range model

reverse O with ∞. In the new models, we again have q̃ : X1 → Y1 extended to q̃e : H3
R
→

H3
R

such that ∂q̃e fixes both O and ∞ and such that its restriction to C \ {O} coincides

with I ◦dO∂qe ◦I, where I is the inversion with respect to the unit circle. An argument as

above implies that I ◦ dO∂qe ◦ I sends nets Nh of C into nets Nh/λ of C for every h. This

implies that I ◦ dO∂qe ◦ I is also linear. But this can happen only if dO∂qe is a similarity.
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Step 4. Theorem 2.8 and Step 3 imply that there exists an isometry g of H3
R

such that

∂g = ∂qe. It follows that g and qe are at uniformly bounded distance from each other. In

particular g restricted to X0 is at uniformly bounded distance from q. Next it is shown

that g is in the commensurator Comm(Γ, G) of Γ into G.

The argument is by contradiction. Suppose that Γg ∩ G has infinite index either in Γg

or in G. Without loss of generality we may assume that it has infinite index in G. It

follows that there exists a sequence gn of elements in G such that gn(Γg) are distinct left

cosets in the group of isometries of Hn
F
.

Let β be a basepoint of a boundary horosphere of Y0. It is an easy exercise to show

that, up to taking a subsequence, there exists a sequence γn in Γ and another basepoint

α of a boundary horosphere of Y0 such that gnγg
n(α) = β and gnγg

n(y0) ∈ B(y0, R), where

R is a constant.

Consider the respective stereographic projections sending (α, y0) to (∞, (0, 0, 1)) on the

H3
R

of definition and (β, y0) to (∞, (0, 0, 1)) on the range H3
R
. In these new half-space

models of H3
R

the isometry gnγ
g
n fixes ∞ and sends (0, 0, 1) at distance at most R from

itself. Also, since γg
n are isometries of g(X0), gn are isometries of Y0 and Y0 is at uniformly

bounded distance from g(X0), it follows that gnγ
g
n(Y0) is at Hausdorff distance at most D

from Y0, where D is a constant independent of n.

By Ascoli Theorem, gnγ
g
n converges to an isometry ĝ such that Y1 = ĝ(Y0) is at distance

at most D from Y0.

Let Nh be the set of basepoints of boundary horospheres of Y0 of Euclidean height at

least h. Note that G∞, the stabilizer in G of the point ∞, acts on C such that G∞\C is

a flat torus. Let D ⊂ C be a fundamental domain (quadrangle) projecting on this torus.

The number of horoballs of Y0 of Euclidean height at least h and with basepoints in D is

finite. Let Bh be the finite set of their basepoints.

Then Nh =
∐

b∈Bh
G∞b is a finite union of grids in C, hence a net in C.

The previous considerations imply that Nn
h = gnγ

g
n(Nh) is a net contained in Nh/λ and

likewise for the net N̂h = ĝ(Nh). On the other hand Nn
h converges to N̂h in the compact-

open topology. The only way in which this convergence can occur, both nets being in the

larger net Nh/λ, is that they coincide on larger and larger subsets.

An isometry of H3
R

fixing four points on ∂∞H3
R

which are not on the same circle is the

identity isometry(1). Hence two isometries which coincide on four points on ∂∞H3
R

not

on the same circle are equal. It follows that the sequence gnγ
g
n becomes stationary, for n

large enough. This contradicts the hypothesis that gn(Γg) are distinct left cosets. �

2.4. Proof of Theorem 2.1. — A non-uniform lattice of isometries of Hn
F

has infinitely

many ends if and only if Hn
F

= H2
R
. On the other hand, having infinitely many ends is

(1)Elementary proof: an isometry fixing three distinct points in the boundary has to fix a point in H3
R

[BP, Proposition A.5.14]. Thus the isometry can be identified with a matrix in SO(3) fixing four tangent

vectors-the vectors pointing towards the four fixed points in ∂∞H3
R
. If the four vectors were in the same

plane then the corresponding points in the boundary would be on the same circle. Therefore three of the

four vectors are linearly independent and the isometry has to be the identity.
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a quasi-isometry invariant. Thus, either both X1 and X2 are H2
R

or both differ from it.

Suppose we are in the second case. The quasi-isometry q : G1 → G2 induces as in the

previous section a quasi-isometry q : X1 → X2, hence a quasi-conformal homeomorphism

between the boundaries at infinity ∂∞X1 and ∂∞X2. Elementary dimension and structure

arguments imply that X1 = X2.

The rest of the statement (1) follows from the Theorem 2.3.

We now get to the proof of statement (2). The following standard fact is needed.

Lemma 2.9. — Let Λ and G be finitely generated groups and let q : Λ → G, q̄ : G → Λ

be two quasi-converse (L0, C0)–quasi-isometries. Then to every λ ∈ Λ one can associate

an (L, C)–quasi-isometry of G, qλ = q ◦ Lλ ◦ q̄, where Lλ denotes the isometry on Λ

determined by the action of λ to the left, and (L, C) can be effectively computed from

(L0, C0). Moreover the map λ → qλ defines a

– quasi-action of Λ on G: there exists D = D(L0, C0) so that for every λ, η ∈ Λ

the following holds:

dist(qλ ◦ qη , qλη) ≤ D ,(3)

dist(qλ ◦ qλ−1 , id) ≤ D .(4)

– which moreover is quasi-transitive: for every g, g′ ∈ G there exists λ ∈ Λ such

that

dist(qλ(g), g′) ≤ C1 ,

where C1 = C1(L0, C0);

– and of finite quasi-kernel: for every K > 0 the set of λ such that dist(qλ, id) ≤ K

is finite.

The proof of the lemma is left as an exercise to the reader.

In the particular case considered, Lemma 2.9 and Theorem 2.3 imply that if Λ is quasi-

isometric to G non-uniform lattice of isometries of X = Hn
F
6= H2

R
, then there exists a

morphism of finite kernel

φ : Λ → Comm(G) .

The fact that the image G1 of Λ under φ is discrete can be proved by contradiction.

Suppose it is not discrete, hence there are infinitely many elements in φ(Λ) in the neigh-

borhood of the identity element id ∈ G. Then for some D large enough we have that for

infinitely many λ ∈ Λ

dist(q ◦ Lλ ◦ q̄(id), id) ≤ D ⇒ dist(Lλ ◦ q̄(id), q̄(id)) ≤ D′ ,

where D′ = D′(L, C, D). This contradicts the fact that every ball in Λ is a finite set.

Also, one can argue that G1\X has finite volume roughly as follows. Consider a com-

plementary set X0 in X of a family of countably many pairwise disjoint open horoballs

such that G\X0 is compact. Lemma 2.9 implies that Λ acts quasi-transitively by quasi-

isometries on G, hence on X0. It follows that G1 acts “with compact quotient” on X0.

See [Sch1, §10.4] for details.
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3. Classes of groups complete with respect to quasi-isometries

Another way of interpreting Theorem 2.1, (2), is the following. Let C be the class of

non-uniform lattices of isometries in Hn
F
6= H2

R
. Then every finitely generated group Λ

quasi-isometric to a group G ∈ C is itself in C, up to taking its quotient by a finite normal

subgroup. One may ask what other classes of groups behave similarly. Possibly, to the

operation of taking quotient by finite normal subgroup one has to add the other algebraic

operation preserving the quasi-isometry class: taking a subgroup of finite index.

Definition 3.1. — A class of finitely generated groups C with the property that if Λ is

quasi-isometric to G ∈ C then Λ1 ∈ C, where Λ1 is either a finite index subgroup of Λ or a

quotient of Λ by a finite normal subgroup, is called class of groups complete with respect

to quasi-isometries or q.i. complete.

The question of finding such classes has been asked for the first time by M. Gromov in

[Gr1].

3.1. List of classes of groups q.i. complete. — We give a (non-exhaustive) list of

classes of groups q.i. complete. We begin with the q.i. complete classes of lattices of

isometries of symmetric spaces other than those discussed above. All the lattices that we

consider are supposed to be irreducible.

1. uniform lattices of isometries of a symmetric space X for the list of spaces X below.

– X = Hn
R
, with n ≥ 3, by the work of Sullivan and Tukia (see the lecture notes

of Marc Bourdon and references therein);

– X = Hn
H

and X = H2
Cay by the work of P. Pansu [Pan2];

– X = Hn
C

, n ≥ 2, by the work of R. Chow [Ch];

– X = H2
R
. In this case a proof of the q.i. completeness goes as follows:

• A finitely generated group Λ quasi-isometric to H2
R

is a hyperbolic group

(see Example 6 below for a definition), with boundary at infinity home-

omorphic to S1. Every hyperbolic group acts on its boundary as a con-

vergence group [Tu2]. For a definition of convergence groups see Section

8.

• Every convergence group is conjugate to a Fuchsian group in Homeo(S1).

This follows from [Tu1], [CJ] and [Ga].

– X irreducible symmetric space of rank at least 2. This result is due to B.

Kleiner and B. Leeb [KlL]. See also [EF] for another proof.

2. non-uniform lattices of isometries of a symmetric space X of rank at least 2. This

is due to R. Schwartz for a family of Q–rank one lattices containing the Hilbert

modular groups [Sch2] and to A. Eskin [E] in the general case, under the condition

that X has no factors of rank 1. See also [Dr2] for another proof of the general case.

Moreover, in this case Statement (1), (b), of Theorem 2.1 holds as well, that is:

two non-uniform lattices are quasi-isometric if and only if they are commensurable.

Remark 3.2. — In the cases of uniform lattices in X = Hn
H

and X = H2
Cay or X of

rank at least two, as well as in the case of non-uniform lattices of a symmetric space
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X of rank at least 2, the q.i. completeness result is obtained via a rigidity result

similar to Theorem 2.3, that is : a quasi-isometry of the lattice is at bounded distance

from an isometry. Moreover, in the case of non-uniform lattices, this isometry is in

the commensurator of the lattice.

