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Abstract. — This is an introduction to Riemannian symmetric spaces of the non-compact
type from the (differential) geometer’s point of view. We start from the definition in terms
of geodesic symmetries and, while our methods are as geometric as possible, we deduce
geometric but also algebraic results, such as the semi-simplicity of the isometry group of
such spaces. This is done by first establishing classical comparison theorems on Hadamard
manifolds (and more generally on CAT(0) spaces).

Résumé (Espaces symétriques de type non-compact : géométrie différentielle)

Ce texte est une introduction aux espaces symétriques riemanniens de type non-compact
du point de vue de la géométrie différentielle. Nous partons de la définition en terme de
symétries géodésiques pour aboutir, le plus géométriquement possible, & des résultats tant
géométriques qu’algébriques. Par exemple nous démontrons la semi-simplicité du groupe
des isométries d’un tel espace en utilisant les théorémes de comparaison classiques sur les
variétés de Hadamard (et plus généralement les espaces CAT(0)).
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1. Introduction

Many of the rigidity questions in non-positively curved geometries that will be addressed
in the more advanced lectures of this summer school either directly concern symmetric
spaces or originated in similar questions about such spaces.

This course is meant to provide a quick introduction to symmetric spaces of the non-
compact type, from the (differential) geometer’s point of view. A complementary algebraic
introduction is given in P.-E. Paradan’s lecture [PP]. We have tried to always start from
(and stick to) geometric notions, even when the aim was to obtain more algebraic results.
Since the general topic of the summer school is non-positively curved geometries, we have
insisted on the aspects of non-positive curvature which can be generalized to much more
general settings than Riemannian manifolds, such as CAT(0)-spaces.

This text is however very incomplete and the reader should consult the references given
at the end of the paper for much more detailed expositions of the subject.

In what follows, (M, g) denotes a (smooth and connected) Riemannian manifold of
dimension n.

2. Riemannian preliminaries

In this section we review very quickly and without proofs the basics of Riemannian
geometry that will be needed in the rest of the paper. Proofs and details can be found in
standard text books, for example [dC|, [GHL] or [KXIN].

2.1. Levi-Civita connection. —
A connection on the tangent bundle T'M of M is a bilinear map

V:ITM)xT'(TM)— I'(TM)
such that, for every function f € C°°(M) and all vector fields X,Y € I'(T'M),
- VyxY = fVxY,
— VxfY =df(X)Y + fVxY (Leibniz rule).
Note that the value of VxY at a point m of M depends only on the value of X at m.
On a Riemannian manifold (M, g), there is a unique connection on the tangent bundle,

the so-called Levi-Civitd connection of g, which is both torsion-free and metric, namely,
such that

~ VY = VyX = [X,Y] for all X,Y € I'(TM),
~ Vg=0,ie X.g(V,Z)=g(VxY,Z)+g(Y,VxZ) for all X,Y,Z € T(TM).
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The following formula for the Levi-Civita connection, which also implies its existence, is
useful:

ZQ(VXK Z) = Xg(}/, Z)+Y9(X7 Z)_Z-g(X’ Y)_g(X7 D/a Z])+9(K [Z’ X])+9(Z’ [X’ Y])

2.2. Curvatures. —

If XY, Z € T(T'M), we define R(X,Y)Z = Vixy)Z — [Vx, Vy|Z. In fact, the value
of this vector field at a point m depends only on the values of the vectors fields X, Y, Z
at m. R is called the Riemann curvature tensor of g.

The metric allows us to see the Riemann curvature tensor as a (4,0)-tensor by setting
R(X,)Y,Z,T)=g(R(X,Y)Z,T)

The Riemann curvature tensor has the following symmetries [GHL, Proposition 3.5|:

- RX,)Y,Z,T)=—-R(Y,X,Z,T)=R(ZT,X,Y),

— First Bianchi identity: R(X,Y)Z + R(Y, Z)X + R(Z, X)Y = 0.

The sectional curvature K(P) of a 2-plane P in T,,M is defined as follows : pick a
g-orthonormal basis (u,v) of P and set K(P) = R(u,v,u,v). The sectional curvature
coincides with the usual notion of Gaussian curvature on a surface. Namely, if P is a
tangent 2-plane in 7,, M and S a small piece of surface in M tangent to P at m, then the
sectional curvature of P is the Gaussian curvature of S at m [dC, p. 130-133].

Note that the sectional curvatures determine the curvature tensor [dC, p. 94|. For
example, a manifold (M, g) has constant sectional curvature « if and only if its Riemann
curvature tensor is given by:

R(X,Y)Z = k(g(X,2)Y — g(Y, 2)X).

Multiplying the metric by a constant ¢ multiplies the sectional curvatures by the constant
1/c, therefore there are only three interesting cases:

- k=0, the model space being Euclidean space E" = R", with the metric dz? +. ..+ dz?;

- k=1, the model space being the round sphere S" C R""! n > 2, with the metric
induced from the Euclidean metric of R"*!;

- k—-1, the model space being hyperbolic space H" which can be defined as follows (see
example 4.4 for an equivalent definition). Endow R"™!, n > 2, with the quadratic form of
signature (n, 1) given by ¢(z,z) = 21 +...+ 22 — 22, and set H* = {z € R"™! | ¢(z, 2) =
—1, 241 > 0}. Then it is easily checked that the restriction of ¢ to the tangent space
of H" at x is positive definite and therefore ¢ defines a Riemannian metric on H". Tts
sectional curvatures can be computed to be constant equal to —1.

