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Abstract. — This text aims at presenting an elementary version of
Calabi-Weil infinitesimal rigidity result. It relies on the proof presented
in the book by M.S. Raghunatan. The goal is to prove the vanishing of
some cohomology group using the Bochner formula and thus to establish
such a formula.

Résumé (Rigidité infinitésimale de Calabi-Weil). — Ce texte a
pour but de présenter de manière élémentaire la preuve de la rigidité in-
finitésimale de Calabi-Weil. Il s’appuie sur le livre de M.S. Raghunatan.
Il s’agit de prouver l’annulation d’un groupe de cohomologie en utilisant
la méthode de Bochner et donc d’établir la formule adéquate.
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We based these lectures on the approach developed by Raghunatan

([Rag]). The reader can also see the original papers by A. Weil (see

[We1], [We2]). The text which follows is neither intended to be original

nor exhaustive. It aims at presenting in a very elementary way the theory

of infinitesimal rigidity as described in [Rag]. A general reference pour a

geometric point of view on symmetric spaces is [Ebe], and more detailed

bibliographies are provided in [Rag] or [Mar].

Introduction

A trivial example. — The group Z can be viewed as a subgroup of the

group of translations of the real line R, and in infinitely many ways.

More precisely let t ∈ R and let us call Tt the translation defined by

Tt(x) = x + t for x ∈ R.

Translations are isometries of the Euclidean structure on R, so that

we can define a family of morphisms

ρt : Z →֒ Isom(E)

n 7−→ T n
t (x 7→ x + nt).

Such morphisms are called representations of Z as isometries of R. We

thus get a deformation of the canonical representation ρ1.

This deformation is not trivial in the sense that there does not exist,

for t close to 1, an isometry gt of R such that

∀n ∈ Z , ρt(n) = gtρ1(n)g−1
t .

Another trivial example. — Again Z2 can be viewed as a subgroup of

the group of translations of R2, the quotient space being a torus R2/Z2.

The translations of R
2 are isometries with respect to the usual Euclidean

structure.
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The orbit of the origin is a lattice in R2 generated by two vectors

which are image of the origin by the two translations associated to the

generators (1, 0) and (0, 1) of Z2.

There is more flexibility here since one can play with the length of

these vectors as well as with the angle between them.

The manifold R2/Z2 are endowed with the metrics coming from the

Euclidean metric of R2 and are thus flat riemannian manifolds. The

existence of non trivial deformations corresponds to the existence of many

non isometric flat tori. The following basis generated by unit length

vectors gives rise to

90◦ 87◦

non isometric tori.

Another remark coming from these trivial examples is that all tori are

diffeomorphic but nevertheless metrically different.

The purpose of all courses on Rigidity in this school is to exhibit sit-

uations where the opposite results occur. Instead of flexibility as above

we shall exhibit rigidity: rigidity of deformations (this course), situation

in which diffeomorphic manifolds (or homeomorphic) are isometric and

more.
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1. Deformations and cohomology

A general reference for this chapter is [Br], see also [Rag].

Let Γ be a finitely generated group and G a Lie group. We call R(Γ, G)

the set of homomorphisms of Γ in G endowed with the topology of point-

wise convergence. Let ρt, t > 0 be a deformation of a representation ρ0,

which we assume to be C1.

Let us define, for γ ∈ Γ,

dρ0
(t, γ) = ρt(γ)ρ0(γ)−1 and hρ0

(γ) =
∂

∂t
∣∣t=0

dρ0
(t, γ)

dρ0
(t, γ) is, for each γ ∈ Γ, a path in V .

Now, for γ, γ′ ∈ Γ,

dρ0
(t, γγ′) = ρt(γγ′)ρ0(γγ′)−1

the inverse being taken in G.

dρ0
(t, γγ′) = ρt(γ)ρt(γ

′)ρ0(γ
′)−1ρ0(γ)−1

=
(
ρt(γ)ρ0(γ)−1

) (
ρ0(γ)ρt(γ

′)ρ0(γ
′)−1ρ0(γ)−1

)

and

hρ0
(γγ′) = hρ0

(γ) + ρ0(γ)hρ0
(γ′)ρ0(γ)−1 (∗)

where the second part is Ad(ρ0(γ))(hρ0
(γ′)), so that h satisfies

hρ0
(γγ′) = hρ0

(γ) + (Ad ◦ ρ0)(γ) · hρ0
(γ′).

A particular case of deformations, as mentioned before, consists in

taking a C1-path gt ∈ G with g0 = e and defining

ut(γ) = gtρ0(γ)g−1
t for all γ ∈ Γ .

Then,

du0
(t, γ) = gtρ0(γ)g−1

t ρ0(γ)−1

hu0
(γ) = X − ρ0(γ)Xρ0(γ)−1

= X − (Ad ◦ ρ0)(γ) ·X (∗∗)

where X = d
dt

gt
∣∣t=0
∈ g, the Lie algebra of G.

We call this last type of deformations, trivial deformations. So that if

there exists a non trivial deformation of the representation ρ0, then there
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exists a function h : Γ → G satisfying (∗) for all γ ∈ Γ and not of the

type (∗∗).

2. Cohomology of groups

See [Br] for a quite complete description of cohomology of groups.

We consider the elementary case of this theory. Let V be a vector space

(an abelian group) on which Γ acts, that is, there is a representation ρ

of Γ in GL(V ). We consider the following complex

· · · −→ Λk(Γ, V )
d
−→ Λk+1(Γ, V ) −→ · · ·

where C0(Γ, V ) = V and Ck(Γ, V ) =
{

f : Γ× · · · × Γ︸ ︷︷ ︸
k-times

−→ V
}

and d is

given by

dρf(γ1, . . . , γk) = ρ(γ1)f(γ2, . . . , γk)+
k∑

i=2

(−1)i−1f(γ1, . . . , γi−1γi, . . . , γk)

+ (−1)kf(γ1, . . . , γk−1)

This is the non homogeneous version of group cohomology. For k =

0, 1, we have

i) for v ∈ V = C0(V ), dv(γ) = ρ(γ)v − v, for all γ ∈ Γ,

ii) for f ∈ C1(V ),

df(γ1, γ2) = f(γ1) + ρ(γ1)f(γ2)− f(γ1γ2)

for all γ1, γ2 ∈ Γ.

