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Abstract. — We give a pointed overview of the foundation of the homolog-
ical algebra approach to continuous bounded cohomology for locally compact
groups, which allows us to prove an integral formula involving specific repre-
sentatives of bounded cohomology classes. We then illustrate how this formula
can be used to put in the same framework several rigidity results.

Résumé (Une formule utile en cohomologie bornée). — Nous traitons
certains aspects de l’approche homologique à la cohomologie continue bornée
des groupes localement compacts. Comme application nous démontrons une
formule intégrale impliquant des représentants spécifiques de certaines classes
de cohomologie bornée de nature géométrique. Nous illustrons sur des cas
précis comment cette formule donne un cadre commun à un certain nombre de
phénomènes de rigidité.
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1. Introduction

A theory of continuous bounded cohomology for locally compact groups was

developed in [26] and this proved itself to be rather useful and flexible at

the same time. Bounded cohomology was originally defined by Gromov in

1982 and has already been used by several authors. The point of the theory

developed in [26] is the introduction in this context of relative homological

algebra methods in the continuous setting. Based on this theory, the authors

[16, 17, 15, 18, 14, 19, 20, 23, 21, 22, 24] developed a machinery which has

already proved itself very fruitful in showing several rigidity results for actions

of finitely generated groups or in finding new proofs of known results. We

want to list here in very telegraphic style some results in which either bounded

cohomology or continuous bounded cohomology play an essential role.

Minimal Volume (Gromov [38]): A geometric application to control the

minimal volume of a smooth compact manifold by its simplicial volume, that

is the seminorm of the fundamental class in `1-homology.

Actions on the Circle (Ghys [36]): E. Ghys observed that the Euler class of

a group action by homeomorphisms on the circle admits a bounded representa-

tive, leading thus to the bounded Euler class of this action, which determines

the action up to semiconjugacy (see § 2.3).

Maximal Representations in Homeo+(S1) (Matsumoto, [50], see also [43]):

A characterization of representations of surface groups which are semiconjugate

to a hyperbolization as those with maximal Euler number (see § 3.2).

Stable Length (Bavard [5]): The stable length of commutators of a finitely

generated group Γ vanishes if and only if the comparison map between bounded

cohomology and ordinary cohomology (see § 2.2)

H2
b(Γ,R) → H2(Γ,R)

is injective.
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Characterization of Gromov Hyperbolic Groups (Mineyev [52, 53]): A

finitely generated group is Gromov hyperbolic if and only if for every Banach

Γ-module V , the comparison map H2
b(Γ, V ) → H2(Γ, V ) is surjective.

Central Extensions and their Geometry (Gersten [35]): If

0 → Z → Γ̃ → Γ → 1

is a central extension of a finitely generated group Γ given by a bounded two-

cocycle, then Γ̃ is quasiisometric to Γ×Z. Applying this to Γ = Sp(2n,Z) and

to the inverse image Γ̃ of Γ in the universal covering of Sp(2n,R), one obtains

that Γ̃ is quasiisometric to Γ × Z; since Γ̃ has property (T) for n ≥ 2 , while

Γ×Z does not, this shows that property (T) is not a quasiisometry invariant.

Boundedness of Characteristic Classes (Gromov [38], Bucher-Karlsson [12,

13], [47]): M. Bucher-Karlsson, strengthening a result of Gromov, showed

that characteristic classes of flat bundles admit cocycle representatives tak-

ing finitely many values, hence in particular they are bounded. Lafont and

Schmidt proved recently a conjecture of Gromov to the effect that closed lo-

cally symmetric spaces (of noncompact type) have positive simplicial volume

and M. Bucher-Karlsson succeeded in giving the precise value of the simplicial

volume of a product of two compact surfaces.

Orbit Equivalence (Monod–Shalom [56]): If Γ is a finitely generated group,

then the nonvanishing of H2
b

(
Γ, `2(Γ)

)
is an invariant of measure equivalence,

and this can be applied to show rigidity of certain products under measure

equivalence (see § 2.3).

Theory of Amenable Actions (Burger–Monod [26]): For a locally compact

group G acting on a standard measure space (S, µ), the amenability of the

G-action (in the sense of Zimmer, [67]) is equivalent to the injectivity of the

G-module L∞(S, µ) in a sense appropriate for bounded cohomology (see Defi-

nition 2.8).

Rigidity Questions for Group Actions on Hermitian Symmetric Spaces:

When G is a connected semisimple Lie group with finite center such that

the associated symmetric space X is Hermitian, then there is a canonical

continuous bounded class κ ∈ H2
cb(G,R) constructed using the Kähler form

on X . This allows to associate to any homomorphism ρ : Γ → G an invariant

ρ(2)(κ) ∈ H2
b(Γ,R), coined the bounded Kähler class of ρ, and which contains
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substantial information about the homomorphism. This is put to use to study

various aspects of group actions on X .

The first one concerns the case where Γ is a lattice in SU(1, p), ρ is the

homomorphism Γ → SU(1, q) obtained from injecting SU(1, p) in a standard

way into SU(1, q) (1 ≤ p ≤ q), and the question is the local rigidity of ρ in

the variety of representations of Γ into SU(1, q) (see § 5); an important part of

this paper will be devoted to developing certain tools in continuous bounded

cohomology which are instrumental in answering this question – see § 4 –

(Burger–Iozzi [19, 18, 15], Koziarz–Maubon [46]).

The second aspect deals with the case in which G is in general the isometry

group of a Hermitian symmetric space, Γ is the fundamental group of a compact

oriented surface and the question concerns the geometric understanding of cer-

tain components of the representation variety of Γ into G, namely those formed

by the set of maximal representations – see § 3.3 – (Burger–Iozzi–Wienhard

[23, 21, 22], Wienhard [63], Burger–Iozzi–Labourie–Wienhard [20]).

The third aspect is when Γ is an arbitrary, say finitely generated, group:

remarkably, if ρ : Γ → G has Zariski dense image and X is not of tube type,

then the bounded Kähler class of ρ determines ρ up to conjugation, (Burger–

Iozzi [17], Burger–Iozzi–Wienhard [24]).

The scope of these notes is to give a description of one underlying feature

in continuous bounded cohomology common to these last results ([19, 18, 15,

23, 21]) as well as to the proof in [43] of Matsumoto’s theorem in [50] and

to Gromov’s proof of Mostow rigidity theorem in [61]. More specifically, we

prove an integral formula which involves specific representatives of bounded

cohomology classes. Particular instances of this formula were proven already

in [43] and [23], while here we give a treatment which unifies at least the first

half of the statement. As this is rather technical, we postpone its statement

to § 2 (Proposition 2.44 and also Principle 3.1) and § 4.2 (Proposition 4.9 and

Principle 4.11), where the patient reader will be gently guided.

The paper is organized as follows. In § 2 we lay the foundation of continu-

ous bounded cohomology for the noninitiated reader, who will be lead to the

statement of an easy version of the main result in § 4. In § 3 we describe the

instances in which the results of § 2.7 are used. In § 4 we give a complete proof

of a more general version of the Formula in Proposition 2.44 from which the
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statements in Proposition 2.44 can be easily obtained. Finally, in § 5 we give

the application which triggered Proposition 4.9, namely an original proof of a

deformation rigidity theorem announced in 2000 in [19] and [43] with a sketch

of a proof and also proven by analytic methods in 2004 in [46].

Acknowledgments: The authors thank Theo Bühler and Anna Wienhard for

detailed comments on this paper. Their thanks go also to the referee for having

read the paper very carefully and having spotted many typos and imprecisions;

the remaining ones are of course the authors’ sole responsibility.

2. Bounded Cohomology Preliminaries

We refer to [26], [55] and [16] for a complete account of different parts of

the theory.

2.1. Definition via the Bar Resolution. — Let G be a locally compact

group.

Definition 2.1. A coefficient G-module E is the dual of a separable Banach

space on which G acts continuously and by linear isometries.

Examples 2.2. Relevant examples of coefficient G-modules in this note are:

1. R with the trivial G-action;

2. Any separable Hilbert space H with a continuous G-action by unitary

operators;

3. L∞(G/H) with theG-action by translations, whereH is a closed subgroup

of the second countable group G.

4. L∞w∗(S,E), that is the space of (equivalence classes of) weak∗-measurable

maps f : S → E from aG-space (S, µ) into a coefficient module. We recall

that a regular G-space is a standard Borel measure space (S, µ) with

a measure class preserving G-action such that the associated isometric

representation on L1(S, µ) is continuous.

Now we proceed to define the standard complex whose cohomology is the

continuous bounded cohomology with values in a coefficient module E. Let

Cb(G
n, E) :=

{
f : Gn → E : f is continuous and

‖f‖∞ = sup
g1,...,gn∈G

‖f(g1, . . . , gn)‖E <∞
}
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be endowed with the G-module structure given by the G-action

(hf)(g1, . . . , gn) := hf(h−1g1, . . . , h
−1gn) ,

and let Cb(G
n, E)G be the corresponding submodule of G-invariant vectors.

Then the continuous bounded cohomology H•
cb(G,E) of G with coefficients in

E is defined as the cohomology of the complex

(2.1) 0 //Cb(G,E)G d //Cb(G
2, E)G d //Cb(G

3, E)G d // . . .

where d : Cb(G
n, E) → Cb(G

n+1, E) is the usual homogeneous coboundary

operator

(df)(g0, . . . , gn) :=
n∑

j=0

(−1)jf(g0, . . . , ĝj, . . . , gn) .

More precisely,

Hn
cb(G,E) := ZCb(G

n+1, E)G/BCb(G
n+1, E)G ,

where

ZCb(G
n+1, E)G := ker

{
d : Cb(G

n+1, E)G → Cb(G
n+2, E)G

}
are the homogeneous G-invariant n-cocycles, and

BCb(G
n+1, E)G = im

{
d : Cb(G

n, E)G → Cb(G
n+1, E)G

}
are the homogeneous G-invariant n-coboundaries.

Remark 2.3. If κ ∈ Hn
cb(G,E), then we define

‖κ‖ := inf
{
‖c‖∞ : c ∈ ZCb(G

n+1, E), [c] = κ
}
,

so that Hn
cb(G,E) is a seminormed space with the quotient seminorm.

If we drop the hypothesis of boundedness in (2.1), we obtain the continuous

cohomology of G, which we denote by Hn
c (G,E). Thus continuous bounded co-

homology appears as the cohomology of a subcomplex of the complex defining

continuous cohomology, and thus we have a natural comparison map

H•
cb(G,E) → H•

c(G,E) .

Note however that in the case of continuous cohomology, the appropriate co-

efficients are just topological vector spaces with a continuous G-action (See

[39], [9] and [6] for the corresponding homological algebra theory in continu-

ous cohomology.)
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If the group G is discrete, the assumption of continuity is of course redun-

dant, and in this case the cohomology and bounded cohomology will be simply

denoted by H•(G,E) or H•
b(G,E) respectively. Observe that in this case a ho-

mological algebra approach was already initiated by R. Brooks [11] and later

developed by N. Ivanov [44] and G. Noskov [58].

Exercise 2.4. Write down the complex of inhomogeneous cochains and the

formula for the coboundary map in this setting; compare with [55, § 7.4]

and/or [39].

2.2. Low Degree. — We indicate briefly here what the bounded cohomol-

ogy computes in low degrees. Notice however that in order to verify our as-

sertions, one should mostly use the nonhomogeneous definition of continuous

bounded cohomology (see Exercise 2.4).

• Degree n = 0 Since BCb(G,E) = 0, then

H0
cb(G,E) = ZCb(G,E)G

=
{
f : G→ E : f is constant and G-invariant

}
= EG ,

that is the space of G-fixed vectors in E and, in fact, there is no difference

between continuous cohomology and continuous bounded cohomology in degree

0.

• Degree n = 1 If we denote by ρ the (linear) isometric action of G on E, the

cohomology group H1
c(G,E) classifies the continuous affine actions of G with

linear part ρ, while H1
cb(G,E) the continuous affine actions of G with linear

part ρ and with bounded orbits. In particular, if E = R is the trivial module,

then H1
cb(G,R) = Homcb(G,R) = 0, and the same holds also if E = H is a

separable Hilbert space (exercise) and if E is any reflexive separable Banach

module, [55, Proposition 6.2.1].

• Degree n = 2 IfG is a discrete group and A is an Abelian group (in particular,

A = Z or R) , it is a classical result that H2(G,A) classifies the equivalence

classes of central extensions G̃ of G by A, that is the equivalence classes of

short exact sequences

0 //A //G̃ //G //0 ,
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such that the image of A in G̃ is contained in the center. There is no such

a characterization of second continuous bounded cohomology in degree two.

However, as alluded to in the introduction, Gersten gave a very useful geomet-

ric property of central extensions which admit associated bounded cocycles.

Note that in general, a lot of information in degree two can be obtained

from the comparison map

H2
cb(G,E) −→ H2

c(G,E)

as illustrated for instance by Bavard’s and Mineyev’s theorems in the intro-

duction. It is easy to verify that if E = R, the kernel of the comparison map in

degree two (the so called “exact part of the continuous bounded cohomology”)

is identified with the space of continuous quasimorphisms

QM(G,R) :=
{
f : G→ R : f is continuous and

sup
g,h∈G

|f(gh)− f(g)− f(h)| <∞
}

up to homomorphisms and continuous bounded functions – the “trivial quasi-

morphisms” – namely

EH2
cb(G,R) := ker

{
H2

cb(G,R) → H2
c(G,R)

}
= QM(G,R)/

(
Homc(G,R)⊕ Cb(G,R)

)
.