3. fundamental groups of non-geometric Haken manifolds with zero Euler characteristic

[KaL2] (see the lecture notes of M. Kapovich).

4. finitely presented groups [GH1].

5. nilpotent groups. This follows from the Polynomial Growth Theorem of M. Gromov

[Gr3]. We recall that the growth function BS : N → N of a group G with a finite

set of generators S is defined by BS(n) = the cardinal of the ball BS(1, n) in the

word metric distS. The theorem of M. Gromov states that the growth function with

respect to some (hence any) finite set of generators is polynomial if and only if the

group is virtually nilpotent.

The subclass of Abelian groups is also q.i. complete, as follows from results in

[Pan1]. See the discussion in Section 4.3.

6. hyperbolic groups.

We recall that a geodesic metric space is called δ-hyperbolic if in every geodesic

triangle, each edge is contained in the δ-tubular neighborhood of the union of the

other two edges. If δ = 0 the space is called real tree or R–tree.

A finitely generated group is called hyperbolic if its Cayley graph is hyperbolic.

For instance, uniform lattices in rank one symmetric spaces are such.

The q.i. completeness of the class of hyperbolic groups follows easily from the

definition and from

Lemma 3.3 (Morse lemma, see [GH2]). — Every (L, C)–quasi-isometric seg-

ment in a δ-hyperbolic space is at Hausdorff distance at most D from the geodesic

segment joining its endpoints, where D = D(L, C, δ).

7. amenable groups [GH1]. We recall that a discrete group G is amenable if for every

finite subset K of G and every ǫ ∈ (0, 1) there exists a finite subset F ⊂ G satisfying:

card KF < (1 + ǫ)card F .

8. the whole class of solvable groups is not q.i. complete, as pointed out by the counter-

example in [Dyu]. Still, there are some smaller classes of solvable groups that are

q.i. complete. See for instance [FM1], [FM2], [EFW1], [EFW2].

3.2. Relatively hyperbolic groups: preliminaries. — In the same way in which

uniform lattices in rank one symmetric spaces inspired the notion of hyperbolic group,

non-uniform lattices inspired the notion of relatively hyperbolic group.(2) This notion was

defined by M. Gromov in [Gr2]. Then several equivalent definitions of the same notion

(2)What is called in this paper relatively hyperbolic group is sometimes called in the literature strongly

relatively hyperbolic group, in contrast with weakly relatively hyperbolic group.
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as well as developments of the theory of relatively hyperbolic groups were provided in

[Bow1], [Fa], [Dah1], [Ya], [DS1], [Os1], [Dr3].

Here we recall the definition of B. Farb [Fa]. Let G be a finitely generated group and

let {H1, . . . , Hm} be a collection of subgroups of G. Let S be a finite generating set of G

invariant with respect to inversion. The idea is to write down a list of properties which

force G to behave with respect to {H1, . . . , Hm} in the same way in which a non-uniform

lattice Γ behaves with respect to its cusp subgroups {Γα1
, . . . , Γαm

} (see Figure 4).

We denote by H the set
⊔m

i=1(Hi \ {1}). We can consider two Cayley graphs for the

group G, Cayley(G, S) and Cayley(G, S ∪H). We note that Cayley(G, S) is a subgraph

of Cayley(G, S ∪ H), with the same set of vertices but a smaller set of edges, and that

Cayley(G, S ∪ H) is not locally finite if at least one of the subgroups Hi is infinite. We

have that distS∪H(u, v) ≤ distS(u, v), for every two vertices u, v.

Definition 3.4. — Let p be a path in Cayley(G, S ∪ H). An H–component of p is a

maximal sub-path of p contained in a left coset gHi, i ∈ {1, 2, . . . , m}, g ∈ G.

The path p is said to be without backtracking if it does not have two distinct H–

components in the same left coset gHi.

The notion of weak relative hyperbolicity has been introduced by B. Farb in [Fa]. We

use a slightly different but equivalent definition. The proof of the equivalence can be

found in [Os1].

Definition 3.5. — The group G is weakly hyperbolic relative to {H1, . . . , Hm} if and

only if the graph Cayley(G, S ∪H) is hyperbolic.

This property is not enough to determine a picture as in Figure 4. For instance G = Z2

satisfies the previous property with respect to its subgroup H = Z × {0}. This case does

not at all look as in Figure 4, in that the tubular neighborhoods of left cosets of H do not,

as in Figure 4, intersect in a finite set, but on the contrary the intersection may contain

both left cosets. Vaguely speaking, in Figure 4 the left cosets stay close in the respective

neighborhoods of a pair of points realizing the minimal distance, and then diverge, while

in the example above two left coset stay parallel.

One has to add a second property in order to obtain the proper image, and thus to

define (strong) relative hyperbolicity. Before formulating this property, we must mention

another notable example of group weakly relatively hyperbolic and not strongly rela-

tively hyperbolic. The Mapping Class Group of a hyperbolic surface Σ (also defined as

Out(π1(Σ))) is weakly hyperbolic (and not strongly hyperbolic) relative to finitely many

stabilizers of closed geodesics on the surface Σ. The weak relative hyperbolicity follows

from [MM] (see also [Bow3]). The reason for which (strong) relative hyperbolicity is not

satisfied is again that the intersection of two tubular neighborhoods of left cosets is not

finite. Indeed, two stabilizers of two closed geodesics intersect in the stabilizer of both,

which can be itself infinite.

Notation: For every path p in a metric space X, we denote the start of p by p− and the

end of p by p+.
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Definition 3.6. — The pair (G , {H1, . . . , Hm}) satisfies the Bounded Coset Penetration

(BCP) property if for every λ ≥ 1 there exists a = a(λ) such that the following holds.

Let p and q be two λ-bi-Lipschitz paths without backtracking in Cayley(G, S ∪ H) such

that p− = q− and distS(p+, q+) ≤ 1.

(1) Suppose that s is an H–component of p such that distS(s−, s+) ≥ a. Then q has an

H–component contained in the same left coset as s;

(2) Suppose that s and t are two H–components of p and q, respectively, contained in

the same left coset. Then distS(s−, t−) ≤ a and distS(s+, t+) ≤ a.

In particular BCP property implies that if Hi is infinite two left cosets of Hi cannot

be at finite Hausdorff distance one from the other. The proof is left as an exercise to the

reader.

Definition 3.7. — The group G is (strongly) hyperbolic relative to {H1, . . . , Hm} if it is

weakly hyperbolic relative to {H1, . . . , Hm} and if (G , {H1, . . . , Hm}) satisfies the BCP

property.

Both in the case of weak and strong relative hyperbolicity, the subgroups H1, . . . , Hm

are called peripheral subgroups. A subgroup conjugate to some Hi, i ∈ {1, ..., m}, is called

a maximal parabolic subgroup. A subgroup contained in a maximal parabolic subgroup is

called parabolic.

Other examples of relatively hyperbolic groups (besides non-uniform lattices):

1. A ∗F B, where F is finite, is hyperbolic relative to A and B; more generally, fun-

damental groups of finite graphs of groups with finite edge groups are hyperbolic

relative to the vertex groups [Bow1].

2. a hyperbolic group Γ is hyperbolic relative to

– H = {1};
– any class of infinite quasi-convex subgroups {H1, . . . , Hk} with the property

that Hg
i ∩ Hj is finite if i 6= j or g 6∈ Hi [Bow1, Theorem 7.11].

For instance let Γ be a uniform lattice of isometries of H3
R

such that for some

totally geodesic copy of the hyperbolic plane H2
R

in H3
R
, H = Γ ∩ Isom(H2

R
) is

a uniform lattice of H2
R
. Then {H} satisfies the previous properties.

3. fundamental groups of complete finite volume manifolds of pinched negative sectional

curvature are hyperbolic relative to the fundamental groups of their cusps ([Bow1],

[Fa]);

4. fundamental groups of (non-geometric) Haken manifolds with at least one hyperbolic

component are hyperbolic relative to fundamental groups of maximal graph-manifold

components and to fundamental groups of tori and Klein bottles not contained in

a graph-manifold component; this follows from the previous example and from the

combination theorem of F. Dahmani [Dah2, Theorem 0.1] (for a combination theo-

rem applying also to non-finitely generated groups see [Os3]);

5. fully residually free groups, also known as limit groups, are hyperbolic relative to

their maximal Abelian non-cyclic subgroups [Dah2]. Moreover, according to [AB]
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these groups are known to be CAT (0) with isolated flats, after the terminology in

[Hr];

6. more generally, finitely generated groups acting freely on Rn–trees are hyperbolic

relative to their maximal Abelian non-cyclic subgroups [Gui].

Remark 3.8. — Throughout the discussion of relatively hyperbolic groups we tacitly

rule out the case of a finite group hyperbolic relative to any class of subgroups, as well as

the case when one of the peripheral subgroups Hi is the ambient group itself.

Thus, we are in the case of an infinite group G and a finite collection (possibly reduced

to one element) {H1, . . . , Hm} of proper subgroups of G. In this case it follows that each

subgroup Hi has infinite index in G. We note also that if all peripheral subgroups are

finite then G is hyperbolic; if there exists at least one infinite peripheral subgroup, then

the finite peripheral subgroups can be removed from the list, and it can be thus assumed

that all Hi are infinite.

Remark 3.9. — Recently, relatively hyperbolic groups have been used to construct ex-

amples of infinite groups with exotic properties. Thus in [Os2] it is proved that there

exist uncountably many pairwise non-isomorphic two-generated groups without finite sub-

groups and with exactly two conjugacy classes, answering an old question in group theory.

Question 3.10. — Is the class of relatively hyperbolic groups q.i. complete ?

Before discussing Question 3.10, we define our main tools.

4. Asymptotic cones of a metric space

4.1. Definition, preliminaries. — The notion of asymptotic cone was defined in an

informal way in [Gr3], and then rigorously in [VDW] and [Gr4]. The idea is to construct,

for a given metric space, an image of it seen from infinitely far away.