A 1-cocycle with value in ρ (or in V ) is a map

f : Γ −→ V

such that, for all γ, γ′ ∈ Γ ,

f(γγ′) = f(γ) + ρ(γ)f(γ′) .

As usual we define

H1(Γ, ρ) =
Ker{d : C1 → C2}

Im{d : C0 → C1}
.
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3. Local rigidity

We have seen in section 1 that a nontrivial deformation of a represen-

tation gives rise to a non vanishing 1-cocycle. We shall now state that,

in certain instances, if the first cohomology group vanishes then the rep-

resentation is locally rigid. The group Γ was supposed to be finitely

generated (we can even assume it to have a finite presentation), let S be

a finite generating system then one can write G = F (S)/H where F (S)

is the free group generated by S and H is the normal subgroup of F

constituted by the relations. More precisely if

p : F (S) −→ Γ

is the natural “projection”, then H =kernel(p).

Let S = {s1, . . . , sN}, for x ∈ H with x = sε1

i1
· · · sεk

ik
, sij ∈ S, we

consider the map

fx :
∏

S

G = {h = (gs1
, . . . , gsN

)} −→ G

h 7−→ gε1

si1
· · · gεk

sik

and for ρ ∈ R(Γ, G), we define hρ ∈
∏
S

G by

hρ = (ρ(s1), . . . , ρ(sN)) ,

we then have

Lemma 3.1. — The map ϕ : R(Γ, G)→
∏
S

G, defined by ϕ(ρ) = hρ, is

a bijection between R(Γ, G) and
⋂

x∈H

f−1
x (e). If R(Γ, G) is endowed with

the topology of pointwise convergence then ϕ is a homeomorphism onto

its image.

This lemma is an easy exercise left to the reader.

If Γ is finitely presented, then H is finitely generated and the above

intersection can be taken to be finite (by taking x in a generating set for

H). Furthermore if G is an algebraic group over a field k then R(Γ, G)

is a variety defined over k.

Finally, G acts on R(Γ, G) by

(g, ρ) 7−→ gρg−1



CALABI-WEIL RIGIDITY 7

where gρg−1 is the morphism

Γ −→ G

γ 7−→ gρ(γ)g−1

Definition 3.2. — A representation ρ0 ∈ R(Γ, G) is locally rigid if the

orbit of ρ0 under the action of G is a neighbourhood of ρ0 in R(Γ, G) .

Remarks

i) This definition means that close to ρ0 (in the topology given by a

finite generating system) a representation ρ is a trivial deformation of ρ0.

ii) In the introduction we used 1-parameter deformations which are

C1; the above definition is more general.

The key result of these lectures is the

Theorem 3.3 (A. Weil [We3]). — Let G ⊂ GL(n, C) an algebraic

group and ρ0 ∈ R(Γ, G). If H1(Γ, Ad ◦ ρ0) vanishes then ρ0 is locally

rigid.

Remarks

i) This is more difficult than the sketch made in section 1. Indeed

there we just showed that a C1-deformation is tangent at the origin

to a trivial deformation when H1(Γ, Ad ◦ ρ0) = 0. However since

R(Γ, G) is an algebraic variety one can get the stronger result stated

above.

ii) The converse is not true. More precisely, there are examples where

not all elements of H1(Γ, Ad ◦ ρ0) give rise to a deformation. The

difficulty is thus that one cannot always “integrate” an infinitesimal

non trivial deformation.

We intend to prove Weil’s local rigidity which is

Theorem 3.4 (A. Weil [We2]). — Let G be a connected semi-simple

Lie group without compact factor and Γ ⊂ G is an irreducible uniform

lattice. If G is not locally isomorphic to SL2(R), then H1(Γ, Ad ◦ i) = 0.

Here i : Γ →֒ G is the injection of Γ into G. Let us recall that a lattice

in G is a discrete subgroup Γ of G such that G/Γ has finite volume. If

in addition it is compact the lattice is then said to be uniform.
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Corollary 3.5. — In this situation Γ is locally rigid.

Remarks

i) We shall restrict our (sketch of) proof to the case when G is a simple

Lie group and thus an algebraic subgroup of some GL(n, C).

ii) The first proof of such a result is due to A. Selberg for the case

G = SL(n, R), n ≥ 3. E. Calabi in an unpublished paper has

then proved a similar result for lattices in the hyperbolic space of

dimension ≥ 3. The case of hermitian symmetric spaces was first

established by E. Calabi and E. Vesentini. The general case is due

to A. Weil.

iii) In the non-uniform case the result has been extended by H. Gar-

land ([Ga]) and H.Garland and M.S. Raghunatan ([G-R]). G. Mar-

gulis’s results then cover all remaining cases ([Mar]).

iv) One should cite Y. Matsushima ([Mat]) for the use of the Bochner

formula and computation of some Betti numbers.

4. Differential geometry

Let X be a connected and oriented differentiable manifold, which will

be compact in the sequel and let Γ = π1(X). The group Γ acts on the

universal covering X̃ of X by deck transformation. We assume that Γ

acts on a finite dimensional vector space V and denote by ρ : Γ→ GL(V )

the corresponding representation.