2.3. Examples. — We give here a few examples of cocycles, most of which

will be used in the sequel.

• Bounded Euler class. Let G = Homeo+

(
S1

)
(thought of as a discrete group,

for simplicity). The Euler class e ∈ H2
(
Homeo+(S1),R

)
can be represented by

a nonhomogeneous cocycle arising from the central extension of Homeo+(S1)

by Z defined by the group HomeoZ(R) of homeomorphisms of the real line

which commute with integral translations

0 //Z // HomeoZ(R)
p // Homeo+(S1) //

s

jj 0 .

Then, if one chooses a section s of the projection p in such a way that s(f)(0) ∈
[0, 1), for f ∈ Homeo+(S1), the cocycle associated to the central extension is

bounded and hence defines a bounded cohomology class called the bounded

Euler class eb ∈ H2
b

(
Homeo+(S1),R

)
, independent of the section chosen. A
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homogeneous cocycle whose class is a multiple of the bounded Euler class is

the orientation cocycle defined by

(2.2) c(g0, g1, g2) :=


1 if (g0x, g1x, g2x) is positively oriented

−1 if (g0x, g1x, g2x) is negatively oriented

0 otherwise ,

where x ∈ S1 is a fixed basepoint and g0, g1, g2 ∈ Homeo+(S1). Then it is an

exercise to show that −2eb = [c] ∈ H2
b

(
Homeo+(S1),R

)
.

• Dupont cocycle (first instance). Let G = PU(1, 1) and consider the unit

disk D2 with Poincaré metric (1− |z|2)−2|dz|2 and associated area form ωD2 =

(1− |z|2)−2dz ∧ dz. If x ∈ D2, then

(2.3) bD2(g0, g1, g2) :=

∫
∆(g0x,g1x,g2x)

ωD2 ,

where ∆(g0x, g1x, g2x) is the geodesic triangle with vertices g0x, g1x, g2x, is a

PU(1, 1)-invariant cocycle which is bounded since

|bD2(g0, g1, g2)| < π .

Moreover, if the basepoint x is chosen on the boundary ∂D2 ∼= S1, then the

cocycle βD2 that one can define analogously by integration on ideal triangles

is also PU(1, 1)-invariant and bounded, and, in fact, if c|PU(1,1) denotes the

restriction to PU(1, 1) < Homeo+(S)1 of the orientation cocycle c defined in

(2.2), then

πc|PU(1,1) = βD2 .

• Cartan invariant. If 〈 , 〉 is a Hermitian form of signature (p, 1) on Cp+1, a

model of complex hyperbolic p-space Hp
C is given by the cone of negative lines.

In this model the visual boundary ∂Hp
C is the set of isotropic lines. A basic

invariant of three vectors x, y, z ∈ Cp+1 is their Hermitian triple product

[x, y, z] = 〈x, y〉〈y, z〉〈z, x〉 ∈ C

which can be projectivized to give a well defined map
(
∂Hp

C
)
→ R×\C whose

composition with 1
π

arg gives the Cartan invariant (invariant angulaire, [27])

(2.4) cp : (∂Hp
C)3 → [−1, 1] .

A chain in ∂Hp
C is by definition the boundary of a complex geodesic in Hp

C,

that is an isometrically and holomorphically embedded copy of D2; as such, it
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is a circle equipped with a canonical orientation, and it is uniquely determined

by any two points lying on it. When restricted to a chain, the Cartan invariant

is nothing but the orientation cocycle (2.2); furthermore, the Cartan invariant

is a strict alternating cocycle on (∂Hp
C)3 ∼=

(
SU(1, p)/P

)3
, where P < SU(1, p)

is a (minimal) parabolic subgroup.

The area form ωD2 can be generalized in different directions: the first uses

the fact that the area form on the Poincaré disk is obviously also its volume

form and will be illustrated in the next example; the subsequent three examples

use instead that the area form on the Poincaré disk is its Kähler form, that is a

nonvanishing differential two-form which is PU(1, 1)-invariant (hence closed).

The existence of a Kähler form ωX is what distinguishes, among all symmetric

spaces, the Hermitian ones.

• Volume cocycle. LetG = PO(1, n)◦ be the connected component of the group

of isometries of real hyperbolic space Hn
R. Then the volume of simplices with

vertices in Hn
R is uniformly bounded, hence defines a G-invariant alternating

continuous bounded cocycle. Likewise, the volume of ideal simplices in Hn
R

(that is simplices with vertices on the sphere at infinity ∂Hn
R of Hn

R) defines a

G-invariant alternating bounded cocycle.

• Dupont cocycle. Let G be a connected semisimple group with finite center

and X the associated symmetric space which we assume to be Hermitian. In

the sequel we will normalize the Hermitian metric such that the minimum of

the holomorphic sectional curvature is −1. Letting now ωX be the Kähler

form and x ∈ X a basepoint, integration over simplices ∆(x, y, z) with vertices

x, y, z and geodesic sides gives rise to a continuous G-invariant cocycle on G

defined by

bX (g0, g1, g2) :=

∫
∆(g0x,g1x,g2x)

ωX ,

for g0, g1, g2 ∈ G, which turns out to be bounded (Dupont [30]). In fact, more

precisely we have that

‖bX‖∞ = πrX ,

where rX is the rank of X , (Domic–Toledo [29] and Clerc–Ørsted [28]).

Notice that, contrary to the constant sectional curvature case, the geodesic

triangle ∆(g0x, g1x, g2x) has uniquely defined geodesic sides, but not uniquely
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defined interior: however the integral is well defined because the Kähler form

is closed.

• Bergmann cocycle. To extend the previous picture to the boundary, recall

that any Hermitian symmetric space X has a realization as a bounded sym-

metric domain D ⊂ Cn. Let Š be the Shilov boundary of D, that is the only

closed G-orbit in the topological boundary ∂D of D. While in the rank one

case any two points in the topological boundary ∂D of D can be connected by

a geodesic, the same is not true in higher rank. Let Š(3) be the subset of Š3

consisting of triples of points which can be joined pairwise by geodesics. Then

for x1, x2, x3 ∈ Š(3) one can define heuristically

(2.5) βX (x1, x2, x3) :=

∫
∆(x1,x2,x3)

ωX

which turns out to be, once again, an invariant alternating cocycle, which is

also bounded since

‖βX‖∞ = πrX .

We refer to [28] for a justification of this heuristic formula.

• Maslov index. Let V be a real vector space with a symplectic form 〈 , 〉 :

V × V → R, G = Sp(V ) =
{
g ∈ GL(V ) : g preserves 〈 , 〉

}
and X the associ-

ated symmetric space. Then X is a classical example of Hermitian symmetric

space and the Grassmannian L(V ) of Lagrangian subspaces is in a natural

way identified with the Shilov boundary of the bounded domain realization

of X . The Bergmann cocycle βX defined above is here equal to πiV , where

iV (L1, L2, L3) is the Maslov index of three Lagrangians L1, L2, L3 ∈ L(V ) de-

fined, following Kashiwara, as the index of the quadratic form

L1 × L2 × L3 −→ R
(v1, v2, v3) 7→ 〈v1, v2〉+ 〈v2, v3〉+ 〈v3, v1〉 .

In fact, iV is defined for all triples of Lagrangians and it is an Sp(V )-invariant

cocycle taking integer values in the interval [−n, n], where 2n = dimV . For a

more thorough discussion of all objects involved see [20].

Here is finally an example of a cocycle with nontrivial coefficients.

• Gromov–Sela–Monod cocycle. Let T := (E ,V) be a tree with vertices V ,

edges E , let G := Aut(T ) be its automorphism group and let d be the combi-

natorial distance on T . For any n ∈ Z, we are going to construct a bounded
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cocycle with values in `2
(
E (n)

)
, where E (n) is the set of oriented geodesic paths

in T of length n. For n ∈ N, define

ω(n) : G×G→ `2(E (n))

(g0, g1) 7→ ω(n)
g0,g1

to be

ω(n)
g0,g1

(γ) :=


1 if d(g0x, g1x) ≥ n and γ ⊂ γg0x,g1x

−1 if d(g0x, g1x) ≥ n and γ−1 ⊂ γg0x,g1x

0 otherwise ,

where, if x ∈ T is a basepoint and γy,z denotes the oriented geodesic path from

y to z. By definition of coboundary operator, and by observing that ω(n) is

alternating, one has

dω(n)(g0, g1, g2) = ω(n)(g0, g1) + ω(n)(g1, g2) + ω(n)(g2, g0) ,

and it is easy to verify that

dω(n) = 0 if and only if n = 1 .

In fact, the support of dω(n)(g0, g1, g2) is contained in the tripod with vertices

g0x, g1x, g2x and center o,

g2x

•

•

•

•

•

•{{{{{{{{

•��
��

��
��

•~~
~~

~~
~~

~~

o

•
>>

>>
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@@
@@
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and the total contributions of a path γ ∈ E (n) which does not meet o or which

meets o at one of its endpoints is zero, while dω(n)(g0, g1, g2)(γ) 6= 0 if and only

if γ is a path which contains the center o of the tripod in its interior. However,

since

sup
g0,g1,g2

‖dω(n)(g0, g1, g2)‖2 <∞ ,

then

c(n) := dω(n) : G×G×G→ `2
(
E (n)

)
is a bounded G-invariant cocycle, even though ω(n) is not a bounded

cochain – in fact, ‖ω(n)
g0,g1‖2

2 = 2(d(g0x, g1x) − n). Let c
(n)
GSM := [c(n)] ∈

H2
b

(
Aut(T ), `2(E (n))

)
be the bounded cohomology class so defined, which is

independent of the chosen basepoint x. These classes turn out to be nontrivial

in the following rather strong sense:

Theorem 2.5 (Monod–Shalom [57]). Let Γ be a finitely generated group and

ρ : Γ → Aut(T ) an action of Γ by automorphisms on T . Then the following

are equivalent:

(i) the action of Γ is not elementary;

(ii) the pullback ρ(2)
(
c
(2)
GSM

)
∈ H2

b

(
Γ, `2(E (2))

)
is nonzero;

(iii) the pullback ρ(2)
(
c
(n)
GSM

)
∈ H2

b

(
Γ, `2(E (n))

)
is nonzero for every n ≥ 2.

A similar but more elaborate construction for Gromov hyperbolic graphs

of bounded valency due to Mineyev, Monod and Shalom gives the following

general nonvanishing result:

Theorem 2.6 (Mineyev–Monod–Shalom [54]). Let Γ be a countable group

admitting a proper nonelementary action on a hyperbolic graph of bounded

valency. Then H2
b

(
Γ, `2(Γ)

)
is nontrivial.

Remark 2.7. Another illustration of the relevance of bounded cohomology

with coefficients is provided by the result of Monod and Shalom already al-

luded to in the introduction. They proved that if two groups Γ1 and Γ2 are

finitely generated and measure equivalent, then H2
b

(
Γ1, `

2(Γ1)
)
6= 0 if and only

if H2
b

(
Γ2, `

2(Γ2)
)
6= 0.

Recall that two groups are measure equivalent if there exists a space X with

a σ-finite measure µ, such that the actions of the Γi’s on (X,µ) are measure

preserving, commute, and admit a finite volume fundamental domain. The

typical example of measure equivalent groups are lattices Γ1,Γ2 in a locally
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compact second countable group G, where one can take (X,µ) = (G, dg),

where dg is the Haar measure on G.

It is interesting to compare this with a result of Gaboriau [32, 34] asserting

the equality of `2 Betti numbers if Γ1 and Γ2 are orbit equivalent. Recall that

`2-Betti numbers of Γ are computed using the ordinary cohomology groups

H•(Γ, `2(Γ)
)

[33], and that two actions are orbit equivalent if there exists

a measure class preserving measurable isomorphism of the underlying spaces

which sends almost every Γ1-orbit to a Γ2-orbit.

Now that we have some examples at hand, it is clear that, just like in the case

of continuous cohomology, there is the need of more flexibility than allowed by

the bar resolution as, for instance, some of the cocycles defined above – e. g.

the Dupont cocycle in (2.3) – are not continuous.

2.4. Homological Algebra Approach to Continuous Bounded Coho-

mology. — Let V be a Banach G-module. As for ordinary continuous coho-

mology, there is a notion of relatively injective Banach G-module appropriate

in this context.

Definition 2.8. A Banach G-module V (that is a Banach space with an

action of G by linear isometries) is relatively injective if it satisfies an extension

property, namely:

– given two continuous Banach G-modules A and B and a G-morphism

i : A → B between them (that is a continuous linear G-map), such that

there exists a left inverse σ : B → A with norm ‖σ‖ ≤ 1 (which is linear

but not necessarily a G-map), and

– given any G-morphism α : A→ V ,

there exists a G-morphism β : B → V such that the diagram

A
� �

ı
//

α ��@
@@

@@
@@

B

∃β~~
V

commutes, and ‖β‖ ≤ ‖α‖.
We remark that the existence of such σ is a rather severe restriction on ı,

as it implies that there exists a splitting of B = A + C, where C is a Banach

complement of A in B; if however we were to require that σ is a G-morphism,
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then the splitting would be G-invariant and hence all Banach G-modules would

be relatively injective.

