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Abstract. — We present the basic tools and results of quasi-conformal
geometry of Euclidean spheres. We use them to prove the Mostow rigid-
ity theorem and the Sullivan-Tukia theorem, for the real hyperbolic
spaces.

Résumé (Géométrie quasi-conforme et rigidité de Mostow)
On présente les résultats et outils standards de la géométrie quasi-

conforme des sphères euclidiennes. On les utilise ensuite pour démontrer
les théorèmes de rigidité de Mostow et de Sullivan-Tukia, dans le cas des
espaces hyperboliques réels.
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Let H
n be the real hyperbolic space with n ≥ 3. The aim of these

lectures is to present the basic tools of quasi-conformal geometry of the
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standard (n−1)-sphere, and to use them to prove the two classical rigidity

theorems below.

Theorem 0.1 (Mostow [M1], [M2]). — Let Γ1, Γ2 be cocompact lat-

tices in Isom(Hn). Then any abstract isomorphism ϕ : Γ1 → Γ2 is a

conjugation by an element of Isom(Hn).

Theorem 0.2 (Sullivan [S] for n = 3, Tukia [T2] in general)

Let Γ be a finitely generated group quasi–isometric to H
n. Then there

exists Φ a cocompact lattice in Isom(Hn) and a surjective homomorphism

of groups Γ ։ Φ with finite kernel.

1. Quasi-conformal geometry

Let Z be the euclidean sphere Sn−1, of dimension n ≥ 3. In this

chapter we discuss local and global properties of quasi-conformal home-

omorphisms of Z. We also establish an equality between the conformal

group of Z, the Möbius group of Z, and the isometry group of H
n.

Definition 1.1. — A homeomorphism f : Z → Z is called k-quasi-

conformal if, setting

Hf (x, r) :=
sup {‖f(x) − f(y)‖ ; ‖x − y‖ ≤ r}

inf {‖f(x) − f(y)‖ ; ‖x − y‖ ≥ r}
,

we have for all x ∈ Z

lim
r→0

Hf(x, r) ≤ k.

Example 1.2. — For a linear homeomorphism f of R
n−1, the number

Hf(x, r) is the following. Let E be the ellipse in R
n−1 which is the

image by f of the unit sphere centered at the origin. Denote by L and l

respectively the length of the largest and of the smallest axis of E. Then

Hf(x, r) = L/l for every x and f is k-quasi-conformal for k = L/l.

This linear situation generalises easily to diffeomorphisms of the

sphere: a diffeomorphism f of Z is k-quasi-conformal if and only if for

every z ∈ Z its differential is k-quasi-conformal from TzZ to Tf(z)Z.
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The following theorem is due to Rademacher-Stepanov (see [V1] for

a proof). It is a deep result in geometric function theory, it establishes

strong regularity properties for quasi-conformal homeomorphisms.

Theorem 1.3. — Any k-quasi-conformal homeomorphism of Z is abso-

lutely continuous with respect to Lebesgue measure, and is differentiable

almost everywhere, with k-quasi-conformal differential.

We now turn our attention to global properties of quasi-conformal

homeomorphisms. For pairwise distinct points x, y, x′, y′ ∈ Z we denote

their crossratio by:

[xx′yy′] =
‖x − y‖· ‖x′ − y′‖

‖x − y′‖· ‖x′ − y‖
.

Definition 1.4. — (i) A homeomorphism f of Z is called η-quasi-

Möbius, where η is an increasing homeomorphism of [0,∞), if

(∗) ∀x, x′, y, y′ ∈ Z, [f(x)f(x′)f(y)f(y′)] ≤ η ([xx′yy′]) .

(ii) A homeomorphism which preserves the crossratio is called a Möbius

homeomorphism.

Note that switching y ↔ y′ leads to the other inequality in (∗) (with

another function η). Inverses of quasi-Möbius homeomorphisms and com-

positions of quasi-Möbius homeomorphisms are quasi-Möbius as well.

It is an exercice to prove that quasi-Möbius homeomorphisms are

quasi-conformal, and that Möbius homeomorphisms are conformal dif-

feomorphisms. The following result establishes the converse.

Theorem 1.5. — (i) Let f be a k-quasi-conformal homeomorphism of

Z. Then there exists η an increasing homeomorphism of [0;∞), which

only depends on n and k, such that f is a η-quasi-Möbius homeomor-

phism.

