
CRITICAL EXPONENTS AND RIGIDITY IN

NEGATIVE CURVATURE

by

Gilles COURTOIS

Abstract. — The goal of this lecture is to describe a theorem of
M.Bonk and B.Kleiner on the rigidity of discrete groups acting on CAT(-
1)-spaces whose limit set’s Hausdorff and topological dimensions coin-
cide. We will give the proof of M.Bonk and B.Kleiner and also an alter-
native proof in a particular case.

Résumé (Exposants critiques et rigidité en courbure négative)
Dans ces notes nous présentons un théorème de M. Bonk et B. Kleiner

concernant la rigidité des groupes discrets d’isométries sur des espaces
CAT(-1) dont les dimensions de Hausdorff et topologiques sont égales.
Nous décrivons la preuve de M. Bonk et B. Kleiner ainsi qu’une preuve
différente dans un cas particulier.
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1. Introduction

A famous theorem of G.D.Mostow states that a compact hyperbolic

manifold of dimension n ≥ 3 is determined up to isometry by its funda-

mental group. In other words, if Γ is a cocompact lattice in PO(n, 1),

with n ≥ 3, there is a unique faithfull and discrete representation ρ :

Γ → PO(n, 1) up to conjugacy.

On the other hand, for some lattices Γ of PO(n, 1) there exist many

faithfull discrete nonconjugate representations ρ : Γ → PO(m, 1) 2 ≤
n < m as described in the following example.

Bendings: Let us assume that a lattice Γ in PO(n, 1) is a free product

A∗C B of its subgroups A and B over the amalgamated subgroup C such

that C cocompactly preserves a totally geodesic copy of the hyperbolic

space Hn−1 in Hn. For such a group Γ the quotient manifold M = Hn/Γ

is a compact hyperbolic manifold with a totally geodesic embedded and

separating hypersurface N = Hn−1/C. One can consider a Fuchsian

representation ρ0 : Γ → PO(n + 1, 1). A representation ρ of a lattice

Γ of PO(n, 1) in PO(m, 1) with 2 ≤ n < m is called fuchsian if ρ(Γ)

preserves a totally geodesic copy of the hyperbolic space Hn in Hm. Let

Γ be a lattice of PO(n, 1), a fuchsian representation ρ0 of Γ in PO(m, 1)

with m > n can be obtained by this way: ρ0 : A ∈ Γ →
(

A 0

0 Id

)
∈

PO(m, 1).

For such a fuchsian representation ρ0 of Γ = A ∗C B in PO(n + 1, 1)

the group ρ0(C) preserves a totally geodesic copy of the hyperbolic space

Hn−1 in Hn+1. The group ρ0(C) is then centralized in PO(n + 1, 1) by

the subgroup of rotations around Hn−1 in Hn+1 which is isomorphic to

S1. For rt = eit ∈ S1, let us define ρt : Γ → PO(n+1, 1) by ρt(a) = a for

all a ∈ A and ρt(b) = r−1
t brt for all b ∈ B. As rt commutes with ρ0(C)

there is no ambiguity in the definition of ρt(c) for c ∈ C = A∩B. It can

be shown that for t 6= 0 small enough, the group ρ0(Γ) does not preserve

any totally geodesic copy of Hn in Hn+1 and thus cannot be conjugate to

ρ0, cf. [11].

One way of distinguishing between a Fuchsian and a non Fuchsian

representation ρ of a cocompact lattice Γ of PO(n, 1) into PO(m, 1),

m > n is to compare their limit set. Basically the size of the limit set of



CRITICAL EXPONENTS AND RIGIDITY 3

G =: ρ(Γ) for a non fuchsian representation ρ is stricly larger than the

size of the limit set of G0 =: ρ0(Γ) for any Fuchsian representation ρ0.

Before going further, let us turn to a more general setting and introduce

some notations.

Let X be a CAT(-1)-space, cf. [4]. Examples of CAT(-1)-space are

Cartan Hadamard manifold of negative curvature K ≤ −1, ie. simply

connected manifolds of negative sectional curvature K ≤ −1.

For a discrete group of isometry G of a CAT(-1)-space X, we define

the limit set Λ(G) of G as the closure of the orbit of some (and hence

any) point o ∈ X in the ideal boundary ∂X of X, namely Λ(G) =

Go
X∪∂X ∩ ∂X. The convex hull of Λ(G) is the smallest G-invariant

convex subset of X ∪∂X containing Λ(G), and we denote it by H(G). A

discrete group of isometry G of X is convex cocompact if H(G)/G is a

compact subset of X/G. The convex cocompactness is equivalent to the

quasi-convex cocompactness that we define now.

A subset Y ⊂ X is said quasi-convex if there is a constant C > 0

such that every geodesic segment with endpoints in Y lies in the C-

neighborhood of Y .

Definition 1.1. — Let X be a CAT(-1)-space and G a discrete group

of isometries of X. The group G is said quasi-convex cocompact if there

exist a G-invariant quasi-convex subset Y ⊂ X with compact quotient

Y/G.

For example if ρ0 : Γ → PO(n + 1, 1) is a Fuchsian representation of a

cocompact lattice Γ of PO(n, 1), then G0 = ρ0(Γ) is a convex cocompact

group of the hyperbolic space Hn+1 .The limit set Λ(G0) of G is the

boundary ∂Hn, the convex hull H(G0) is the totally geodesic copy of

Hn in Hn+1 preserved by G0 and the convex cocompactness of G0 comes

from the cocompactness of Γ. If Gt = ρt(Γ) are bendings then the Gt’s

are convex cocompact for t small enough, and the limit set Λ(Gt) of each

such Gt is then a topological n− 1-dimensional sphere [17], [8].

For a CAT(-1) space X, let us define a distance on the ideal boundary

as follows. Let o be a fixed point in X. Let ξ, ξ′ be two points in ∂X

and denote by l(ξ, ξ′) the distance between o and the geodesic joining ξ



4 GILLES COURTOIS

and ξ′. The following

(1.1) d(ξ, ξ′) =: e−l(ξ,ξ′)

is a distance on ∂X. This distance depends on the choice of the base

point o but two different choices of a base point give rise to equivalent

distances, [8].

We denote by δ(G) the Hausdorff dimension with respect to the dis-

tance d of the limit set Λ(G). Let us recall that the d-Hausdorff measure

Hd on a metric space (M, d) is defined as follows. For A ⊂ M and η > 0,

we set

Hd
η (A) = inf{Σj(diam(Ej))

d}
where the infimum is taken on all sequences {Ej} of subset of M which

cover A and whose diameter satisfies diamEj ≤ η for all j’s, and Hd(A) =

limη→0 Hd
η (A). We say that M has Hausdorff dimension δ if Hd(M) = 0

for d > δ and Hd(M) = ∞ for d < δ.

The following definitions will be usefull.

Definition 1.2. — (i) A complete metric space (M, d) of Hausdorff di-

mension δ is said Ahlfors regular if there is a constant C > 0 such that

C−1rδ ≤ Hδ(B(x, r)) ≤ Crδ

for every ball B(r) of radius r in (M, d).

(ii)A metric space is uniformly perfect if there exist a constant C > 0

such that for every x ∈ M and 0 < r < diamM , there is a point y ∈ M

which satisfies

C−1r ≤ d(x, y) ≤ r

An Ahlfors regular space is automatically uniformly perfect. This can

be easily deduced from the fact that B(x, r) − B(x, C−1r) has positive

measure for C large enough.

For example the limit set (Λ(G), d) of a quasi-convex cocompact group

G acting on a CAT(-1)-space is Ahlfors regular and uniformly perfect.

Whenever the group G is quasi-convex cocompact, the Hausdorff di-

mension δ(G) of Λ(G) can be defined as the critical exponent of the

Poincaré series Σg∈Ge−sdist(o,Γo), where dist stands for the distance in X,

[17]
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δ(G) = inf{s > 0 | Σg∈Ge−sdist(o,Γo) < ∞}.

Let us remark that the critical exponent of the Poincaré series

Σg∈Ge−sdist(o,Γo) does not depend on the choice of the point o because of

the triangle inequality.

For example, if ρ0 : Γ → PO(n + 1, 1) is a Fuchsian representation of

a cocompact lattice Γ of PO(n, 1) and G0 = ρ0(Γ) then δ(G0) = n − 1.

For a non fuchsian faithfull discrete convex cocompact representation

ρ : Γ → PO(n + 1, 1) with G = ρ(Γ), the limit set of G is stricly

“bigger” than the limit set of G0, namely, δ(G) > δ(G0) = n − 1. In

particular for the above bendings δ(Gt) is strictly increasing. This has

been first observed by H.Poincaré, then proved by R.Bowen for n = 2

and D.Sullivan for larger n and extended by several authors in variable

curvature or without special assumption on G, [6], [17], [1], [14].