Example 2.9. For any coefficient G-module E, let L∞w∗,alt(G
n+1, E) be the

subspace of (equivalence classes of) alternating functions in L∞w∗(G
n+1, E), that

is f ∈ L∞w∗(G
n+1, E) and for any permutation σ on n+1 symbols, we have that

f
(
σ(g0, . . . , gn)

)
= sign(σ)f(g0, . . . , gn) .

It is not difficult to show that the Banach G-modules Cb(G
n+1, E),

L∞w∗(G
n+1, E) and L∞w∗,alt(G

n+1, E) are relatively injective. In fact, if V is any

of the above function spaces, α : A→ V is a G-morphism, and B, σ, ı are as in

Definition 2.8, then one can define β(b)(g0, . . . , gn) := α
(
g0σ(g−1

0 b)
)
(g0, . . . , gn)

and verify that it has the desired properties.

Definition 2.10. Let E be a coefficient G-module.

1. A resolution (E•, d•) of E is an exact complex of Banach G-modules such

that E0 = E and En = 0 for all n ≤ −1

0 // E
d0 // E1

d1 // . . .
dn−2 // En−1

dn−1 // En
dn // . . .

2. The continuous submodule CE of E is the submodule defined as the sub-

space of E of vectors on which the action of G is norm-continuous, that

is v ∈ CE if and only if ‖gv − v‖ → 0 as g → e. Then a strong res-

olution of E by relatively injective G-modules is a resolution where the

Ejs are relatively injective G-modules, with a contracting homotopy de-

fined on the subcomplex (CE•, d•) of continuous vectors, that is a map

hn+1 : CEn+1 → CEn such that:

– ‖hn+1‖ ≤ 1, and

– hn+1dn + dn−1hn = IdEn for all n ≥ 0.

Given two strong resolutions of a coefficient Banach G-module E by rela-

tively injective G-modules, the extension property in Definition 2.8 allows to

extend the identity map of the coefficients to a G-morphism of the resolutions,

which in turn results in an isomorphism of the corresponding cohomology

groups. In general however, the isomorphism that one thus obtains is only

an isomorphism of topological vector spaces, not necessarily isometric. More

precisely,

Exercise 2.11. 1. Let (E•, d•) be a strong resolution of a coefficient mod-

ule E, and (F•, d
′
•) a strong resolution of E by relatively injective modules.
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Then there exists a G-morphism of complexes α• : CE• → CF• which ex-

tends the identity Id : E → E and such that η0 = Id .

0 // E
d0 //

Id

��

E1
d1 //

η1

��

. . .
dn−2 // En−1

dn−1 // En
dn // . . .

0 // E
d′0 // F1

d′1 // . . .
d′n−2 // Fn−1

d′n−1 // Fn

d′n // . . .

Note that the existence of η1 = d0Id is just an application of the definition

of relative injectivity while, for j ≥ 2, in the construction of ηj one has

to use the contracting homotopy to deal with the kernel of dj−1.

2. If in addition also (E•, d•) is by relatively injective modules, then there ex-

ists a G-homotopy equivalence between G-morphisms of complexes which

induces an isomorphism in cohomology.

Recall that if α• and η• are G-morphisms of complexes (E•, d•) and

(F•, d
′
•), a G-homotopy σ• : α• → η•−1 is a sequence of G-morphisms

σn : En → Fn−1,

En−1

dn−1 //

�� ��

En
dn //

αn

��

ηn

��

σn

}}||
||

||
||

||
||

||
||

|
En+1

����

σn+1

}}||
||

||
||

||
||

||
||

|

Fn−1

d′n−1 // Fn

d′n // Fn+1

such that

σn+1dn + d′n−1σn = αn − ηn .

Corollary 2.12. The continuous bounded cohomology of a locally compact

group G with coefficients in the coefficient module E is isomorphic (as a topo-

logical vector space) to the cohomology of the subcomplex of invariants of any

strong resolution of E by relatively injective G-modules.

We want to present a case in which the isomorphism is indeed isometric,

together with providing a realization of bounded cohomology which turns out

to be very useful from the geometric point of view.

2.5. Amenable Actions. — The notion of amenable action is a relativized

notion of that of an amenable group and we refer to [67, Chapter 4] and [55]

for details and proofs (see also [3, Chapter 4] for a groupoid point of view).
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We start our discussion with the definition most useful for us, although not

necessarily the most transparent among those available.

Definition 2.13. A locally compact group G is amenable if and only if there

exists a (left) G-invariant mean on L∞(G), that is a norm-continuous G-

invariant linear functional m : L∞(G) → R such that m(f) ≥ 0 if f ≥ 0,

m(1) = 1, and hence has norm ‖m‖ = 1.

Analogously, one has:

Definition 2.14. Let (S, µ) be a G-space with a quasiinvariant measure. The

action of G on (S, µ) is amenable if and only if there exists a G-equivariant

projection m : L∞(G × S) → L∞(S) which is L∞(S)-linear and such that

m(1G×S) = 1S, m(f) ≥ 0 if f ≥ 0 and hence m has norm ‖m‖ = 1.

Examples of amenable groups include Abelian, compact, and solvable groups

as well as all extensions of amenable groups by amenable groups and inductive

limits of amenable groups. For example, let P be a minimal parabolic subgroup

in a Lie group G: since P is a compact extension of a solvable group, then P

is amenable. Moreover one can show that, although a noncompact semisimple

Lie group G is never amenable, it acts amenably on the homogeneous space

G/P [67, Chapter 4].

This is not by chance, in fact:

Proposition 2.15 (Zimmer [67, Proposition 4.3.2]). Let G be a locally com-

pact group and H ≤ G any closed subgroup. The action of G on G/H is

amenable (with respect to the quotient class of the Haar measure) if and only

if H is an amenable group.

Corollary 2.16. A group acts amenably on a point if and only if it is

amenable.

We want to illustrate now a characterization of amenable action (which was

actually the original definition [67, Chapter 4]) modeled on the characteriza-

tion of amenable groups by a fixed point property. Namely a locally compact

group G is amenable if and only if there is a fixed point on any G-invariant

compact convex subset in the unit ball (in the weak∗-topology) of the dual of

a separable Banach space. on which G acts continuously by linear isometries.

The concept of amenable action once again relativizes that of amenable group.

We start illustrating it in terms of bundles in the case of a transitive action .
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Let us consider the principal H-bundle G → G/H. For any separable Ba-

nach space E and any continuous isometric action H → Iso(E), we can con-

sider the associated bundle with fiber the dual E∗ of E endowed with the

weak∗-topology. Since the group G acts by bundle automorphisms on the

bundle G → G/H it preserves the subbundle of the associated bundle with

fiber the unit ball E∗
1 ⊂ E∗. Let A be a G-invariant weak∗-measurable sub-

set of G ×H E∗
1 which is fiberwise weak∗-compact and convex. Then we say

that G acts amenably on G/H if and only if whenever in the above situation,

there exists an A-valued measurable section of the associated bundle which is

G-invariant.

The following definition is just the translation of the above picture in the

more general case of “virtual group actions” (see [49] and [59] for a description

of the philosophy behind it and [68] for the explicit correspondence between

principal bundle automorphisms and measurable cocycles – see the next defi-

nition).

Definition 2.17 (Zimmer [67]). Let G be a locally compact group acting

continuously and by linear isometries on a separable Banach space E, and

let (S, ν) be a (right) G-space with a quasiinvariant measure. Let α : S ×
G → Iso(E) be a measurable cocycle (that is a measurable map such that

α(s, gh) = α(s, g)α(sg, h) for almost all s ∈ S and for all g, h ∈ G) and let

s 7→ As a Borel assignment of a compact convex subset of the unit ball E∗
1 of

the dual such that α(s, g)∗As = Asg. Let

F
(
S, {As}s∈S

)
:=

{
f : S → E∗

1 : f is measurable and

f(s) ∈ As for a. e.s ∈ S
}

be endowed with the G-action (gf)(s) := α(s, g)∗f(sg). The above data(
S, {As}s∈S

)
is an affine action of G over (S, ν).

Proposition 2.18 (Zimmer [65], Adams [1], Adams–Elliott–Giordano [2])

A locally compact group G acts amenably on S if and only if for every

affine action of G over S there is a fixed point, that is a measurable function

f ∈ F
(
S, {As}s∈S

)
such that f(s) = α(s, g)∗f(sg) for almost every s ∈ S and

g ∈ G.

Example 2.19. Any action of an amenable group is amenable. We saw al-

ready that a (nonamenable) group acts amenably on a homogeneous space

with amenable stabilizer. Another important example of an amenable action
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of a (nonamenable) group is that of a free group Fr in r-generators (r ≥ 2)

on the boundary ∂Tr of the associated tree Tr, with respect to the measure

m
(
C(x)

)
=

(
2r(2r−1)n−1

)−1
, where x is a reduced word of length n and C(x)

is the subset of ∂Tr consisting of all infinite reduced words starting with x.

The relevance (as well as a new characterization) of amenability of an action

with respect to bounded cohomology is given by the following:

Theorem 2.20 (Burger–Monod [26]). Let (B, ν) be a regular G-space with

a quasi-invariant measure. Then the following are equivalent:

(i) The G-action on B is amenable;

(ii) L∞(B) is relatively injective;

(iii) L∞w∗(B
n, E) is relatively injective for every coefficient G-module E and

every n ≥ 1.

We precede the proof with the following observation. Let θ : V → W be

a G-morphism of Banach G-modules V , W such that there is a left inverse

G-morphism ζ : W → V with ‖ζ‖ ≤ 1; assume moreover that W is relatively

injective. Then V is also relatively injective as one can easily see from the

diagram

A
� �

ı
//

α ��@
@@

@@
@@

B
σ

ss

~~ !!
V

θ // W .
ζ

kk

Proof. — We give an idea of the proof of the equivalence of the first two state-

ments. Since L∞(G×B) ∼= L∞w∗
(
G,L∞(B)

)
, and because we have already ob-

served that L∞w∗
(
G,L∞(B)

)
is relatively injective (Example 2.9), by the above

observation with V = L∞(B) and W = L∞w∗
(
G,L∞(B)

)
it is enough to find a

left inverse G-morphism of norm one of the inclusion L∞(B) ↪→ L∞(G × B);

but this is implied by the definition we gave of amenable action.

Conversely, consider the diagram

L∞(B) � �

ı
//

Id %%JJJJJJJJJ
L∞(B ×G)

L∞(B)
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and observe that ı admits a left inverse of norm one given by

σ(F )(b) :=

∫
G

F (b, g)ψ(g)dg ,

where ψ ≥ 0 is some continuous function with compact support and integral

one. If L∞(B) is injective, there is a G-map β : L∞(B×G) → L∞(B) of norm

one making the above diagram commutative; in particular β(f ⊗ 1G) = f

for all f ∈ L∞(B), which, together with the G-equivariance implies that β is

L∞(B)-linear.

This gives us yet another characterization of the amenability of a group.

Corollary 2.21. Let G be a locally compact group. The following are equiv-

alent:

(i) The group G is amenable;

(ii) The trivial G-module R is relatively injective;

(iii) Every coefficient G-module is relatively injective.

Exercise 2.22. Show that if G is amenable, then Hn
cb(G,E) = 0 for any n ≥ 1

and any coefficient G-module E.

Putting together Theorem 2.20, Corollary 2.12 and some extra work finally

one obtains the following

Corollary 2.23 (Burger–Monod [26]). There is a canonical isometric iso-

morphism

H•
cb(G,E) ∼= H•(L∞w∗,alt(B•, E)G

)
.

The first important application of the above corollary is in degree 2. Let Ξ

be a class of coefficient Banach G-modules. In our case, we shall be mostly

concerned with the case in which either Ξ consists of all separable Hilbert

G-modules ΞsepH, or, more simply, of the trivial module Ξ = {R}.
Definition 2.24 (Burger–Monod [26]). Let (S, ν) be a G-space with a quasi-

invariant measure ν. We say that B is a doubly Ξ-ergodic space if for every co-

efficient G-module E ∈ Ξ, every measurable G-equivariant map f : B×B → E

is essentially constant.

Note that in the case in which Ξ consists only of the trivial module, a doubly

ergodic action is nothing but the classical concept of a “mixing” action.

The following are then fundamental examples of doubly Ξ-ergodic spaces.
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Examples 2.25. 1. If G is a semisimple Lie group with finite center and

Q < G is any parabolic subgroup, the action of G on G/Q is doubly

ΞsepH-ergodic;

2. If Γ < G is a lattice in a locally compact group G and (B, ν) is a doubly

ΞsepH-ergodic G-space, then (B, ν) is a doubly ΞsepH-ergodic Γ-space;

3. The action of Aut(Fr) – and hence, by the previous example, of Fr – on

∂Tr is doubly ΞsepH-ergodic.

These examples are just a reformulation of the Mautner property [55, Corol-

lary 11.2.3 and Proposition 11.2.2].

While we shall make essential use in practice of the double ΞsepH-ergodicity

of the G-action on G/P , where P is a minimal parabolic, the double ΞsepH-

ergodicity in the second example is used in an essential way in the proof of the

following result (at least for finitely generated groups, as we shall indicate).

Its proof is due to Burger and Monod for compactly generated groups [26] and

to Kaimanovich [45] in the general case.