First one needs the notion of non-principal ultrafilter. This can be defined as a finitely

additive measure ω defined on the set of all subsets of N (or, more generally, of a countable

set) and taking only values zero and one, such that on all finite subsets it takes value zero.

In particular if N = A1⊔· · ·⊔An and all Ai are infinite, then there exists i0 ∈ {1, 2, . . . , n}
such that ω(Ai0) = 1 and ω(Aj) = 0 for every j 6= i0.

The fact that ω takes only values 0 and 1 immediately brings to one’s mind the idea

of a characteristic function. Indeed, ω satisfies the previous properties if and only if it is

the characteristic function 1U of a collection U of subsets of N which is

– an ultrafilter, that is, a maximal filter;

– moreover nonprincipal, that is containing the Fréchet filter.

For definitions of the notions above, that is, for a list of axioms, see Section 8. For more

details see [Bou]. The main advantage of the second way of defining non-principal ultra-

filters resides, besides the questionable pleasure of dealing with axioms, in the fact that it

shows that such objects always exist. We also note that a functional analytic treatment
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of ultrafilters is possible. Thus, the notion of ω–limit can be seen as an application of

the Hahn-Banach theorem to the space of relatively compact sequences, the subspace of

convergent sequences and the limit map on it.

Since all ultrafilters in this paper are nonprincipal, we drop this adjective henceforth.

Given an ultrafilter ω and a sequence (xn) in a topological space, one can define the

ω–limit limω xn of the sequence as an element x such that for every neighborhood N of

it,

ω ({n ∈ N | xn ∈ N}) = 1 .

The following property emphasizes the main interest of (nonprincipal) ultrafilters.

Proposition 4.1. — [Bou] If (xn) is contained in a compact, its ω–limit always exists.

Note that, as soon as it exists, the ω–limit is also unique. Also, it is not difficult to see

that it is a limit of a converging subsequence. Thus, an ultrafilter is a device to select

a point of accumulation for any relatively compact sequence, in a coherent manner. In

some sense, it is a systematic approach to the process of taking the diagonal subsequence,

after selecting converging subsequences in countably many sequences.

With such a tool at hand, which makes almost any reasonable sequence converge, one

can hope to define, for a given metric space (X, dist), an image of it seen from infinitely

far away. More precisely, one has to take a sequence of positive numbers dn diverging to

infinity, and try to construct a limit of the sequence of metric spaces
(
X, 1

dn
dist

)
.

As in the formal construction of completion, one can simply take the set S(X) of all

sequences (xn) in X and try to define a metric on this space by

distω (x, y) = lim
ω

dist(xn, yn)

dn
, for x = (xn), y = (yn) .

The problem is that the latter limit can be +∞, or it can be zero for two distinct

sequences.

To avoid the situation distω (x, y) = +∞, one restricts to a subset of sequences defined

as follows. For a fixed sequence e = (en), consider

(5) Se(X) =

{
(xn) ∈ XN ;

(
dist(xn, en)

dn

)
is a bounded sequence

}
.

To deal with the situation when distω (x, y) = 0 while x 6= y, one uses the classical trick

of taking the quotient for the equivalence relation

x ∼ y ⇔ distω (x, y) = 0 .

The quotient space Se(X)/ ∼ is denoted Conω(X; e, d) and it is called the asymptotic

cone of X with respect to the ultrafilter ω, the scaling sequence d = (dn) and the sequence

of observation centers e.

A sequence of subsets (An) in X gives rise to a limit subset in the cone, defined by

lim
ω

(An) = {lim
ω

(an) | an ∈ An, ∀n ∈ N} .

If limω
dist(en,An)

dn
= +∞ then limω(An) = ∅.
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Properties of asymptotic cones:

1. Conω(X; e, d) is a complete metric space;

2. every limit subset limω(An), if non-empty, is closed;

3. if X is geodesic then every asymptotic cone Conω(X; e, d) is geodesic;

4. an (L, C)–quasi-isometry between two metric spaces q : X → Y gives rise to a

bi-Lipschitz map between asymptotic cones

qω : Conω(X; e, d) → Conω(Y ; q(e), d)

lim
ω

(xn) → lim
ω

(q(xn)) ;

5. If G is a group then every Conω(G; e, d) is isometric to Conω(G; 1, d), where 1 denotes

here the constant sequence equal to 1;

6. Conω(G; 1, d) is a homogeneous space.

Proofs of the previous properties can be found in [Gr4], [KlL], [KaL1]. None of them is

difficult; they are good exercises in order to get familiar with the notion. We shall take a

closer look only at the last property, namely we shall exhibit the group acting transitively

by isometries on Conω(G; 1, d). Let GN be the set of all sequences in G and let S(1)(G)

be the subset of sequences defined as in (5). We consider the equivalence relation

(gn) ≈ (g′
n) ⇔ ω({n ∈ N | gn = g′

n}) = 1 .

The quotient space ΠωG = GN/ ≈ is a group, called the ω–ultrapower of G. The

subgroup Gω = S(1)(G)/ ≈ acts transitively by isometries on Conω(G; 1, d) by:

(gn)ω lim
ω

(xn) = lim
ω

(gnxn) .

One can put a condition in order to restrict the growth of the scaling sequence with

respect to the ultrafilter. The idea is to choose a sequence d and an ultrafilter ω such that

there is no set E with ω(E) = 1 and such that (dn)n∈E grows faster than exponentially.

The definition is as follows:

Definition 4.2. — The pair (ω, d) is non-sparse if:

(i) For every a > 1 we have dn ≤ an ω—almost surely.

(ii) For every ordered infinite subset E = {i1, i2, . . . , in, . . .} such that there exists a > 1

satisfying limn→∞
din

an = +∞, we have that ω(E) = 0.

In one of the properties (i) and (ii) is not satisfied, we say that the pair (ω, d) is sparse.

Both sparse and non-sparse pairs exist. In order to construct a sparse pair, it suffices to

take an ultrafilter ω, and via the injection n 7→ 3n to identify it to an ultrafilter supported

by the set {3n ; n ∈ N}.
To construct a non-sparse pair, take for instance dn = n and all the sets E described in

(ii), for this choice. The collection of subsets of N having complementaries in N either finite

or contained in a set of type E is a filter. An ultrafilter U containing it is non-principal

and the pair ( 1U , (n) ) is non-sparse.
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4.2. A sample of what one can do using asymptotic cones. —

Proposition 4.3 ([Gr4]). — Let Γ be a discrete group endowed with a metric dist, left

invariant with respect to the action of the group on itself, such that all balls are finite.

(1) If all the asymptotic cones of (Γ, dist) are path-connected then Γ is finitely generated.

(2) If moreover all the asymptotic cones of (Γ, dist) are simply connected then Γ is finitely

presented.

Remark 4.4. — (a) A metric as in Proposition 4.3, (1), can be obtained for instance if

the group acts properly discontinuously and freely by isometries on a proper metric

space X. Given x ∈ X we identify Γ with the orbit Γx and we take the induced

metric.

A particular case of the previous situation is when Γ is a subgroup of a finitely

generated group G. Then we can take as X the Cayley graph of G. If we choose

x = 1, the induced metric dist is the word metric of G restricted to Γ.

(b) The converse of Proposition 4.3, (2), is not true. This can be seen for instance

in the case of Baumslag-Solitar groups BS(p, q) or in the case of uniform lattices

in the solvable group Sol. These groups are finitely presented, nevertheless their

asymptotic cones have uncountable fundamental group [Bu].

Proof. — (1) Step 1. We first prove that between every pair of elements x, y in Γ there

exists a discrete path composed of at most N steps of length at most dist(x,y)
M

, where both

M and N are fixed.

Here is the precise statement with quantifiers: for every M > 1 there exist N ∈
N, N ≥ 2, and D > 0 such that for every x, y ∈ Γ with dist(x, y) ≥ D, there exists a

finite sequence of points t0 = x, t1, . . . , tm = y with m ≤ N and dist(ti, ti+1) ≤ dist(x,y)
M

for

every i ∈ {0, 1, . . . , m − 1}.
We argue by contradiction and suppose it is not the case. Then there exists M and

a sequence of pairs of points (xn, yn) ∈ Γ × Γ with dn = dist(xn, yn) ≥ n and such that

every discrete path of at most n steps between xn and yn has at least one step of length

≥ dist(xn,yn)
M

. In the asymptotic cone Conω(Γ; xn, dn) the two sequences (xn) and (yn) give

two points xω and yω at distance 1 such that for every n, every discrete path joining xω

and yω and having n steps has at least one step of length ≥ 1
M

. On the other hand, since

Conω(Γ; xn, dn) is path-connected, xω and yω can be joined by a path. On this path can

be chosen a finite discrete path of steps at most 1
M

between xω and yω. Thus we obtain

a contradiction.

Step 2. By iterating the result obtained in Step 1, one can deduce that every pair

of points in Γ can be joined by a discrete path of step at most D. Now it suffices to

take the finite set of all the elements in Γ at distance at most D from 1. By the previous

statement, this is a set of generators in Γ.

(2) According to (1) the group Γ is finitely generated; moreover it is easy to see that

any word metric on Γ is bi-Lipschitz equivalent to dist. Thus we may assume that all

asymptotic cones of some Cayley graph Cayley(Γ, S) are simply connected.



QUASI-ISOMETRY RIGIDITY 23

The proof continues in the same spirit as for (1): there we dealt with pairs of points

and we had to “fill the space between them” with a discrete path composed of steps

of bounded length. The set of elements in the group with the above bound on their

length gave the finite set of generators. We can see a pair of points as an image of the

zero dimensional sphere S0. If we go one dimension up, instead of pairs of points we

shall have loops in the Cayley graph Cayley(Γ, S). These are nothing else than all the

relations in the group Γ endowed with the finite generating set S. To show that Γ is

finitely presented means to show that an arbitrary loop in Cayley(Γ, S) can be “filled”

with loops of uniformly bounded length. “Filled” means here that by putting a set of

loops of uniformly bounded length one next to the other one obtains a diagram having

as boundary the initial arbitrary loop. Then the (finite) set of words in the alphabet S

labelling loops in Cayley(Γ, S) of bounded length gives the set of relations in the finite

presentation.