For a justification of the term "model space", see Example 3.7 and Remark 4.14.
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2.3. Parallel transport, geodesics and the exponential map. —

The Levi-Civitd connection allows to differentiate vector fields defined along
curves| GHL, Theorem 2.68|. If ¢ is a curve in M and X a vector field along ¢, we
call V. X, or X’ when no confusion is possible, the covariant derivative of X along c: it
is a new vector field along c.

A vector field X along a curve c is called parallel if its covariant derivative along
¢ vanishes identically: V.X = 0. It follows from the standard theory of differential
equations that given a curve ¢ and a vector v tangent to M at ¢(0), there exists a unique
parallel vector field X, along ¢ such that X,(0) = v. The parallel transport along ¢ from
c(0) to c(t) is by definition the linear isomorphism given by v € T )M — X, (t) € Tew M.
Since V is metric, the parallel transport is in fact a linear isometry TioM — T, )M
[GHL, Proposition 2.74].

A geodesic is a smooth curve v : I — M such that V¥ = 0.

Note that a geodesic always has constant speed [GHL, 2.77].

One can prove (see for example [dC, p. 62-64|) that given a point m in M and a tangent
vector v € T,,, M, there exist ¢ > 0 and a geodesic 7 : (—e,e) — M such that v(0) =m
and 4(0) = v. This geodesic is unique, depends in a C* way on m and v. It will generally
be denoted 7, (or o,).

Proposition 2.1. — [dC, p. 64| For allm € M, there exists a neighborhood U of m and
0 > 0 such that, for all v € U and all v € T, M with ||v|| < 9, the geodesic v, is defined
on | — 2,2

Let x € M. The exponential map at x is the map exp, : v € T,M — ~,(1) € M,
defined on a sufficiently small neighborhood of 0 in T, M.
The differential at 0 € T, M of exp,, is the identity map and therefore:

Theorem 2.2. — [dC, p. 65| For all x € M, there exists 6 > 0 such that the restriction
of exp, : T,M — M to the ball B(0,6) is a diffeomorphism onto its image.

A neighborhood U of m € M is called a normal neighborhood of m if it is the diffeo-
morphic image under exp,, of a star-shaped neighborhood of 0 € T,,, M.

Theorem 2.3. — |[dC, p. 72 & 76| Fach m € M has a normal neighborhood U, which
is also a normal neighborhood of each of its points. In particular, any two points of U,
can be joined by a unique geodesic in U, .
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Such a neighborhood will be called a convex normal neighborhood of m.

2.4. Jacobi fields. Differential of the exponential map. —
Let « be a geodesic in M. A vector field Y along ~ is called a Jacobi vector field if it
satisfies the differential equation along ~:

Y+ R(4,Y)y = 0.

This equation is equivalent to a linear system of ordinary second order linear equations
([dC, p. 111]) and therefore for any v,w € T))M, there exists a unique Jacobi vector
field Y such that Y (0) = v and Y’(0) = w. The space J(7) of Jacobi vector fields along
v is 2n-dimensional.

Note that t — () and ¢ — t5(t) are Jacobi vector fields along ~. If Y is a Jacobi field
along 7 such that Y (0) and Y’(0) are orthogonal to 4(0) then Y (¢) is orthogonal to ~(t)
for all ¢ (such Jacobi fields are called normal Jacobi fields).

Let H be a variation of geodesics. This means that H is a differentiable map from a
product I x J into M such that for all s the curve t — ~,(t) := H(s,t) is a geodesic in
M. Tt is then easy to see that the vector field Y along 7o given by Y (t) = %—f(o,t) is a
Jacobi vector field [GHL, 3.45].

In particular, we obtain an explicit formula for Jacobi fields along ¢ — ~(t) vanishing
at t = 0 in terms of the exponential map. Indeed, for any v, w € T,, M, the derivative Y
of the variation of geodesics H(s,t) = exp,,(t(v + sw)) is a Jacobi vector field along the
geodesic v : t — H(0,t) = exp,,(tv). But Y (t) = dy, exp,, (tw) and

Y'(t) = V4 (tdy, exp,, (w)) = di exp,, (w) + tVidy, exp,, (w)
so that Y'(0) = dg exp,, (w) = w.

From uniqueness, we obtain:

Proposition 2.4. — [dC, p. 114] Let t — ~(t) = exp,,(tv) be a geodesic in M. Then
any Jacobi vector field Y along v such that Y (0) = 0 is given by Y (t) = dy, exp,,(tY'(0)).

2.5. Riemannian manifolds as metric spaces. —
The length of a (piecewise) differentiable curve ¢ : [a,b] — M is defined to be

L(e) = / et dt.

A curve c is a geodesic if and only if it locally minimizes length, meaning that for all
t, there exists ¢ such that ¢ is the shortest curve between ¢(t — ¢) and ¢(t + ¢) (see for
example [GHL, p. 91]).



6 JULIEN MAUBON

A geodesic is called minimizing if it minimizes length between any two of its points.

Given two points x and y of M, define d(z,y) to be the infimum of the length of all
piecewise differentiable curves joining x to y. Then d defines a distance on M compatible
with the manifold topology of M [GHL, p. 87|. We call it the length metric of (M, g).

We have the following very important theorem (for a proof see [dC, p. 146| or [GHL,

p. 94]):

Theorem 2.5 (Hopf-Rinow). — Let (M, g) be a Riemannian manifold. The following
assertions are equivalent:

(1) M is geodesically complete, namely, all the geodesics are defined over R, or equiv-
alently, for all m € M, exp,, is defined on T,,M;

(2) There exists m € M such that exp,, is defined on T,,M;

(3) (M,d) is complete as a metric space;

(4) the closed bounded subsets of M are compact.