Theorem 2.26 (Burger–Monod [26], Kaimanovich [45])

Let G be a σ-compact locally compact group. Then there always exists a

G-space (B, ν) with a quasiinvariant measure such that the action of G is both

amenable and doubly ΞsepH-ergodic.

Before we start, we recall here Mackey’s point realization construction which

is used in the proof. Let (X,µ) be a measure space. Associated to any weak∗-

closed C∗-subalgebra A of L∞(X,µ) there is a measure space (Y, ν) and a map

p : (X,µ) → (Y, ν) such that p∗µ = ν and A = p∗
(
L∞(Y, ν)

)
. If in addition

X is a G-space, the measure µ is quasiinvariant, and the subalgebra A is G-

invariant, then the space Y inherits a G-action and the map p is a G-map

[48].

Proof. — We sketch here the proof in the case in which the group is discrete

and finitely generated. Fix a set of r generators of G and a presentation

τ : Fr → G with kernel N . Then the space of N -invariant functions L∞(∂Tr)
N

is contained in L∞(∂Tr) as a weak∗-closed subalgebra whose point realization

is a measure G-space (B, ν) with a quasiinvariant measure. Hence L∞(B) ∼=
L∞(∂Tr)

N and there is a measure preserving Fr-map (∂Tr,m) → (B, ν), so

that double ΞsepH-ergodicity and amenability follow from the corresponding

properties of the Fr-action on ∂Tr.
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As an immediate consequence of the above results, we have the following:

Corollary 2.27 (Burger–Monod [26]). Let G be a σ-finite locally compact

group and (B, ν) any G-space on which G acts amenably and doubly ΞsepH-

ergodically. For any separable Hilbert G-module H ∈ ΞsepH, we have an iso-

metric isomorphism

H2
cb(G,H) ∼= ZL∞w∗,alt(B

3,H)G .

Proof. — The double ΞsepH-ergodicity implies that L∞(B2,H)G = R and

hence L∞w∗,alt(B
2,H)G = 0, so that the assertion follows from Corollary 2.23.

In particular,

Corollary 2.28. For every separable Hilbert G-module H ∈ ΞsepH, the sec-

ond continuous bounded cohomology space H2
cb(G,H) is a Banach space.

2.6. Toolbox of Useful Results. — We briefly recall here without proof

some results from [26] and [25], the first two of which will be used in disguise in

the sequel, while the others are here for illustration for the reader more inclined

toward the cohomological aspects than their applications. For example, using

an appropriate resolution one can prove:

Theorem 2.29. Let G be a locally compact group and N E G a closed

amenable normal subgroup. Then there is an isometric isomorphism

H•
cb(G,E) ∼= H•

cb

(
G/N,EN

)
.

If we restrict our attention to degree two and trivial coefficients, then one

has:

Theorem 2.30. Let Gj, j = 1, . . . , n, be locally compact groups. Then

H2
cb

( n∏
j=1

Gj,R
)
∼=

n⊕
j=1

H2
cb(Gj,R) .

Theorem 2.31. Let G1, G2 be locally compact groups, let Γ < G1 ×G2 be a

lattice with dense projection in each factor, and let H be a Hilbert Γ-module.

Then

H2
b(Γ,H) ∼= H2

cb(G1,H1)⊕ H2
cb(G2,H2) ,

where Hi is the maximal Γ-invariant subspace of H such that the restricted

action extends continuously to G1 × G2 factoring via Gj, where i 6= j, 1 ≤
i, j ≤ 2.
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The last results are an analog of a Lyndon–Hochschild–Serre exact sequence.

Theorem 2.32. Let 1 → N → G → Q → 1 be an exact sequence of locally

compact second countable groups, with N compactly generated, and let H be

a coefficient Banach G-module. If ZG(N) denotes the centralizer of N in G,

the sequence

0 // H2
cb

(
Q,HN

)
// H2

cb(G,H) // H2
cb

(
N,HZG(N)

)Q //

// H3
cb

(
Q,HN

)
// H3

cb(G,H)

is exact.

An analog of the Eckmann–Shapiro lemma is available also in bounded co-

homology:

Theorem 2.33. Let G be a locally compact second countable group, H < G

a closed subgroup and H a separable Hilbert G-module. Then induction of

cocycles induces the following isomorphism in all degrees

Hn
cb(H,H)

∼= //Hn
cb

(
G,L∞(G/H,H)

)
.

If H = Γ is a lattice in G, one can show that the inclusion of coefficient

G-modules

L∞(G/H,H) ↪→ L2(G/H,H)

induces an injection in cohomology in degree two. Together with Theorem 2.33,

this implies the following

Corollary 2.34. With the above hypotheses there is an injection

H2
b(Γ,H) � � //H2

cb

(
G,L2(G/H,H)

)
.

Moreover, if we restrict our attention to Lie groups and to cohomology with

trivial coefficients, we have:

Theorem 2.35. Let G be a connected Lie group with finite center. Then

H2
cb(G,R) ∼= H2

c(G,R).

Notice that the surjectivity of the comparison map follows from the argu-

ments used in the discussion of the examples at the beginning of this section.

The injectivity follows from the interplay between Mautner property and prop-

erties of quasimorphisms. If however we consider lattices even in semisimple
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Lie groups, then the comparison map is definitely not an isomorphism. In fact

we have the following:

Theorem 2.36 (Epstein–Fujiwara [31]). If Γ is a nonelementary Gromov hy-

perbolic group, then H2
b(Γ,R) is an infinite dimensional Banach space.

This applies for instance to the case where Γ is a cocompact lattice in a con-

nected Lie group G of real rank one and with finite center. In contrast, lattices

in higher rank Lie groups exhibit, once again, strong rigidity phenomena:

Theorem 2.37 (Burger–Monod [25, 26]). Let Γ < G be an irreducible lat-

tice in a connected semisimple Lie group with finite center and real rank at

least two. Then the comparison map

H2
b(Γ,R) → H2(Γ,R)

is injective in degree two and its image coincides with the restriction to Γ of

G-invariant classes.

This is somehow a perfect example which illustrates how the cohomology

theory for discrete groups and with trivial coefficients does not suffice, as the

proof of the above result depends in an essential way on the Corollary 2.34

where the cohomology of Γ with trivial coefficients is related to the cohomology

of the ambient (nondiscrete) group G with coefficients in the induced Hilbert

G-module L2(G/Γ).

There is however also a version of Theorem 2.37 with coefficients, namely:

Theorem 2.38 (Monod–Shalom [57]). Assume that Γ is a lattice in a con-

nected simple Lie group G with finite center and real rank at least two and E

is any separable coefficient Γ-module. Then

dim H2
b(Γ, E) =

{
dimEΓ if π1(G) is infinite

0 otherwise.

2.7. An Easy Version of “The Formula”. —

2.7.1. The Pullback. — The use of resolutions consisting of L∞ functions,

although very useful, has its side effects. For example, given a continuous

homomorphism ρ : G → G′ of locally compact groups, it is obvious that

the induced pullback in bounded cohomology ρ• : H•
cb(G

′, E) → H•
cb(G,E)

could be implemented simply by pulling back cocycles if we were using the bar

resolution: however the pullback, even via a continuous map, of a function in

L∞ (hence an equivalence class of functions) does not necessarily give a well
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defined equivalence class of functions. We recall here how it is however possible

to implement the pullback in a rather natural way in the case of cocycles which

arise in geometric situations, once again using homological algebra.

In fact, ifX is a measurableG′-space, it is shown in [16, Proposition 2.1] that

the complex B∞(X•) of bounded measurable functions is a strong resolution

of R. Not knowing whether the modules are relatively injective, we cannot

conclude that the cohomology of the subcomplex of G′-invariants computes the

continuous bounded cohomology of G′, however we can deduce the existence

of a functorially defined map

ε•X : H•(B∞(X•)G′
)
→ H•

cb(G
′,R)

such that to any bounded measurable G′-invariant cocycle c : Xn+1 → R
corresponds canonically a class [c] ∈ Hn

cb(G
′,R), [16, Corollary 2.2].

Let us now assume that there exists a Γ-equivariant measurable map ϕ :

G/P → X, where P < G is a closed amenable subgroup.

Example 2.39. An example of such situation occurs when X is the space

M1(G′/P ′) of probability measures on the homogeneous space G′/P ′ with G′

a semisimple Lie group and P ′ a minimal parabolic subgroup, in which case

the existence of the map ϕ follows immediately from the characterization of

amenability given in Proposition 2.18, as one can easily see by taking E to be

the space of continuous functions on G′/P ′, As = M1(G′/P ′) (hence constant

with respect to s ∈ S), and α(s, h) = ρ(h).

The main point of [16] is to show that the map ϕ can be used to implement

the composition

(2.6) H•(B∞(X•)G′
) ε•X //H•

cb(G
′,R)

ρ•b //H•
cb(L,R) .

More specifically, we recall here the following definition

Definition 2.40. Let X be a measurable G′-space. We say that the measur-

able map c : Xn+1 → R is a strict measurable cocycle if c is defined everywhere

and satisfies everywhere the relation dc = 0.

Then we have:

Theorem 2.41 (Burger–Iozzi [16]). Let G,G′ be locally compact groups, let

ρ : L→ G′ be a continuous homomorphism from a closed subgroup L < G, let

P < G be a closed amenable subgroup and let ϕ : G/P → X a ρ-equivariant

measurable map into a measurable G′-space X. If κ ∈ Hn
cb(G

′,R) is a bounded
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cohomology class representable by a G-invariant bounded strict measurable

cocycle c ∈ B∞(Xn+1)G′ , then the image of the pullback ρ
(n)
b (κ) ∈ Hn

cb(L,R)

can be represented canonically by the cocycle in ZL∞((G/P )n+1)L defined by

(2.7) (x0, . . . , xn) 7→ c
(
ϕ(x0), . . . , ϕ(xn)

)
.

Exercise 2.42. Let Γ < PU(1, 1) be a (cocompact) surface group and

(∂D2, λ) the boundary of the hyperbolic disk D2 with the round measure λ.

Then (Corollary 2.23)

H2
b(Γ,R) ∼= ZL∞alt

(
(∂D2)3,R

)Γ
.

Give an example of a class in H2
b(Γ,R) which cannot be represented by a strict

pointwise Γ-invariant Borel cocycle on (∂D2)3.

This illustrates the fact that given a measurable G-invariance cocycle, while

it is easy to make the cocycle either strict (see [67, Appendix B]) or every-

where G-invariant, obtaining both properties at the same time is sometimes

not possible.

2.7.2. The Transfer Map. — We need only one last bounded cohomological

ingredient. If L < G is a closed subgroup the injection L ↪→ G induces by

contravariance in cohomology the restriction map

r•R : H•
cb(G,R) → H•

cb(L,R) .

If we assume that L\G has a G-invariant probability measure µ, then the

transfer map

T• : Cb(G
•)L → Cb(G

•)G ,

defined by integration

(2.8) T(n)f(g1, . . . , gn) :=

∫
L\G

f(gg1, . . . , ggn)dµ(g) ,

for all (g1, . . . , gn) ∈ Gn, induces in cohomology a left inverse of r•R of norm

one

T•
b : H•

cb(L,R) → H•
cb(G,R) ,

(see [55, Proposition 8.6.2, pp.106-107]).

Notice that the functorial machinery does not apply directly to the transfer

map, as it is not a map of resolutions but it is only defined on the subcomplex

of invariant vectors. However, the following result, which will be obtained in
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greater generality in § 4.1.2, allows us anyway to use the resolution of L∞

functions on amenable spaces.

Lemma 2.43 (Monod [55]). Let P,L < G be closed subgroups with P

amenable, and let

(2.9) T•
G/P :

(
L∞

(
(G/P )•

)L
, d•

)
→

(
L∞

(
(G/P )•

)G
, d•

)
be defined by

(2.10) T
(n)
G/Pf(x1, . . . , xn) :=

∫
L\G

f(gx1, . . . , gxn)dµ(g) ,

for (x1, . . . , xn) ∈ (G/P )n, where µ is the G-invariant probability measure on

L\G. Then the diagram

(2.11) H•
cb(L,R)

T•b //

∼=
��

H•
cb(G,R)

∼=
��

H•
cb(L,R)

T•
G/P // H•

cb(G,R)

commutes, where the vertical arrows are the canonical isomorphisms in

bounded cohomology extending the identity R → R.

Putting together all of these ingredients, one has a general formula which

has several applications to rigidity questions.