More precisely, the argument comprises a two steps.

Step 1. We show that for every M > 0 there exists N ∈ N and ℓ0 such that every

loop in Cayley(Γ, S) of length ℓ ≥ ℓ0 can be filled by at most N loops of length ≤ ℓ
M

.

This property is called the Loop Division Property in [Dr1]; it is in fact equivalent to the

property that all asymptotic cones are simply connected (see [Dr1] for details).

The contrary of the Loop Division Property would imply that for some M > 0 there

exists a sequence of loops cn of lengths ℓn diverging to infinity such that for any set of at

most n loops filling cn, at least one of them has length larger than ℓn

M
. We can see the

loops cn as Lipschitz maps cn : S1 → Cayley(Γ, S) with Lipschitz constant ℓn

2π
.

In an asymptotic cone Γ∞ = Conω(Γ; xn, ℓn) with xn on cn (S1) the sequence of loops

cn defines a limit 1
2π

–Lipschitz map c : S1 → Γ∞. Since Γ∞ is simply connected the

map c can be extended to a continuous map c̄ defined on the unit disk D2. The uniform

continuity of c̄ implies that for a net on D2 of mesh δ small enough its image by c̄ is a

union of N “squares” of perimeters at most 1
2M

and filling c. Without loss of generality

it may be assumed that the edges of these “squares” are either geodesics or sub-arcs of c.

This implies that for ω-almost every n the loop cn can be filled by N “squares” of

perimeters at most ℓn

M
, a contradiction.

Step 2. By iterating the Loop Division Property obtained in Step 1 we deduce that

any loop in Cayley(Γ, S) can be filled by loops of length at most ℓ0. There are finitely

many loops of length ≤ ℓ0 up to left translations by elements in Γ. The labels in the

alphabet S of these loops will be the relations in the finite presentation of Γ =< S >.

Remark 4.5. — Simple connectedness of asymptotic cones implies much more than the

conclusion of Proposition 4.3: it implies that the group Γ has polynomial Dehn function

and linear filling radius. See [Dr1] and references therein.

4.3. Examples of asymptotic cones of groups. — All the groups considered below

are finitely generated.
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(1) A group is virtually nilpotent if and only if all its asymptotic cones are locally compact

([Gr3], [Dr1]).

Morality : Outside the class of virtually nilpotent groups one should not expect the

asymptotic cones to be locally compact.

Moreover, in this case it was proved by P. Pansu in [Pan1] that all asymptotic cones

are isometric to a graded Lie group canonically associated to G, as follows. Let tor(G)

be the finite normal subgroup of G generated by elements of finite order. The nilpotent

group Ḡ = G/tor(G) is without torsion, hence it can be embedded, according to [Mal],

as a uniform lattice in a nilpotent Lie group. To this Lie group one canonically associates

a graded Lie group, and it is this graded Lie group endowed with a Carnot-Caratheodory

metric that is isometric to all asymptotic cones.

If two virtually nilpotent groups are quasi-isometric, the graded Lie groups associated

to them are not only bi-Lipschitz equivalent as usually for asymptotic cones, but moreover

isomorphic. This points out new quasi-isometry invariants: the degree of nilpotency of

Ḡ = G/tor(G) and the rank of each of the Abelian groups Ḡi/Ḡi+1, where Ḡi is the i-th

group in the lower central series of Ḡ.

In particular, if a group G is quasi-isometric to an Abelian group, then G itself is

virtually Abelian.

(2) A group is hyperbolic if and only if all its asymptotic cones are real trees ([Gr3],

[Dr1]).

Moreover, all asymptotic cones are isometric to a 2ℵ0–universal real tree [DP].

Remarks 4.6. — – In the “if” part of the previous two statements as well as in every

similar statement in this paper, it is enough to take all asymptotic cones for a fixed

ultrafilter.

– Note that Proposition 4.3, (2), implies that hyperbolic groups are finitely presented.

This can also be obtained directly from the definition, and in fact much more is

known: the Dehn function of hyperbolic groups is linear [Gr2].

(3) Let G be a uniform lattice of isometries of a symmetric space or Euclidean building

of rank at least 2. Every asymptotic cone Conω(G; 1, d) is a (non-discrete) Euclidean

building [KlL].

As for the question whether in this case all asymptotic cones are isometric or not, it

turns out to be related to the Continuum Hypothesis (the hypothesis stating that there

is no cardinal number between ℵ0 and 2ℵ0).

Using a description of asymptotic cones in terms of fields and valuations (a similar

description has been obtained independently by B. Leeb and A. Parreau [Par]), Kramer,

Shelah, Tent and Thomas have shown in [KSTT] that:

– if the Continuum Hypothesis (CH) is not true then any uniform lattice in

SL(n, R), n ≥ 3, has 22ℵ0 non-isometric asymptotic cones;
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– if the CH is true then all asymptotic cones of a uniform lattice in SL(n, R), n ≥ 3,

are isometric. Moreover, a finitely generated group has at most a continuum of

non-isometric asymptotic cones.

(4) In [DS1] can be found an example of two-generated (and recursively presented -

but not finitely presented) group with continuously many non-homeomorphic asymptotic

cones. The construction is independent of CH.

Question 4.7. — Can one characterize relatively hyperbolic groups also in terms of

asymptotic cones ?

An answer to this question would give a better idea of how relatively hyperbolic groups

look like and also it might serve to prove some rigidity result about relatively hyperbolic

groups. For instance, in the rigidity result of B. Kleiner and B.Leeb [KlL] the main

ingredient is the description of asymptotic cones of uniform lattices.

5. Relatively hyperbolic groups: image from infinitely far away and rigidity

5.1. Tree-graded spaces and cut-points. —

Definition 5.1 (tree-graded spaces). — Let F be a complete geodesic metric space

and let P be a collection of closed geodesic subsets of F (called pieces) such that the

following two properties are satisfied:

(T1) Every two different pieces have at most one common point.

(T2) Every simple geodesic triangle (a simple loop composed of three geodesics) in F is

contained in one piece.

Then we say that the space F is tree-graded with respect to P.

piece
piece

transversal tree

Figure 6. A tree-graded space.
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Property (T2) can be replaced by one of the following properties:

(T ′
2) For every topological arc c : [0, d] → F and t ∈ [0, d], let c[t − a, t + b] be a maximal

sub-arc of c containing c(t) and contained in one piece. Then every other topological

arc with the same endpoints as c must contain the points c(t − a) and c(t + b).

s qq

s

s

c

c(t − a) c(t + b)
s

Figure 7. Property (T ′
2).

(T ′′
2 ) Every simple loop in F is contained in one piece.

Remark 5.2 ([DS1]). — If one replaces property (T2) by the stronger property (T ′′
2 ) in

the definition of a tree-graded space then one can weaken the condition on P and ask

only that each set in P is path-connected.

The structure of tree-graded space appears naturally as soon as a space has a cut-point,

as shown by the following result.

Proposition 5.3 ([DS1], Section §2.4). — Let X be a complete geodesic metric space

containing at least two points and let C be a non-empty set of global cut-points in X.

(a) There exists a largest (in an appropriate sense) collection P of subsets of X such that

X is tree-graded with respect to P and such that any piece in P is either a singleton

or a set with no global cut-point in C.

Moreover the intersection of any two distinct pieces from P is either empty or a

point in C.

(b) If C = X then all pieces in P are either singletons or sets without cut-point. In

particular this is true if X is a homogeneous space with a cut-point.

We should point out here that a systematic approach to spaces having cut-points had

already been done by B. Bowditch when working at the Bestvina-Mess conjecture (stating

that the boundary at infinity of a one-ended hyperbolic group is locally connected, or

equivalently that it has no global cut-point). Thus, Bowditch considered a topological

space with a cut-point and such that the group of its homeomorphisms acts on it with

dense orbits (having in mind the boundary at infinity of a group), and he showed that

such a space projects on a tree. For details and references see [Bow2].

Properties of tree-graded spaces:

1. If all the pieces are real trees then F is a real tree.
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2. For every x ∈ F we define the set Tx to be the set of points y ∈ F which can be

joined to x by a topological arc intersecting each piece in at most a point. For every

x the set Tx is a real tree and a closed subset in F. For every y ∈ Tx, Ty = Tx. We

call such a tree transversal tree.

3. Every point of intersection of two distinct pieces as well as every point in a non-trivial

transversal tree is a cut-point for F.

4. Every path-connected subset without cut-points is contained in a piece.

5. For every point x outside a piece M there exists a unique point on M minimizing

the distance to x. This allows to define a projection map from F to M .

6. Every path-connected subset intersecting a piece M in at most one point projects

onto the piece M in a unique point.

7. Suppose that there exists ǫ > 0 such that every loop of length at most ǫ and con-

tained in a piece is contractible. Then π1(F) coincides with the free product of the

fundamental groups of the pieces, ∗M∈Pπ1(M).

We note that the hypothesis that short loops are contractible in any piece is a

necessary condition, as shown by the example of the Hawaiian earring.

8. Let (F,P) be a tree-graded space. If φ is a homeomorphism from F to another

geodesic metric space X, then X is tree-graded with respect to the collection of

pieces {φ(M) | M ∈ P}.
9. Let (F,P) and (F′,P ′) be two tree-graded spaces with all pieces without cut-points.

Every homeomorphism φ : F → F′ sends each piece onto a piece.

For proofs of these properties and other properties of tree-graded spaces see [DS1].