This defines a vector bundle E(ρ) on X, by the following standard

construction: Γ acts on X̃ × V by the left action,

Γ× (X̃ × V ) −→ X̃ × V

(γ, (x̃, v)) 7−→ (γx̃, ρ(γ)v)

and

E(ρ) = X̃ ×ρ V = (X̃ × V )/Γ,

is a vector bundle on X, the projection being given by the projection

of X̃ × V onto X̃. This bundle is flat, that is to say that it has a flat

connection. This means two equivalent properties:
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i) There is a foliation on E(ρ) transverse to the fibers of π : E(ρ)→ X.

Lifted to X̃×V the leaf of this foliation through (x̃, v) is X̃×{v} while the

fiber of π is {x̃}×V . This is the geometric point of view on connections.

ii) There is a flat covariant derivative. Precisely a section s of the

bundle can be viewed as an ρ-equivariant map

s̃ : X̃ −→ (X̃ × Ṽ )

x̃ 7−→ (x̃, ϕ(x̃))

where ϕ : X̃ → Ṽ satisfies

∀γ ∈ Γ , ϕ(γx̃) = ρ(γ)ϕ(x̃) .

Indeed this defines a section by

s([x̃]) =
[
(x̃, ϕ(x̃))

]

where [x̃] (resp.
[
(x̃, ϕ(x̃))

]
then denotes the class of x̃ (resp. (x̃, ϕ(x̃)))

for the equivalence relation given by the action of Γ. One then has the

commutative diagram

s

E(ρ)

p

s̃

eX × eV

XeX

π

Exercise: We showed how to get s from s̃. Explain how to construct

s̃ from s.

Now let U be a vector field near x ∈ X and Ũ the pulled back of U in

TX̃, we define DUs through the previous construction using Ũ ·ϕ, that

is

(Ũ ·ϕ)(x̃) = dx̃ϕ(Ũ) .

Here p(x̃) = x. We remark that, by construction,

Ũ(γx̃) = dx̃γ(Ũ(x̃))
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then

dγx̃ϕ
[
Ũ(γx̃)

]
= dx̃(ϕ ◦ γ)

(
Ũ(x̃)

)

= dx̃

(
ρ(γ) ◦ ϕ

)(
Ũ(x̃)

)

= ρ(γ)
(
dx̃ϕ

(
Ũ(x̃)

))

since the action of ρ(γ) on V is linear. This shows the equivariance of

the derivative Ũ ·ϕ which in turn defines the value at x of a new section

denoted by (DUs)(x). The operator D is a covariant derivative, the

analytic version of a connection. It is clearly flat, indeed let (x1, . . . , xn)

be a coordinate chart of X around a point x ∈ X and let ∂/∂xi be the

canonical vector fields, then, for any section s defined in a neighbourhood

of x,

D∂/∂xi
D∂/∂xj

s = D∂/∂xj
D∂/∂xi

s

which is the Schwarz lemma, asserting the flatness of D. It is also

straightforward to check the flatness in the universal cover since there

the connection is just the standard differential.

Exercise: Check the above formula.

For a section s, the map

TX −→ E(ρ)

u 7−→ Dus

gives rise to a differential form on X with values in the bundle E(ρ); it

is thus a section of the bundle T ∗X ⊗ E(ρ) −→ X. In general we define

a k-differential form with value in E(ρ) as being a section of the bundle

Λk(X)⊗E(ρ). More precisely such a form is locally a linear combination

of terms of the type ω ⊗ s, where ω is a real-valued k-form and s is a

(local) section of E(ρ). We denote by

Λk(E) = {k-forms with values in E(ρ)} .

The operator D allows to define a coboundary operator,

dD : Λk(E) −→ Λk+1(E)
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by the formula

dDω(U1, . . . , Uk+1) =
k+1∑

i=1

(−1)i+1DUi
ω
(
U1, . . . , Ûi, . . . , Uk+1

)
+

∑

i<j

(−1)i+jω
(
[Ui, Uj ], U1, . . . , Ûi, . . . , Ûj, . . . , Un

)

where ω ∈ Λk(E) and Ui are vector fields on X. One can check that

(dD)2 = 0 (since D is flat). It gives rise to a cohomology with values in

E. We shall denote by Hk(X, E) the k-th cohomology group with values

in E.

Another point of view could be to work on X̃ with equivariant map.

More precisely one can consider ρ-equivariant differential forms on X̃

with values in V that is linear combinations of terms such as ω̃ ⊗ ϕ,

where ω̃ is a real-valued differential form on X̃ and ϕ is a V -valued

function on X̃. This is a modest modification of the classical notion

of differential forms with values in R or C. One builds a cohomology

denoted by Hk(Γ, X̃, ρ). It is not difficult, and is left as an exercise, to

see that these two cohomologies are isomorphic.

Exercise: Prove this assertion. The first step is to define the action of

Γ on forms with values in V .

The main result of this section is the following

Theorem 4.1 (S. Eilenberg, [Eil]). — It X̃ is contractible then

H∗(X, E) (and H∗(Γ, X̃, ρ)) are naturally isomorphic to H∗(Γ, ρ)

In particular, one has H1(Γ, ρ) ∼= H1(X, E). This opens the possibil-

ities of using all the differential geometric techniques in order to prove

that H1(Γ, ρ) = 0 and thus the local rigidity of certain representations.

Remarks

i) A contractible space is a topological space such that the identity

is homotopic to a constant map. The symmetric spaces of non positive

curvature are contractible.

ii) The above theorem is not difficult to understand in certain easy

situations. Let us assume that X̃ is non positively curved (a real hyper-

bolic space for example) and let ω be a 1-form on X̃ with values in V
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and ρ-equivariant. We fix an origin x0 ∈ X̃ and define, for γ ∈ Γ:

f(γ) =

∫ γx0

x0

ω = integral of ω on the (unique) geodesic between x0 and γx0.

Lemma 4.2. — If ω is closed then f is a 1-cocycle.