(ii) In addition, if Df is conformal a.e., then f is a Möbius homeo-

morphism.

We will give in the sequel some evidences about this theorem. We first

present an essential tool for the proof of theorem 1.5.

Let A, B be disjoint continua (i.e. compact connected subsets of Z)

not reduced to a point. The modulus of the pair (A, B) is defined as
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Mod(A, B) := inf
ρ

{
∫

Z

ρn−1 dm

}

,

where the infimum is taken over all ρ : Z → R+ which are measurable

and such that
∫

γ
ρ ≥ 1 for every rectifiable curve γ joining A to B.

Lemma 1.6. — (1) Let f be a K-quasi-conformal homeomorphism of

Z. Then for every A, B as above

1

K ′
Mod(A, B) ≤ Mod(f(A), f(B)) ≤ K ′ Mod(A, B),

where K ′ is a function of K. In addition, if Df is conformal a.e., then

f preserves moduli.

(2) Let B1, B2 be two closed balls in R
n−1 with same center and radii

r1 < r2. Then

Mod(B1, Z−
◦

B2) = ωn−2 log
(r2

r1

)2−n

,

where ωn−2 is the volume of the unit (n − 2)-sphere.

(3) There exist increasing homeomorphisms δ1, δ2 of [0;∞), such that

for all A, B as above, we have

δ1(∆(A, B)−1) ≤ Mod(A, B) ≤ δ2(∆(A, B)−1),

where ∆(A, B) is the relative distance between A and B, i.e.

∆(A, B) =
dist(A, B)

inf{diam A, diam B}
.

In the sequel we abreviate this last property by saying that

Mod(A, B) ≈ ∆(A, B)−1.

Sketch of proof of lemma 1.6. — (1) For C1-diffeomorphisms of Z the

property follows from the formula of transformation of variables. For

general quasi-conformal homeomorphisms, the same line of proof works

thanks to theorem 1.3, and to another regularity property called ”ab-

solute continuity along almost all rectifiable curves” (see [V1], [Vu] for

more details).
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(2) Let r be the distance from x to the common center of the balls.

By letting

ρ(x) = (log r2/r1)
n−1r−1

if r1 < r < r2, and ρ(x) = 0 if not, one obtains that the left side of

expected formula is less than or equal to the right. The reverse inequality

comes from Hölder inequality (see [V1]).

(3) More difficult, see for example [V1], [Vu].

With the above lemma we can now give the

Proof of Theorem 1.5(i). — Because [xx′yy′] = [x′xyy′]−1, it is enough

to prove that the crossratio [xx′yy′] of four distinct points of Z is small if

and only if [f(x)f(x′)f(y)f(y′)] is small, quantitatively. By lemma 1.6(3),

the map f quasi-preserves the relative distances between continua. Now

on the sphere Z the crossratio and the relative distances are related as

follows (see [BK] lemma 2.1) : there exist functions δ1, δ2 : R
+ → R

+,

such that

i) If [xx′yy′] ≤ δ1(ǫ), then there exist two continua C and C ′ of Z with

x, y ∈ C, x′, y′ ∈ C ′ and ∆(C, C ′) ≥ 1/ǫ.

ii) If there exit two continua C, C ′ of Z with x, y ∈ C, x′, y′ ∈ C ′ and

∆(C, C ′) ≥ 1/δ2(ǫ), then [xx′yy′] < ǫ.

Thus we obtain that f is quasi-Möbius.

To prove the second part of theorem 1.5 we relate the crossratio on

Z = ∂ H
n with the hyperbolic distance in H

n, denoted by dH
n.

Lemma 1.7. — For x, x′, y, y′ pairwise distinct points of Z and for

a, a′, b, b′ in H
n, we have

[xx′yy′] = lim
a→x,a′→x′,b→y,b′→y′

exp
1

2

{

dH
n(a, b) + dH

n(a′, b′)

− dH
n(a, b′) − dH

n(a′, b)
}

.