Proposition 2.44. Let G,G′ be locally compact second countable groups

and let L < G be a closed subgroup such that L\G carries a G-invariant

probability measure µ. Let ρ : L → G′ be a continuous homomorphism, X a

measurable G′-space and assume that there exists an L-equivariant measurable

map ϕ : G/P → X, where P < G is a closed subgroup. Let κ′ ∈ Hn
cb(G

′,R)

and let κ := T
(n)
b

(
ρ

(n)
b (κ′)

)
∈ Hn

cb(G,R). Let c ∈ L∞
(
(G/P )n+1

)G
and c′ ∈

B∞(Xn+1)G′ be alternating cocycles representing κ and κ′ respectively. If we

assume that c′ is strict and that P is amenable then we have that

(2.12)

∫
L\G

c′
(
ϕ(gx0), . . . , ϕ(gxn)

)
dµ(g) = c(x0, . . . , xn) + coboundary,

for almost every (x0, . . . , xn) ∈ (G/P )n+1.
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3. First Applications of “The Formula”

The above proposition is really just a careful reformulation of the implemen-

tation of the bounded Toledo map, defined as the composition

T•
b(ρ) := T• ◦ ρ•b : H•

cb(G
′,R) → H•

cb(G,R)

of the pullback followed by the transfer map in continuous bounded cohomol-

ogy. Likewise, its generalization (Proposition 4.9) will be a reformulation of

the implementation of the pullback followed by the transfer map and by an

appropriate change of coefficients. While for these two statements there is a

unified treatment, in the applications – which require that both Hn
c (G,R) and

Hn
cb(G,R) are one dimensional – we have to resort to a case by case study. The

situation can be however summarized in the following:

Principle 3.1. Let G,G′ be locally compact second countable groups and let

L < G be a closed subgroup such that L\G carries a G-invariant probability

measure µ. Let ρ : L → G′ be a continuous homomorphism, X a measurable

G′-space and assume that there exists an L-equivariant measurable map ϕ :

G/P → X, where P < G is a closed subgroup. Let κ′ = [c′] ∈ Hn
cb(G

′,R)

and let Hn
c (G,R) ∼= Hn

cb(G,R) = Rκ = R[c], where c ∈ ZL∞
(
(G/P )n+1

)G
and

c′ ∈ B∞(Xn+1)G′ are alternating cocycles and c′ is strict. If P is amenable,

then there exists an explicit constant λκ′ ∈ R such that

(3.1)

∫
L\G

c′
(
ϕ(gx0), . . . , ϕ(gxn)

)
dµ(g) = λκ′c(x0, . . . , xn) + coboundary,

for almost every (x0, . . . , xn) ∈ (G/P )n+1.

Remark 3.2. 1. Notice that if for example the action of G on (G/P )n is

ergodic, then there is no coboundary term, as ergodicity is equivalent to

the nonexistence of G-invariant measurable maps (G/P )n → R which are

not constant. This is going to be the case in all of our applications.

2. Clearly the above formula would not be useful as is if we were interested

in the values of the measurable function ϕ on sets of measure zero. It is

for this purpose that in the application to deformation rigidity of lattices

in complex hyperbolic spaces, where we need to gather information about

the “values” of ϕ on a chain in the boundary of complex hyperbolic space

(see § 5), we need to recur to the use of coefficients coupled with the use
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of fibered products. This will be done in § 4, after that we illustrate in the

next section some of the applications of Proposition 2.44 and Principle 3.1.

While there is no general proof of this principle, in each case the identifi-

cation of the constant λκ′ will follow from the interplay between the bounded

Toledo map and the corresponding map in continuous cohomology, that is from

the commutativity of the following diagram

(3.2) Hn
cb(G

′,R) //

ρ•b
��

Hn
c (G′,R)

ρ•

��
Hn

cb(L,R)

T•b
��

Hn
c (L,R)

T•

��
Hn

cb(G,R)
∼= // Hn

c (G,R)

where the horizontal arrows are the obvious comparison maps between contin-

uous bounded and continuous cohomology, the map ρ• is the pullback in ordi-

nary continuous cohomology, and the transfer map T• : H•
c(L,R) → H•

c(G,R)

is defined by integration on L\G if in addition this space is compact. This is

the case in the applications we present in this section, and we refer the reader

to § 5 for a further discussion on this important point.

We give now a very short list of some situations in which the above formula is

of use. (Note that in all our examples, as remarked before. one can conclude

that there are no coboundaries.) Not all results are new, and our method

does not even provide a new proof in some cases. Nevertheless, we deem

appropriate to discuss here possible applicability of this method, as well as its

present limitations.

3.1. Mostow Rigidity Theorem. — The celebrated theorem of Mostow

asserts that, in dimension n ≥ 3, any two compact hyperbolic manifolds M1

and M2 which are homotopy equivalent are isometric. In his notes [61],

Thurston provides a new proof of this result, using measure homology (a

generalization of `1-homology) as well as the determination of the maximal

ideal simplices in hyperbolic geometry. Since this last result (later obtained

by Haagerup and Munkholm [41]) was available at that time only for n = 3,

Thurston’s proof of Mostow Rigidity Theorem is limited to this case. However,
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the proof contains in disguise exactly our formula (2.12) for all n ≥ 3, while

with our method we succeed only in proving the formula in the case in which

n = 3, because in the general case we do not have enough information about the

comparison map in higher degrees. In fact, while Hn
c

(
SO(1, n)

) ∼= R, in general

it is not known whether the comparison map Hn
cb

(
SO(1, n)

)
→ Hn

c

(
SO(1, n)

)
is injective for all n: if n = 3 this follows from a result of Bloch, [7, 8].

So let M1,M2 be compact hyperbolic 3-manifolds with isomorphic funda-

mental groups, set Γ := π1(M1) < SO(1, 3) =: G which is a cocompact lattice

and let Γ′ := π1(M2) < SO(1, 3) =: G′. Let G/P = X = S2 = ∂H3
R and let

ϕ : S2 → S2 be the ρ-equivariant boundary homeomorphism, where ρ : Γ → Γ′

is an isomorphism. Let c = c′ be the volume 3-cocycle on ideal 3-simplices

defining cohomology classes κ = κ′ ∈ H3
cb

(
SO(1, 3),R

)
. Then one obtains that

λκ′ = vol(M2)
vol(M1)

, and hence the formula (2.12) reads

(3.3)

∫
Γ\SO(1,3)

vol(ϕ(gξ0), . . . , ϕ(gξ3))dµ(g) =
vol(M2)

vol(M1)
vol(ξ0, . . . , ξ3) ,

where vol(ξ0, . . . , ξ3) is the volume of the ideal simplex in H3
R with vertices

ξ0, . . . , ξ3, µ is the normalized Haar measure on Γ\SO(1, 3) and equality holds

almost everywhere. Because the measure µ is a probability measure, it follows

that vol(M2) ≤ vol(M1), from which, interchanging the role of M1 and M2

one obtains that M1 and M2 have the same volume. Now observe that both

sides of (3.3) are continuous functions on (S2)4 which, coinciding almost ev-

erywhere, are therefore equal for all values of (ξ0, . . . , ξ3) ∈ (S2)4. Thus, when-

ever vol(ξ0, . . . , ξ3) is maximal, we deduce from (3.3) taking into account that

vol(M1) = vol(M2) and µ is a probability measure, that vol
(
ϕ(ξ0), . . . , ϕ(ξ3)

)
is maximal as well. From this, one deduces like in [61], that the isomorphism

between the fundamental groups extends to an isomorphism between the am-

bient connected groups.

Let us relate this to the `1-homology approach of Gromov–Thurston. If

f : H3
R → H3

R denotes a lift of a homotopy equivalence associated to the

isomorphism ρ : Γ → Γ′, then Thurston’s smearing technique implies that if

σ : ∆3 → H3
R is any straight simplex, then∫

Γ\SO(1,3)

vol
(
f
(
gσ(0)

)
, . . . , f

(
gσ(3)

))
dµ(g) = vol(σ)

vol(M2)

vol(M1)
.
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One can then follow an idea of Pansu, using the fact that f extends contin-

uously to the boundary with extension f : S2 → S2 and let the vertices of σ

tend to (ξ0, . . . , ξ3) ∈ (S2)4 to obtain (3.3).

The strength of this argument is that it extends to all real hyperbolic spaces

Hn
R. Its limitation however lies in the fact that it requires very strong conditions

on ρ in order to have a map extending “nicely” to the boundary. Besides,

it cannot be applied for example in Matsumoto’s theorem since there is no

symmetric space associated to Homeo+(S1).

3.2. Matsumoto’s Theorem. — Let Γg be the fundamental group of a

compact oriented surface Σg of genus g ≥ 2 and let ρ : Γg → Homeo+(S1) be

an action of Γg on the circle by orientation preserving homeomorphisms. Let

e ∈ H2(Homeo+(S1),Z) be the Euler class defined by the central extension

0 //Z // HomeoZ(R) // Homeo+(S1) //0 ,

where HomeoZ(R) is the group of homeomorphisms of the real line which

commute with the integral translations. Then ρ(2)(e) ∈ H2(Γg,Z) and, since

Σg is a K(Γg, 1) and hence H2(Γg,Z) ∼= H2(Σg,Z), we can evaluate ρ(2)(e) on

the fundamental class [Σg] ∈ H2(Σg,Z) of Σg. We thus obtain a numerical

invariant attached to the representation ρ, called the Euler number eu(ρ) of ρ,

eu(ρ) :=
〈
ρ(2)(e), [Σg]

〉
,

which turns out to be uniformly bounded with respect to the representation.

In fact, we have the Milnor–Wood inequality [51, 64]

|eu(ρ)| ≤ |χ(Σg)| ,

and we say that a representation is maximal if |eu(ρ)| = |χ(Σg)|. Examples

of maximal representations are for instance hyperbolizations (that is, faith-

ful representations into PU(1, 1) such that the image ρ(Γg) is a lattice in

PU(1, 1). Matsumoto’s theorem provides some kind of converse to this state-

ment, namely:

Theorem 3.3 (Matsumoto [50]). If ρ is maximal, then ρ is semiconjugate to

a hyperbolization.

Recall that a semiconjugacy in this context is the map given on S1 by a

monotone increasing map from the real line to itself which commutes with

translations by integers.
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Our proof in [43] follows once again from the formula in (2.12), where we take

G = PU(1, 1), G′ = Homeo+(S1), PU(1, 1)/P = S1, X = M1
(
PU(1, 1)/P

)
, c

the orientation cocycle and c′ its restriction to PU(1, 1). Then one can prove

that λ = eu(ρ)
χ(Σg)

and thus one obtains that (2.12) reads∫
Γ\PU(1,1)

(
ϕ(gb0)ϕ(gb1)ϕ(gb2)

)
(c)dµ(g) =

eu(ρ)

χ(Σg)
c(b0, b1, b2) ,

for almost every b0, b1, b3 ∈ S1 and where dµ is the normalized measure on

Γ\PU(1, 1). Since µ is a probability measure, once again we obtain the Milnor–

Wood inequality |eu(ρ)| ≤
∣∣χ(Σg)

∣∣. Moreover, if we have equality, then the

above formula implies that the boundary map ϕ takes values in S1 itself. It

follows that ϕ is “almost” order preserving, in the sense that it preserves the

order of almost all triples of points in S1. An “inverse” of ϕ in an appropriate

sense provides the explicit semiconjugacy between the representation ρ and an

hyperbolization [43].

3.3. Maximal Representations. — Before Matsumoto, Goldman proved

in his thesis the full converse of the above statement for a representation into

PU(1, 1), namely he showed that if ρ : Γg → PU(1, 1) is maximal, then it

is indeed a hyperbolization. The generalization of this result to representa-

tions into the (connected component of the) isometry group of a Hermitian

symmetric space was the starting point of the results exposed in this section.

So let, as above, Σg be a compact oriented surface of genus g ≥ 2 and

fundamental group Γg := π1(Σg), and let ρ : Γg → G′ be a homomorphism into

the connected component G′ = Iso(X ′)◦, of the isometry group of a Hermitian

symmetric space X ′. Associated to ρ we can define an invariant τρ as follows:

let f : Σg → Σg ×ρ X ′ be a smooth section of the flat bundle with fiber X ′

associated to the principal Γg-bundle Σ̃g → Σg, and let f̃ : Σ̃g → X ′ be a

smooth Γg-equivariant lift of f . The Kähler form ωX ′ on X ′ pulls back to a

Γg-invariant closed two-form f̃ ∗ωX ′ on Σ̃g, which hence descends to a closed

two form on Σg. Since the map f̃ is unique up to Γg-equivariant homotopy,

the integral

τρ :=

∫
Σg

f̃ ∗ωX ′

depends only on ρ and defines the Toledo invariant of ρ. Moreover, while the

above definition would not have been possible in the case of a representation
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of Γg into Homeo+(S1), we could have defined τρ analogously to § 3.2 as

τρ :=
〈
ρ(2)(κ), [Σg]

〉
and in fact it can be proven that the two definitions coincide. For more inter-

pretations of the Toledo invariant see for instance [20]. At any rate, we also

have an analogue of the Milnor–Wood inequality, namely

(3.4) |τρ| ≤
∣∣χ(Σg)

∣∣rX ′ ,
where rX ′ is the rank of the symmetric space X ′ [29, 28], and we say that ρ

is maximal if |τρ| =
∣∣χ(Σg)

∣∣rX ′ .
Before we state the next result, recall that an important subclass of Her-

mitian symmetric spaces consists of those of tube type, that is those, like for

instance the Poincaré disk, which are biholomorphically equivalent to Rn× iC,

where C ⊂ Rn is a convex open cone. There are several characterizations of

the Hermitian symmetric spaces of tube type, but the relevant one here lies in

the fact that it is only for these Hermitian symmetric spaces that the cocycle

βX ′ in (2.5) takes a finite number of values [24]. Then we have:

Theorem 3.4 (Burger-Iozzi-Wienhard [23, 21]). Let ρ : Γg → G′ be a max-

imal representation. Then ρ is faithful with discrete image. Moreover the

Zariski closure of the image of ρ is reductive and the associated symmetric

space is of tube type.