Moreover, all these assertions imply that given any two points in M, there exists a
minimizing geodesic joining them.

We can also give a metric interpretation of sectional curvature showing that it gives a
measurement of the rate at which geodesics infinitesimally spread apart:

Proposition 2.6. — |C| Let u and v be two orthonormal tangent vectors at m € M. Let
oy and o, be the corresponding unit speed geodesics. Call k the sectional curvature of the
2-plane spanned by u and v. Then

(o (t), o0 (t))? = 22 — g# +o(t9).

2.6. Isometries. —

A map f: M — N between two Riemannian manifolds (M, g) and (N, h) is a local
isometry if for all x € M, d,f is a (linear) isometry between T, M and Ty, N: Yu,v €
ToM, hyey(dyf(u),ds f(v)) = go(u,v). Note that a local isometry is necessarily a local
diffeomorphism.

A local isometry is called an isometry if it is a global diffeomorphism.

If (N,h) = (M,g), a (local) isometry f : M — M is simply called a (local) isometry
of M.

An isometry maps geodesics to geodesics and is therefore an affine transformation. It
is also obviously a distance preserving map.

Conversely, one can prove :
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Theorem 2.7. — |H, p. 61| Let (M, g) be a Riemannian manifold. Then:

(1) Any affine transformation f of M such that d,f is isometric for some x € M is an
isometry of M.

(2) Any distance preserving map of the metric space (M,d) onto itself is an isometry
of M.

One also has the useful

Lemma 2.8. — [dC, p. 163| Let ¢ and 1) be two isometries of M. Assume that at some
point x, ¢(x) = Y(x) and dy¢ = d0. Then ¢ = .

and the

Proposition 2.9. — |GHL, p. 96| Let f : M — N be a local isometry between two
Riemannian manifolds. Assume that M is complete. Then f is a Riemannian covering
map.

The isometries of M obviously form a group I(M). We endow /(M) with the compact
open topology, namely, the smallest topology for which the sets

W(K,U) = {f e I(M)]| f(K) C U},

where K is a compact subset of M and U is an open subset of M, are open.

Since M is a locally compact separable metric space, this topology has a countable
basis ([H, p. 202]). Note that a sequence of isometries converges in the compact open
topology if and only if it converges uniformly on compact subsets of M.

Theorem 2.10. — [H, p. 204| Endowed with the compact open topology, the isometry
group I(M) of a Riemannian manifold M is a locally compact topological transformation
group of M. Moreover, for all x € M, the isotropy subgroup I(M), = {g € G| gz = z}
of I(M) at = is compact.

2.7. De Rham decomposition. —
See [KXIN] for details and proofs.

Definition 2.11. — A Riemannian manifold M is said to be reducible if it admits a
finite Riemannian cover M which splits as a Riemannian product My x My of manifolds
of positive dimension. If M is not reducible, it is irreducible.
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Theorem 2.12 (de Rham decomposition). — Let M be a simply connected Rieman-
nian manifold. Then M decomposes as a Riemannian product (all but one of the factors
may be absent)

M = My x My X ... X M,

where My is a Euclidean space and for 1 < i < k, the manifold M; is irreducible. This
decomposition is unique up to the order and isometric equivalence of the factors M;,
1< <k,

If the manifold M is not simply connected, then any point in M has a simply connected
neighborhood which admits such a decomposition.

3. Riemannian locally symmetric spaces

Starting from the geometric definition in terms of geodesic symmetries, we prove that
a Riemannian manifold is locally symmetric if and only if its Riemann curvature tensor
is parallel. A good reference is [H] (see also [W]).

Definition 3.1. — Let (M,g) be a Riemannian manifold and let m € M. The local
geodesic symmetry s,, at m is the local diffeomorphism defined on small enough normal
neighborhoods of m by s, = exp,, o(—Idz, ar) o exp,!.

Definition 3.2. — A Riemannian manifold (M, g) is called locally symmetric if for each
m € M the local geodesic symmetry at m is an isometry.

Remark 3.3. In fact a Riemannian manifold (M, g) is locally symmetric if for each
m € M there exists a local isometry ¢,, defined on a neighborhood of m such that
dm(m) = m and whose differential d,,¢,, at m is —idr,_wu (necessarily, ¢, is the local
geodesic symmetry at m).

Since the Levi-Civitd connection V and the Riemann curvature tensor R of g are
invariant by isometries, for any point m of M we have s% (VR),, = d;$m o (VR),, =
—(VR),,. But VR is a (4,1)-tensor and therefore s* (VR),, = (VR),,. Hence:

Proposition 3.4. — A Riemannian locally symmetric manifold has parallel Riemann
curvature tensor : VR = 0.

In fact, the converse of this statement is also true, as the following more general result
shows.
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Theorem 3.5. — Let (M, gy) and (N, gn) be two Riemannian manifolds with parallel
curvature tensors. Let m € M and n € N. Assume that ¢ : T,, M — T, N is a linear
isometry preserving the Riemann curvature tensors, i.e. such that for all u, v, w in T,, M,
RY (o(u), p(v))o(w) = o(RM (u,v)w). Then there exist normal neighborhoods U and V
of m and n such that f := exp, op o exp.! is an isometry between U and V. Note that
f(m)=mn and d,,f = ¢.

Proof. — Let r > 0 be such that exp,, : B(0,r) — U = B(m,r) and exp,, : B(0,7) —
V = B(n,r) are diffeomorphisms, and define f : U/ — V by f = exp, opoexp l. fisa
diffeomorphism. Let us prove that f is an isometry.