5.2. The characterization of relatively hyperbolic groups in terms of asymp-

totic cones. —

Theorem 5.4 (Druţu-Osin-Sapir[DS1]). — A finitely generated group G is hyperbolic

relatively to a finite family {H1, ..., Hn} of finitely generated subgroups if and only if every

asymptotic cone Conω(G; 1, d) is tree-graded with respect to the collection of pieces

P =
{

lim
ω

(gnHi) | (gn) sequence in G, i ∈ {1, 2, . . . , n}
}

.

The “only if” part is proven by D. Osin and M. Sapir in the Appendix of [DS1]. The

“if” part is proven in [DS1]. Note that for the “if” part one does not need to ask that the

peripheral subgroups are finitely generated. It follows immediately from the fact that the

limit sets of their left cosets, which are isometric to their asymptotic cones with the metric

induced from G, are geodesic, since they are pieces in a tree-graded space. It remains to

apply Proposition 4.3, (1).

Also, Proposition 4.3, (2), and property 7 of tree-graded spaces implies that if Hi all

have simply connected asymptotic cones then G is finitely presented. On the other hand,

from the equivalent definition of relative hyperbolicity given by D. Osin in [Os1] it follows

that the same is true if all Hi are finitely presented (which is a weaker hypothesis than

the previous).
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In particular Theorem 5.4 is true for G = Γ a non-uniform lattice in rank one and

{Γα1
, . . . , Γαm

} its cusp subgroups. Thus the image of the space X0 in Figure 4 seen from

infinitely far away is a homogeneous version of the Figure 6. It is not difficult to show

that for this particular tree-graded space each transversal tree is in fact a 2ℵ0–universal

real tree.

A straightforward consequence of Theorem 5.4 is the following.

Corollary 5.5. — If a group G is hyperbolic relative to {H1, . . . , Hm} and if each Hi is

hyperbolic relative to a collection of subgroups {H1
i , . . . , H

ni

i } then G is hyperbolic relative

to {Hj
i | i ∈ {1, . . . , m}, j ∈ {1, . . . , ni}}.

Remark 5.6. — This process may not terminate: for instance if G is a free group and

H = 〈h〉 is a cyclic subgroup, one can consider Hn = 〈h2n〉, G is hyperbolic relative

to {Hn} and Hn is hyperbolic relative to {Hn+1}. Still, in this situation there exists a

terminal point: G hyperbolic relative to {1}.
In general, a terminal point would be a family {H1, . . . , Hm} of peripheral subgroups

relative to which the ambient group G is hyperbolic and such that no Hi is relatively

hyperbolic. Such a family may not exist for an arbitrary relatively hyperbolic group.

Indeed, the example of inaccessible group constructed by Dunwoody in [Du2] is also an

example of relatively hyperbolic group such that every list of peripheral subgroups must

contain a relatively hyperbolic subgroup (the argument showing this can be found in

[BDM]). See Question 7.2 in Section 7.

Theorem 5.4 and properties (2) and (9) of tree-graded spaces suggest that the “good

objects” for a rigidity theory for relatively hyperbolic groups are the finitely generated

groups such that all their asymptotic cones are without cut-points. We call such groups

asymptotically without cut-points. To avoid trivial cases and different technical complica-

tions we also assume that finite groups are not asymptotically without cut-points.

Remark 5.7. — A group asymptotically without cut-points is one-ended. This follows

from Stallings’ Ends Theorem stating that a finitely generated group splits as a free

product or HNN-extension with finite amalgamation if and only if it has more than one

end [Sta]. The converse is not true: the asymptotic cones of any hyperbolic group are

R–trees, and there are one-ended hyperbolic groups (uniform lattices in H3
R

for instance).

Examples of groups asymptotically without cut-points :

1. products G = G1 × G2, where G1 and G2 are infinite groups; this follows from the

fact that any asymptotic cone of G is a product of asymptotic cones of G1 and of

G2, and the latter are geodesic spaces;

2. uniform lattices in symmetric spaces/Euclidean buildings of rank at least two; this is

because their asymptotic cones are non-discrete Euclidean buildings of rank at least

two, and these do not have cut-points [KlL];

3. groups with elements of infinite order in the center, not virtually cyclic ([DS1], see

also paragraph 6.1 in the present paper);
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4. groups satisfying an identity (a law), not virtually cyclic ([DS1], see also paragraph

6.2 in the present paper).

We recall what satisfying an identity (a law) means for a group. Let w(x1, . . . , xn)

be a non-trivial reduced word in the n letters x1, . . . , xn and their inverses. Reduced

means that all sequences of type xx−1 are deleted. The group G satisfies the identity

w(x1, . . . , xn) = 1 if the equality is satisfied in G whenever replacing x1, . . . , xn with

arbitrary elements in G.

Examples of such groups:

– Abelian groups: here w = x1x2x
−1
1 x−1

2 ;

– more generally solvable groups of class at most m ∈ N;

– free Burnside groups. We recall that the free Burnside group B(n, m) is the

group with n generators satisfying the identity xm = 1 and all the relations that

can be obtained from this identity (and no other). A rigorous way to define it

is to say that it is the quotient of Fn by its normal subgroup generated by all

elements of the form fm, f ∈ Fm. It is known that these groups are infinite for

m large enough (see [Ad1], [Olsh2], [Iv], [Ly], [DG] and references therein).

– uniformly amenable groups, not virtually cyclic.

A discrete group G is uniformly amenable if there exists a function C : (0, 1)×
N → N such that for every finite subset K of G and every ǫ ∈ (0, 1) there exists

a finite subset F ⊂ G satisfying:

(i) card F ≤ C(ǫ, card K);

(ii) card KF < (1 + ǫ)card F .

For details on this notion see [Kel], [Boż] and [Wys]. In [DS1] it is shown

that a uniformly amenable group always satisfies a law.

5.3. Rigidity of relatively hyperbolic groups. —

Theorem 5.8 ([DS1], [BDM]). — Let G be a finitely generated group that is hyperbolic

relative to its subgroups H1, ..., Hm, and let S be a finitely generated group that is not

relatively hyperbolic with respect to any finite collection of proper subgroups.

Then the image of S under any (L, C)–quasi-isometric embedding S → G is in the

M–tubular neighborhood of a coset gHi, g ∈ G, i = 1, ..., m, where M depends only on

L, C, G and H1, ..., Hm.

Remark 5.9. — In [PW, §3] Theorem 5.8 is proven for G a fundamental group of a

graph of groups with finite edge groups and S a one-ended group.

One cannot hope however to weaken the hypothesis of Theorem 5.8 to “S a one ended

group”. For instance non-uniform lattices in H3
R

are one-ended groups on one hand and hy-

perbolic relative to their cusp subgroups on the other. Thus, they are quasi-isometrically

embedded into themselves and not uniformly near a left coset of a cusp subgroup.

Corollary 5.10. — Let G be a finitely generated group that is hyperbolic relative to its

subgroups H1, ..., Hm, and let S be an undistorted subgroup of G that is not relatively
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hyperbolic with respect to any finite collection of proper subgroups. Then S is contained

in Hg
i for some g ∈ G and i ∈ {1, ..., m}.

As the proofs of the Theorems of R. Schwartz show, a rigidity result such as Theorem

5.8 can be used to get a result on q.i. completeness. Indeed, this can also be done in this

case.

Theorem 5.11 ([DS1], , [BDM]). — Let G be a finitely generated group hyperbolic rel-

ative to {H1, ..., Hm}. Suppose that all the subgroups Hi, i = 1, ..., m, are not relatively

hyperbolic with respect to any finite collection of proper subgroups.

Let Λ be a finitely generated group that is quasi-isometric to G. Then Λ is hyperbolic

relative to a finite collection of subgroups S1, ..., Sn each of which is quasi-isometric to one

of the subgroups H1, ..., Hm.

Remarks 5.12. — (a) The number of subgroups relative to which the group is hyper-

bolic is not a quasi-isometry invariant. This can be seen in the example of a finite

covering M → N of a finite volume non-compact hyperbolic 3-manifold by another.

The group ΓM = π1(M) is a finite index subgroup of ΓN = π1(N), so they are quasi-

isometric. On the other hand, the number of cusp subgroups of ΓM can be larger

than the number of cusp subgroups of ΓN .

(b) Particular cases of Theorem 5.11 follow from the results in [Sch1], [KaL1], [KaL2],

[PW].

In view of Theorems 5.8 and 5.11 it becomes interesting to provide a list of

Examples of groups that are not relatively hyperbolic:

1. groups having one asymptotic cone without cut-point; that such groups are not

relatively hyperbolic follows from Theorem 5.4;

2. groups without free non-Abelian subgroups and not virtually cyclic; this follows from

the fact that relatively hyperbolic groups that are not virtually cyclic contain free

non-Abelian subgroups.

This class of groups contains the amenable groups not virtually cyclic, but it is

strictly larger than that class. See Remark 6.9 for more details.

3. groups with infinite center and not virtually cyclic; indeed, if a group is not virtually

cyclic and it is hyperbolic relative to proper subgroups then its center is finite.

Other examples can be found in Section 6.3.

Outline of proof of Theorem 5.11.

I. Let q : Λ → G and q̄ : G → Λ be two (L, C)–quasi-isometries quasi-converse to

each other. Lemma 2.9 implies that using them one can construct a quasi-action quasi-

transitive and of finite kernel of Λ on the Cayley graph of G. For simplicity we denote

by A the set {gHi | g ∈ G, i = 1, 2, . . . , m}. By quasi-transitivity, for every left coset

A ∈ A and every point g in it, there exists λ ∈ Λ such that qλ(g) ∈ B(1, C1), where

C1 = C1(L, C). On the other hand, by Theorem 5.8, qλ(A) is contained in the M–tubular
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neighborhood of another left coset A′ ∈ A, where M = M(L, C, G). It follows that A′

intersects B(1, C1 + M).

We conclude that the finite set {A1...Ak} of left cosets intersecting B(1, C1 + M), is in

some sense a set of representatives for A ∈ A, therefore we will diminish it (in the next

step), and keep only one orbit representative by conjugacy class.