Proof. — Since ω is closed, one has

f(γγ′) =

∫ γγ′x0

x0

ω =

∫ γx0

x0

ω +

∫ γγ′x0

γx0

ω

now

x0
γγ′x0

γx0

∫ γγ′x0

γx0

ω =

∫ γ′x0

x0

γ∗ω =

∫ γ′x0

x0

ρ(γ)(ω) = ρ(γ)

(∫ γ′x0

x0

ω

)

by linearity of the action ρ(γ). Here we used the equivariance of ω which

reads, for u ∈ TxM ,

(γ∗ω)x(u) = ωγx(dxγ(u)) = ρ(γ)(ωx(u)) .

We thus proved

f(γγ′) = f(γ) + ρ(γ)f(γ′)

which is exactly

df ≡ 0 .

One can extend this construction to arbitrary forms and show that the

correspondence yields an isomorphism between the two cohomologies.

Exercise: Just do it!
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5. Hodge theory

The reader can learn the Hodge theory for real-valued forms in [Wa],

for example.

If X is an oriented Riemannian manifold then the scalar product (the

metric) extends to a scalar product for k-forms. More precisely let ω and

η be two real-valued k-forms and let {ei}i=1,...,n be an orthonormal basis

of TxX, then the scalar product at x is defined by

(ω, η)(x) =
∑

i1<i2<···<ik

ω(ei1, . . . , eik)η(ei1, . . . , eik).

We may then talk about orthonormal basis of real-valued k-forms.

We now assume that E(ρ)→ X is a metric bundle, i.e. the fiber above

x carries a Euclidean structure gx depending smoothly on x ∈ X.

Such a metric gives a (musical) isomorphism:

♭ : E(ρ)x −→ E(ρ)∗x

defined by

v♭(u) = gx(u, v) .

This naturally extends to a pairing

♭ : Λk(E) −→ Λk(E∗)

by (ω· u)♭ = ωu♭ if ω is a real-valued form and u ∈ E(ρ). On a coordinate

open set on X, let α1, . . . , αn be real-valued 1-forms which are a local

basis of T ∗X. Then, on this set, for ξ ∈ Λk(E), one can write

ξ =
∑

i1<···<ik

ui1···ikαi1 ∧ · · · ∧ αik

where ui1···ik are smooth sections of E(ρ) (or E(ρ)∗). Now, if η ∈ Λl(E∗),

we define

ξ ∧ η =
∑

i1<···<ik
j1<···<jℓ

vj1···jℓ
(ui1···ik)αi1 ∧ · · · ∧ αik ∧ αj1 ∧ · · · ∧ αjℓ

.

It is a scalar k + ℓ-form.

The Hodge-star operator is then defined by

∗ : Λk(E) −→ Λn−k(E)

∗ξ =
∑

ui1···ik ∗ (αi1 ∧ · · · ∧ αik) .
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We thus have to define the ∗-operator for real-valued forms;

∗ : Λk(X) −→ Λn−k(X)

for α and β ∈ Λk(X), α ∧ ∗β = (α, β)dvol ;

where (·, ·) is the scalar product on k-forms on X. If {α1, . . . , αn} is a

positive orthonormal basis of real valued 1-forms at x ∈ X, then

∗(αi1 ∧ · · · ∧ αik) = αj1 ∧ · · · ∧ αjl
, k + ℓ = n

where (j1, . . . , jℓ) are such that

αi1 ∧ · · · ∧ αik ∧ αj1 ∧ · · · ∧ αjℓ
= α1 ∧ · · · ∧ αn .

The following properties are easily checked

i) ∗ ∗ ξ = (−1)k(n−k)ξ for ξ ∈ Λk(E)

ii) for ξ, η ∈ Λk(E), ξ =
∑

ui1···ikαi1 ∧ · · · ∧ αik and η =
∑

vi1···ikαi1 ∧

· · · ∧ αik where {αi}i=1,...,n is a (local) orthonormal basis of real-valued

1-forms we set

(ξ, η) =
∑

i1<···<ik

gx (ui1···ik , vi1···ik)

and we have

ξ ∧ (∗η)♭ = (ξ, η)dvol .

We can also define a global scalar product

〈ξ, η〉 =

∫

X

(η, ξ)dvol =

∫

X

η ∧ (∗ξ)♭

when the integral makes sense, for example, when one of the forms is

compactly supported.

With the help of these structures we shall construct some natural dif-

ferential operators.

Definition 5.1. — The codifferential δD : Λk+1(E) → Λk(E) is the

operator

δDξ = (−1)k(n−k)+k+1#
(
∗dD ∗ (ξ♭)

)

where # = (♭)−1.

It is straightforward to check the following result,

Proposition 5.2. — 〈dDα, β〉 = 〈α, δDβ〉 for α ∈ Λk(E), β ∈ Λk+1(E)

and one of them is compactly supported.
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In other words δD is the formal adjoint of dD.

Definition 5.3. — We define the Hodge Laplacian acting on E-valued

forms by

∆D = dDδD + δDdD = dD(dD)∗ + (dD)∗(dD)

The operator ∆D preserves the degree of forms.

Proposition 5.4. — i) ∆D is formally self-adjoint, that is

〈∆Dξ, η〉 = 〈ξ, ∆Dη〉

for ξ, η ∈ Λk(E) and one of them is compactly supported.

ii) With the same notations

〈∆Dξ, η〉 = 〈dDξ, dDη〉+ 〈δDξ, δDη〉 .

Definition 5.5. — A form ξ ∈ Λk(E) is said to be harmonic when

∆Dξ = 0, which is equivalent to

dDξ = δDξ = 0 ,

When X is compact or ξ is compactly supported.

The main results of the Hodge theory is (see [Wa]):

Theorem 5.6. — If X is compact without boundary, every closed form

ξ ∈ Λk(E) (i.e. , dDξ = 0) is cohomologous to a unique harmonic form.

Thus Hk(X, E) is isomorphic to the vector space of k-harmonic E-valued

forms.