For a quasi-convex cocompact representation of a cocompact lattice of

PO(n, 1) in a CAT(-1) space M.Bourdon proved the following

Theorem 1.3. — [5] Let Γ be a cocompact lattice in PO(n, 1) and ρ :

Γ → Isom(X) a discrete faithfull representation of Γ in the isometry

group of a CAT(-1) space X. We assume that G =: ρ(Γ) is quasi-convex

cocompact. Then, δ(G) ≥ n − 1 and δ(G) = n − 1 if and only if G

preserves a totally geodesic copy H of Hn in X with compact quotient

H/G.

In the particular case of the above bendings ρt of a cocompact lattice

Γ of PO(n, 1) in PO(m, 1), m > n, the limit set Λ(Gt) of Gt = ρt(Γ) is

a (n− 1)-dimensional topological sphere of Hausdorff dimension δ(Gt) ≥
n− 1 for t small enough and equality δ(Gt) = n− 1 happens if and only

if t = 0.

Let us stress the fact that in the theorem 1.3, the quasi-convex co-

compact group G is assumed to be isomorphic to a cocompact lattice of

PO(n, 1).

It’s worth mentioning that the same conclusion of the theorem 1.2

still holds for any convex cocompact group G in PO(m, 1) which is not

assumed to be isomorphic to a cocompact lattice of PO(n, 1) but whose
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limit set is supposed to be homeomorphic to a standard n-sphere, 2 ≤
n ≤ m− 1. This was actually obseved earlier by Izeki, [9].

Theorem 1.4. — [9] Let G be a discrete convex cocompact group of

isometry of PO(m, 1). Let us assume that the limit set Λ(G) of G is

homeomorphic to a n-dimensionel sphere. Then, δ(G) ≥ n and δ(G) = n

if and only if G preserves a totally geodesic copy of Hn+1 in Hm.

M.Bonk and B.Kleiner have extended this result to the case of a dis-

crete group G of isometries of a CAT(-1)-space X.

Theorem 1.5. — [3] Let G be a convex cocompact group of isometries

of a CAT(-1) space X. Let δ(G) and dimtop(Λ(G)) be the Hausdorff and

topological dimension of the limit set Λ(G). We assume that δ(G) =

dimtop(G) = n for some integer n ≥ 2. Then, G preserves a totally

geodesic copy H of the hyperbolic space Hn+1 embedded in X, such that

H/G is compact.In particular, G is a cocompact lattice in PO(n, 1).

Remark: In the theorem 1.3, G is assumed to be isomorphic to a

cocompact lattice in PO(n, 1). On the contrary in the theorem 1.5, G

is not assumed to be a cocompact lattice in PO(n, 1), but this fact is

a part of the conclusion. In fact the proof of the theorem 1.5 relies on

the theorem 1.3: M.Bonk and B.Kleiner actually show that under the

assumptions of the theorem 1.5 then G is isomorphic to a cocompact

lattice in PO(n, 1).

The following rigidity theorem which was observed by G.Knieper is a

particular case of the theorem 1.5.

Theorem 1.6. — [10] Let M = X/G be a (n+1)-dimensional compact

riemannian manifold with sectional curvature K ≤ −1, where X is the

universal covering space of M and G its fundamental group. If δ(G) = n

then M is hyperbolic, i.e. K = −1.

As G is cocompact the limit set Λ(G) coincides with the ideal boundary

of X which is a n-dimensional topological sphere thus the theorem 1.6

follows from the theorem 1.5.

In the next section we will give an altenative proof of the theorem 1.6.

In the section 3, we state a theorem of P. Tukia. In section 4, we recall
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definitions of a weak tangent, quasi-Möbius homeomorphisms between

metric spaces and prove that the action of a quasi-convex cocompact

group G of isometries of a CAT (−1) space on its limit set (Λ(G), d) is

quasi-Möbius conjugate to the action of G on the one point compactifica-

tion of any weak tangent of (Λ(G), d). In section 5, we give the definitions

of topological dimension, regular maps and give conditions under which

a compact metric space of topological dimension n has a weak tangent

bilipschitz homeomorphic to Rn. In section 6 we prove that a compact

n-Ahlfors regular metric space whose topological dimension equals n has

a weak tangent bilipschitz homeomorphic to Rn. The section 7 gives the

proof of the theorem 1.5.

2. Alternative proof of the theorem 1.5 in a simpler case

We first give a proof of the theorem 1.6 distinct of the original one and

which does not use the theorem 1.5.

We shall use the following criterium for a Cartan Hadamard manifold

X to be isometric to the hyperbolic space Hn+1. For x ∈ X and θ ∈ ∂X

let us denote B(x, θ) the Busemann function defined by

B(x, θ) = lim
t→∞

dist(x, c(t))− dist(o, c(t))

where o is a fixed base point in X and c(t) a geodesic ray joining o to θ.

The following lemma characterizes the hyperbolic space Hn+1 among

Cartan Hadamard manifolds.

Lemma 2.1. — Let X be a (n+1)-dimensional Cartan Hadamard man-

ifold with Busemann function B. Then X is isometric to the hyper-

bolic space Hn+1 if and only if for each θ ∈ ∂X and x ∈ X, we have

HessB(x, θ) + dB(x, θ) ⊗ dB(x, θ) = g(x) where HessB is the Hessian

of B with respect to the variable x and g is the riemannian metric on X.

This lemma amounts to saying that the horospheres of X (which are

the level sets of the functions B(., θ)) have their second fundamental

form proportional to the metric if and only if X is of constant sectional

curvature K = −1.
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Proof. — The only if part is obvious. Let us prove the other way. Let

(r, α) be the polar coordinates at the point o ∈ X where r is the distance

from o and α ∈ Sn−1 the spherical coordinate. If the Buseman function

of the Cartan Hadamard manifold X satisfies HessB(x, θ) + dB(x, θ)⊗
dB(x, θ) = g(x), it is easy to check that for any point x ∈ X with polar

coordinates (r, α) and any point θ ∈ ∂X we have exp B(x, θ) = cosh r −
cos α sinh r, where α is the angle at o between the geodesic joining o and

x and the geodesic joining o and θ. In the hyperbolic space the Buseman

function B0(y, ξ) associated to an origin y0 also satisfies the relation

exp B0(y, ξ) = cosh r−cos α sinh r, where (r, ξ) are the polar coordinate of

y at the origin y0. The choice of an isometry between the tangent space of

X at o and the tangent space of the hyperbolic space Hn+1 at y0 provides

a diffeomorphism f : X ∪ ∂X → Hn+1 ∪ ∂Hn+1 between X ∪ ∂X and

Hn+1∪∂Hn+1 which reads in polar coordinates f(r, α) = (r, α). Since the

Busemann functions B and B0 of X and Hn+1 have the same expression

in polar coordinate, we get that B(x, θ) = B0(f(x), f(θ)). Therefore for

any x, y ∈ X we have dX(x, y) = sup{B(x, θ) − B(y, θ) | θ ∈ ∂X} =

sup{B0(f(x), f(θ)) − B0(f(y), f(θ)) | θ ∈ ∂X} = sup{B0(f(x), ξ) −
B0(f(y), ξ) | ξ ∈ ∂Hn+1} = dHn+1(f(x), f(y)). Hence f is an isometry

and X is a hyperbolic space.

The proof of the theorem 1.6 therefore boils down in showing that if

δ(G) = n then HessB(x, θ) + dB(x, θ)⊗ dB(x, θ) = g(x).

For that purpose we shall construct a smooth map F : M → M

homotopic to the Identity map and whose Jacobian satisfies |JacF (x)| ≤
(det k(x))−1

(
δ(G)+1

n+1

)n+1

where k(x) is the quadratic form defined on the

tangent space TF (x)M by

(2.1)

k(x)(., .) =

∫
∂X

HessB(F̃ (x̃), θ)(., .)+dB(F̃ (x̃), θ)(.)⊗db(F̃ (x̃), θ)(.)dµx̃

where F̃ and x̃ stands for the lifts of F and x to the universal cover

X = M̃ of M , and µx̃ is the measure of Patterson that we will describe

now.
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Recall that a family of Patterson measures (µx)x∈X associated to a

discrete group of isometry G of X is a set of positive finite measures µx

supported on ∂X, x ∈ X, such that the following holds for all x ∈ X,

γ ∈ G,

(2.2) µγx = γ∗µx

(2.3) µx = e−δB(x,θ)µo,

where o ∈ X is a fixed origin, B the Busemann function associated to

o and δ the critical exponent of G. In (2.3), δ is the critical exponent of

G defined by

δ = inf{s ∈ R / Σγ∈Ged(x,γy) < ∞} .