A thorough study of maximal representations has been carried out in several

papers, see [62, 42, 23, 21, 10] for example, and many additional interesting

properties have been proven. We have limited ourselves here to present the fea-

tures which are a direct consequence of Proposition 2.44 and Corollary 3.1. To

illustrate the technique, we suppose here that the image of the representation

ρ is Zariski dense in G’. In this case we have that G = SU(1, 1), and Γ is the

image of the compact surface group via a hyperbolization, SU(1, 1)/P ∼= S1,

X is the Shilov boundary of X ′ (that is the unique closed G′-orbit in the topo-

logical boundary of the bounded domain realization of X ′), while c′ = βX ′ and

c = βD2 as defined in (2.5). Then one obtains that λκ′ = τρ∣∣χ(Σg)

∣∣ and hence

(2.12) reads∫
Γ\PU(1,1)

βX ′
(
ϕ(gx0), ϕ(gx1), ϕ(gx2)

)
dµ(g) =

τρ∣∣χ(Σg)
∣∣βD2(x0, x1, x2) .
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Once again, since µ is a probability measure, we obtain the inequality (3.4),

and if ρ is maximal we have that

(3.5) βX ′
(
ϕ(x0), ϕ(x1), ϕ(x2)

)
= rX ′βD2(x0, x1, x2)

for almost all (x0, x1, x2) ∈ (S1)3.

The equality (3.5) has then far reaching consequences. In fact, e2πiβX is

on Š(3) a rational function and tube type domains are characterized by the

property that this rational function is constant (Burger–Iozzi [17] and Burger–

Iozzi–Wienhard [24]); but the equality (3.5) implies, taking into account that

ρ(Γ) is Zariski dense, that e2πiβX is constant on a Zariski dense subset of Š(3),

hence constant, which implies that X ′ is of tube type. Using then that if X ′ is

of tube type the level sets of βX ′ on Š(3) are open, one deduces easily that ρ(Γ)

is not dense and, being Zariski dense, is therefore discrete. The fact that ρ is

injective requires more elaborate arguments in which (3.5) enters essentially

[23, 21].

4. Toward “The Formula” with Coefficients

In this section we develop some tools in bounded cohomology for locally

compact groups and their closed subgroups which will be applied to our specific

situation. In particular we prove a formula in § 4.2 of which Proposition 2.44

is a particular case.

4.1. With the Use of Fibered Products. — The invariants we consider

in this paper are bounded classes with trivial coefficients; however applying a

judicious change of coefficients – from R to the L∞ functions on a homogeneous

space – we capture information which otherwise would be lost by the use of

measurable maps (see the last paragraph of § 2 and Remark 5.8).

In doing so, we first find ourselves to have to deal with a somewhat new

situation. More precisely, while the functorial machinery developed in [26],

[55] and [16] applies in theory to general strong resolutions, in practice one

ends up working mostly with spaces of functions on Cartesian products. In this

section we deal with spaces of functions on fibered products (of homogeneous

spaces), whose general framework would be that of complexes of functions on
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appropriate sequences (Sn, νn) of (amenable) spaces which would be analogues

of simplicial sets in the category of measured spaces.

In particular we shall first show in § 4.1.1 that we can compute the continu-

ous bounded cohomology with some L∞ coefficients as the cohomology of the

complex of L∞ functions on appropriate fibered products, then in § 4.1.2 and

§ 4.1.3 respectively we shall see how to implement the transfer map and the

pullback using this particular resolution.

4.1.1. Realization on Fibered Products. — The goal of this section is to define

the fibered product of homogeneous spaces and prove that the complex of L∞

functions on fibered products satisfies all properties necessary to be used to

compute bounded cohomology. Observe that because of the projection in (4.1),

we shall deal here with cohomology with coefficients.

Let G be a locally compact, second countable group and P,H closed sub-

groups of G such that P ≤ H. We define the n-fold fibered product (G/P )n
f

of G/P with respect to the canonical projection p : G/P → G/H to be, for

n ≥ 1, the closed subset of (G/P )n defined by

(G/P )n
f :=

{
(x1, . . . , xn) ∈ (G/P )n : p(x1) = · · · = p(xn)

}
,

and we set (G/P )n
f = G/H if n = 0. The invariance of (G/P )n

f for the diagonal

G-action on (G/P )n induces a G-equivariant projection

(4.1) pn : (G/P )n
f → G/H

whose typical fiber is homeomorphic to (H/P )n.

A useful description of (G/P )n
f as a quotient space may be obtained as

follows. Considering H/P as a subset of G/P , the map

(4.2)
qn : G× (H/P )n → (G/P )n

f

(g, x1, . . . , xn) 7→ (gx1, . . . , gxn)

is well defined, surjective, G-equivariant (with respect to the G-action on the

first coordinate on G × (H/P )n and the product action on (G/P )n
f ) and in-

variant under the right H-action on G× (H/P )n defined by

(4.3) (g, x1, . . . , xn)h := (gh, h−1x1, . . . , h
−1xn) .

It is then easy to see that qn induces a G-equivariant homeomorphism(
G× (H/P )n

)
/H → (G/P )n

f ,
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which hence realizes the fibered product (G/P )n
f as a quotient space.

Let now µ and ν be Borel probability measures respectively on G and H/P ,

such that µ is in the class of the Haar measure on G and ν is in the H-invariant

measure class on H/P . The pushforward νn = (qn)∗(µ× νn) of the probability

measure µ×νn under qn is then a Borel probability measure on (G/P )n
f whose

class is G-invariant and thus gives rise to Banach G-modules L∞((G/P )n
f ) and

G-equivariant (norm) continuous maps

dn : L∞
(
(G/P )n

f

)
→ L∞

(
(G/P )n+1

f

)
, for n ≥ 0 ,

defined as follows:

– d0f(x) := f(p(x)), for f ∈ L∞(G/H), and

– dnf(x) =
∑n+1

i=1 (−1)i−1f
(
pn,i(x)

)
, for f ∈ L∞

(
(G/P )n

f

)
and n ≥ 1,

where

(4.4) pn,i : (G/P )n+1
f → (G/P )n

f

is obtained by leaving out the i-th coordinate. Observe that from the equality

(pn,i)∗(νn+1) = νn, it follows that dn is a well defined linear map between L∞

spaces.

Then:

Proposition 4.1. Let L ≤ G be a closed subgroup.

(i) The complex

0 //L∞(G/H) // . . . //L∞
(
(G/P )n

f

) dn //L∞
(
(G/P )n+1

f

)
// . . .

is a strong resolution of the coefficient L-module L∞(G/H) by Banach

L-modules.

(ii) If P is amenable and n ≥ 1, then the G-action on (G/P )n
f is amenable

and L∞
(
(G/P )n

f

)
is a relatively injective Banach L-module.

Using [26, Theorem 2] (see also § 2), this implies immediately the following:

Corollary 4.2. Assume that P is amenable. Then the cohomology of the

complex of L-invariants

0 // L∞(G/P )L // L∞
(
(G/P )2

f

)L // . . .

is canonically isomorphic to the bounded continuous cohomology

H•
cb

(
L,L∞(G/H)

)
of L with coefficients in L∞(G/H).
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Remark 4.3. Just like for the usual resolutions of L∞ functions on the Carte-

sian product of copies of an amenable space (see § 2 or [26]), it is easy to see

that the statements of Proposition 4.1 and of Corollary 4.2 hold verbatim if

we consider instead the complex
(
L∞alt

(
(G/P )•

)
, d•

)
, where L∞alt

(
(G/P )n

f

)
is the

subspace consisting of functions in L∞
(
(G/P )n

f

)
which are alternating (observe

that the symmetric group in n letters acts on (G/P )n
f ).

Proof of Proposition 4.1. — The proof of Proposition 4.1(i) consists in the

construction of appropriate contracting homotopy operators. Since it is rather

long and technical, it will be given in the appendix at the end of this paper.

To prove Proposition 4.1(ii), we start by observing that if n ≥ 1 we have

by definition the inclusion (G/P )n
f ⊂ (G/P )n and hence there is a map of

G-spaces

π : (G/P )n
f → G/P,

obtained by projection on the first component. Since π∗(νn) = ν, π realizes

the measure G-space (G/P )n
f as an extension of the measure G-space G/P .

If P is amenable, the latter is an amenable G-space and hence the G-space

(G/P )n
f is also amenable [66]. Since L is a closed subgroup, (G/P )n

f is also an

amenable L-space [67, Theorem 4.3.5] and hence L∞
(
(G/P )n

f

)
is a relatively

injective L-module, (Theorem 2.20 or [26]).

4.1.2. An Implementation of the Transfer Map. — We recalled in (2.8) the

definition of the transfer map, and remarked that the functorial machinery

does not apply directly because T• is not a map of resolutions but is defined

only on the subcomplex of invariant vectors. The point of this subsection is

to see how the transfer map can be implemented, in a certain sense, on the

resolution by L∞ functions on the fibered product defined in § 4.1.1.

Let H,P be closed subgroups of G such that P < H. We assume that P

is amenable so that, by Proposition 4.1, the complex
(
L∞

(
(G/P )•f

)
, d•

)
is a

strong resolution of the coefficient module L∞(G/H) by relatively injective

L-modules. For n ≥ 1, φ ∈ L∞
(
(G/P )n

f

)L
, and (x1, . . . , xn) ∈ (G/P )n

f , let

(4.5) (τ
(n)
G/Pφ)(x1, . . . , xn) :=

∫
L\G

φ(gx1, . . . , gxn)dµ(ġ) .
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This defines a morphism of complexes

τ •G/P :
(
L∞

(
(G/P )•f

)L)
→

(
L∞

(
(G/P )•f

)G)
and gives a left inverse to the inclusion(

L∞
(
(G/P )•f

)G)
↪→

(
L∞

(
(G/P )•f

)L)
.

The induced map in cohomology

τ •G/P : H•
cb

(
L,L∞(G/H)

)
→ H•

cb

(
G,L∞(G/H)

)
is thus a left inverse of the restriction map r•L∞(G/H).

Lemma 4.4. With the above notations, and for any amenable group P , the

diagram

(4.6) H•
cb(L,R)

T•b //

θ•L
��

H•
cb(G,R)

θ•G
��

H•
cb

(
L,L∞(G/H)

) τ•
G/P // H•

cb

(
G,L∞(G/H)

)
commutes, where θ• is the canonical map induced in cohomology by the mor-

phism of coefficients θ : R → L∞(G/H).

Observe that if in the above lemma we take H = G, then the fibered prod-

uct (G/P )n
f becomes the usual Cartesian product (G/P )n, and the cohomol-

ogy of the complex of L-invariants
(
L∞

(
(G/P )•

)L
, d•

)
computes as usual the

bounded cohomology of L with trivial coefficients. Hence we obtain once again

Lemma 2.43.

Proof of Lemma 4.4. — Let Gn
f be the n-fold fibered product with respect to

the projection G → G/H. The restriction of continuous functions defined on

Gn to the subspace Gn
f ⊂ Gn induces a morphism of strong L-resolutions by

L-injective modules

R• : Cb(G
•) → L∞(G•

f )

extending θ : R → L∞(G/H), so that the diagram

(4.7) Cb(G
n)L T(n)

//

R
(n)
L

��

Cb(G
n)G

R
(n)
G

��
L∞(Gn

f )L
τ
(n)
G // L∞(Gn

f )G
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commutes.

Likewise, the projection βn : Gn
f → (G/P )n

f , for n ≥ 1, gives by precompo-

sition a morphism of strong L-resolutions by L-injective modules

β• : L∞((G/P )•f ) → L∞(G•
f )

extending the identity L∞(G/H) → L∞(G/H) and, as before, the diagram

(4.8) L∞(Gn
f )L

τ
(n)
G // L∞(Gn

f )G

L∞
(
(G/P )n

f

)L

β
(n)
L

OO

τ
(n)
G/P // L∞

(
(G/P )n

f

)G
,

β
(n)
G

OO

commutes.

The composition of the map induced in cohomology by R• with the inverse of

the isomorphism induced by β• in cohomology realizes therefore the canonical

map

(4.9) θ•L : H•
cb(L,R) → H•

cb

(
L,L∞(G/H)

)
induced by the change of coefficient θ : R → L∞(G/H), [55, Proposition 8.1.1].

Hence the commutative diagrams induced in cohomology by (4.7) and (4.8)

can be combined to obtain a diagram

H•
cb(L,R)

T•b //

R•L
��

θ•L

''

H•
cb(G,R)

R•G
��

θ•G

ww

H•
cb

(
L,L∞(G/H)

) τ•G //

(β•L)−1 ∼=
��

H•
cb

(
G,L∞(G/H)

)
(β•G)−1∼=

��

H•
cb

(
L,L∞(G/H)

) τ•
G/P // H•

cb

(
G,L∞(G/H)

)
whose commutativity completes the proof.

4.1.3. An Implementation of the Pullback. — In this section we shall use the

results of § 2.7.1 (see also [16]) to implement the pullback in bounded coho-

mology followed by the change of coefficients, by using the resolution by L∞

functions on the fibered product.

We saw already in § 2.7.1 how to implement the composition (2.6) with the

use of a boundary map ϕ : G/Q→ X, where Q < G is an amenable subgroup
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and X is a measurable G′-space. The point of this section is to move one step

further and to show how to represent canonically the composition of the above

maps with the map θ•L in (4.9).