Corollary 5.7. — Let X be compact, if there exists c > 0 such that,

for all ξ ∈ Λk(E),

〈∆Dξ, ξ〉 ≥ c‖ξ‖2 then Hk(X, E) = 0 .

The goal is now to compute, in the case under consideration, dD, δD

and ∆D acting on k-forms. We shall show that

∆Dξ = ∆ξ + Q(ξ)

where ∆ is a nonnegative operator and Q is an endomorphism (it does

not differentiate ξ) which is positive.
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6. Applications I

Let G be a semi-simple connected Lie group without compact factor

and Γ a uniform lattice. Let K be maximal compact subgroup, then

X̃ = G/K is the symmetric space defined by G which is simply connected

of non positive curvature and thus contractible by Hadamard-Cartan’s

theorem (for example).

We shall make the assumption that the representation

ρ : Γ −→ GL(V )

is the restriction to Γ of a morphism, called ρ again,

ρ : G −→ GL(V ) .

Remark 6.1. — This is the case in the situation of Calabi-Weil’s rigid-

ity since we have to consider

ρ = Ad ◦ i , V = g

where i is the injection of Γ into G. The representation ρ is thus the

restriction to Γ of Ad.

We “extend” ρ to the Lie algebra g. Indeed if Y ∈ g and ϕt is the

one-parameter group generated by to Y , we then set

v ∈ V , ρ(Y )v =
d

dt
∣∣t=0

ρ(ϕt)v = deρ(Y )v .

Let us consider the following diagram

E(ρ) ←−−− X̃ × V ←−−− G× Vy
y

y

X ←−−− X̃
p

←−−− G

We now call p the projection of G onto X̃. E(ρ) is the quotient of G×V

by the following action of K × Γ

(k, γ) · (g, v) = (γgk, ρ(γ)v) .

We lift the forms from X̃ to G. Let ω be a k-form on X̃ with values in

V and which is ρ-equivariant, i.e. ω satisfies

γ∗ω = ρ(γ) ◦ ω .
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We pull it back to G as follows:

ωg = ρ(g)−1(p∗ωp(g)) .

The aim is to make the computations on G and use the underlying alge-

bra. The previous formula means that if Z1, . . . , Zk are vector fields near

g and Z i = dp(Zi) then

ωg(Z1, . . . , Zk) = ρ(g)−1ωp(g)(Z1, . . . , Zk) .

The space of such forms is denoted Λk(Γ, G, K, ρ).

Proposition 6.2. — If ω ∈ Λk(Γ, G, K, ρ) then

i) γ∗ω = ω, for all γ ∈ Γ.

ii) R∗
k(ω) = ρ(k)−1ω, for all k ∈ K, where Rk denotes the right

multiplication by k ∈ K.

iii) i(Y )ω = 0 for all Y ∈ k, where k is the Lie algebra of K.

Sketch of proof. — iii) i(Y )ω is the inner product of ω by Y . With the

above notations

i(Y )ω(Z1, . . . , Zk−1) = ω(Y, Z1, . . . , Zk−1) = 0

since p∗(Y ) = dp(Y ) = 0.

i) Let us check this too, one has

(γ∗ω)g(Z1, . . . , Zk) = ωγg(dγ(Z1), . . . , dγ(Zk))

= ρ(γg)−1
(
ωp(γg)(dγ(Z1), . . . , dγ(Zk)

)

now p(γg) = γp(g) by definition of the action on G/K and thus dγ(Zi) =

dγ(Zi). We then have

(γ∗ω)g(Z1, . . . , Zk) = ρ(g)−1ρ(γ)−1
(
ωγp(g)(dγ(Z1), . . . , dγ(Zk)

)

= ρ(g)−1ρ(γ)−1(γ∗ωp(g))(Z1, . . . , Zk)

= ρ(g)−1ωp(g)(Z1, . . . , Zk)

ii) This is left to the reader.

Being invariant by Γ allows to view these forms as k-forms on Γ r G

with values in V satisfying ii) and iii). Now if we call Λk(Γ, X̃, p) the
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ρ-equivariant k-forms on X̃ with values in V , then one has the following

diagram

Λk(Γ, X̃, ρ)
dD

−→ Λk+1(Γ, X̃, ρ)∣∣≀
∣∣≀

Λk(Γ, G, K, ρ)
dρ
−→ Λk+1(Γ, G, K, ρ)

This gives defines a differential operator dρ. The isomorphisms

Λk(Γ, X̃, ρ) ≃ Λk(Γ, G, K, ρ)

are easy to understand.

Proposition 6.3. — For ω ∈ Λk(Γ, G, K, ρ) and Z1, . . . , Zk+1 ∈ g

dρω(Z1, . . . , Zk+1) =
k∑

s=1

(−1)s+1(Zs + ρ(Zs))ω(Z1, . . . , Ẑs, . . . , Zk+1)

+
∑

s<t

(−1)s+tω
(
[Zs, Zt], Z1, . . . , Ẑs, . . . , Ẑt, . . . , Zk+1

)

Remark 6.4. — Zs + ρ(Zs) consists of a derivation by Zs and an oper-

ator ρ(Zs) ∈ GL(V ) applied to the vector ω(Z1, . . . , Ẑs, . . . , Zk+1) ∈ V .

Sketch of proof:. — With the previous notations

(dρω)g = ρ(g)−1(p∗(dω))g .

When one differentiates expression of the type ρ(g)−1p∗(η) one differen-

tiates p∗(η) but also ρ−1(g); In fact

dω = d(ρ−1) ∧ p∗(ω) + ρ−1d(p∗ω)

where here dω denotes the differential on G. This condensed notation

means that the GL(V ) valued 1-form d(ρ−1) is paired with the V -valued

form p∗(ω) by exterior product on the “form” part and by the action of

GL(V ) on V for the “vector” part. Thus

dρω = dω − d(ρ−1) ∧ p∗(ω)

since p∗(dω) = d(p∗ω). It remains to compute dgρ
−1(Y ) for Y ∈ g. Let

ϕt the one-parameter group generated by Y , then

d

dt
∣∣∣t=0

ρ−1(ϕt) =
d

dt
∣∣∣t=0

(
ρ−1(gϕt)

)
ρ−1(g) = −ρ(Y )ρ−1(g) .
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We thus have

dρω = dω + ρ(·) ∧ ω .