Proof. — In the ball model of H
n, let O be its center and let a ∈ [Ox), b ∈

[Oy) with dH
n(O, a) = dH

n(O, b) = t. Let θ be the angle xOy. By
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standard trigonometry we get

‖x − y‖ = 2 sin(θ/2) = 2

(

1 − cos θ

2

)1/2

= 2

(

1

2
−

ch2 t − ch d(a, b)

2 sh2 t

)1/2

= 2

(

ch d(a, b)

2 sh2 t
−

1

2 sh2 t

)1/2

∼
t→∞

2 exp
1

2
{d(a, b) − d(O, a) − d(O, b)} .

We implement this equality in the definition of the crossratio, after can-

cellations we obtain the expected formula.

Proof of theorem 1.5(ii). — ∗ Recall that if f is a quasi-conformal home-

omorphism of Z such that Df is conformal a.e., then f preserves moduli,

(lemma 1.6(1)).

∗∗ Recall that if B1, B2 are balls in R
n−1 with same center and radii

r1 < r2, then Mod(B1, Z−
◦

B2) = ωn−2(log r2

r1

)2−n, (lemma 1.6(2)).

We first compute moduli Mod(C1, C2) where C1, C2 are disjoint closed

balls in R
n−1. These two balls define two disjoint totally geodesic (n−1)-

subspaces in the upper-half space model of H
n. Call them H1 and H2.

Let xi ∈ Hi such that dH
n(H1, H2) = dH

n(x1, x2). We claim that

Mod(C1, C2) = ωn−2 (dH
n(x1, x2))

2−n .

Indeed let g ∈ Isom(Hn) send [x1x2] to a vertical geodesic segment. It

transforms C1 to B1 and C2 to Z−
◦

B2, where B1 and B2 are concentric

balls in R
n−1, whose radii ri satisfy log r2/r1 = dH

n(x1, x2). By lemma

1.7, the isometry g acts on Z as a Möbius homeomorphism, so it preserves

moduli. Thus with the property (∗∗) above, we obtain the claimed result.

Now let f be a quasi-conformal homeomorphism of Z, such that Df

is conformal a.e. For x, x′, y, y′ pairwise distinct points in R
n−1, con-

sider the balls C1, C2, C3, C4 in R
n−1, of radius r, centered respectively

at x, x′, y, y′. By lemma 1.8 and with our claim we can express [xx′yy′]

as the limit, when r tends to 0, of an expression which involves only
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Mod(Ci, Cj). By property (∗) above, Mod is f -invariant, so we get that

f preserves the crossratio. The details are left to the reader.

Here is an easy application of lemma 1.7 and theorem 1.5.

Corollary 1.8. — (i) Let respectively Conf(Z) and Möb(Z) be the

group of conformal diffeomorphisms and Möbius homeomorphisms of Z.

Then

Conf(Z) =Möb(Z) = Isom(H
n).

(ii) Let {fn}n≥1 be a sequence of k-quasi-conformal homeomorphisms

of Z (for the same k). Assume that there exist a, b, c ∈ Z, pairwise dis-

tinct, and fixed by each fn, n ≥ 1. Then, up to taking a subsequence,

{fn}n≥1 converges uniformly on Z to a k-quasi-conformal homeomor-

phism f∞.

Proof. — Part (ii) follows from theorem 1.5(i) and Ascoli theorem. The

first equality in part (i) follows from theorem 1.5(ii).

Lemma 1.7 implies that Isom(Hn) ⊂ Möb(Z). To prove the converse it

is enough to prove that a Möbius transformation of R
n−1 which stabilises

∞ extends as an isometry of the upper-half space model of H
n. This is

indeed the case because such a Möbius transformation is a similarity of

R
n−1.

2. Quasi-isometries

This chapter will relate quasi-isometries of H
n with quasi-Möbius

homeomorphisms of Z = ∂ H
n.

Definition 2.1. — Let X and Y be two metric spaces. A map f : X →

Y is called a quasi-isometry if there exists C ≥ 1, D ≥ 0 such that

(i) ∀x, x′ ∈ X, C−1dX(x, x′) − D ≤ dY (f(x), f(x′)) ≤ CdX(x, x′) + D

(ii) ∀y ∈ Y , dist(y, f(X)) ≤ D.