Let x € U, x = exp,,(v), and let w € T, M. Let J be the Jacobi field along the geodesic
7, joining m to z such that J(0) = 0 and J'(0) = d,(exp,,) ' (w). Then J(1) = w by
Proposition 2.4. Let (e1(t) = u(t),...,en(t)) be a parallel field of orthonormal frames
along the geodesic v, in M. In this frame, we have J(t) = > vi(t)e;(t).

Let now (£4(t),...,e,(t)) be the parallel orthonormal frame field along the geodesic
Ye(v) in N starting from n such that for all 7, £,(0) = ¢(e;(0)). Define I(t) = . yi(t)e(t).
Then I is a Jacobi vector field along ... Indeed,

gn(I" 4+ RN (o), Dipwy €)= i + 30,45 RN (61,65, €1, 1)
Yl + 20, RN(€1( ),€;(0),€1(0),€:(0))
yi + 30,y R (0(e1(0)), ©(e5(0)), (e1(0)), ¢ (es(0)))
Yl + 22, RM 1(0),€;(0), €1(0), €;(0))
—l—ZJ y; RM(e1, e, €1, ¢€;)
gM(J”"i_RM(;YvaJ);Ywei)
=0

where we have used the fact that the curvature tensor R is parallel if and only if for any
parallel vector fields X, Y and Z, the vector field R(X,Y")Z is also parallel.
Now, I(0) =0 and I'(0) = ¢(J'(0)). Therefore,
do f(w) = dy) exp, (0(J(0))) = I(1).
Since || I(1)|I3 = >, lvi(D)]? = || J(1)]]3;, f is an isometry. O
We therefore get:

Corollary 3.6. — A Riemannian manifold (M, g) is locally symmetric if and only if one
of the following equivalent assertions is true
(1) the Riemann curvature tensor is parallel,
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(2) any linear isometry from T, M to T,M preserving the Riemann curvature tensor
(or equivalently the sectional curvatures) is induced by a (unique) local isometry between
normal neighborhoods of x and y.

Example 3.7. The formula for the Riemann curvature tensor of a manifold of constant
sectional curvature given in Section 2.2 shows that such a manifold is locally symmetric.
Moreover a slight modification of assertion (2) above implies that two Riemannian mani-
folds of the same dimension and of (the same) constant curvature x are locally isometric.

Remark 3.8. It is clear from the proof of Theorem 3.5 that if v is a geodesic through
m € M, then the differential at (¢) of the geodesic symmetry s, is given by d. s, =
—v; " where v¢ denotes parallel transport along v from TyyM to Ty M.

4. Riemannian globally symmetric spaces

Our starting point is the geometric definition of a Riemannian (globally) symmetric
space M, from which we deduce some of the algebraic properties of the isometry group
of M and its Lie algebra. One could also go the other way around: this is the topic of
P.-E. Paradan’s lecture [P|. A much more detailed exposition can be found in [H] (see
also [Bo]).

4.1. Definition and first results. —

Definition 4.1. — A Riemannian manifold (M, g) is said to be a Riemannian (globally)
symmetric space if for all m € M, the local geodesic symmetry at m extends to a global
isometry of M.

Remark 4.2. It follows from the results of the previous section that if M is locally
symmetric and if exp,, : T,,M — M is a diffeomorphism for all m, then s,, is a global
isometry and hence M is globally symmetric. This is the case for example if M is locally
symmetric, simply connected, complete and non-positively curved.

Example 4.3. (see [BH, chap. I1.10] for details) Let M = P(n,R) be the open cone of
positive-definite symmetric n X n matrices. The cone M is a differentiable manifold of
dimension n(n + 1)/2. The tangent space at m is isomorphic via translation to the space
S(n,R) of symmetric matrices and one can define a Riemannian metric on M by the
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following formula: ¢,,(X,Y) = tr(m™ ' Xm~1Y), where m € M, X,Y € T,,M ~ S(n,R)
and trA is the trace of the matrix A.

It is easily checked that the map z — ma~'m is an isometry of M endowed with the
metric we just defined. This map fixes m and its differential at m is —id. It is therefore

the geodesic symmetry s, at m and M is globally symmetric (cf. the remark following
Definition 3.2).

Example 4.4. Real, complex and quaternionic hyperbolic spaces (again, see [BH, chap.
I1.10]).

Let K be R, C or the quaternions and let n € N* (n > 2 if K = R). Endow the space
K"+ with the K-hermitian form ¢ defined by ¢(z,y) = Z1y1 + ... + TuYn — Tni1Yni1
(the conjugation being of course trivial if K = R). In the projective space KP" =
(K"*1\{0})/K* consider the subset KH" of negative lines, namely,

KH" = { [z] € KP" | ¢(z,z) < 0}.

According to the choice of K, KH" is called the real, complex or quaternionic hyperbolic
n-space (whose real dimension is either n, 2n or 4n).

Via the differential of the projection K"™\{0} — KP", the tangent space of KH" at
[z] is naturally identified with the orthogonal complement z+ = {u € K" | ¢(x,u) = 0}
of x. The inner product on z+ defined by —R q(u,v)/q(x, z) is compatible with this iden-
tification and goes down to a scalar product on T, KH", turning KH" into a Riemannian
manifold.

The geodesic symmetry at [z] € KH"™ comes from the linear symmetry w.r.t. the line Kz
in K"*!: we may choose « such that ¢(z, z) = —1 and we set s, ([y]) = [22 ¢(z, y)+y], for
any [y] € KH". This is a global isometry of KH" which is therefore a globally symmetric
space.

Note that the real hyperbolic space RH" is nothing but the hyperbolic space H" we
have already defined.

Proposition 4.5. — A Riemannian globally symmetric space M is complete. Moreover,
if G denotes the identity component of the isometry group of M, then G is transitive on
M ; namely, M is G-homogeneous.