Let us apply these remarks to the case of a 1-form ω. Let Z1, Z2 ∈ g

dρω(Z1, Z2) = Z1 · ω(Z2)− Z2 · ω(Z1)− ω ([Z1, Z2])

+ ρ(Z1)ω(Z2)− ρ(Z2)ω(Z1)

= (Z1 + ρ(Z1))ω(Z2)− (Z2 + ρ(Z2))ω(Z1)− ω([Z1, Z2])

which is the desired formula. The other cases are left to the reader.

Remark 6.5. — It is worth noticing that we never used the semi-

simplicity of G. We just need at this stage G to be a connected Lie

group, K to be a closed compact subgroup such that G/K is contractible

and Γ a discrete subgroup. These computations can be used to show

that the cohomology Hk(Γ, ρ) when G is solvable or nilpotent can be

computed in terms of the cohomology of the Lie algebra g of G.

7. Applications II: Semi-simple groups

In order to simplify the exposition we shall restrict ourselves to the case

when G is a simple group. For the general case the reader is referred to

[Rag].

We recall that, from the previous section, we are led to study k-forms

on the compact space Γ r G with values in a finite dimensional vector

space V and satisfying the two conditions

a) ∀k ∈ K, R∗
kω = ρ(k)−1ω.

b) ∀Y ∈ k, i(Y )ω = 0.

We shall need to integrate on ΓrG, so we choose a bi-invariant measure

µ (Haar measure) on G, which exists by uni-modularity of semi-simple

groups. Now the Lie algebra of G decomposes

g = p⊕ k

with the property [p, p] ⊂ k (see P. Paradan’s lectures).

The forms are multiplied by ρ(k)−1 when we right-translate them by

k ∈ K. So in order to have a metric structure on V which descends

to a Euclidean structure on V -valued forms on X̃ we need to choose it

invariant by ρ(K). In fact one can do better.
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Lemma 7.1 (see [Rag], section 1.5). — Let ρ be a finite dimen-

sional representation of G on a vector space V (over R). Then there

exists a Euclidean scalar product (·, ·)V on V with respect to which

i) ρ(k) is orthogonal, ∀k ∈ K.

ii) ρ(Y ) is symmetric, ∀Y ∈ p

Exercise: Describe the metric structure gx on the fiber E(ρ)x of

E(ρ)→ X, for x ∈ X.

For Z ∈ g we write Z = Y + V with Y ∈ p and V ∈ k, then a

k-form as above is completely determined by its values on p thanks to

b). Let us choose an orthonormal basis of p denoted {Y1, . . . , Yn} where

n = dim X̃ = dim p.

A form ω ∈ Λk(Γ, G, K, ρ) is completely determined by the functions,

ωi1,...,ik = ω(Yi1, . . . , Yik) ,

and the global scalar product of two k-forms ξ and η is given by

〈ξ, η〉 =
∑

i1<···<ik

∫

G/Γ

(ξi1···ik , ηi1···ik)V dµ .

The following equalities are then consequences of the invariance of µ

and Stoke’s formula (precisely the divergence formula). For Z ∈ g and

f , f1 and f2 smooth functions on Γ r G, one has
∫

G/Γ

Z · f dµ = 0 and

∫

G/Γ

(Z· f1)f2 dµ = −

∫

G/Γ

f1(Z· f2) dµ .

These will be used to do the necessary integration by parts in order to

compute the adjoint of dρ.

Proposition 7.2. — Let ω ∈ Λk(Γ, G, K, ρ) then, if k > 0,

(δρω)i1···ik−1
= −

n∑

s=1

(Ys − ρ(Ys))ωsi1···ik−1

and δρω = 0, if k = 0.

Sketch of proof:. — −Ys is the adjoint of Ys and ρ(Ys) is self-adjoint

(symmetric) by our choice of (·, ·)V .

Let us look at two easy cases
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1) If ω is a 1-form, δρω is then a V -valued function. Let η be a V -valued

function, then

〈δρ, η〉 =

∫

ΓrG

(
−

n∑

s=1

(Ys − ρ(Ys))ω(Ys), η

)

V

dµ

=

∫

ΓrG

n∑

s=1

(ω(Ys), Ysη)V + (ω(Ys), ρ(Ys)η)V dµ

= 〈ω, dρη〉

which is the desired formula.

2) If ω is a 2-form, δρω is a 1-form. Let η be another 1-form

〈δρ, η〉 =

∫

ΓrG

−

n∑

i=1

n∑

s=1

((Ys − ρ(Ys))ω(Ys, Yi), η(Yi))V dµ

=

∫

ΓrG

∑

s<i

(ω(Ys, Yi), (Ys + ρ(Ys))η(Yi)− (Yi + ρ(Yi))η(Ys))V dµ

=

∫

ΓrG

(ω, dρη)V dµ = 〈ω, dρη〉 .

In this proof we used the following fact: If Zi = Yi+Vi where Yi ∈ p and

Vi ∈ k, then dρω(Z1, . . . , Zk) = dρω(Y1, . . . , Yk) for ω ∈ Λk−1(Γ, G, K, ρ).

Indeed in the computation of dρω appears terms of the form

ω
(
[Ys, Yt], Y1, . . . , Ŷs, . . . , Ŷt, . . . , Yk

)

which vanish since [Ys, Yt] ∈ k.

We can then compute the associated Laplacian ∆ρ = dρδρ + δρdρ.