Theorem 2.2 (Efremovich-Tihomirova [ET]). — Any quasi-

isometry f of H
n extends to a η-quasi-Möbius homeomorphism of

Z = ∂ H
n = Sn−1. Moreover, η depends quantitatively on the quasi-

isometry constants of f .
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Recall that a quasi-geodesic in a metric space X is a map γ : I → X,

defined on an interval I, such that there exists C ≥ 1, D ≥ 0, with the

following property

∀t, t′ ∈ I, C−1|t − t′| − D ≤ dX(γ(t), γ(t′)) ≤ C|t − t′| + D.

The proof of theorem 2.2 relies on the following lemma.

Lemma 2.3 (Morse lemma). — Any quasi-geodesic γ in H
n lies

within bounded distance from a true geodesic of H
n. Morever the

distance depends quantitatively on the quasi-geodesic constants of γ.

We refer to [K] for two different proofs of the above lemma. One of

them is an application of asymptotic cone technics. We now indicate how

Morse lemma implies theorem 2.2.

Proof of Theorem 2.2.. — Let O be an origin in H
n. In order to extend

the quasi-isometry f to a map ∂f : Z → Z, consider x ∈ Z and the

geodesic ray [Ox). Its image by f is a quasi-geodesic ray. By Morse

lemma it lies within bounded distance from a geodesic ray [f(O)y), with

y ∈ Z. Define ∂f(x) = y. It is easy to see that ∂f is bijective.

We now prove that ∂f is quasi-Möbius. We claim that there exists a

constant C such that for every x, x′, y, y′ pairwise distinct points in Z,

we have

dH
n ((xy′), (x′y)) − C ≤ max {0, log[xx′yy′]} ≤ dH

n ((xy′), (x′y)) + C

To this end recall that by lemma 1.7,

(∗)

log[xx′yy′] = lim
a→x,a′→x′,b→y,b′→y′

1

2
{d(a, b) + d(a′, b′) − d(a, b′) − d(a′, b)} .

First assume both d ((xy′), (x′y)) and d ((xy), (x′y′)) are smaller than 1.

Then one can find a point Ω in H
n whose distance from each of the four

geodesics (xy′), (x′y), (xy), (x′y) is smaller than an universal constant.

With the formula (∗) we get that log[xx′yy′] is bounded by an universal

constant; the claim follows.
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Assume now that d ((xy′), (x′y)) ≥ 1. Let A ∈ (xy′) and B ∈ (x′y)

such that d(A, B) = d ((xy′), (x′y)). Consider

T = (xy′) ∪ (x′y) ∪ [AB],

and equip it with the length metric induced by the hyperbolic one. By

standard trigonometry in H
n and because d(A, B) ≥ 1, there exists a

universal constant C0 such that distances in T differ from the hyperbolic

ones by an additive factor which is less than C0. For distances in T , the

right side of (∗) is precisely equal to d ((xy′), (x′y)). So using (∗) we get

that log[xx′yy′] is equal to d ((xy′), (x′y)) up to 4C0; the claim follows.

Finally assume that d ((xy′), (x′y)) ≤ 1 and that d ((xy), (x′y′)) ≥ 1.

Switching y and y′ and applying the previous case we get that log[xx′y′y]

is equal to d ((xy), (x′y′)) up to 4C0. In particular it is larger than −4C0.

Thus we obtain

log[xx′yy′] = − log[xx′y′y] ≤ 4C0,

which implies our claim.

So in every case we have proved the claim. By combining it with

Morse lemma, one obtains immediatly that ∂f is quasi-Möbius. Finally

observe that a map which qusi-preserves the crossratio is automatically

continuous.

3. Mostow rigidity (proof)

The theorem is stated in the introduction. Start with ϕ : Γ1
∼= Γ2 of

the statement.

We construct first a quasi-isometry F : H
n → H

n out of ϕ, as follows.

Choose an origin O in H
n whose stabiliser in Γ1 is trivial. Define F on

the Γ1-orbit of O by F (g·O) = ϕ(g)·O. Extend arbitrarily F to all of

H
n as a quasi-isometry.

Applying theorem 2.2, the quasi-isometry F extends to f = ∂F as

a quasi-Möbius homeomorphism of Z = ∂ H
n. Observe that f is ϕ-

equivariant, indeed the restriction of F to Γ1·O is.