Let us recall that for G beeing a convex cocompact discrete group of

isometries of X, the critical exponent δ of G coincides with the Hausdorff

dimension δ(G) of the limit set of G, cf. [17]. For the existence and

uniqueness of such a family of measures associated to a discrete convex

cocompact group G we refer to [12], [17], [13]. In the sequel of this

section we will write δ = δ(G).

Before describing the construction of the map F , let us end the proof

of the theorem 1.6. We assume that M is orientable (if not we replace it

by a 2-fold covering).

Since F is homotopic to the Identity, it is a degree one map therefore

if Ω is the volume form of M one has, (recall that δ = δ(G)),

(2.4)

volM = |
∫

M

F ∗Ω | ≤
∫

M

|JacF (x)|dx ≤
( ∫

M

(det k(x))−1dx
)( δ + 1

n + 1

)n+1

.

On the other hand the sectional curvature of M satisfies K ≤ −1,

therefore by the Rauch comparison theorem we have for every y ∈ X,

and θ ∈ ∂X,

(2.5) HessB(y, θ) + dB(y,θ) ⊗ dB(y,θ) ≥ g(y),
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therefore all eigenvalues of the quadratic form HessB(y, θ) + dB(y,θ) ⊗
dB(y,θ) are greater than or equal to 1 and so are the eigenvalues of k(x),

hence det k(x) ≥ 1. We therefore get under the assumption that δ = n,

volM ≤
∫

M

(detk(x))−1dx ≤ volM.

and so we get det k(x) = 1. Since all eigenvalues of the quadratic form

k(x) are larger than or equal to 1, they are thus equal to 1. Hence we

get for all y ∈ X and θ ∈ ∂X

HessB(y, θ) + dB(y,θ) ⊗ dB(y,θ) = g(y),

using the fact that the measures µỹ are positive on open subsets of ∂X.

The lemma 2.2 then concludes the proof of the theorem 1.6.

Let us now explain the construction of the map F , cf. [1].

We first define a map which associates a point in X to a measure µ

supported on the ideal boundary ∂X whose support is not reduced to a

point. Let µ be a measure supported on ∂X. Let Dµ : X → R be the

function defined by

(2.6) Dµ(y) =

∫
∂X

eB(y,θ)dµ(θ)

A computation shows that

(2.7) HessDµ(y) =

∫
∂X

(HessB(y,θ) + dB(y,θ) ⊗ dB(y,θ))e
B(y,θ)dµ(θ).

By 2.5 we then get

(2.8) HessDµ(y) ≥ Dµ(y)g̃,

thus HessDµ(y) is positive definite and Dµ is strictly convex.

Claim: If the support of µ contains at least two points, we have

lim
yk→∂X

Dµ(y) = +∞.

Proof. — Let yk ∈ X a sequence such that

(2.9) lim
k→∞

yk = θ0 ∈ ∂X.
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As the support of µ contains at least two points, we have supp(µ) ∩
(∂X − {θ0}) 6= ∅, thus there exists a compact subset K ⊂ ∂X − {θ0}
such that µ(K) > 0 therefore,

(2.10)

∫
∂X

eB(yk,θ)dµ ≥
∫

K

eB(yk,θ)dµ → +∞.

because for every θ ∈ K we have limyk→θ0 B(yk, θ) = +∞.

We then have the following lemma.

Lemma 2.2. — Let µ a finite borel measure on ∂X whose support con-

tains at least two points. The function Dµ has a unique minimum. This

minimum will be denoted by C(µ).

Whenever G is cocompact the support of µ0 equals ∂X thus according

to the lemma we can define the map F̃ : X → X for x ∈ X by

(2.11) F̃ (x) = C(e−B(x,θ)µx) ,

where {µx} is the family of Patterson Sullivan measures associated to G.

The map F̃ satisfies the following properties.

(i) F̃ is a smooth G-equivariant map.

(ii) |JacF̃ (x)| ≤ (det k(x))−1
(

δ+1
n+1

)n+1

Proof. — (i) The smoothness of F̃ comes from the smoothness of the

Busemann function B(x, θ) with respect to x for each fixed θ. From

the equivariance of the family of Patterson measures, cf. 2.9 and the

cocycle relation B(γy, γθ) − B(γx, γθ) = B(y, θ) − B(x, θ) we get the

invariance under the diagonal action of G on X × X of the function of

(x, y) defined by De−B(x,θ)µx
(y) =

∫
∂X

eB(y,θ)−B(x,θ)dµx(θ) which implies

the equivariance of F̃ . By equivariance F̃ is homotopic to the Identity.

(ii) The point F̃ (x) is characterized by

(2.12)

∫
∂X

dB(F̃ (x),θ)e
B(F̃ (x),θ)−B(x,θ)dµx(θ) = 0.
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In order to simplify the notations we will denote νx the measure

eB(F̃ (x),θ)−B(x,θ)µx. We will also write DF̃ (u) instead of DF̃ (x)(u).

By differentiating 2.12 we get the following characterization of the

differential of F̃ : for u ∈ TxX and v ∈ TF̃ (x)X, one has

∫
∂X

[HessB(F̃ (x),θ)(DF̃ (u), v) + dB(F̃ (x),θ)(v)dB(F̃ (x),θ)(DF̃ (u))]dνx(θ)

(2.13) = (δ + 1)

∫
∂X

dB(F̃ (x),θ)(v)dB(x,θ)(u)dνx(θ).

Let us recall that we defined the quadratic forms k for v ∈ TF̃ (x)X by

(2.14) k(v, v) =

∫
∂X

[DdB(F̃ (x),θ)(v, v) + (dB(F̃ (x),θ)(v))2]dνx(θ).

Let us define the quadratic form h by

(2.15) h(v, v) =

∫
∂X

dB(F̃ (x),θ)(v)2dνx(θ).

The relation 2.13 writes, for u ∈ TxX and v ∈ TF̃ (x)X :

(2.16) k(DF̃ (u), v) = (δ + 1)

∫
∂X

dB(F̃ (x),θ)(v)dB(x,θ)(u)dνx(θ).

We define the quadratic form h′ on TxX for u ∈ TxX by

(2.17) h′(u, u) =

∫
∂X

dB(x,θ)(u)2dνx(θ),

and one derives from 2.16

(2.18) |k(DF̃ (x)(u), v)| ≤ (δ + 1)h(v, v)1/2h′(u, u)1/2.

One now can estimate the Jacobian of F̃ . If DF̃ is not of rank n + 1,

then JacF̃ (x) = 0. Let us assume that DF̃ is of rank n + 1. Let us

denote by H ′ [resp. H and K] the selfadjoint operator (with respect to

g̃) associated to the quadratic form h′ [resp. h, k].
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Let (vi)
n+1
i=1 be an orthonormal basis of TF̃ (x)X which diagonalizes H

and (ui)
n+1
i=1 an orthonormal basis of TxX such that the matrix of K ◦

DF̃ (x) : TxX → TF̃ (x)X is triangular. Then,

(2.19) det K.|JacF̃ (x)| ≤ (δ + 1)n+1(Πn+1
i=1 h(vi, vi)

1/2)(Πn+1
i=1 h′(ui, ui)

1/2)

thus,

(2.20)

det K.|JacF̃ (x)| ≤ (δ + 1)n+1
(TraceH

n + 1

)(n+1)/2(TraceH ′

n + 1

)(n+1)/2

.

In these inequalities one can normalize the measures

νx = eB(F̃ (x),θ)−B(x,θ)µx

such that their total mass equals one, which gives

(2.21) TraceH = Σn+1
i=1 h(vi, vi) ≤ 1,

the last inequality coming from the fact that for all θ ∈ ∂X,

(2.22) Σn+1
i=1 dB(F̃ (x),θ)(vi)

2 ≤ ||dB(F̃ (x),θ)||
2 = 1

and from the previous normalization.

Similarly,

(2.23) TraceH ′ = Σn+1
i=1 h′(ui, ui) ≤ 1.

We then obtain from (2.20)

(2.24) det K .|JacF̃ (x)| ≤
( δ + 1

n + 1

)n+1

,

therefore we get

(2.25) |JacF̃ (x)| ≤ (det k(x))−1
( δ + 1

n + 1

)n+1

.

This proves (ii).
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Remark : The above proof of the theorem 1.6 would extend to the

case of a noncompact M = X/G with finite volume if the map F would

be proper.

3. A theorem of P. Tukia

The strategy of proof of theorem 1.5 is to show that under the as-

sumptions, the group G actually is isomorphic to a cocompact lattice

in PO(n, 1) and then apply the theorem 1.3. The way of doing this is

to apply the following theorem of P.Tukia which characterizes discrete

subgroups of PO(n, 1).

Theorem 3.1. — [16] Let G be a group acting uniformly quasi-Möbius

on the standard sphere (Sn, can). We assume that the induced action of

G on Tri(Sn) is cocompact, then the action of G on Sn is conjugate by

a quasi-Möbius homeomorphism to an action by Möbius transformations

of Sn.