Proof. — We can use the geodesic symmetries to extend the geodesics on R and hence
M is complete. If now x and y are two points of M then let v be a unit speed geodesic
from z to y and consider the isometries p; = s4(;/2) © s,. Then py = Id and hence p; € G.
For t = d(x,y), p:(x) = y thus G is indeed transitive on M. O
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Given a unit speed geodesic v in M, the isometry ¢ — p; := 5(;/2) © Sy(0) of the previous
proof is called a transvection along v (see Lemma 4.18 below).

Let K = G,, be the isotropy group at m € M of the identity component G of the
isometry group of M.

We know from theorem 2.10 that endowed with the compact open topology, the group
G is a locally compact topological transformation group of M and that K is a compact
subgroup of G. Since (G is transitive on M, this implies that the map gK +— g.m from
G/K to M is a homeomorphism. Furthermore, one has the following result, due to
Myers-Steenrod:

Theorem 4.6. — [H, pp. 205-209| The topological group G is a Lie transformation group
of M and M s diffeomorphic to G/ K.

Example 4.7. The group GL(n,R) of invertible matrices with positive determinant
acts transitively and isometrically on M = P(n,R) by g.m := gm 'g. The stabilizer
of id € M is SO(n,R). Therefore M can be identified with GL"(n,R)/SO(n,R). One
should notice that if n is even, GL"(n,R) does not act effectively on M: the identity
component of the isometry group of M is GL"(n, R)/{+id}.

Example 4.8. The identity component of the isometry group of hyperbolic space KH"
can be seen to be isomorphic to the group POk(n, 1) which is the image in PGL(n + 1, K)
of the subgroup Og(n,1) of GL(n + 1,K) consisting of elements preserving the form ¢
used to define KH". The isotropy group in POg(n, 1) of a point in KH" is isomorphic
to P(Ok(n) x Ok(1)), where Oxk(n) is the subgroup of GL(n,K) consisting of elements
preserving the form zyy, + ...+ Z,y, on K",

Before analyzing in more details the structure of G and its Lie algebra, we prove that
if a Riemannian manifold is locally symmetric, complete and simply connected, it is
globally symmetric. In particular, this implies that the universal cover of a complete
locally symmetric space is a globally symmetric space. For this, we need two lemmas [H,
pp. 62-63].

Lemma 4.9. — Let M and N be complete Riemannian locally symmetric manifolds. Let
m € M, U a normal neighborhood of m and f : U — N an isometry. Let o be a curve
in M starting from m. Then f can be continued along o, i.e. for each t € [0,1], there
exists an isometry f; from a neighborhood U, of o(t) into N such that Uy = U, fo = f
and there exists € such that for [t — s| < e, UsNU; £ D and fs = f; on U N U;.



SYMMETRIC SPACES : DIFFERENTIAL GEOMETRY 13

Remark 4.10. Such a continuation is unique because f;(c(t)) and dy f; vary continu-
ously with .

Proof. — Assume that f is defined on a normal ball B(z, p) around some x € M and that
for some r > p, B(x,r) and B(f(x),r) are normal balls around x and f(z). Theorem 3.5
says that the map exp,y od, f oexp, ' is an isometry from B(z,r) to B(f(x),r). It must
coincide with f on B(x, p) since it maps x to f(z) and its differential at x equals d,f.
Therefore f can be extended to B(x,r).

Define I = {t € [0,1]] f can be extended near o(¢t)} and T" = supI. [ is an open
subinterval of [0,1] and 0 € I.

Let then ¢ = }Ln% fi(o(t)). This limit exists by completeness. Choose r such that

B(o(T),3r) and B(g,3r) are convex normal balls around o(7T") and ¢, and let ¢ be such
that o(t) € B(o(T),r) and f;(c(t)) € B(q,r). Then B(o(t),2r) and B(fi(c(t)),2r) are
normal balls around o(¢) and f;(c(t)). Hence f can be extended to B(o(t),2r), which
contains o(7T'). Thus T € I and I = [0, 1]. O

Lemma 4.11. — Let M and N be complete Riemannian locally symmetric manifolds.
Let m € M, U a normal neighborhood of m and f : U — N an isometry. Let o be
a curve in M starting from m and 7 be another curve, homotopic to o with end points
fized. Call f7 and f7 the continuations of f along o and 7. Then f° and f7 agree in a
neighborhood of o(1) = 7(1).

Proof. — Let H :[0,1]> — M be the homotopy between ¢ and 7: Vt, s, H(t,0) = o(t),
H(t,1)=7(t), HO,s) =m, H(1,s) = o(1) = 7(1).

Call f* the continuation of f along the curve Hy : t +— H(t,s).

Let I = {s € [0,1]|Va < s, f*(1) = f°(1) = f°(1) near o(1)}. I is clearly an open
subinterval of [0, 1] containing 0. Let S = sup /.

The curves Hg and f° o Hg are continuous, hence there exists r such that for all ¢,
B(Hs(t),2r) and B(f° o Hg(t),2r) are normal balls. But then there exists ¢ such that
for 0 < S —s < e and for all t, H,(t) € B(Hg(t),r). Then f¥ is a continuation of f along
H, and therefore by uniqueness f° = f* near o(1). Hence S € I and I = [0, 1]. O

We may now state:

Theorem 4.12. — Let M and N be complete Riemannian locally symmetric spaces. As-
sume that M is simply connected. If m € M, n € N, and ¢ : T,, M — T,,N is a linear
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isometry preserving the Riemann curvature tensors, then there exists a unique Rieman-
nian covering f: M — N such that f(m) =n and d,,f = .