Proposition 7.3. — For ω ∈ Λk(Γ, G, K, ρ)

(∆ρω)(Yi1, . . . , Yik) =
n∑

j=1

(
−Y 2

j + ρ(Yj)
2
)
ωi1···ik

+
n∑

j=1

k∑

s=1

(−1)s+1 (−[Yis , Yj] + ρ([Yis, Yj])) ωji1···̂is···ip .
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Proof. — It is a straightforward computation. Let us look at the ele-

mentary case k = 0 where ∆ρω = δρdρω.

∆ρω = −
n∑

j=1

(Yj − ρ(Yj)) dρω(Yj)

= −

n∑

j=1

(Yj − ρ(Yj)) (Yj + ρ(Yj))ω .

Here there is only one term in the sum defining dρ since ω is a V -valued

function on Γ r G.

Let us recall that ρ(Yj) is a matrix which is constant, i.e. it does not

depend on g ∈ G, thus

Yj· ρ(Yj)ω = ρ(Yj)(Yj·ω)

and

∆ρω = −

n∑

j=1

Y 2
j ·ω +

n∑

j=1

ρ(Yj)
2ω .

In the other degrees, expressions of the form

(Yj + ρ(Yj))(Ys − ρ(Ys))

appear and yield the commutators in the above formula.

Now, ∆ρ can be decomposed in the sum of two operators

∆ρ = ∆D + Hρ

where

(∆Dω)i1···ip =
n∑

j=1

−Y 2
j ·ωi1···ik −

n∑

j=1

k∑

s=1

(−1)s+1[Yis, Yj]ωji1···̂is···ik

and

(Hpω)i1···ip = same formula with derivatives by Y replaced by the op-

erator ρ(Y ) for Y ∈p.

Even better, there exist two operators Dρ and Tρ such that

∆D = D∗
ρDρ + DρD

∗
ρ and Hρ = T ∗

ρ Tρ + TρT
∗
ρ

where D∗
ρ is the adjoint of the differential operator Dρ, i.e.

〈Dρξ, η〉 = 〈ξ, D
∗
ρη〉 for ξ ∈ Λk and η ∈ Λk+1
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and T ∗
ρ is the pointwise adjoint of Tρ, i.e.

(Tρξ, η)V = (ξ, T ∗
ρ η)V .

More precisely

(Dρξ)i1···ik+1
=

k+1∑

s=1

(−1)s+1Yis · ξi1···̂is···ik+1

(D∗
ρξ)i1···ik−1

=
n∑

s=1

(−Ys)ξsi1···ik−1

(Tρξ)i1···ik+1
=

k+1∑

s=1

(−1)s+1ρ(Yis)ξi1···̂is···ik+1

(T ∗
ρ ξ)i1···ik−1

=

n∑

s=1

ρ(Ys)ξsi1···ik−1
.

These remarks lead to

〈∆pω, ω〉 = 〈∆Dω, ω〉+ 〈Hρω, ω〉

for ω ∈ Λk(Γ, G, K, ρ), and both operators ∆D and Hρ are non negative.

Let us define

Q
k

p(ω) = 〈Hρω, ω〉

which is a quadratic form on Λk(Γ, G, K, ρ). We aim at showing that it

is positive and bounded below.

It is worth noticing that

Exercise: Show that Hρ does not depend on the choice of the basis

of p.

The k-forms ω of Λk(Γ, G, K, π) are horizontal with respect to the

fibration G→ X̃ thanks to the property b) above.

Let us point out the following two facts

i) Hρ is a constant operator. Indeed it does not depend on g ∈ G

since it involves expression of the type ρ(Y ) for Y ∈ p.

ii) The above remark says that a k-form ω ∈ Λk(Γ, G, K, ρ) can be

viewed as a k-linear map, called ω again

ω : Λkp −→ V

so we can consider ω as being an element of Hom(Λkp, V ).
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Let us now define

Q1
ρ(ω) = (H1

ρ(ω), ω)

for ω ∈ Hom(p, V ).

Proposition 7.4. — If Q1
ρ is positive definite on Hom(p, V ) then there

exists c > 0 such that for all ξ ∈ Λ1(Γ, G, K, ρ) one has 〈∆ρξ, ξ〉 ≥ c‖ξ‖2.

Corollary 7.5. — H1(Γ, ρ) = 0.

We now specify the situation to the case under consideration; precisely,

ρ = Ad and V = g. The canonical metric on g satisfies the properties

required, namely

i) Ad(k) is orthogonal, ∀k ∈ K.

ii) ad(Y ) is symmetric for all Y ∈ p.

Notice that the extension of Ad to the Lie algebra is ad.

We thus have to study Q1
Ad on the space

Hom(p, g) ≃ Hom(p, k)⊕ Hom(p, g) .

If ω ∈ Hom(p, g), then we compute

Q1
Ad(ω) =

n∑

i=1

( n∑

j=1

ad(Yj)
2ω(Yi) +

n∑

j=1

ad([Yi, Yj])ω(Yj), ω(Ti)

)

g

.

Now the subspaces p and k of g are ad(k)-invariant; therefore if we

write ω = ωp + ωk, ωp ∈ Hom(p, p) and ωk ∈ Hom(p, k), they satisfy the

same conditions, namely

i) ∀X ∈ k, 0 = ω(X) = iXω = ωp(X) + ωk(X) implies that ωp(X) = 0

and ωk(X) = 0.

ii) R∗
kω = ad(k−1)ωp︸ ︷︷ ︸

∈p

+ ad(k−1)ωk︸ ︷︷ ︸
∈k

for all k ∈ K.

Furthermore, let us recall that

Q1
Ad(ω) =

(
H1

Adω, ω
)
.