In the above theorem, the set Tri(Sn) is defined by

Tri(Sn) = {(u, v, w) ∈ (Sn)3 / u , v , w distinct} .

We refer to [16] for a complete proof of the theorem 3.1, but let us

comment briefly this theorem. The sphere Sn can be considered as the

boundary at infinity of the hyperbolic space Hn+1. Any group G of home-

omorphism of Sn naturally extends to an action on Tri(Sn). There is a

natural projection p : Tri(Sn) → Hn+1, where for (u, v, w) ∈ Tri(Sn),

p
(
(u, v, w)

)
is defined as the orthogonal projection of w onto the geodesic

joining u and v. For x ∈ Hn+1, the inverse image p−1(x) is homeomor-

phic to the set of 2-frames tangent at x, thus is compact and Tri(Sn)

can be thought of as an “approximation up to compact” of Hn+1. The

cocompactness of the action of G on Tri(Sn) can then be translated into

the fact that every point in Sn is a “radial point” of G. A point u0 ∈ Sn

is a radial point of G if there exists a sequence gi ∈ G such that given

(u, v, w) ∈ Tri(Sn) and a geodesic line α in Hn+1 with end point u0, then

the sequence xi =: p
(
(giu, giv, giw)

)
∈ Hn+1 converges to u0. This defi-

nition corresponds to the notion of “conical points” for kleinian groups
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or discrete group acting on Cartan Hadamard manifolds of negative cur-

vature. The theorem 3.1 is based on the following result, proved by P.

Tukia, (c.f [16], theorem F): for any group G acting uniformly quasi-

Möbius on Sn, there exist an invariant measurable conformal structure µ

on Sn, that is a map which associates a positive definite metric µ(x) of de-

terminant 1 to almost every x ∈ Sn. Moreover this conformal structure

is approximatly constant near almost every radial point. Considering

such a radial point u0 and the associated sequence gi ∈ G, and then

transforming the action of G by these gi’s into a neighbourhood of u0

and blowing up those neighbourhoods gives the theorem.

4. Weak tangent and self similarity of limit sets

In this section we will define the notion of weak tangent of a metric

space and of quasi-Möbius homeomorphism between metric spaces. The

goal of the section is to show that for any quasi-convex cocompact group

G acting on a CAT (−1) space and for any weak tangent (S, ρ, o) of the

limit set (Λ(G), d), then the one point compactification (Ŝ, ρ̂o) of (S, ρ, o)

is quasi-Möbius homeomorphic to (Λ(G), d), proposition 4.5. So we will

be allowed to consider the conjugate action of G on (Ŝ, ρ̂o) instead of

the original action of G on (Λ(G), d), which will turn out to be partic-

ularly usefull since the coincidence between topological and Hausdorff

dimension provides information on (S, ρ, o), as we will see in section 6,

cf. Proposition 6.2.

Let (Mk, dk), (M, d) be metric spaces with base points pk ∈ Mk and

p ∈ M .

Definition 4.1. — The sequence (Mk, dk, pk) is said to converge to

(M, d, p) in the pointed Gromov-Hausdorff topology if ∀R > 0, ∀ε > 0,

∃N ∈ N, ∀n ≥ N , ∃Dk ⊂ BMk
(pk, R), ∃D′

k ⊂ BM(p, R), ∃fk : Dk → D′
k

such that fk are bijections, pk ∈ Dk, p ∈ D′
k and for any k,

(1) fk(pk) = p

(2) Dk is ε-dense in BMk
(pk, R) and D′

k is ε-dense in BM(p, R)

(3) ∀x, y ∈ Dk, we have |d(fk(x), fk(y))− dk(x, y)| ≤ ε.
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Example: The product R × 1
k
S1 of the real line with a circle of radius

1
k

converges to R in the pointed Gromov-Hausdorff topology.

Definition 4.2. — Let (M, d) be a metric space. A weak tangent of

(M, d) is a complete metric space (S, ρ, o) with a base point o ∈ S

such that there exists a sequence (M, λkd, pk) converging in the Gromov-

Hausdorff topology to (S, ρ, o) for some sequence λk → +∞.

Example 1: Let (M, g) be a riemannian manifold; then every weak

tangent at a point x ∈ M is isometric to the tangent space TxM of M

at x endowed with the euclidean distance induced by g(x). For general

metric spaces weak tangent are not unique.

Example 2: Let (M, d) be a metric space and (S, ρ, o) a weak tangent

of (M, d) at a point p ∈ M . Let (S ′, ρ′, o) be a weak tangent of (S, ρ, o)

at o. Then (S ′, ρ′, o) is a weak tangent of (M, d) at p.

As one see on the example 1 a weak tangent (S, ρ, o) of a metric space

(M, d) may be unbounded so we shall now put a distance ρ̂ on the one

point compactification Ŝ = S ∪ {∞} such that the two distances ρ and

ρ̂ on S are “quasi-Möbius” equivalent. Let us now define quasi-Möbius

map between metric spaces and decribe the construction of ρ̂.

Let (M, d) be a metric space. The cross ratio of a four-uple of distinct

points (x1, x2, x3, x4) is the real number

[x1, x2, x3, x4] :=
d(x1, x3)d(x2, x4)

d(x1, x4)d(x2, x3)

Definition 4.3. — Let f : (M, d) → (M ′, d′) be an injective map be-

tween two metric spaces and η : [0, +∞[→ [0, +∞[ a homeomorphism

such that η(0) = 0. The map f is said to be η-quasi-Möbius if for any

quadruple of points xi ∈ M , 1 ≤ i ≤ 4, [f(x1), f(x2), f(x3), f(x4)] ≤
η([x1, x2, x3, x4]).

Remark: As a consequence of the definition one can see that a η-

quasi-Möbius map f : (M, d) → (M ′, d′) is a homeomorphism on its

image f(M) and that the inverse map f−1 : (f(M), d′) → (M, d) is

η′-quasi-Möbius for the homeomorphism η′(t) = η(1/t)−1. This can be
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easily seen by exchanging x1 and x2 in the definition of a quasi-Möbius

map, which gives η(1/[x1, x2, x3, x4])
−1 ≤ [f(x1), f(x2), f(x3), f(x4)].

Example: Let G be a quasi-convex cocompact group of isometries

of a CAT(-1) space X and (Λ(G), d) the limit set of G endowed with

the distance d defined in 1.1. Then G acts uniformly quasi-Möbius on

(Λ(G), d), which means that there exist an increasing homeomorphism

η : [0, +∞[→ [0, +∞[ such that the action of each element g ∈ G on

(Λ(G), d) is η-quasi-Möbius, cf. [5].

For more details on quasi-Möbius maps see the M.Bourdon’s lecture.

Lemma 4.4. — Let (S, ρ) be an unbounded metric space with a base

point o and Ŝ = S ∪ {∞} the one point compactification of S. There

exists a distance ρ̂0 on Ŝ inducing the topology of Ŝ such that (S, ρ) and

(S, ρ̂o) are η-quasi-Möbius homeomorphic for η(t) = 16t.

Proof. — Let us consider the function ho : Ŝ → [0, +∞[ defined by

ho(∞) = 0 and for all x ∈ S

ho(x) =
1

1 + ρ(o, x)
.

For x and y ∈ S let us define ρo by ρo(x, y) := ho(x)ho(y)ρ(x, y) if x

and y ∈ S, ρo(x,∞) = ρo(∞, x) = ho(x) and ρo(∞,∞) = 0. If x and y

∈ Ŝ we define ρ̂o(x, y) = inf{Σk−1
i=0 ρo(xi, xi+1)} where the infimum is taken

over all sequences of points x0, ...xk in Ŝ with x0 = x and xk = y. The

reader can easily check that the lemma is a consequence of the following

inequalities

(4.1)
1

4
ρo(x, y) ≤ ρ̂o(x, y) ≤ ρo(x, y)

.

The next proposition is one key point in the proof of the theorem 1.5.

Roughly speaking it says that the limit set Λ(G) of a convex cocompact

group G of a CAT(-1) space has a selfsimilarity property. More precisely

this means that (Λ(G), d) is quasi-Möbius homeomorphic to (Ŝ, ρ̂o) for

any weak tangent (S, ρ, o) of (Λ(G), d).
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Proposition 4.5. — Let G be a convex cocompact group acting on a

CAT(-1) space, (Λ(G), d) the limit set of G endowed with the metric

defined in 1.1. If (S, ρ, o) is a weak tangent of (Λ(G), d) then (Ŝ, ρ̂o) is

quasi-Möbius homeomorphic to (Λ(G), d).