Proof. — It follows from the lemmas above that setting f(exp,,(v)) = exp, (¢(v)) gives
a well-defined map f from M onto N. Moreover this map is a local isometry and since
M is complete, it is a Riemannian covering map by Proposition 2.9. O

Corollary 4.13. — Let M be a complete simply connected Riemannian manifold. The
following conditions are equivalent:

(1) M is locally symmetric,

(2) M is globally symmetric,

(3) Any linear isometry between T, M and T,M preserving the Riemann curvature ten-
sor (or equivalently the sectional curvatures) is induced by an (unique) isometry of M.

Remark 4.14. Assertion (3) above shows that up to isometry, there is only one complete
simply connected Riemannian manifold of dimension n and of constant sectional curvature
k. We will call this model space M.

4.2. Structure of the Lie algebra of the isometry group. —

Let now (M, g) be a globally symmetric Riemannian space, G the identity component
of the isometry group of M, m € M, s = s, the geodesic symmetry at m, and K the
isotropy group of m in GG. K is a compact subgroup of G and it follows from what
we have seen that the linear isotropy representation £ € K +— d,,k identifies K with
the (closed) subgroup of O(T,,M, g,,) consisting of linear isometries which preserve the
curvature tensor R,,. Recall that M is identified with the quotient G/K. We call m the
map G — M, g +— g.m.

The Lie algebra g of G can be seen as a Lie algebra of Killing vector fields on M: if
X € g, the corresponding vector field X* is defined by X*(z) = %etxxhzo, for any = € M.
It should also be noted that, under this identification, [X,Y]* = —[X*, Y*], where in the
right-hand side, [, | denotes the usual bracket of vector fields on M. Remember that a
vector field X is a Killing vector field of (M, g) if and only if g(Vy X, Z)+g(V2zX,Y) =0
for any vector fields Y and Z.

The symmetry s induces an involution o of G given by o(g) = sgs and the differential
deo = Ad(s) is an involution of the Lie algebra g of G.

We therefore have a splitting g = € @& p where £ and p are respectively the +1 and
—1 eigenspaces of Ad(s). Note that since Ad(s)[X,Y] = [Ad(s)X,Ad(s)(Y)] for all
X,Y € g, we have [¢, €] C € i.e. €is a subalgebra of g, [¢,p] C p, i.e. p is ad(f)-invariant,
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and [p,p] C €. Such a decomposition g = €@ p is called the Cartan decomposition of g
associated to m.

Proposition 4.15. — The group K lies between G’ := {g € G|og = g} and G§, the
identity component of G°. The Lie algebra € of K is also the kernel of dem : g — T,, M.
Consequently, demy, : p — T, M 1is an isomorphism.

Proof. — Let k € K. Then sks(m) =m = k(m) and d,,(sks) = —Idod,,ko(—Id) = d,,k,
hence sks = k. Thus K C G” and Lie(K) C &

Now, let X € €. This is equivalent to /X € G since se"*s = 24X = etX  Then
e m is fixed by s for all t. Since m is an isolated fixed point of s, we have e!Xm = m for
all . Thus G C K and £ C Lie(K).

If X €t then dom(X) = Se¥m|,_o = $m|i—o = 0. On the other hand, assume that
X € g is such that dem(X) = 0. Let f : M — R be any function and let h be the

function on M defined by h(p) = f(e**p) for some a € R. Then
d
!
Hence t — f(e"m) is constant. This implies ¢/X € K and X € t.

The map d.my, is therefore injective. Since p and 7}, M have the same dimension, we

d d
0 =d,h(demX) = ah(etxm)hzo = (e e m) =g = &f(etxm)h:a.

are done. ]

Finally, the scalar product g,, on T,,M gives a positive definite inner product ) on p
which is ad(€)-invariant. Indeed, for X € ¢ and V,W € p, Q([X, V], W)+ Q(V, [ X, W]) =
Gon (12X, VI (), W (1)) 4G (V* (), [X, W]*(m)) = (X.g(V, )], = O since X*(m) = 0.
This inner product can be extended to g by choosing any ad()-invariant inner product
on €.

Altogether, these data define what is called a structure of orthogonal involutive Lie
algebra on g.

Example 4.16. In the case of the symmetric space M = P(n,R) = GL*(n,R)/SO(n,R),
the involution o of GL*(n,R) corresponding to the geodesic symmetry s = siq : © +— 27!
is easily seen to be the map g — fg~!. Its differential at e is the map X — — 'X.
Therefore the Cartan decomposition of g = gl(n, R) is just the decomposition of a matrix

into its symmetric and skew-symmetric parts: £ = o(n,R) and p = S(n,R).

Example 4.17. The Lie algebra of the group POg(n, 1) consists of the trace free matrices
X in GL(n + 1,K) such that I,; X + 'XI,; = 0, where I, is the (n +1) x (n + 1)
diagonal matrix whose n first coefficients equal 1 and whose last one is —1. The Cartan
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involution is given by the map X — — *X. Therefore we get that € is isomorphic to the
space 0(n,KK) of n x n matrices A with coefficients in K such that ‘A = —A, whereas
p ~ K™

We end this section with a little lemma about transvections along a geodesic.

Lemma 4.18. — Letv € T,,M and let 7y : t — exp,,(tv) be the corresponding geodesic.
The transvections p; = Sy(/2)8m along v form a I-parameter group of isometries. More-
over, if X € p is such that dom(X) = v, then p; = €', so that in particular e*m = ~(t)
and d,e'* = ~f, the parallel transport along v from T,,M to TyyM.