Lemma 7.6. — H1
Ad leaves Hom(p, p) and Hom(p, k) stable and more-

over these two sub-spaces are orthogonal for the canonical scalar product

on Hom(p, g).
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Proof. — i) Let ω ∈ Hom(p, p), then

H1
Adω(Yi) =

n∑

j=1

ad(Yj)
2ω(Yi) +

n∑

j=1

ad([Yi, Yj])ω(Yj)

is in p for all Yi.

ii) Similarly H1
Adω ∈ Hom(p, k) when ω ∈ Hom(p, k).

iii) If ζ ∈ Hom(p, p) and β ∈ Hom(p, k) then

(α, β) =
n∑

i=1

(
α(Yi), β(Yj)

)
g

= 0

since p and k are orthogonal.

Consequently it suffices to study Q1
Ad on each space.

Remark 7.7. — We shall leave aside the case Hom(p, k) which does not

contain any information. Furthermore Q1
Ad is positive on this space with-

out any restriction on the group (see [Rag]). Let us consider Hom(p, p).

Any ω in this space can be decomposed in

ω = ωS + ωA

where ωS is the symmetric part of the endomorphism ω and ωA the skew-

symmetric part.

Lemma 7.8. — This decomposition is again stable by H1
Ad and the two

subspaces are orthogonal.

It is thus sufficient to study the two cases separately. Again we shall

leave aside the case when ω is skew-symmetric since Q1
Ad is positive on

this space without any restriction on G (see [Rag]).

Let ω ∈ Hom(p, p) be a symmetric endomorphism. We want to show

that if (H1
Adω, ω) = 0 then ω = 0. Let us recall that

H1
Ad = T 1

Ad(T
1
Ad)

∗ + (T 1
Ad)

∗T 1
Ad .

Thus if (H1
Adω, ω) = 0 then T 1

Adω = 0. Here

T 1
Adω(Yi, Yj) = ad(Yi)ω(Yj)− ad(Yj)ω(Yi) .
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Since ω is symmetric, one can choose the basis to be constituted of eigen-

vectors for ω, i.e.

ω(Yi) = λiYi .

Now T 1
Adω = 0, implies that for all i and j

λj[Yi, Yj] = λi[Yj, Yi]

showing that, if [Yi, Yj] 6= 0, then λi = −λj . We shall use the following

lemma

Lemma 7.9. — Let g be a non compact simple Lie algebra and g = k⊕p

a Cartan decomposition. Let {Y1, . . . , Yn} be a basis of p. Then for all

0 ≤ r ≤ n there exists r1, . . . , rk, with 1 ≤ ri ≤ n such that r1 = 1, rk = r

and [Yri
, Yri+1

] 6= 0 for all 1 ≤ i ≤ k − 1.

It says that one can “reach” any Yr by a sequence of Yi’s such that two

successive Yi’s do not commute. Here the simplicity of G is essential.

This lemma implies that, for all 1 ≤ i ≤ n,

λi = ±λ1.

Let us study these eigenvalues and the corresponding eigenspaces. We

let

E = {Y ∈ p | ω(Y ) = λ1Y }

F = {Y ∈ p | ω(Y ) = −λ1Y }

Then, since ω is symmetric

p = E
⊥⊕

F .

E is not reduced to {0} since it contains at least Y1, and F is not trivial

either thanks to the above lemma.

Now for Y, Y ′ ∈ E (resp. F ) one has [Y, Y ′] = 0 otherwise the eigen-

values would have different signs.

If Z ∈ k, by symmetry of ad(Y ) we get that for all Y, Y ′ ∈ E (resp. F )

〈[Z, Y ], Y ′〉 = −〈Z, [Y, Y ′]〉 = 0
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thus ad(Z)(E) ⊂ E⊥ = F (resp. ad(Z)(F ) ⊂ E). The endomorphism

ad(Z)ad(Z ′) then preserves E and F for Z, Z ′ ∈ k. We conclude that

ad([Z, Z ′])(E) ⊂

{
F since[Z, Z ′] ∈ k

E because of the above remark.

which leads to

ad([Z, Z ′])(E) = ad([Z, Z ′])(F ) = 0 =⇒ ad([Z, Z ′])∣∣p = 0

that is the action of ad(k) on p is abelian. On the other hand since G

is simple, this action is irreducible and faithful. Thus k is abelian by

the faithfulness and dim p = 1 or 2 by the irreducibility. Moreover this

action is skew-symmetric (i.e. ad(Z)) is skew-symmetric for all Z ∈ k).

Thus dim p = 2 that is, in a suitable basis, for all Z ∈ k

ad(Z) =

(
0 a

−a 0

)
, a ∈ R , a > 0 .

The vector space {ad(Z) | Z ∈ k} is then 1-dimensional and again by

faithfulness, dim k = 1. The Lie algebra g is described as follows: Let Z

be a generator of k and Y1 and Y2 a basis of p in which ad(Z) is written

as above, then one has

[X, Y1] = −aY2 , [X, Y2] = aY1 and [Y1, Y2] = bX .

Here b 6= 0 can be chosen positive (p generates g as a Lie algebra). Now

by setting X ′ = 1
a
X and Y ′

i = 1√
ab

Yi we get the Lie algebra of SL2(R)!

Thus for ω 6= 0 , T 1
Ad(ω) = 0 if and only if g = sℓ(2, R) and ω is a

symmetric endomorphism with zero-trace (it has opposite eigenvalues).

It is not difficult to check that indeed in the case of sℓ(2, R) such a ω

gives Q1
ad(ω) = 0 . The dimension of the kernel of H1

Ad is 1 in this case.

8. Extensions of this technique

This technique can be extended in various ways:

1. One can consider the non uniform case, then the Hodge theory works

if one knows the existence of L2-harmonic forms. This relies on the

study of the structure of the cusps. Here one more case has to be

excluded, this is the case when G = SL2(C), see [Ga].
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2. This has been applied to the study of the rigidity of some hyper-

bolic metrics with conical singularities on a 3-manifold (see [K-H]).

Here the problem reduces to the study of the Hodge theory with

singularities.
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