II. First we note that if for some λ in Λ, A and B in A, and M > 0 we have that

qλ(A) ⊂ NM(B), then distH(qλ(A), B) ≤ M ′ for some M ′ = M ′(L, C). This follows by

applying the same result to qλ−1(B) and from the fact that two left cosets cannot be at

finite Hausdorff distance one from the other unless they coincide.

Now we consider the equivalence relation in A

A ∼ B ⇔ ∃λ ∈ Λ, ∃M > 0 such that qλ(A) ⊂ NM(B) .

In the set {A1, . . . , Ak} we select one representative in each equivalence class and obtain

thus a possibly smaller set {B1, . . . , Bn}. Also, for every Ai ∼ Aj we fix λij such that

qλij
(Ai) ⊂ NM(Aj), and we consider K0 = maxi,j dist(qλij

(1), 1).

III. We define for each A ∈ A the subgroup in Λ

StabM ′(A) = {λ ∈ Λ ; distH(qλ(A), A) ≤ M ′} .

Using the arguments in I and the choice made in II it is not difficult to show that for

every A ∈ A, StabM ′(A) acts C2–quasi-transitively on A, in the sense that every orbit of

a point under the action of the group contains A in its C2–tubular neighborhood. Here

C2 is a constant which is computed by means of K0.

This in particular implies that distH(q̄(Bi), StabM ′(Bi)) ≤ κ for some constant κ =

κ(L, C, C2). The last statement together with the argument in I imply that for every

A ∈ A there exists λ ∈ Λ and i ∈ {1, 2, . . . , n} such that

distH(q̄(A), λStabM ′(Bi)) ≤ χ ,

for some χ = χ(L, C, κ).

IV. Now we have the following sequence of implications. G is hyperbolic relative

to {H1, . . . , Hm} ⇒ (by Theorem 5.4) every asymptotic cone Conω(G; 1, d) is tree-

graded with set of pieces {limω(An)} ; An ∈ A} ⇒ (by Property 8 of tree-graded

spaces and Property 4 of asymptotic cones) every asymptotic cone Conω(Λ; 1, d)

is tree-graded with set of pieces {limω(q̄(An))} ; An ∈ A} ⇒ (by the last state-

ment in III) every asymptotic cone Conω(Λ; 1, d) is tree-graded with set of pieces

{limω(λnStabM ′(Bi)) ; λn ∈ Λ, i ∈ {1, 2, . . . , n}} ⇒ (again by Theorem 5.4) Λ is

hyperbolic relative to {StabM ′(B1), . . . , StabM ′(Bn)}. �

Finally, it turns out that the whole class of groups hyperbolic relative to proper sub-

groups is q.i. complete.

Theorem 5.13 (relative hyperbolicity is q.i. invariant [Dr3])
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Let G be a group hyperbolic relative to a family of subgroups H1, ..., Hn. If a group G′

is quasi-isometric to G then G′ is hyperbolic relative to H ′
1, ..., H

′
m, where each H ′

i can be

embedded quasi-isometrically in Hj for some j = j(i) ∈ {1, 2, ..., n}.

Note that Theorem 5.11 does not imply Theorem 5.13 because there exist relatively hy-

perbolic groups that have no list of peripheral subgroups composed uniquely of subgroups

not relatively hyperbolic (see Remark 5.6).

Note also that in the full generality assumed in Theorem 5.13, the stronger conclusion

that each subgroup H ′
i is quasi-isometric to some subgroup Hj cannot hold. This can be

seen for instance when G = G′ = A ∗B ∗C, with G hyperbolic relative to {A ∗B, C} and

G′ hyperbolic relative to {A, B, C}.
The proof of Theorem 5.13 has an outline completely different from the one of Theorem

5.11. Its main ingredient is not (and cannot be) a quasi-isometric embedding rigidity result

as Theorem 5.8. But it relies on some new geometric ways to define relative hyperbolicity.

5.4. More rigidity of relatively hyperbolic groups: outer automorphisms.

— The group of outer automorphisms of a group G is the quotient group Out(G) =

Aut(G)/Inn(G), where Inn(G) is the normal subgroup of automorphisms cg given by

the conjugacy with an element g ∈ G. The group Inn(G) is called the group of inner

automorphisms.

We recall that in the case of hyperbolic groups the following result is known.

Theorem 5.14 ([Pau]). — (1) Let G be a hyperbolic group. If Out(G) is infinite then

G acts isometrically on an R–tree with virtually cyclic edge stabilizers and without

global fixed point.

(2) Let G be a finitely generated hyperbolic group with Kazhdan property (T). Then

Out(G) is finite.

Statement (2) follows immediately from (1) because property (T) implies that every

action by isometries on a real tree has a global fixed point.

Remark 5.15. — Theorem 5.14, (1), together with [BF, Theorem 9.5] imply that if G

is a hyperbolic group and if Out(G) is infinite then either G splits as an amalgamated

product or as an HNN extension over a virtually cyclic subgroup, or G is itself virtually

cyclic.

Examples of hyperbolic groups with property (T):

– uniform lattices of isometries of Hn
H
, n ≥ 3;

– all their hyperbolic quotients. The quotient of a group G with property (T) also has

property (T). But hyperbolicity is not automatically inherited by a quotient. Never-

theless, it appears that “almost every” quotient of a hyperbolic group is hyperbolic,

in the following sense. A quotient of the group G means the prescription of new

relations. A different way of saying it is that, given some finite generating set S of

the group G, one chooses a set of reduced words in the alphabet S and puts the
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condition that they become equal to 1. Since we want a hyperbolic quotient we pre-

scribe finitely many new relations, that is we pick finitely many reduced words in S.

There are several ways to introduce the probabilistic language into the picture. One

of them is as follows. Choose randomly eβℓ new relations among the reduced words

of length ℓ in S. Given a certain property (*), count the number Nβ,ℓ of choices that

give a quotient with property (*). The probability that the quotient has property (*)

is the limit as ℓ → ∞ of the ratio of Nβ,ℓ over the number of all possible choices of

relations under the parameters given above. According to the results in [Gr4], [Gr5]

and [Oll], for every non-elementary hyperbolic group G and finite generating set S

of it, there exists α = α(G, S) > 0 such that the following holds:

• for every β < α, the probability that the quotient is non-elementary hyperbolic

is 1;

• if β > α then with probability 1 the quotient is either trivial or Z/2Z.

In the particular case when G is the free group of rank m, Fm, and S is the set of

2m generators, α = ln(2m−1)
2

.

This gives a large choice of relations and of hyperbolic quotients for any hyperbolic

group G. It allows in particular for the possibility of constructing approximate copies

of very complicated graphs in the Cayley graph of a quotient of G, without loosing

the property of hyperbolicity.

– In [Ż], a slightly different notion of random group is considered. Given Fm the free

group of rank m, one chooses randomly relations of length 3 - on the whole there are

2m(2m − 1)2 candidates. Suppose that one chooses randomly (2m − 1)3β relations.

The probability that the quotient has property (*) is in this case the limit as m → ∞
of the ratio of the number of choices of (2m − 1)3β relations that give a quotient of

Fm with property (*), over the number of all possible choices of relations.

In[Ż] it is proved that:

• if β > 1
3

then the probability that the quotient has property (T) is 1;

• if β < 1
2

then with probability 1 the quotient is non-elementary hyperbolic;

• consequently for β ∈
(

1
3
, 1

2

)
, with probability 1 the quotient is both hyperbolic

and with property (T).

In the case of relatively hyperbolic groups, the following two theorems provide a sample

of results on the group of outer automorphisms.

Theorem 5.16 ([DS1]). — Let G be a group relatively hyperbolic with respect to

{H1, . . . , Hn} and suppose that all Hi are asymptotically without cut-points. Then for

every i ∈ {1, . . . , n}, there exists a homomorphism from a subgroup of index at most n!

in Out(G) to Out(Hi).

A result more in the line of Theorem 5.14 is the following.

Theorem 5.17 (Theorem 1.7 in [DS2]). — Let G be a group relatively hyperbolic

with respect to {H1, . . . , Hn} and suppose that no Hi is relatively hyperbolic with respect

to proper subgroups. If Out(G) is infinite then one of the followings cases occurs:
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(a) G splits as an amalgamated product or HNN extension over a virtually cyclic sub-

group;

(b) G splits as an amalgamated product or HNN extension over a parabolic subgroup.

Remark 5.18. — In particular a group G as in Theorem 5.17 which moreover has prop-

erty (T) has finite Out(G).

6. Groups asymptotically with(out) cut-points

First we return to the list of examples of groups asymptotically without cut-points,

drawn after Remark 5.7, and discuss Examples 3 and 4.

6.1. Groups with elements of infinite order in the center, not virtually cyclic.

— Let us see what happens if the asymptotic cone Conω(G; 1, d) of an infinite group G

has a cut-point. Proposition 5.3 implies that it is a tree-graded space with respect to a set

of pieces P such that each piece is either a point or a geodesic subset without cut-point.

In particular, if all pieces are points the cone is a tree. Note that by homogeneity in this

case it can be either a line or a tree in which every point is a branching point.

The case when one asymptotic cone is a line turns out to be quite particular.

Proposition 6.1 (Corollary 6.2 in [DS1]). — A finitely generated group such that

one asymptotic cone is a point or a line is virtually cyclic.

Let now G be a non-virtually cyclic group with a central infinite cyclic subgroup 〈h〉.
We have to show that G cannot have cut-points in any asymptotic cone. Suppose that

one of its asymptotic cones Conω(G; 1, d) has cut-points. It follows that it is tree-graded

and that it is not a line.

Every element ζ in the center of G is an isometry with the property that every g ∈ G is

translated by ζ at a fixed distance, as dist(ζg, g) = dist(ζ, 1). It is not difficult to deduce

from this the following. For every ǫ > 0 there exists an isometry hω of Conω(G; 1, d),

hω ∈ Gω, such that for every x ∈ Conω(G; 1, d), dist(hω(x) , x) = ǫ.