Proof. — Clearly, p,(y(u)) = y(u+t). Moreover, dyypt : TywyM — Ty M is parallel

_ AUt —u _

transport along v. Indeed d.p: = dyw) (Sy(t/2)5m) = dy(—u)S(t/2) © Ar(u)Sm = Yt ony-

yutt Therefore, pyp, = puis since they agree at m along with their differentials. ¢t — p,
is hence a 1-parameter group of isometries. Thus there exists X € g such that p, = e!*X.

Now, d.m(X) = %ptmhzo = 0. O

4.3. Further identifications and curvature computation. —
As we said, p can be identified with 7}, M, whereas £ can be identified with a subalgebra
t of o(T,,,M, g,,). More precisely,

t={T € o(T,,M, gnn) |Yu,v € T,,M, ToR,,(u,v) = Ry, (Tu,v)+ Ry, (u, Tv)+ Ry (u,v)oT}.

We will denote by Tx the element of t corresponding to X € €.

Therefore, g is isomorphic to t @ T, M as a vector space. We will now see what is the
Lie algebra structure induced on t & T,, M by this isomorphism.

Let X € tand Y € p, and let f be a function on M. Then,

(XY f = —[X* Y. f =Y X" f — X*Y*.f

1
But (X*.(Y*.f))(m) = 0 since X*(m) = 0. On the other hand, X*.f = tlimo ;(foetX—f).
Therefore,

(VX)) m) = lim (Y o ) (m) — (V) (m)

= Jim ~(dnf 0 dpe™ (V¥ (m)) = du f(Y*(m))

= (i (e (v (m) = ¥ ()
= dnf(Tx(Y*(m)))
Hence [X,Y]*(m) = Tx(Y*(m)).
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Let now X,Y € p and X*, Y* the corresponding Killing fields on M. We want to
calculate the Riemann curvature tensor R(X*,Y™*) at m. We drop the upper-scripts * for
the computation.

First, it is immediate from the formula for the Levi-Civitd connection that for any
Z € p seen as a Killing field on M,

29(VxY, Z) = g([X, Y], Z) + g([Y, Z], X) + 9([X, 2], Y),
since X.g(Y, Z) = g([X, Y], Z)+g(Y, [X, Z]) for Killing fields. The r.h.s. vanishes at m by
Proposition 4.15, for the bracket of two elements of p belongs to €. Hence (VxY')(m) = 0.
Of course we also have (VyX)(m) =0, (VxX)(m) =0 and (VyY)(m) = 0.
Now,
RX,Y, X)Y) =g(VixnX,Y) —g(VxVyX,Y) + g(VyVx X, Y).
Since X is Killing, g(Vxy)X,Y) = —g(Vy X, [X,Y]) and
g(vaYX, Y) = Xg(VyX, Y) — g(VyX, V)(Y) = —g(VyX, V)(Y)
Thus, g(Vixy1X,Y) — 9(VxVyX,Y) = [|[VyX||?. On the other hand,
g(Vyva, Y) = Yg([X, Y], X) — g(VXX, VyY)
g([Y. [X Y], X) = I[X, V][ = g(Vx X, VyY)
because Y is also Killing.
Therefore, at m, R, (X*(m),Y*(m), X*(m),Y*(m)) = gn([[X*, Y*], X*](m), Y*(m)).
This implies that the curvature tensor is given by
By (X7 (m), Y (m)) 2" (m) = [[X*, Y], Z"](m) = [[X, Y], Z]"(m) = Tix.y)(Z"(m)).
Thus Tixy) = Ry (X*(m),Y*(m)).
One then checks easily that if X, Y € ¢, Tixy) = TxTy — TyTx.
Summarizing, we have

Proposition 4.19. — The Lie algebra structure on g =t@ T,,M is given by:
[T,S]| =TS — ST forT,S € t;
T u] = —[u,T) =T(u) for T € t and u € T,,M;
[u,v] = Ry (u,v) for u,v e T, M.

Remark 4.20. For any Riemannian locally symmetric space (M, g), the Lie algebra
t @ 1,,M is defined and is an orthogonal involutive Lie algebra. It is the infinitesimal
version of the isometry group of a globally symmetric space.
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5. Riemannian manifolds of non-positive curvature

In this section we review some of the most important "comparison" results for manifolds
of non-positive curvature. They will be useful in our study of symmetric spaces of non-
compact type. We will stick to Riemannian manifolds but most of these results generalize
to the setting of metric spaces (see Remark 5.12). Good references for the material in
this section are the books [Ba] and [BH] (and also [E]).

5.1. The Rauch comparison theorem. —
Before specializing to non-positive curvature, we prove (see also [dC, chap. 10]) the
following

Theorem 5.1 (Rauch comparison theorem). — Let M be a Riemannian manifold
and let v : [0, T) — M be a unit speed geodesic. Assume that all the sectional curvatures

of M along v are bounded from above by some real number k. Let'Y be a normal Jacobi
field along . Then, for all t such that ||Y||(t) # 0, we have

IYI"(8) + =Y 11 (£) = 0.

In particular, if y,. is the solution of the differential equation y" + xky = 0, with the same
initial conditions as ||Y'||, then ||[Y]|(t) > y.(t) fort € [0,T).