We want to prove that f is a Möbius homeomorphism of Z. This will

imply the theorem because Möb(Z) = Isom(Hn) by corollary 1.8. To this
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end consider the bundle E which is the projectivisation of the tangent

bundle of Z. Its elements are the lines in R
n which are tangent to Z.

Because E is homogeneous under Isom(Hn), we write it as E = G/H

with G = Isom(Hn), and H is the stabiliser in G of a fixed element in E.

Observe that H is non-compact.

For τ a non zero tangent vector to Z, denote by [τ ] the line generated

by τ . Then define h : E → R as follows : for non-zero τ ∈ TzZ, let

h([τ ]) =
‖Dzf(τ)‖

‖τ‖· ‖Dzf‖
,

(recall that f is differentiable a.e., thanks to theorem 1.3). Because f

is ϕ-equivariant, and because the groups Γi act conformally on Z, one

can check that h is Γ1-invariant. Now, here is a general theorem, due to

Moore (see [Z] for a proof) :

Theorem 3.1. — Let G be a non-compact, connected simple Lie group,

with finite center. Let H < G be a closed non-compact subgroup of G. Let

Γ < G be a lattice. Then Γ acts ergodically on G/H, i.e. any measurable

Γ-invariant function on G/H is constant a.e.

We get that h is constant a.e.; this implies that Df is conformal a.e.,

so f is a Möbius homeomorphism by theorem 1.5(ii).

4. Sullivan-Tukia’s theorem (proof)

The theorem is stated in the introduction. Consider the isometric

action of Γ on itself by left translations. Because Γ is quasi-isometric to

H
n, each element of Γ induces a quasi-isometry of H

n, which is unique up

to bounded distance, and with uniform quasi-isometry constants. Thus

by theorem 2.2, we get a Γ-action on Z = ∂ H
n by K-quasi-conformal

homeomorphisms (with K uniform). The kernel of this action is finite,

we still denote by Γ its quotient by the kernel.

Definition 4.1. — A measurable field of ellipses on Z is a measurable

map which assigns to a.e. z ∈ Z an ellipse centered at 0 in TzZ.

We are only concerned with non degenerate ellipses, up to homothety,

and centered at 0. The space of those ellipses in R
n−1 is the symmetric
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space

X := SLn−1(R)/ SO(n − 1).

Any quasi-conformal homeomorphism f of Z acts on the left on the space

of measurable fields of ellipses, as follows: if ξ = {ξz}z∈Z is a measurable

field of ellipses, then we set

(f∗ξ)z := Df−1(z)f(ξf−1(z)).

Thus we get a Γ-action on the set of measurable fields of ellipses.

Lemma 4.2. — There exists a measurable field of ellipses {ξz}z∈Z

which is Γ-invariant.

Proof. — For every z ∈ Z, let

Ez =
{

Dγ−1(z)γ(Sγ−1z); γ ∈ Γ
}

,

where Sx is the unit sphere in TxZ. By choosing a measurable trivialisa-

tion of the orthonormal frame bundle of Z, each set Ez identifies with a

subset of the symmetric space X defined above. In addition we have for

γ ∈ Γ, and z ∈ Z

Eγ(z) = Dzγ(Ez),

where Dzγ acts on X by isometry (indeed SLn−1(R) does). The eccen-

tricity of ellipses in Ez is bounded by K, the quasi-conformal constant

of the Γ-action on Z. Thus Ez is a bounded subset in X. A bounded set

A in a complete, simply connected, non-positively curved, riemannian

manifold, has a well-defined barycenter, namely the center of the unique

smallest ball containing A. Define ξz to be the barycenter of Ez. The

field {ξz}z∈Z posseses the expected properties.

Let ξ = {ξz}z∈Z be a Γ-invariant measurable field of ellipses. Our

goal is now to find a quasi-conformal homeomorphism h of Z such that

h∗ξ = S, where S is the field of round spheres. This will imply that

hΓh−1 stabilizes S, hence we will get

hΓh−1 < Conf(Z) = Isom(H
n).

For n = 3, existence of h follows from Ahlfors-Bers theorem (see [A]).

When n ≥ 4, Ahlfors-Bers theorem is not valid; Tukia proposed the

following alternative argument.
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The field ξ is measurable, so it is approximately continuous a.e., i.e.

for a.e. z ∈ Z, and for every ε > 0, we have

lim
r→0

m
{

x ∈ B(z, r); dX(ξz, ξx) < ε
}

/m(B(z, r)) = 1,

where m denotes the Lebesgue measure on Z.