On the other hand no tree-graded space different from a line admits such set of isome-

tries. This is clearly seen for instance in the particular case of a real tree with at least

one branching point. There is no way in which to translate a small tripod in this tree

such that all its points move at the same distance.

6.2. Groups satisfying an identity, not virtually cyclic. — Again we argue by

contradiction and suppose that such a group G has an asymptotic cone Conω(G; 1, d)

with cut-points, consequently an asymptotic cone which is tree-graded and different from

a line. By the argument in the end of Section 4.1, the group Gω acts transitively on

Conω(G; 1, d). Note that the ω–ultrapower ΠωG and its subgroup Gω satisfy the same

identity as G. Even more can be said:

Lemma 6.2 (Lemma 6.15, [DS1]). — Let ω be any ultrafilter. The group G satisfies

a law if and only if its ω–ultrapower ΠωG does not contain free non-Abelian subgroups.
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If Conω(G; 1, d) is a tree then Gω cannot act on it by fixing a point in the boundary of

the tree [DS1, §6]. This fact and [Ch, Proposition 3.7, page 111] imply that Gω contains

a free non-Abelian subgroup. This contradicts Lemma 6.2.

So in what follows we may assume that Conω(G; 1, d) is not a tree, consequently that it

contains at least one (hence by homogeneity continuously many) pieces without cut-points

which are not singletons.

To conclude we need the following result.

Proposition 6.3 ([DS1]). — Let F be a tree-graded space with at least one non-singleton

piece, and let G be a group acting transitively on F and permuting pieces. The group G
contains a non-Abelian free subgroup.

Outline of proof. Let P be the set of pieces of F, containing at least one piece P different

from a point. It follows that P has cardinality 2ℵ0 . Then it can be shown that for every

pair of distinct points a, b in P there exists an isometry g ∈ G such that g(P ) ∩ P = ∅,
g(P ) projects onto P in a and P projects onto g(P ) in g(b). We denote by Πx the set of

all points projecting in P in the point x. Property 6 of tree-graded spaces implies that

for every x 6= b, g (Πx) ⊂ Πa.

From this one can easily deduce that g−1(P )∩ P = ∅, g−1(P ) projects onto P in b and

P projects onto g−1(P ) in g−1(a). Moreover, for every y 6= a, g−1 (Πy) ⊂ Πb.

Now we choose a second pair of distinct points c, d in P \ {a, b}. We choose for this

pair a second isometry h with the same properties as g for a, b.

M

a

g(M)

c

h(M)

bd

h(d) g(b)

h  (M)−1

h  (c)−1 g  (a)−1

g  (M)−1

Figure 8. The ping-pong argument.

It is not difficult to show by a ping-pong argument that g and h generate a free group. �

As already mentioned, it turns out that uniformly amenable groups are a particular case

of groups satisfying a law. This observation is maybe worth some explanations. Recall

the following results.

Theorem 6.4 ([Wys]). — Let G be a countable discrete group.
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(1) If G is uniformly amenable then for any ultrafilter ω the ultrapower ΠωG is uniformly

amenable.

(2) If there exists an ultrafilter ω such that the ultrapower ΠωG is amenable then G is

uniformly amenable.

In particular, if the ultrapower of a discrete countable group is amenable then it is

uniformly amenable.

Now we recall some classical results.

Proposition 6.5. — A subgroup S of an amenable group G is amenable.

Remark 6.6. — Note that no other assumption is made on S or G - except the amenabil-

ity for G, as defined page 15 - not discreteness, nor local compactness nor anything.

Proof. — Take ǫ > 0 arbitrary small. Take K a finite subset in S. There exists a subset

F in G such that card KF < (1 + ǫ)card F . Consider a graph whose vertices are the

elements of the set F , and whose edges correspond to the pairs of points (f1, f2) ∈ F ×F

such that f2 = kf1, where k ∈ K. Let C be a connected component of this graph with

set of vertices VC . Then KVC does not intersect the sets of vertices of other connected

components. Hence there exists a connected component C such that card KVC < (1 +

ǫ)cardVC (otherwise if all these inequalities have to be reversed, the sum of them gives a

contradiction with the choice of F ). Without loss of generality, we can assume that VC

contains 1. Otherwise we can shift it to 1 by multiplying on the right by c−1 for some

c ∈ VC . Then VC can be identified with a finite subset of S. Therefore S contains a subset

VC such that card KVC < (1 + ǫ)cardVC .

Proposition 6.7. — A non-Abelian free group is not amenable.

A nice proof of this can be found in [GLP, §6.C].

Corollary 6.8. — A group having a non-Abelian free subgroup is not amenable.

Remark 6.9. — The observation that the existence of a free subgroup excludes

amenability was first made by J. von Neumann in [vN], the very paper in which he

introduced the notion of amenable group, under the name of measurable group. It is this

observation that raised the question known later as the von Neumann problem: whether

any non-amenable group contains a free non-Abelian subgroup. In [Ti] it was shown that

for linear groups the von Neumann problem has an affirmative answer, moreover a linear

group without any free non-Abelian subgroup is solvable-by-finite. The first examples

of non-amenable groups with no (non-Abelian) free subgroups were given in [Olsh1]. In

[Ad2] it was shown that the free Burnside groups B(n, m) with n ≥ 2 and m ≥ 665,

m odd, are also non-amenable. The first finitely presented examples of non-amenable

groups with no (non-Abelian) free subgroups were given in [OlS].

Theorem 6.4, (1), Corollary 6.8 and Lemma 6.2 imply the following.
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Corollary 6.10 (Corollary 5.9 in [Kel], Corollary 6.16 in [DS1])

A finitely generated group which is uniformly amenable satisfies a law. In particular no

asymptotic cone of it has a cut-point.

6.3. Existence of cut-points in asymptotic cones and relative hyperbolicity.

— A natural question to ask is the following.

Question 6.11. — Can one improve the characterization of relatively hyperbolic groups

by their asymptotic cones given in Theorem 5.4 to: a group G is relatively hyperbolic if

and only if all its asymptotic cones have cut-points ?

The“only if” part is already proved. Concerning the “if” part let us note that if an

arbitrary asymptotic cone C of G has a cut-point then Proposition 5.3 implies that it is

tree-graded with respect to some collection of pieces P (which are either points or without

cut-point). Still it is not granted that there exists a finite set of subgroups of G such that

all pieces are limit sets of left cosets of these subgroups.

It turns out that the answer to Question 6.11 is negative, and that the property of

having cut-points in every asymptotic cone appears oftener than relative hyperbolicity.

Here are some examples of groups that are not relatively hyperbolic and have cut-points

in every asymptotic cone:

1. The mapping class group of an orientable finite type surface S with

3 · genus(S) + # punctures ≥ 5;

The fact that it has cut-points in any asymptotic cone is proved in [B]. The fact

that it is not relatively hyperbolic can be deduced from arguments in [Bow4] and

[KN], and it is explicitly proved in [AAS] and [BDM].

2. Many right angled Artin groups [BDM].

3. Fundamental groups of graph manifolds. They are not relatively hyperbolic accord-

ing to [BDM], while they have cut-points in any asymptotic cone by arguments in

[KaL3] and [KKL].

There also exists a metric example of the same sort, in which the relative hyperbolicity

is to be taken in its purely metric sense given in [DS1]. More precisely, for any surface

S with 3 · genus(S) + # punctures ≥ 9, the Teichmüller space with the Weil-Petersson

metric is not relatively hyperbolic [BDM], while it has cut-points in any asymptotic cone

[B].

It follows from arguments in [KKL] that the property of having cut-points in all asymp-

totic cones is common to many fundamental groups of non-positively curved compact

manifolds.

Proposition 6.12 ([KKL]). — If M is a compact non-positively curved manifold then

either the universal cover of M is a symmetric space or π1(M) has cut-points in any

asymptotic cone of it.
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7. Open questions

Question 7.1. — How does weak relative hyperbolicity behave with respect to quasi-

isometries ?

The methods used for (strong) relative hyperbolicity no longer work. Theorem 5.8 again

does not hold as can be easily seen by taking G = Zn, H = Zn−1 × {0} and S = Zn−1.

A quasi-isometric embedding of S has no reason to stay close to a left coset of H , as

illustrated by many examples: it can be transversal to all left cosets of H or it can be

composed of many horizontal and vertical pieces etc.

Up to now there is no general result on the behavior up to quasi-isometry of weakly

relatively hyperbolic groups. In [KaL2], [Pap], [DS], [MSW1] and [MSW2] strong

quasi-isometric rigidity results are proved for some particular cases of weakly relatively

hyperbolic groups—in fact all of them fundamental groups of some graphs of groups. The

notion of thick group introduced in [BDM] can be seen as a first attempt towards a study

of weakly relatively hyperbolic groups from the quasi-isometry rigidity viewpoint.

Question 7.2 (“accessibility” for relatively hyperbolic groups)

Under which conditions does the process described in Corollary 5.5 have a terminal

point, that is: when does a relatively hyperbolic group G have a list of peripheral sub-

groups that are not relatively hyperbolic ? Does this hold when G is torsion-free, when

it is finitely presented ? Note that both conditions are not satisfied by the inaccessible

groups of Dunwoody (see Remark 5.6).

We recall the standard theory of accessibility of groups, to which this question relates.

By Stalling’s Ends Theorem [Sta], a finitely generated group with more than one end splits

as a free product or HNN-extension with finite amalgamation. The question is whether

in an arbitrary finitely generated group one can keep on doing this splitting until no more

splitting is possible, that is until all the factor groups are finite or one-ended. The answer

is positive for finitely generated torsion-free groups (the Grushko-Neumann theorem) and

for finitely presented groups [Du1]. But it is not true for all finitely generated groups

[Du2].