Proof. — Let us consider a weak tangent (S, ρ, o) = limλk→∞(Λ(G), λkd, pk)

of (Λ(G), d). In order to simplify the notations we will denote Z the

limit set Λ(G) and λkZ the metric space (Λ(G), λkd). For an arbitrary

metric space (M, d) we will write BM(p, r) the ball of radius r centered

at p ∈ M .

Let D̃k ⊂ BS(o, k) [resp. Dk ⊂ BλkZ(pk, k) ] be maximal 1
k

separated

subsets such that o ∈ D̃k and pk ∈ Dk and bijections fk : D̃k → Dk such

that

(4.2) |λkd(fk(x), fk(y))− ρ(x, y)| ≤ 1

k
for any x, y in S.

Such sets D̃k, Dk and maps fk exist since (S, ρ, o) is the limit of

(Z, λkd).

It follows from 4.1 and the 1
k

maximal separation of the sets D̃k and

Dk that

(4.3)
1

2
ρ(x, y) ≤ λkd(fk(x), fk(y)) ≤ 2ρ(x, y)

thus the sequence of maps fk is uniformly bilipschitz.

Now we can assume that D̃k ⊂ S contains a fixed triple of distinct

points y0, y1, y2 in S. Let us denote xk
i = fk(yi), i = 0, 1, 2.

As G is convex cocompact, its action on the set Tri(Z) of triples

of distinct points in Z = Λ(G) is cocompact. Therefore there exist a

sequence γk ∈ G and a positive number δ such that

(4.4) d(γkx
k
i , γkx

k
j ) ≥ δ

and

(4.5) ρ(yi, yj) ≥ δ

for i, j ∈ {0, 1, 2}.
Let us define hk : (D̃k, ρ) ⊂ (S, ρ) → (D′

k, d) ⊂ (Z, d) defined by hk :=

γk ◦ fk where D′
k = γk(Dk). As G is convex cocompact it acts uniformly
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quasi-Möbius on (Λ(G), d) thus there exist an increasing homeomorphism

η : [0, +∞[→ [0, +∞[ such that the action of each element γk ∈ G on

(Λ(G), d) is η-quasi-Möbius. Therefore, by (4.3) we get that hk = γk ◦ fk

is 16η-quasi-Möbius. By the lemma 4.4, the maps hk can be considered

as 16η-quasi-Möbius maps hk : (D̃k, ρ) ⊂ (Ŝ, ρ̂o) → (D′
k, d) ⊂ (Z, d).

Claim 1: The sequence hk : (D̃k, ρ) ⊂ (Ŝ, ρ̂o) → (D′
k, d) ⊂ (Z, d) is

equicontinuous.

Let us prove the claim. We shall prove the existence of a function

µ : [0,∞[→ [0,∞[ satisfying limr→0 µ(r) = 0 and such that for any

x, y ∈ D̃k, ρ̂o(x, y) = r, then d(hk(x), hk(y)) ≤ µ(r).

Let us consider the points yi and xk
i , i = 0, 1, 2, such that (4.4) and

(4.5) hold, and denote zk
i = hk(yi) = γk(x

k
i ). We can normalize d such

that δ = 1 in (4.4) and (4.5), therefore we have

(4.6) d(zk
i , zk

j ) ≥ 1

and

(4.7) ρ̂o(yi, yj) ≥ 1

for i, j ∈ {0, 1, 2}.
Let x, y ∈ D̃k, ρ̂o(x, y) = r. There are three cases:

1) ρ̂o(x, y) = r ≤ 1/4 and ρ̂o(y1, x) ≤ 1/2

2) ρ̂o(x, y) = r ≤ 1/4 and ρ̂o(y1, x) > 1/2

3) ρ̂o(x, y) > 1/4.

Case 1). We have ρ̂o(x, y2) ≥ 1/2, ρ̂o(x, y3) ≥ 1/2, ρ̂o(y, y2) ≥ 1/4 and

ρ̂o(y, y3) ≥ 1/4.

From these inequalities and the fact that [hk(x), hk(y2), hk(y), hk(y3)] ≤
η([x, y2, y, y3]) we easily get

(4.8) d(hk(x), hk(y)) ≤ (diam(Z))2η(8diam(Ŝ)ρ̂o(x, y)).

Case 2). As ρ̂o(y2, y3) ≥ 1 there exist i ∈ {2, 3} such that ρ̂o(y, yi) ≥
1/2. ¿From this and the fact that [hk(x), hk(yi), hk(y), hk(y1)] ≤
η([x, yi, y, y1]) we get

(4.9) d(hk(x), hk(y)) ≤ (diam(Z))2η(4diam(Ŝ)ρ̂o(x, y)).

Case 3). We have ρ̂o(x, y) ≥ 1/4, therefore

(4.10) d(hk(x), hk(y)) ≤ 4diam(Z)

4
≤ 4diam(Z)ρ̂o(x, y).
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From (4.8), (4.9) and (4.10) we obtain the equicontinuity of the hk’s

taking µ(r) = inf{(diam(Z))2η(4diam(Ŝ)r), (diam(Z))2η(4diam(Ŝ)r), 4diam(Z)r}.
This ends the proof of the claim 1.

Moreover the Hausdorff distance distH(D̃k, Ŝ) between (D̃k, ρ̂o) and

(Ŝ, ρ̂o) satisfies limk→∞ distH(D̃k, Ŝ) = 0.

Claim 2 : The Hausdorff distance dH(hk(D̃k), Z) between hk(D̃k) and

Z satisfies limk→∞ dH(hk(D̃k), Z) = 0.

Let us prove the claim 2.

Let us recall that hk : (D̃k, ρ̂o) ⊂ (Ŝ, ρ̂o) → (D′
k, d) ⊂ (Z, d) is defined

by hk := γk ◦ fk where D′
k = γk(Dk). We have chosen a fixed triple

of distinct points y0, y1, y2 in D̃k ⊂ S with ρ(yi, yj) ≥ δ and such that

xk
i = fk(yi), i = 0, 1, 2 satisfies C−1

λk
≤ d(xk

i , x
k
j ) ≤ C

λk
. The γk’s have

been chosen such that d(zk
i , zk

j ) ≥ δ where zk
i = γk(x

k
i ). Let us also recall

that D̃k is 1
k
-dense in BS(o, k) and Dk is 1

k
-dense in BλkZ(p, k). Let us

write Rk = k
λk

, εk = 1
k2 , δk = C−1

k
, µk = C

k
. With these notations, Dk is

εkRk-dense in BZ(p, Rk). Note that xk
i ∈ BZ(p, µkRk), d(xk

i , x
k
j ) ≥ δkRk

and that εk

δ2
k

is bounded.

Let us now take z ∈ Z. The point z can be written z = γkxk. There

are two cases.

Case 1: xk ∈ B(p, Rk).

In that case, there exist yk ∈ Dk∩B(p, Rk) such that d(xk, yk) ≤ εkRk.

Let us show now that d(γkyk, γkxk) = d(γkyk, z) → 0 when k →∞. This

will prove the claim 2 because γkyk ∈ D′
k. Since d(xk

i , x
k
j ) ≥ δkRk for i 6= j

then we have for, say xk
1 and xk

2, the following estimates d(yk, x
k
1) ≥ δkRk

2

and d(xk, x
k
2) ≥ δkRk

2
. By the fact that the γk’s act uniformly quasi-

Möbius

[γkxk, γkx
k
1, γkyk, γkx

k
2] ≤ η([xk, x

k
1, yk, x

k
2])

and one can easily deduce from all this that

d(γkyk, γkxk) ≤
(diam(Z))2

δkRk

η

(
4εkµk

δ2
k

)
therefore d(γkyk, γkxk) = d(γkyk, z) → 0, which proves the claim 2 in the

case 1.

Case 2: xk /∈ B(p, Rk).
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As (Z, d) is uniformly perfect and Dk is εkRk-dense in BZ(p, Rk), there

exist a point yk in Dk ∩ BZ(p, Rk) so that d(yk,p)
Rk

≥ C0 for a positive

constant C0 independant of k. We can assume that µk < C0/2 because

µk tends to 0 when k tends to infinity. The γk’s act uniformly quasi-

Möbius thus we have

[γkxk, γkx
k
1, γkyk, γkx

k
2] ≤ η([xk, x

k
1, yk, x

k
2]).

In our situation we get from triangle inequality

d(xk
1, yk) ≥ Rk(C0 − µk),

d(xk
2, xk) ≥ d(xk, p)− µkRk

d(xk, yk) ≤ 2d(xk, p) and

d(xk
1, x

k
2) ≤ 2µkRk,

therefore, we get η([xk, x
k
1, yk, x

k
2]) ≤ η

(
4µkd(xk,p)

(d(xk,p)−µkRk)(C0−µk)

)
, thus

[γkxk, γkx
k
1, γkyk, γkx

k
2] ≤ η

(
16µk

C0

)
.