In the upper half-space model of H
n, let 0 be the origin and let en be

the point whose euclidean coordinates are (0, ..., 0, 1). Up to conjugating

Γ by a affine map, we may assume that ξ is approximately continuous at

0, and that ξ0 is a round sphere.

Let {gk}k≥1 be a sequence in Γ, such that gk · en →
k→∞

0 and such that

the distances dH
n(gk · en, [0∞)) are uniformly bounded (existence comes

from the fact that Γ and H
n are quasi-isometric).

Let {λk}k≥1 be a sequence of positive numbers such that the distances

dH
n

(

λkgk · en, en

)

are uniformly bounded. The maps λkgk, k ≥ 1, are

quasi-isometries of H
n with uniformly bounded quasi-isometry constants,

and which almost stabilise en. Thus, by Ascoli theorem we get, up to

a subsequence, that {λkgk}k≥1 converge uniformly on Z to a K-quasi-

conformal homeomorphism h. ( Note that corollary 1.8(ii) gives another

way of establishing this convergence). It follows that

(∗) h∗ξ = lim
k→∞

(λkgk)∗ξ = lim
k→∞

(λk)∗ξ.

In addition, because ξ is approximately continuous at 0, up to a subse-

quence, the sequence {(λk)∗ξ}k≥1 tends a.e. to the constant field equal

to ξ0 (namely convergence in measure implies convergence a.e. of a sub-

sequence). Finally we obtain that h∗ξ = S, which implies that hΓh−1 is

contained in Isom(Hn).

Remark : The first equality in (∗) is not at all obvious. Indeed one doesn’t

know anything about convergence of the differentials of the λkgk. At this

stage one needs a more delicate argument based on approximations of

h∗ξ by (λkgk)∗ξ on subsets with complementary measure arbitrary close

to 0. We refer to Tukia’s paper [T2] for details.

It remains to prove that hΓh−1 is a cocompact lattice of Isom H
n.

Reusing the quasi-isometry between Γ and H
n, one can see that hΓh−1

acts properly discontinuously and cocompactly on H
n. So it is a cocom-

pact lattice in Isom(Hn).
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Notes. — Quasi-Möbius homeomorphisms have been defined first by

Väisälä [V2]. Equivalence between quasi-conformal and quasi-Möbius

homeomorphisms (theorem 1.5(i)) is due to Gehring [G1] for R
2, and

to Gehring-Väisälä for R
n (see [V1]). Note that this result is false for

general domains in R
n (see [V2]). The statement (ii) in theorem 1.5 is

also true for domains in R
n with n > 2, see [G2] and [R]. This is a

generalisation of Liouville theorem which requires the mappings to be

sufficiently smooth (C3 is enough). The fact that moduli depend only

on the relative position of the continua (lemma 1.6(3)), was known to

Grötzsch and Teichmüller for R
2. For R

n it was first observed by Loewner

[Lo]. For general domains in R
n it is false.

Morse lemma was first stated and used by Mostow in [M2]. Theorem

2.2 and its proof generalises to Gromov-hyperbolic spaces. Tukia [T1]

has proved the converse of theorem 2.2, namely quasi-Möbius homeomor-

phisms of Z extend to quasi-isometries of H
n. Again this phenomenon

generalizes to most of the Gromov-hyperbolic spaces (see [Pau], [BHK]).

The proof of Mostow theorem we gave is taken from [GP]. In [K],

M. Kapovich gives a more elementary proof which does not make use

of Moore ergodic theorem. For the proof of Sullivan-Tukia theorem, we

have followed rather closely Tukia’s paper [T2].

Mostow theorem is the first rigidity result based on connections be-

tween hyperbolic geometry and quasi-conformal geometry. This circle of

ideas is still an active domain of research, see [GP], [BP] for surveys of

further developments. Recently J. Heinonen and P. Koskela [HK] have

extended the euclidean theory of quasi-conformal homeomorphisms to

a much larger class of metric spaces, called Loewner spaces. In [C], J.

Cheeger has developped a differential calculus on Loewner spaces. These

new ideas seem promising.
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