To this purpose, let P,H,Q be closed subgroups of G such that P ≤ H ∩Q,

and let us consider the map

G×H/P → G/Q

(g, xP ) 7→ gxQ

which, composed with ϕ, gives a measurable map ϕ̃ : G × H/P → X which

has the properties of being:

– L-equivariant with respect to the action by left translations on the first

variable: ϕ̃(γg, ẋ) = ρ(γ)ϕ̃(g, ẋ) for all γ ∈ L and a. e. (g, ẋ) ∈ G×H/P ;

– H-invariant with respect to the right action considered in (4.3), namely

ϕ̃(gh−1, hẋ) = ϕ̃(g, ẋ) for all h ∈ H and all (g, ẋ) ∈ G×H/P .

For every n ≥ 1, the measurable map

ϕ̃n
f : G× (H/P )n −→ Xn

(g, ẋ1, . . . , ẋn) 7→
(
ϕ̃(g, ẋ1), . . . , ϕ̃(g, ẋn)

)
gives, in view of (4.2), (i) and (ii), a measurable L-equivariant map ϕn

f :

(G/P )n
f → Xn defined by the composition

(4.10) ϕn
f : (G/P )n

f

q−1
n //

(
G× (H/P )n

)
/H

eϕn
f //Xn ,

such that for every 1 ≤ i ≤ n+ 1 the diagram

(G/P )n+1
f

ϕn+1
f //

pn,i

��

Xn+1

��
(G/P )n

f

ϕn
f // Xn

commutes, where pn,i was defined in (4.4) and the second vertical arrow is the

map obtained by dropping the i-th coordinate. Precomposition by ϕn
f gives
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thus rise to a morphism of strong L-resolutions

0 // R� _

��

// . . . // B∞(Xn)

ϕ
(n)
f

��

// . . .

0 // L∞(G/H) // . . . // L∞
(
(G/P )n

f

)
// . . .

extending the inclusion R ↪→ L∞(G/H). Let us denote by

(4.11) ϕ•f : H•(B∞(X•)G′
)
→ H•

cb

(
L,L∞(G/H)

)
the map obtained in cohomology.

One more technical result which collects many functoriality statements

needed in this paper is a small modification of a lemma in [55].

Lemma 4.5. Let G,G′ be locally compact groups, ρ : G → G′ a continuous

homomorphism, E a G-coefficient module and F a G′-coefficient module. Let

α : F → E be a morphism of G-coefficient modules, where the G-module

structure on F is via ρ. Let (E•) be a strong G-resolution of E by relatively

injective G-modules, and let (F•) be a strong G′-resolution of F . Then any

two extensions of the morphism α to a morphism of G-complexes induce the

same map in cohomology

H•(FG′

•
)
→ H•(EG

•
)
.

Proof. — By [55, Lemma 7.2.6] any two extensions of α are G-homotopic and

hence induce the same map in cohomology

H•(F ρ(G)
•

)
→ H•(EG

•
)
.

Moreover, the inclusion of complexes FG′
• ⊂ F

ρ(G)
• induces a unique map in

cohomology

H•(FG′

•
)
→ H•(F ρ(G)

•
)
,

hence proving the lemma.

Proposition 4.6. Assume that P is amenable. Then the map ϕ•f defined in

(4.11) coincides with the composition

H•(B∞(X•)G′
) ε•X //H•

cb(G
′,R)

ρ•b //H•
cb(L,R)

θ•L //H•
cb

(
L,L∞(G/H)

)
.
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Proof. — By Proposition 4.1
(
L∞

(
(G/P )•f

)
, d•

)
is a strong resolution by rel-

atively injective L-modules, so it is enough to apply Lemma 4.5 with G = L,

E = L∞(G/H), F = R the trivial coefficient G′-module, F• = B∞(X•), and

E• =
(
L∞(G/P )•f

)
.

For further use we record the explicit reformulation of the above proposition:

Corollary 4.7. LetG,G′ be locally compact second countable groups, L, H,

P , Q ≤ G closed subgroups with P ≤ H ∩Q, and assume that P is amenable.

Let ρ : L→ G′ be a continuous homomorphism, X a measurable G′-space and

assume that there is an L-equivariant measurable map ϕ : G/Q → X. Let

κ′ ∈ Hn
cb(G

′,R) be a bounded cohomology class which admits as representative

a bounded strict G′-invariant measurable cocycle c′ : Xn+1 → R. Then the

class

θ
(n)
L

(
ρ

(n)
b (κ′)

)
∈ Hn

cb

(
L,L∞(G/H)

)
is represented by the L-invariant essentially bounded measurable cocycle

c̃′ : (G/P )n+1
f → R

defined by

(4.12) c̃′(x0, x1, . . . , xn) := c′
(
ϕn

f (x0, x1, . . . , xn)
)
,

where ϕn
f is defined in (4.10).

Remark 4.8. Consider now that case in which L = G = G′, ρ = Id (so that

we can take ϕ = Id) and X = G/Q; if the class κ ∈ Hn
cb(G,R) admits as

representative a bounded strict G-invariant Borel cocycle c : (G/Q)n+1 → R,

then under the change of coefficients R → L∞(G/H), the class

θ
(n)
G (κ) ∈ H

(n)
cb

(
G,L∞(G/H)

)
is represented by the bounded strict G-invariant Borel cocycle

c̃ : (G/P )n+1
f → R

defined by

(4.13) c̃(x1, . . . , xn+1) := c(x1Q, . . . , xn+1Q) .
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4.2. “The Formula”, Finally. — We apply now all the results obtained

so far to prove finally a generalization of the Formula in Proposition 2.44. In

this section we have the following standing assumptions:

– G and G′ are locally compact second countable groups,

– L,H, P,Q ≤ G are closed subgroups with P ≤ H ∩Q,

– L\G carries a G-invariant probability measure µ,

– X is a measurable G′-space,

– there is a ρ-equivariant measurable map ϕ : G/Q→ X, where ρ : L→ G′

be a continuous homomorphism, and ϕn+1
f is the map defined in (4.10),

– κ′ ∈ Hn
cb(G

′,R) is represented by an alternating strict cocycle c′ ∈
B∞(Xn+1)G′ , and c̃′ : (G/P )n+1

f → R is the corresponding alternating

cocycle defined in (4.12).

– κ ∈ Hn
cb(G,R) is represented by an alternating G-invariant cocycle c ∈

ZL∞
(
(G/Q)n+1

)G
and c̃ : (G/P )n+1

f → R is the corresponding alternat-

ing cocycle defined in (4.13).

Proposition 4.9. If κ := T
(n)
b

(
ρ

(n)
b (κ′)

)
∈ Hn

cb(G,R) and P is amenable, we

have ∫
L\G

c̃′
(
ϕn+1

f (gx0, . . . , gxn+1)
)
dµ(ġ) = c̃(x1, . . . , xn+1) + coboundary

for a. e. (x1, . . . , xn+1) ∈ (G/P )n+1
f .

Remark 4.10. If H were to be ergodic on (H/P )n, as for instance it is of-

ten the case if n = 2, then there would be no coboundary. In fact, in this

case G would act ergodically on (G/P )2
f because it acts on the basis of the

fibration (G/P )2
f → G/H transitively with stabilizer H, which then by hy-

pothesis acts ergodically on the typical fiber homeomorphic to (H/P )2. Hence

L∞((G/P )2
f )

G = R. Thus any coboundary would be constant and hence zero,

being the difference of two alternating functions.

Principle 4.11. If Hn
c (G,R) ∼= Hn

cb(G,R) = Rκ = R[c], and P is amenable,

there exists an explicit constant λκ′ ∈ R such that∫
L\G

c̃′
(
ϕn+1

f (gx0, . . . , gxn+1)
)
dµ(ġ) = λκ′ c̃(x1, . . . , xn+1) + coboundary

for a. e. (x1, . . . , xn+1) ∈ (G/P )n+1
f .
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Proof of Proposition 4.9. — The commutativity of the square in the following

diagram (see Lemma 4.4)

Hn
(
B∞(Xn+1)G′

) ω
(n)
X // Hn

cb(G
′,R)

ρ
(n)
b // Hn

cb(L,R)
θ
(n)
L //

T
(n)
b

��

Hn
cb

(
L,L∞(G/H)

)
τ
(n)
G/P

��

Hn
(
B∞((G/Q)n+1)G

) ω
(n)
G/Q // Hn

cb(G,R)
θ
(n)
G // Hn

cb

(
G,L∞(G/H)

)
applied to the class ρ

(n)
b (κ′) ∈ Hn

cb(L,R) reads

τ
(n)
G/P

(
θ

(n)
L

(
ρ

(n)
b (κ′)

))
= θ

(n)
G

(
T

(n)
b

(
ρ

(n)
b (κ′)

))
= θ

(n)
G (κ) .

Hence the representatives for the classes θ
(n)
G (κ) and θ

(n)
L

(
ρ

(n)
b (κ′)

)
chosen ac-

cording to Corollary 4.7 satisfy the relation

τ
(n)
G/P (c̃′) = c̃+ db ,

where b ∈ L∞
(
(G/P )n

f

)G
, which, using the definition of τ

(n)
G/P in (4.5) implies

that ∫
L\G

c̃′
(
ϕn+1

f (gx0, . . . , gxn)
)
dµ(ġ) = c̃(x0, . . . , xn) + db

for a. e. (x0, . . . , xn) ∈ (G/P )n+1
f .

Notice that if G = H and Q = P , we obtain Proposition 2.44.

5. One More Application of “The Formula”: Deformation Rigidity

of Lattices of Hyperbolic Isometries

As alluded to at the beginning of § 3, the transfer map

(5.1) T• : H•
c(L,R) → H•

c(G,R)

makes sense only if L\G is compact as the restriction map (of which the

transfer map would be a left inverse) is often not injective if L is only of finite

covolume, (see [18]). So the diagram (3.2) is not complete, but in some cases,

as for instance if G is a connected semisimple Lie group, the missing arrow

can be replaced by a more complicated diagram involving the complex of L2

differential forms on the corresponding symmetric space. For a very thorough
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discussion of this point we refer the reader to [18] from where we extract what

we need in the following discussion.

The Kähler form ωp on complex hyperbolic spaces Hp
C is the unique (up to

scalars) two-form on Hp
C which is invariant for the action of SU(1, p). Let κp be

the Kähler class, that is the continuous cohomology class in H2
c

(
SU(1, p),R

)
corresponding to ωp under the Van Est isomorphism

H2
c

(
SU(1, p)

) ∼= Ω2(Hp
C)SU(1,p) .

If Γ < SU(1, p) is a (torsionfree) lattice, let H•
2(M) denote the L2-cohomology

of the finite volume hyperbolic manifoldM := Γ\Hp
C, that is the cohomology of

the complex of smooth differential forms α on M such that α and dα are in L2.

Under the assumption that p ≥ 2, Zucker proved [69] that H2
2(M) injects into

the de Rham cohomology H2
dR(M) ∼= H2(Γ,R), while if Γ is cocompact (and p

is arbitrary) we have by Hodge theory that H2
2(M) = H2

dR(M). Furthermore,

if ρ
(2)
dR(κp) denotes the class in H2

dR(M) which corresponds to the pullback

ρ(2)(κp) ∈ H2(Γ,R), we have the following:

Proposition 5.1. [18, Corollary 4.2] Let ρ : Γ → PU(1, q) be a homomor-

phism of a lattice Γ < SU(1, p). The pullback ρ
(2)
dR(κp) of the Kähler class is in

H2
2(M) ↪→ H2

dR(M).

Denoting by 〈 , 〉 the scalar product in H2
2(M) and by ωM ∈ H2

2(M) the L2-

cohomology class defined by the Kähler form on M induced by ωp, we define

an invariant associated to the homomorphism ρ : Γ → PU(1, q), by

(5.2) iρ :=
〈ρ(2)

dR(κq), ωM〉
〈ωM , ωM〉

.

Proposition 5.2. [15] If either Γ is cocompact or p ≥ 2, the map

ρ 7→ iρ is constant on connected components of the representation vari-

ety Rep
(
Γ,PU(1, q)

)
.

We have then the following global rigidity result:

Theorem 5.3 (Burger–Iozzi [19, 15], Koziarz–Maubon [46])

Assume that Γ < SU(1, p) is a lattice and p ≥ 2. Then |iρ| ≤ 1 and equal-

ity holds if and only if there is an isometric embedding of the corresponding

complex hyperbolic spaces Hp
C → Hq

C which is ρ-equivariant.
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Corollary 5.4 (Burger–Iozzi [19, 15], Koziarz–Maubon [46])

There are no nontrivial deformations of the restriction to Γ of the standard

embedding SU(1, p) ↪→ SU(1, q).

Our proof of the above theorems relies on the techniques developed in this

paper (Proposition 4.9 in particular), on [18] and on [15]. An alternative

proof using harmonic maps, as well as an overview of the history and context

of the topic, can be found in the paper by Koziarz and Maubon [46]. The

above corollary in the case in which Γ is cocompact is a result of Goldman and

Millson [37]. If on the other hand p = 1, Gusevskii and Parker [40] constructed

nontrivial quasi-Fuchsian deformations of a noncocompact lattice Γ < SU(1, 1)

into PU(1, 2); however, it is still possible to conclude the following result which

generalizes the case in which Γ is a compact surface group, [62]:

Theorem 5.5 ([14, 18]). Let Γ < SU(1, 1) be a lattice and ρ : Γ → PU(1, q)

a representation such that |iρ| = 1. Then ρ(Γ) leaves a complex geodesic

invariant.