One then easily deduce

d(γkxk, γkyk) ≤
(diam(Z))2 η

(
16µk

C0

)
δ

which proves that d(z, γkyk) = d(γkxk, γkyk) tends to 0 when k tends

to infinity and finishes the proof of the claim 2.

Let us summarize what we have obtained so far. We have an equicon-

tinuous sequence of maps hk : (D̃k, ρ̂)o) ⊂ (Ŝ, ρ̂o) → (D′
k, d) ⊂ (Z, d)

such that the Hausdorff distance dH(hk(D̃k), Z) between hk(D̃k) and

Z satisfies limk→∞ dH(hk(D̃k), Z) = 0. Moreover as D̃k is 1
k
-dense

in (S, ρ) it is easy to check that the Hausdorff distance distH(D̃k, Ŝ)

tends to 0 when k tends to ∞ using the relation (4.1) between ρ and

ρ̂o. By an argument similar to the Ascoli’s theorem, one can then

show that a subsequence hkn uniformly converges to a quasi-Möbius

map h : (Ŝ, ρ̂o) → (Z, d), i.e. limn→∞ dist(hkn , h|D̃kn
) = 0, where

dist(hkn , h|D̃kn
) = sup{d(hknx), h(x)) | x ∈ D̃kn}. The same argu-

ments also hold for the sequence h−1
kn

: (D′
k, d) ⊂ (Z, d) → (D̃k, ρ̂o) ⊂

(Ŝ, ρ̂o) which therefore uniformly subconverges to a quasi-Möbius map
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f : (Z, d) → (Ŝ, ρ̂o). Clearly one has f ◦ h = IdŜ and h ◦ f = IdZ which

concludes the proof of the proposition 4.5.

5. Topological dimension and regular maps

In this section we define the topological dimension of compact metric

spaces and and the notion of regular map from a metric space to Rn.

The main result of the section gives a condition under which a compact

metric space of topological dimension n has a weak tangent bilipschitz

homeomorphic to Rn, corollary 5.8.

In this section Sn , Rn will denote the standard n-dimensional sphere

and euclidean space endowed with their natural distances dSn , dRn and

(Z, d), (S, ρ) compact metric spaces. Let us recall that if fand g are two

continuous maps from Z to Sn, the distance dist(f, g) between f and g

is defined by

dist(f, g) = sup{dSn(f(x), g(x)) | x ∈ Z}.

Definition 5.1. — Let f : Z → Sn be a continuous map. A point

y ∈ Imf ⊂ Sn is called a stable value of f if there exist ε > 0 such that

for each continuous map g : Z → Sn satisfying dist(f, g) ≤ ε we have

y ∈ Img.

Example: Let us consider the unit circle S1 ⊂ C and the map f :

S1 → S1 defined as the identity on S1 ∩ Imz > 0 and as the symmetry

through the real axis on S1∩Imz ≤ 0. The points +1, −1 are not stable

values and any other point of S1 ∩ Imz > 0 is a stable value.

Let us summarize in the following lemma two properties concerning

stable values.

Lemma 5.2. — (i) The set of stable values of a continuous map f :

Z → Sn is an open subset of Sn.

(ii) If f : Z → Rn is a continuous map, then y ∈ Rn is a stable value

if and only if y is a stable value of the restriction f|f−1(W ) of f to f−1(W )

for any open neighborhood W of y.

Proof. — (i) Let y ∈ Imf be a stable value of f and ε coming from the

stability of f . For any y′ ∈ Sn so that dSn(y, y′) ≤ ε we pick up a small



CRITICAL EXPONENTS AND RIGIDITY 23

rotation Φ of Sn such that Φ(y′) = y. It is possible to choose Φ such

that dist(Φ, IdSn) ≤ ε, therefore we have dist(Φ ◦ f, f) ≤ ε so that there

exist x ∈ Z with Φ ◦ f(x) = y and thus f(x) = y′.

(ii) Let us assume that y ∈ Rn is not a stable value of f|U where

U = f−1(W ) and W is some open neighborhood of y. For δ > 0 such

that B̄(y, δ) ⊂ W let us denote V = f−1(Rn − B̄(y, δ)) and (ρ1, ρ2) a

partition of unity subordinate to the open cover (U, V ) of Rn. By our

assumption for any ε > 0 there exist a continuous map gU : U → Rn such

that d(f, gU) ≤ inf(ε, δ) and y /∈ Im(gU). The map g = ρ1gU + ρ2f is a

continuous map such that d(g, f) ≤ ε and y /∈ Im(g) contradicting the

stability of y for f .

Definition 5.3. — A metric space Z has topological dimension ≥ n if

there exist a Lipschitz map f : Z → Sn which has a stable value.

There is another equivalent definition of the topological dimension ob-

tained by considering open covers. Let us recall that the order of an

open cover U = {Ui |i ∈ I} is the supremum of all numbers #I ′, where

I ′ ⊂ I, for which ∩i∈I′Ui 6= ∅.

Definition 5.4. — A metric space Z has topological dimension ≤ n if

and only if every open cover of Z has an open refinement of order at

most n + 1.

We will also need the following

Definition 5.5. — Let Z be a topological space, and U = {Ui ; i ∈
I} a cover of Z by open subsets Ui. The nerve Ner(U) of U is the

simplicial complex whose simplices corresponds to the subsets I ′ ⊂ I such

that
⋂

i∈I′ Ui 6= ∅

Regular maps and maps of bounded multiplicity are playing an impor-

tant role in the proof of the theorem 1.5. Let us define it now.

Definition 5.6. — A map g : (S, ρ) → Rn is regular if it is Lipschitz

and if there exist N ∈ N such that for any R > 0 the inverse image

g−1(B(R)) of any ball of radius R in Rn can be covered by at most N

balls of radius R in S.
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Definition 5.7. — A map g : (S, ρ) → Rn has bounded multiplicity if

there exist N ∈ N such that for any y ∈ Rn we have #g−1(y) ≤ N .

Remark: If g : (S, ρ) → Rn is regular, it has bounded multiplicity.

The following statement describe the regular maps f : (Z, d) → Rn

between a compact metric space (Z, d) all of whose open subsets have

topological dimension ≥ n and Rn. Such maps are almost covering maps.

As a corollary we get that such compact metric spaces which admit reg-

ular maps into Rn have weak tangent bilipschitz homeomorphic to Rn.

Proposition 5.8. — Let (Z, d) be a compact metric space such that ev-

ery non empty subset has topological dimension ≥ n, f : Z → Rn a

regular map. Then there exist an open subset V ⊂ Imf with V̄ = Imf

such that U := f−1(V ) is dense in Z and f |U : U → V is a covering

locally bilipschitz map.

Corollary 5.9. — Let (Z, d) be a compact metric space such that every

non empty subset has topological dimension ≥ n. Let us suppose that

there exist a regular map f : Z → Rn. Then (Z, d) has a weak tangent

bilipschitz homeomorphic to Rn.

Before sketching the proof of this proposition, we need some preliminaries

about stability.

Let (Z, d) be a compact metric space of topological dimension n and

f : (Z, d) → Rn a continuous map. Without further assumption the map

f may have no stable value (for example a constant map). But when f

is regular then f possesses stable values.

Lemma 5.10. — Let (Z, d) be a compact metric space of topological

dimension at least n and f : (Z, d) → Rn a regular map. Then f has

stable values.

Proof. — By regularity the preimage of all points of Rn is finite so that

for any y ∈ Rn and any ε > 0 there exist ry > 0 such that f−1(B(y, ry))

is a finite disjoint union of open subsets of diameter less than ε (located

in disjoint neighbourhoods of the points of f−1(y)). Let us consider an

open cover U = {Ui | i ∈ I} of Rn such that each Ui ∈ U whose

intersection with the image Im(f) of f in nonempty is a subset of some
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B(y, ry) and such that the order of U is equal to n+1, (for example U can

be chosen as the open star cover associated to a fine enough triangulation

of Rn). By construction for any Ui ∈ U the open subset f−1(Ui) is a finite

disjoint union of open subsets of diameter less than ε in Z. These open

subsets of small diameter yield an open covering V = {Vj | j ∈ J} of

Z. By construction, for j ∈ J , the subset Vj is appearing in the finite

decomposition of f−1(Uα(j)) for some Uα(j) in U . This defines a map

α : I → J . If α(j) = α(j′) for distinct j, j′ ∈ J , then Vj ∩Vj′ = ∅ since Vj

and Vj′ are distinct parts of the decomposition of f−1(Uα(j)) = f−1(Uα(j′))

therefore α induces a simplicial map between the nerves of U and V ,

(see definition 5.5), Φ : Ner(V) → Ner(U) which sends k-simplex to

k-simplex. In particular the order of V is less than or equal to n+1. We

consider now a partition of unity ρ = {ρi | i ∈ I} of Rn subordinate

to U and the partition of unity η = {ηj | j ∈ J} of Z defined by

ηj := χj.(ρα(j)◦f) subordinate to V where χj is the characteristic function

of Vj. Considering ρi and ηj as barycentric coordinates of Rn and Z in

U and V respectively, we get continuous maps ρ : Rn → Ner(U) and

η : Z → Ner(V) such that Φ ◦ η = ρ ◦ f . Therefore f = ρ−1 ◦ Φ ◦ η

because ρ is clearly an homeomorphism. As Φ is a simplicial map, it is

easy to see that if there exist a stable value ξ of η in the interior of some

n-simplex of Ner(V), then ρ−1 ◦Φ(ξ) is a stable value of f . We conclude

the proof of the lemma by proving that η posseses such a stable value ξ.