Question 7.3. — Given a group G hyperbolic relative to the subgroups H1, . . . , Hm

can one say that the group G has all asymptotic cones isometric to each other, under the

obvious necessary condition that each Hi has all asymptotic cones isometric to each other

?

This would generalize the result of [DP] from hyperbolic groups to relatively hyperbolic

groups.

Question 7.4. — Do relatively hyperbolic groups have uniform exponential growth ?(3)

A finitely generated group is said to have exponential growth if for some set of generators

S (hence for every S), the growth function BS(n) = card B(1, n) is exponential. One can

(3)A positive answer to this question has been given in [Xie].
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define αS = limn→∞
ln BS(n)

lnn
and then exponential growth means that αS > 0. One can also

define α = infS αS. If α > 0 then the group is said to have uniform exponential growth.

Hyperbolic groups for instance have uniform exponential growth [Kou]. There are also

examples of groups having exponential growth but not uniform exponential growth [Wi].

For a survey of the subject see [dH].

The usual way in which uniform exponential growth is proved is to show that there

exists some n0 such that BS(1, n0) contains two elements generating a free subgroup (or

a free sub-semigroup), for every generating set S.

Question 7.5. — Is it true that an amenable group has at least one asymptotic cone

without cut-points ?

A stronger version of this question was formulated by B. Kleiner: do amenable groups

have all asymptotic cones without cut-points (that is, can the conclusion of Corollary 6.10

be extended from uniformly amenable groups to amenable groups) ? In [OOS] Kleiner’s

question is answered in the negative: an example of an amenable (and even elementary

amenable) group with one asymptotic cone a tree is constructed. Still, Question 7.5

remains open.

8. Dictionary

– Boundary at infinity. Given X either a simply connected Riemannian manifold

of non-positive curvature (or more generally a CAT (0)–space) or an infinite graph,

its boundary at infinity ∂∞X is the quotient R/ ∼ of the set R of geodesic rays in

X with respect to the equivalence relation r1 ∼ r2 ⇔ distH(r1, r2) < +∞.

– (Abstractly) commensurable groups. Two discrete groups G1 and G2 are called

abstractly commensurable if they have finite index subgroups that are isomorphic.

– Commensurable groups in an ambient larger group. When both G1 and G2

are subgroups in a group G, we say that G1 and G2 are commensurable (in G) if

there exists g ∈ G such that Gg
1 ∩ G2 has finite index both in Gg

1 and in G2.

– Commensurator. In the above case the set of g ∈ G such that Gg
1 ∩ G2 has finite

index both in Gg
1 and in G2 is called the commensurator of G1 to G2 in G, and it

is denoted CommG(G1, G2). When G1 = G2 we simply write CommG(G1). Also,

when there is no possibility of confusion, we drop the index G.

– Convergence group. It is a subgroup G of Homeo(S1) such that every sequence

of distinct elements in G contains a subsequence (gn) for which there exist x, y ∈ S1

with the property that on S1 \ {x, y}, gn converges to x and g−1
n converges to y

uniformly on compact subsets.

– Filter. A filter F over a set I is a collection of subsets of I satisfying the following

conditions:

(F1) If A ∈ F , A ⊆ B ⊆ I, then B ∈ F ;

(F2) If A, B ∈ F then A ∩ B ∈ F ;

(F3) ∅ 6∈ F .
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For instance, if I = N, the collection of all complementaries of finite sets is a filter

over N, called the Fréchet filter.

– Fuchsian group. It is a discrete subgroup of PSL(2, R) = Isom(H2
R
).

– Fully residually * group (also called ω–residually * group). Here * represents

a family of groups (finite groups, free groups etc.) A group G is fully residually * if

for every finite subset F in G there exists a homomorphism from G onto a * group

which is injective on F .

– (Global) cut-point. A point p in a topological space X such that X \ {p} has

several connected components.

– Geodesic metric space (see Length metric space). It is a length metric space

such that for every pair of points, the shortest path joining them exists. By Hopf-

Rinow Theorem [GLP] a complete locally compact length metric space is geodesic.

– Hausdorff distance. If A and B are two subsets in a metric space X, then the

Hausdorff distance distH(A, B) between A and B is the minimum of all δ > 0 such

that A is contained in the δ-tubular neighborhood of B and B is contained in the

δ-tubular neighborhood of A. If no such finite δ exists, one puts distH(A, B) = +∞.

– Hawaiian earring. It is the topological space
⋃

n∈N
C

((
0, 1

n

)
, 1

n

)
with the topology

induced from R2, where C
((

0, 1
n

)
, 1

n

)
denotes the circle of center

(
0, 1

n

)
and of radius

1
n
. Its fundamental group is uncountable and non-free [DES].

– Horoball, horosphere. Let ̺ be a geodesic ray in a simply connected Riemannian

manifold of non-positive curvature (more generally in a CAT (0)–space) X. It defines

a point at infinity α ∈ ∂∞X. The open horoball Hbo(̺) determined by ̺ is the union

of open balls
⋃

t>0 B(̺(t), t). Its closure Hb(̺) is the closed horoball determined by

̺, and its boundary H(̺) is the horosphere determined by ̺.

Note that if ̺1 , ̺2 are asymptotic rays then there exists κ > 0 such that

Nκ(Hbo(̺i)) = Hbo(̺j), where {i, j} = {1, 2}. Thus, one horoball defines all the

other horoballs determined by rays in the same asymptotic class. Therefore it makes

sense to no longer specify the ray, but only the point at infinity α corresponding to

it, and to speak about all horoballs corresponding to rays with the same point at

infinity as horoballs of basepoint α. For details on this notion see [BrH].

– Length (or path) metric space. A metric space (X, distℓ) such that for every

pair x, y in X, distℓ(x, y) = the infimum of the lengths of the paths joining x and y.

A priori the path realizing the infimum might not exist.

Note that given a metric space (X, dist), one can define the length of curves in it.

Consequently one can define a “length metric” distℓ on X. The problem is that in

this case distℓ might take the value +∞, because in case x and y are not joined by

any path of finite length, or simply by any path, one puts distℓ(x, y) = +∞.

– Net. A net in a metric space X is a subset N of X which is

• δ-separated for some δ > 0: for every n1, n2 ∈ N , dist(n1, n2) ≥ δ;

• ǫ-covering for some ǫ > 0: X ⊂ Nǫ(N).

When more precision is needed, N is also called (δ, ǫ)–net.
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– Proper metric space. A metric space with the property that all its closed balls

are compact. Note that by the Hopf-Rinow Theorem [GLP] every complete, locally

compact length metric space is proper.

– Rank of a symmetric space (of non-positive sectional curvature). The

maximal n ∈ N such that the n-dimensional Euclidean space can be embedded

isometrically as a totally geodesic submanifold in the symmetric space.

– Rank one symmetric space. A symmetric space of non-positive sectional curva-

ture and of rank one; also called hyperbolic space. With one exception, rank one

symmetric spaces can be described as follows. Given K = R, C or H, where H is the

field of the quaternions, consider x 7→ x̄ the standard involution on K (the identity

on R, the conjugation on C and on H), and consider on Kn+1 × Kn+1 the bilinear

form

L(x, y) = x0ȳ0 − x1ȳ1 − x2ȳ2 · · · − xnȳn .

Let G be the connected component of the identity of the stabilizer of L in SL(n +

1, K). The quotient G/K with K a maximal compact subgroup in G is the n-

dimensional K-hyperbolic space Hn
K
. It can be identified with

DK = {x ∈ Kn | x1x̄1 + x2x̄2 + · · ·+ xnx̄n < 1}
and it can be endowed with a Riemannian metric invariant with respect to the action

of G (see [Mos, §19] for details). Besides the above spaces, there exists one more

hyperbolic space, the Cayley hyperbolic plane of which a complete description can

be found in [Mos, §19]. The real hyperbolic spaces have constant negative sectional

curvature, while all the other hyperbolic spaces have pinched negative sectional cur-

vature.

– Reduced words. Given an alphabet S = {a1, . . . , an, a
−1
1 , . . . , a−1

n }, a word in the

alphabet S is called reduced if it does not contain subwords of the form aia
−1
i or

a−1
i ai.

– Symmetric space (see Rank of a symmetric space, Rank one symmetric

space). A complete simply connected Riemannian manifold X such that for every

point p the geodesic symmetry σp fixing p defined by σp(expp(v)) = expp(−v) for

every v ∈ TpX is a global isometry of X. The connected component of the identity

of the group of isometries of X, which we denote by G, acts transitively on X.

Therefore X is a homogeneous space and can be identified with a coset space G/K,

where K is the stabilizer of a point in X (and also a maximal compact subgroup of

G). Details on the notion can be found in [He].

– Tubular neighborhood. For a set A in a metric space X and for δ > 0 we define

the δ-tubular neighborhood Nδ(A) of A as the set

{x | dist(x, A) < δ} .

– Ultrafilter (see Filter). An ultrafilter over a set I is a filter U over I which

is a maximal element in the ordered set of all filters over I with respect to the

inclusion. An ultrafilter can also be defined as a collection of subsets of I satisfying

the conditions (F1), (F2), (F3) defining a filter and the additional condition:
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(F4) For every A ⊆ I either A ∈ U or I \ A ∈ U .

A non-principal ultrafilter is an ultrafilter containing the Fréchet filter.

– Virtually *. A group is said to have property * virtually if a finite index subgroup

has the property *.
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[Dr1] C. Druţu. Quasi-isometry invariants and asymptotic cones, Int. J. of Algebra and
Computation 12 (2002), no. 1 and 2, 99–135.
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[Wys] J. Wysoczánski. On uniformly amenable groups, Proc. Amer. Math. Soc. 102 (1988),
no. 4, 933–938.

[Xie] X. Xie. Growth of relatively hyperbolic groups, Proc. Amer. Math. Soc. 135 (2007),
695-704.

[Ya] A. Yaman, A topological characterisation of relatively hyperbolic groups, J. Reine
Angew. Math. (Crelle’s Journal) 566 (2004), 41–89.
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