We turn now to a short description of how Theorem 5.3 follows from Propo-

sition 4.9 (using also results from [18] and [15]).

The ideal boundary ∂Hp
C of complex hyperbolic p-space Hp

C is identified with

the projectivized cone of null vectors

∂Hp
C = C×\

{
x ∈ Cp+1 : (x, x) = 0

}
.

and carries a rich geometry whose “lines”are the chains, namely boundaries

of complex geodesics in Hp
C. The “geometry of chains” was first studied by

E. Cartan who showed that, analogously to the Fundamental Theorem of Pro-

jective Geometry [4, Theorem 2.26], any automorphism of the incidence graph

of the geometry of chains comes, for p ≥ 2, from an isometry of Hp
C, [27].

Closely connected to this is Cartan’s invariant angulaire cp introduced in the

same paper [27] and recalled in (2.4) in § 2.3. Observe that |cp| = 1 exactly on

triples of points which belong to a chain; moreover it represents the multiple of

the bounded Kähler class 1
π
κb

p ∈ H2
cb

(
SU(1, p),R)

)
[17], that is of the bounded

cohomology class which corresponds to the Kähler class κp ∈ H2
c

(
SU(1, p),R

)
under the isomorphism in Theorem 2.35.

Let us assume now that L = Γ < SU(1, p) is a lattice and move to the main

formula, which will be an implementation of Proposition 4.9 in our concrete
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situation. Let Cp be the set of all chains in ∂Hp
C and, for any k ≥ 1, let

C{k}p :=
{
(C, ξ1, . . . , ξk) : C ∈ Cp, (ξ1, . . . , ξk) ∈ Ck

}
be the space of configurations of k-tuples of points on a chain. Both Cp and

C{1}p are homogeneous spaces of SU(1, p). In fact, the stabilizer H in G of

a fixed chain C0 ∈ Cp is also the stabilizer of a plane of signature (1, 1) in

SU(1, p) and hence isomorphic to S
(
U(1, 1) × U(p− 1)

)
. Then SU(1, p) acts

transitively on Cp (for example because it acts transitively on pairs of points

in ∂Hp
C and any two points in ∂Hp

C determine uniquely a chain) and H acts

transitively on C0, so that, if P = Q∩H, where Q is the stabilizer in SU(1, p)

of a fixed basepoint ξ0 ∈ C0, there are SU(1, p)-equivariant (hence measure

class preserving) diffeomorphisms

SU(1, p)/H → Cp

gH 7→ gC0

and
SU(1, p)/P → C{1}p

gP 7→ (gC0, gξ0) .

Moreover, the projection π : C{1}p → Cp which associates to a point (C, ξ) ∈ C{1}p

the chain C ∈ Cp is a SU(1, p)-equivariant fibration, the space C{k}p appears

then naturally as k-fold fibered product of C{1}p with respect to π, and for every

k ≥ 1, the map

(5.3)

(
SU(1, p)/P

)k

f
→ C{k}p

(x1P, . . . , xkP ) 7→ (gC0, x1ξ0, . . . , xkξ0)

where xiH = gH, 1 ≤ i ≤ k, is a SU(1, p)-equivariant diffeomorphism which

preserves the SU(1, p)-invariant Lebesgue measure class. Using Fubini’s theo-

rem, one has that for almost every C ∈ Cp the restriction

ϕC : C → ∂Hq
C

of ϕ to C is measurable and for every γ ∈ Γ and almost every ξ ∈ C
ϕγC(γξ) = ρ(γ)ϕC(ξ) .

This allows us to define

ϕ{3} : C{3}p → (∂Hq
C)3

(C, ξ1, ξ2, ξ3) 7→
(
ϕC(ξ1), ϕC(ξ2), ϕC(ξ3)

)
.
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Then Proposition 4.9 can be reinterpreted as follows:

Theorem 5.6. Let iρ be the invariant defined in (5.2). Then for almost every

chain C ∈ Cp and almost every (ξ1, ξ2, ξ3) ∈ C3,

∫
Γ\SU(1,p)

cq
(
ϕ{3}(gC, gξ1, gξ2, gξ3)

)
dµ(g) = iρcp(ξ1, ξ2, ξ3) ,

where cp is the Cartan invariant and µ is the SU(1, p)-invariant probability

measure on Γ\SU(1, p).

Corollary 5.7. Assume that iρ = 1. Then for almost every C ∈ Cp and

almost every (ξ1, ξ2, ξ3) ∈ C3

cq
(
ϕC(ξ1), ϕC(ξ2), ϕC(ξ3)

)
= cp(ξ1, ξ2, ξ3) .

Proof of Theorem 5.6. — Let H,Q, P < SU(1, p) such as in the above dis-

cussion. Since Q is the stabilizer of a basepoint ξ0 ∈ ∂Hp
C, it is a minimal

parabolic subgroup and hence the closed subgroup P is amenable. Moreover,

H acts ergodically on H/P ×H/P since in H/P ×H/P there is an open H-

orbit of full measure. We can hence apply Proposition 4.9 with G = SU(1, p),

G′ = PU(q, 1) and κ′ = κb
q . Moreover, by [18, (5.1), (5.4), and Lemma 5.3]

we have that κ = iρκ
b
p. Set G/Q = ∂Hp

C, c′ = iρcp ∈ B∞
(
(∂Hp

C)3
)SU(1,p)

,

X = ∂Hp
C and c′ = cq ∈ B∞

(
(∂Hp

C)3
)PU(q,1)

. Then the conclusion of the theo-

rem is immediate if we observe that the identification in (5.3) transforms the

map ϕ3
f defined in (4.10) into the map ϕ{3} defined above.

Remark 5.8. It is now clear what is the essential use of the fibered product:

the triples of points that lie on a chain form a set of measure zero in
(
∂Hp

C
)3

,

and hence we would not have gained any information on these configuration

of points by the direct use of the more familiar formula as in Principle 3.1.

Corollary 5.7 states that if the invariant takes its maximal value then the

boundary map ϕ maps chains into chains. A modification of a theorem of

Cartan [15] allows then to conclude the existence of the embedding in Theo-

rem 5.3.
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A

Proof of Proposition 4.1

For the proof of Proposition 4.1(i) we need to show the existence of norm one

contracting homotopy operators from L∞
(
(G/P )n+1

f

)
to L∞

(
(G/P )n

f

)
sending

L-continuous vectors into L-continuous vectors.

To this purpose we use the map qn which identifies the complex of Banach G-

modules
(
L∞(G/P )•f

)
with the subcomplex

(
L∞(G×(H/P )•)H

)
ofH-invariant

vectors of the complex
(
L∞(G × (H/P )•)

)
, where now the differential dn is

given by

dnf(g, x1, . . . , xn) =
n∑

i=0

(−1)if(g, x1, . . . , x̂i, . . . , xn) ,

and we show more generally that:

Lemma A.1. For every n ≥ 0 there are linear maps

hn : L∞
(
G× (H/P )n+1

)
→ L∞

(
G× (H/P )n

)
such that:

(i) hn is norm-decreasing and H-equivariant;

(ii) for any closed subgroup L < G, the map hn sends L-continuous vectors

into L-continuous vectors, and

(iii) for every n ≥ 1 we have the identity

hndn + dn−1hn−1 = Id .

The Lemma A.1 and the remarks preceding it imply then Proposition 4.1.

The construction of the homotopy operator in Lemma A.1 requires the fol-

lowing two lemmas, the first of which showing that the measure ν on H/P can

be chosen to satisfy certain regularity properties, and the second constructing

an appropriate Bruhat function for H < G.

Let dh and dξ be the left invariant Haar measures on H and P .

Lemma A.2. There is an everywhere positive continuous function q : H → R+

and a Borel probability measure ν on H/P such that∫
H/P

∫
P

f(xξ)dξ dν(x) =

∫
H

f(h)q(h)dh ,

for every f ∈ C00(H), where C00(H) denotes the space of continuous functions

on H with compact support.
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Proof. — Let q1 : H → R+ be an everywhere positive continuous function

satisfying

q1(xη) = q1(x)
∆P (η)

∆H(η)
,∀η ∈ P and ∀x ∈ H ,

where ∆P , ∆H are the respective modular functions (see [60]), and let ν1 be the

corresponding positive Radon measure on H/P such that the above formula

holds. Then choose q2 : H/P → R+ continuous and everywhere positive, such

that q2dν1 is a probability measure. Then the lemma holds with q = q1q2 and

ν = q2dν1.

A direct computation shows that

(A.1)

∫
H/P

f(y−1x)dν(x) =

∫
H/P

f(x)λy(x)dν(x) ,

where λy(x) = q(yx)/q(x), for all f ∈ C00(H/P ) and h ∈ H. In particular,

the class of ν is H-invariant since λy is continuous and everywhere positive on

H/P .

Lemma A.3. There exists a function β : G→ R+ such that

(i) for every compact set K ⊂ G, β coincides on KH with a continuous

function with compact support;

(ii)
∫

H
β(gh)dh = 1 for all g ∈ G, and

(iii) limg0→e supg∈G

∫
H

∣∣β(g0gh)− β(gh)
∣∣dh = 0

Proof. — Let β0 be any function satisfying (i) and (ii) (see [60]) and let f ∈
C00(G) be any nonnegative function normalized so that∫

G

f(x)drx = 1 ,

where drx is a right invariant Haar measure on G. Define

β(g) =

∫
G

f(gx−1)β0(x)drx , g ∈ G .

It is easy to verify that also β satisfies (i) and (ii), and, moreover, it satisfies

(iii) as well. In fact, we have that for all g0, g ∈ G, h ∈ H

β(g0gh)− β(gh) =

∫
G

(
f(g0gx

−1)− f(gx−1)
)
β0(xh)drx ,
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which implies, taking into account that
∫

G
β0(xh)dh = 1 and the invariance of

drx, that ∫
H

∣∣β(g0gh)− β(gh)
∣∣dh ≤ ∫

G

∣∣f(g0x
−1)− f(x−1)

∣∣drx ,

so that

lim
g0→e

sup
g∈G

∫
H

∣∣β(g0gh)− β(gh)
∣∣dh ≤ lim

g0→e

∫
G

∣∣f(g0x
−1)− f(x−1)

∣∣drx = 0 .

Proof of Lemma A.1. — Let ν be as in Lemma A.2 and β as in Lemma A.3.

define a function

ψ : G×H/P → R+

by

ψ(g, x) :=

∫
H

β(gh)λh−1(x)dh ,

where λh(x) is as in (A.1). The following properties are then direct verifica-

tions:

– ψ(gh−1, hx)λh(x) = ψ(g, x) for all g ∈ G, h ∈ H and x ∈ H/P ;

–
∫

H/P
ψ(g, x)dν(x) = 1, for all g ∈ G;

– ψ ≥ 0 and is continuous.

This being, define for n ≥ 0 and f ∈ L∞(G× (H/P )n+1):

hnf(g, x1, . . . , xn) =

∫
H/P

ψ(g, x)f(g, x1, . . . , xn, x)dν(x) .

Then, hnf ∈ L∞
(
G × (H/P )n

)
and (ii) implies that ‖hnf‖∞ ≤ ‖f‖∞. The

fact that hn is an H-equivariant homotopy operator is a formal consequence

of (i) and (ii).

Finally, let L < G be a closed subgroup and f ∈ L∞
(
G × (H/P )n+1

)
an

L-continuous vector, that is

lim
l→e

‖θ(l)f − f‖∞ = 0 ,

where (
θ(l)f

)
(g, x1, . . . , xn+1) = f(lg, x1, . . . , xn) .
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Then

hnf(lg, x1, . . . , xn)− hnf(g, x1, . . . , xn)

=

∫
H/P

ψ(lg, x)
(
f(lg, x1, . . . , xn, x)− f(g, x1, . . . , xn, x)

)
dν(x)

+

∫
H/P

(
ψ(lg, x)− ψ(g, x)

)
f(g, x1, . . . , xn, x)dν(x) .

The first term is bounded by ‖θ(l)f − f‖∞ taking into account (ii), while the

second is bounded by ‖f‖∞
∫

H/P

(
ψ(lg, x)− ψ(g, x)

)
dν(x). Now

ψ(lg, x)− ψ(g, x) =

∫
H

(
β(lgh)− β(gh)

)
λh−1(x)dh ,

which, taking into account that
∫

H/P
λh−1(x)dν(x) = 1, implies that∫

H/P

∣∣ψ(lg, x)− ψ(g, x)
∣∣dν(x) ≤ ∫

H/P

∣∣β(lgh)− β(gh)
∣∣dh .

Thus
‖θ(l)hnf − hnf‖∞ ≤‖θ(l)f − f‖∞

+‖f‖∞ sup
g∈G

∫
H

∣∣β(lgh)− β(gh)
∣∣dh

which, using Lemma A.3, implies that

lim
l→e

‖θ(l)hnf − hnf‖∞ = 0

and shows that hnf is an L-continuous vector.

References

[1] S. Adams, Generalities on amenable actions, unpublished notes.
[2] S. Adams, G. Elliott, and Th. Giordano, Amenable actions of groups, Trans.

Amer. Math. Soc. 344 (1994), 803–822.
[3] C. Anantharaman-Delaroche and J. Renault, Amenable groupoids,
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E-mail : burger@math.ethz.ch

Alessandra Iozzi, D-Math, ETH Zentrum, Rämistrasse 101, CH-8092 Zürich, Switzerland
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