Namely let us assume by contradiction that it is not true. Then there

is a collection S of points in the interior of each n-simplex of Ner(V)

which are not stable values of η. It is therefore possible to perturb η on

a neighbourhood of S to get a map η′ such that Im(η′) ∩ S = ∅. We

may then compose η′ by the “radial projection” from S onto the (n− 1)-

skeleton of Ner(V) to get a map η′′ whose barycentric coordinates still

are subordiante to V . We then pull back the open star cover of Ner(V)

and get a refinement of V of order les than or equal to n which contradicts

the assumption on the topological dimension of Z.

The proof of the proposition 5.7 is based on the stable points of f that

we describe now.
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Definition 5.11. — Let f : Z → Rn be a continuous map between a

topological space Z and Rn. A point x ∈ Z is called a stable point of

f if f(x) is a stable value of the restriction fU of f to U for any open

neighborhood U of x.

A map f possesses stable points when it has bounded multiplicity:

Lemma 5.12. — If (Z, d) is a compact metric space and f : Z → Rn a

regular map, then the preimage of a stable value contains a stable point.

Proof. — We just sketch the proof. Since f is a regular map it is of

bounded multiplicity. Let us denote f−1(y) = {x1, ..., xk}. Assume the

lemma is not true, then there exist open disjoint balls B(xi, ri) such

that for each i = 1, .., k, y is not a stable value of f|B(xi,ri). For δ > 0

small enough, we have f−1(B(y, δ)) = ∪i=1,..,kUi where the Ui’s are open

subsets of B(xi, ri) and then y is not a stable value of f|f−1(B(y,δ)), which

contradict the lemma 5.2 (ii).

The stable multiplicity function is the function µ : Rn → N defined by

µ(y) = the number of stable points in f−1(y).

Lemma 5.13. — Let (Z, d) be a compact metric space such that the

topological dimension of all nonempty open subsets of Z is ≥ n and

f : (Z, d) → Rn a regular map. Let V ⊂ Rn be the subset of points y ∈
Rn where the stable multiplicity µ is locally maximal and U := f−1(V ).

Then,

(i) V is an open dense subset of Im(f) on which the multiplicity func-

tion µ is locally constant.

(ii) The restriction f|U of f to U is a local homeomorphism.

Proof. — The proof is a consequence of the two following claims.

Claim 1: Let us consider y ∈ Im(f) and ε > 0, then there exist δ > 0

such that for all y′ ∈ B(y, δ) and all stable points x ∈ f−1(y), there is a

stable point in f−1(y′) ∩B(x, ε).

Claim 2: Let y ∈ Im(f) such that µ is locally maximal at y. Then

every x ∈ f−1(y) is a stable point.
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Since f is of bounded multiplicity and µ takes integer values then V is

clearly a dense subset of Im(f). By the claim 1, V is an open subset of

Rn and µ is locally constant on V . This proves (i). By the claim 2, the

map y → #f−1(y) is locally constant on V and by claim 1 f is therefore

locally injective on U which proves (ii). Let us prove the two claims.

Claim 1: Let x be a stable point in f−1(y). For all ε > 0, y is a stable

value of f|B̄(x,ε), and since the set of stable values is an open set there

exist a δ(x) > 0 such that all y′ ∈ B(y, δ(x)) are regular values of f|B̄(x,ε).

The lemma 5.11 provides a stable point x′ ∈ f−1(y′) ∩ B̄(x, ε) and by

regularity there is finitely many (stable) point in f−1(y) so that we can

choose δ = inf(δ(x)).

Claim 2: Let W be a relatively compact open neighborhood of y such

that µ(y) is maximal on W̄ . Assume the claim is not true. There exist x ∈
f−1(y) such that x /∈ {x1, ..., xk} where {x1, ..., xk} denotes the set of sta-

ble points of f−1(y) and ε > 0 such that B(x, ε), B(x1, ε), .., B(xk, ε) are

disjoint. By lemma 5.9 there exist a stable value y′ ∈ K := W̄ ∩ B̄(y, δ)

of f|B̄(x,ε)∩f−1(K) where δ = δ(y, ε) comes from the claim 1. Therefore by

claim 1 and lemma 5.11 respectively there are stable points of f−1(y′)

in each of the balls B(x1, ε), .., B(xk, ε) and B(x, ε), contradicting our

assumption.

We now can end the proof of the proposition 5.7: let f : Z → Rn

a regular map where (Z, d) be a compact metric space such that the

topological dimension of all nonempty open subsets of Z is ≥ n and

V ⊂ Rn be the subset of points y ∈ Rn where the stable multiplicity µ

is locally maximal, then according to the lemma 5.12 it remains to prove

that U := f−1(V ) is dense in Z and that f is locally bilipschitz. We

first prove the density of U : let us consider a nonempty open set O in Z.

By the lemma 5.9 f(O) has nonempty interior and since V is dense in

Im(f), f(O) ∩ V 6= ∅ therefore O meets U := f−1(V ) which proves the

density of U in Z.

Let us now prove that g =: f|U is locally bilipschitz. Since g is Lipschitz

we have to prove that the inverse of g is Lipschitz. We can argue locally

and restrict U so that U ⊂ f−1(B) where B is an open ball in Rn.

We have to prove the existence of a constant C such that for all x 6=
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y ∈ U , d(x, y) ≤ C|f(x) − f(y)|. Let us consider the euclidean ball

B′(f(x), R) centered at f(x) where R := 2|f(x) − f(y)| and denote ∆

the euclidean segment joining f(x) and f(y). Then, S := g−1(∆) is

a compact connected subset of U containing x, y and such that S ⊂
f−1(B′(f(x), R)). By regularity of f , we see that S is covered by N open

balls of radius R of Z. We then get easily that d(x, y) ≤ diam(S) ≤
2NR ≤ 4N |f(x)− f(y)|. This proves that f|U is bilipschitz and ends the

proof of the proposition 5.7.

6. Topological dimension and Hausdorff dimension

For a metric space (X, d), the n-Ahlfors regularity says that the n-

dimensional Hausdorff measure of metric balls behaves coarsely like the

Lebesgue measure of n-dimensional euclidean balls. This property will

be crucial in finding a weak tangent of (X, d) which is homeomorphic to

Rn .

Definition 6.1. — A metric space (X, d) is Ahlfors regular if there ex-

ists a constant C > 0 such that

C−1rn ≤ Hn(B(x, r)) ≤ Crn,

for any ball B(x, r) of (X, d), where Hn stands for the Hausdorff measure

of (X, d).

Let (X, d) be a compact metric space whose topological and Hausdorff

dimension coincide. Let us write n this dimension. We also will assume

that the space (X, d) is n-Ahlfors regular.

In general a topological space of topological dimension n may not con-

tain any subset homeomorphic to an open subset of Rn. We will see

however that if (X, d) is a compact n-Ahlfors regular metric space of

topological dimension n then one can find a weak tangent of (X, d) which

is bilipschitz homeomorphic to Rn.

Proposition 6.2. — Let (X, d) be a compact n-Ahlfors regular metric

space whose topological dimension is equal to n, then (X, d) has a weak

tangent bilipschitz homeomorphic to Rn.
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Proof. — The proof boils down in proving the existence of a weak tangent

(S, ρ) of (X, d) and a regular map g : (S, ρ) → Rn. The corollary 5.8 then

implies the existence of a weak tangent (T, σ) of (S, ρ) which is bilipschitz

homeomorphic to Rn. Since weak tangent of a weak tangent of a space

(X, d) is a weak tangent of (X, d), this ends the proof of the proposition.

Let us prove now the existence of a weak tangent (S, ρ) of (X, d) and a

regular map g : (S, ρ) → Rn.

Let f : (X, d) → Sn be a Lipschitz map with a regular value. Such

a map actually exist because of the assumption on the topological

dimension of X. We will find the regular map g among the “weak

tangents” of the map f . Let us define what a weak tangent of the

map f is. We consider weak tangent (S, ρ, o) = limk→∞(X, λkd, p)

and (Rn, eucl, 0) = limk→∞(Sn, λkcan, p0) of (X, d) and (Sn, can, p0)

respectively, where (Rn, eucl, 0) and (Sn, can, p0) are the standard

euclidean space and the standard sphere. We recall that all weak

tangent of the standard sphere are isometric to the euclidean space. By

definition there exist sequences of maps Ψk : (S, ρ, o) → (X, λkd, p),

Φk : (X, λkd, p) → (S, ρ, o), Ψ̄k : (Rn, eucl, 0) → (Sn, λkcan, p0), and

Φ̄k : (Sn, λkcan, p0) → (Rn, eucl, 0) which are “almost isometries” on

balls of radius R for all fixed R. A map g : (S, ρ, o) → (Rn, eucl, 0) such

that g = limk→∞ Φ̄k ◦ f ◦Ψk is called a weak tangent of f : (X, d) → Sn.

Note that weak tangents of a Lipschitz map always exist for any choice

of fixed marked points p and p0. Here we want to find such a weak

tangent which is regular. For that purpose we will have to choose p in

an appropriate way. More precisely we want to show the existence of an

N ∈ N such that for each ball BRn(R) of radius R in Rn, g−1(BRn(R))

can be covered by N balls of radius CR in (S, ρ) where C is a constant

independant of R. By approximation this is equivalent to saying that

for each ball BλkSn(R) of radius R of (Sn, λkcan), f−1(BλkSn(R)) can

be covered by N balls of λkX of radius CR, where λkX the space X

endowed with the homothetic metric λkd. Equivalently this means that

for each ball BSn( R
λk

) in (Sn, can), f−1(BSn( R
λk

)) can be covered by N

balls of radius C R
λk

in (X, d). The end of the proof of the proposition

would be very easy under the following assumption:

(?) for any r > 0, Hn
X(f−1(BSn(r))) ≤ C ′rn for some constant C ′.
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Namely, let us choose {xi}i∈I a maximal set of points in f−1(BSn(r)) such

that B(xi, r)∩B(xj, r) = ∅ for all i 6= j in I. Then by Ahlfors regularity

we have Hn
X(∪BX(xi, r) ≥ C|I|rn for some constant C, where |I| is the

cardinal of I. On the other hand if L denotes the Lipschitz constant

of f , then BX(xi,
r

L+1
) ⊂ f−1(BSn(2r)), therefore Hn

X(∪BX(xi,
r

L+1
) ≤

Hn
X(f−1(BSn(2r))) ≤ 2nC ′rn thus |I| ≤ 2nC′

C
.

Unfortunalely the assumption (?) does not a priori hold, thus we have

to look at bad points. For δ > 0 and λ > 0 let us define Lδ(x) =

Sup0≤t≤δ
Hn

X(f−1(B(x,t)))

tn
and Eδ,λ = {x ∈ Sn | Lδ(x) ≥ λ}.

We claim that one can choose δ small enough and λ large enough such

that Hn
Sn(Eδ,λ) ≤ ε for an arbitrary small number ε.

Let us assume the claim and finish the proof of the proposition. Let

us denote U = X − f−1(Eδ,λ) so that f(U) = f(X)−Eδ,λ. Since f has a

regular value, f(X) contains an open subset of Sn therefore Hn
Sn(f(X)) >

0. By the claim we can choose δ and λ such that f(U) = f(X) − Eδ,λ

has positive Hausdorff measure Hn
Sn(f(U)) > 0. Since f is Lipschitz , we

then get that Hn
X(U) > 0.

We choose a point of density p of U and a weak tangent g :

(S, ρ, o) → (Rn, eucl, 0) of f : (X, d, p) → (Sn, can, p0) where

(S, ρ, o) = limk→∞(X, λkd, p) and (Rn, eucl, 0) = limk→∞(Sn, λkcan, p0).

Let us prove the regularity of g. We have to prove the existence of

N ∈ N such that for any R > 0, n ∈ N and any ball BSn( R
λk

) of radius
R
λk

centered at an arbitrary point, the set Ak =: f−1(BSn( R
λk

))∩B(p, nR
λk

)

can be covered by N balls of radius C R
λk

in (X, d).

Since p is a point of density of U we have limλk→∞ λn
kH

n
X(B(p, R

λk
) −

U) = 0 and therefore by Ahlfors regularity of (X, d) we easily get the

existence of a point xk ∈ U such that dist(xk, f
−1(BSn(2R

λk
))∩B(p, nR

λk
)) ≤

R
λkL

where L is the Lipschitz constant of f . Setting A′
k = f−1(BSn(2R

λk
))∩

B(p, nR
λk

) we therefore get

A′
k ⊂ f−1

(
BSn

(
f(xk),

5R

λk

))
∩B(p,

nR

λk

).

Since xk ∈ U , then f(xk) /∈ Eδ,λ hence

Hn
X(f−1(BSn(f(xk),

5R

λk

))) ≤ (
5CR

λk

)n
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and therefore

Hn
X(A′

k) ≤ (
5CR

λk

)n.

From this we can argue like in the case when the assumption (?) holds

and conclude.

We now prove the claim.

Let us denote L the function defined on Im(f) ⊂ Sn by

L(x) = lim supt→0t
−nHn

X(f−1(B(x, t))).

The family Eδ,λ is a decreasing family of measurable subsets when

δ tends to 0 and ∩δ>0Eδ,λ = {x ∈ Im(f) | L(x) > λ}, therefore

limδ→0 Hn
Sn(Eδ,λ) = Hn

Sn({x | L(x) > λ}.
The claim will then follow from the estimate:

Hn
Sn({x | L(x) > λ}) ≤ C

λ
,

for some constant C.

Let us prove this estimate. Let us denote Eλ = {x ∈ Im(f) | L(x) >

λ}. For each x ∈ Eλ, there exist t, 0 < t < δ, such that Hn
X(f−1(B(x, t))) ≥

λtn. This defines a set B of ball of radii less than or equal to δ which

cover Eλ. By a Vitali’s covering lemma one can find a sequence Bj of

balls of B of radii rj tending to 0 such that the Bj are pairwise disjoint,

Eλ ⊂ ∪Bj(5rj), where Bj(5rj) is the ball with same center as Bj of

radius 5rj. The construction of this sequence Bj goes as follows. Let R1

be the supremum of the radii of the balls in B. We first take a maximal

set of disjoint balls of B of radii r such that R1/2 ≤ r ≤ R1. Then we

continue the same way with the supremum R2 of the radii of balls in B
which are disjoint of the ones already chosen. It is then easy to check

that Eλ is covered by ∪Bj(5rj) and that the radii of the Bj’s tends to

zero because (Sn, can) is Ahlfors regular.

By construction we have

Σjr
n
j ≤ λ−1Hn

Sn(∪Bj) ≤ λ−1Hn(Sn).

Therefore, we get

Hn
Sn(Eλ) ≤ Σj(diam(Bj(5rj))

n ≤ (10)nλ−1Hn(Sn),

which proves the estimate.
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This ends the proof of the proposition.

7. Proof of the theorem 1.5

Let G be a quasi-convex cocompact group acting on a CAT (−1)-space

X. As was recalled in section 2, G is acting uniformly quasi-Möbius

on the limit set (Λ(G), d) of G, cf. the example following definition

4.3. We assume that the Hausdorff dimension δ(G) and the topologi-

cal dimension dimtopΛ(G) of the limit set of G coincide. Let us write

n = dimtopΛ(G) = δ(G). As mentioned in the introduction, the limit set

of G is n-Ahlfors regular, thus by proposition 6.2, (Λ(G), d) has a weak

tangent (S, ρ) bilipschitz homeomorphic to Rn. In particular, the one

point compactification (Ŝ, ρ̂o) of (S, ρ) is quasi-Möbius homeomorphic to

the standard sphere Sn. On the other hand, by proposition 4.5, the one

point compactification (Ŝ, ρ̂o) of (S, ρ) is quasi-Möbius homeomorphic to

(Λ(G), d), hence after conjugation we can assume that G is acting uni-

formly quasi-Möbius on Sn. Since G is quasi-convex cocompact, G acts

cocompactly and properly discontinuously on the set of triples of distinct

points Tri(Λ(G)) of Λ(G) thus the conjugate action of G on Sn also acts

cocompactly and properly discontinuously on the set of triples of distinct

points Tri(Sn) of Sn, hence the theorem 3.1 of Tukia asserts that G is

isomorphic to a group of Möbius transformation of Sn. The correspond-

ing action of G on Tri(Sn) is proper discontinuous and cocompact, hence

the action of G on Sn extends to a discrete cocompact action on the hy-

perbolic space Hn+1. By the theorem 1.3 we then conclude the existence

of a totally geodesic G invariant copy H of Hn+1 embedded in X such

that H/G is compact. This concludes the proof of theorem 1.5.
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