Proof. — This is just a computation. ||Y||' = (Y,Y”)||Y| ™!, hence

" = (V. y") + Y)Y = (Y Y)2y e
= [YIPIY]~ = (RO, V)3 VY7 = (Y)Y~
> YIPIVI = sV = (Y)Y

where for the second equality we used the definition of a Jacobi field, and for the inequality
the fact that Y is normal to . Thus

V1" + &1 1= VI APV = (v, Y7)%) > 0

by Cauchy-Schwarz inequality.
Let now f = |[Y[I'ys — [[Y[ly;;- Then f(0) =0 and f" = [[Y]["yx — [V llys = =Y Iy +
kyx) = 0. Hence f > 0 and therefore (||Y]|/y.) > 0 and we are done. O

This result allows to compare different geometric quantities in a manifold M all of
whose sectional curvatures are bounded from above by s to corresponding quantities in
a complete simply connected manifold M, of constant sectional curvature x. Recall that
M is unique up to isometry. By scaling the metric, we can assume x € {—1,0,1}, and the
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corresponding model spaces of dimension n are hyperbolic n-space M_; = H", Euclidean
n-space My = [E" and the n-sphere M; = S™ with its standard metric.

Corollary 5.2. — Let M be a Riemannian manifold all of whose sectional curvatures are
bounded from above by k € R. Let M, be the model space of constant sectional curvature
K (of the same dimension as M ).

Let m € M, p € M, and ¢ a linear isometry between T,,M and T,M,. Let r be so
small that B(m,r) and B, (p,r) are normal convex neighborhoods of m in M and p in
M. Let f: B(m,r) — By(p,r) be given by f = exp,op o exp,.'. Then f is distance
NON-INCreasing.

Proof. — Let x € B(m,r), x = exp,,(v), and 7 the geodesic t — exp,,(tv). Let w € T, M,
and call w* the component of w orthogonal to (1) and w? = w — w.

Let Y be the Jacobi field along 7 such that Y (0) = 0 and Y (1) = w. We can also
write Y = YT 4+ Y+ where YT(t) = d';‘é;”ﬁﬁ(t) is a Jacobi field along ~ collinear to % such
that Y7(1) = w? and Y+ =Y — Y7 is a normal Jacobi vector field along ~ such that
Y+(1) = wt.

Call Y, the Jacobi field along the geodesic exp,(tp(v)) in M, such that Y, (0) = 0 and
Y!(0) = ¢(Y’(0)). With the obvious notation, we have Y, = YT + Y.

Then d, f(w) = Y, (1). Hence

ldzf(w)|* = [V (I = [V + 1Y (1)1

Now, [|[Y.I(1)| = |[YT(1)|] and it follows from the Rauch comparison theorem that ||Y*|| >
Yo = [[Y:"[l. Hence [|dg f(w)]] < [Jw].

Therefore if z and y are two points in B(m,r) and if v C B(m,r) is the geodesic joining
these two points, then d,(/(z), /(1)) < L(f 07) < L(1) = d(z,). .

5.2. Hadamard manifolds. —

From now on, we will focus on the case k = 0, namely, (M, g) is non-positively curved.

Definition 5.3. — A complete simply connected non-positively curved manifold is called
a Hadamard manifold.

It follows immediately from the Rauch comparison theorem that in a Hadamard man-
ifold M, a Jacobi vector field Y along a geodesic v such that Y (0) = 0 never vanishes
again. This implies that for all m € M, exp,, is a local diffeomorphism from 7, M onto
M (since M is complete). Endowing 7,,, M with the metric exp’, g, exp,, becomes a local
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isometry. Now, (7,,M, expr, g) is complete since the geodesics through 0 are straight lines.
Hence exp,, is a covering map and since M is simply connected, exp,, is a diffeomorphism:

Theorem 5.4. — A Hadamard space of dimension n is diffeomorphic to R™.

Note that two points in a Hadamard manifold are joined by a unique minimizing
geodesic.

Until the end of this section, M will be a Hadamard manifold and E will be Euclidean
2-space. We will assume all geodesics parameterized by arc length.

5.2.1. Geodesic triangles in Hadamard manifolds. The CAT(0) Property. —

Given three points p, ¢, 7 in M (or in E) we will denote by <,(g,7) the angle between
the geodesic segments [p, q] and [p,r] emanating from p, that is, the Riemannian angle
between the tangent vectors to these geodesics at p.

Definition 5.5. — A geodesic triangle T in a Riemannian manifold consists of three
points p, q, r, its vertices, and three geodesic arcs |p,ql, [q,r] and [r,p] joining them, its
sides or edges. Note that in a Hadamard manifold a geodesic triangle is determined by its
vertices.

We will sometimes denote by p (resp. ¢, 7) the vertex angle of a geodesic triangle
T =T(p,q,r) at p (resp. q, ), i.e. p=<,(q,r).

Definition 5.6. — A comparison triangle of a geodesic triangle T C M in E is a geodesic
triangle Ty in E whose side lengths equal the side lengths of T. Such a triangle always
exists and is unique up to isometries of E.

Given an “object” a in a geodesic triangle T" in M, we will always denote by ag the
comparison object in the comparison triangle Ty. For example, if p is a vertex of T, py
will be the corresponding vertex of Ty. If z is a point on the side [p, q] of T, xy will be
the point on the comparison side [pg, qo] of Ty such that dy(po, xo) = d(p, ).

We begin with the following remark concerning angles.

Lemma 5.7. — [A] The Riemannian angle between two unit tangent vectors u,v € T,, M

s the limit as t goes to zero of the vertexr angle at mg of the comparison triangle of
T(m,o,(t),o,(t)).
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Proof. — 1t follows from Corollary 5.2 that d(o,(t), 0,(t)) > t||u —v||. Now, consider the
path ¢ : s+ exp,,(tu + st(v — u)) from o,(t) to o,(t).

1
d(ou(t), (1)) < L(c) =t / 1t (ut-so—u)) €xPpy (v — w) | ds.
0

d(ou(l), ou(t
For ¢ close to 0, dy(u+tsw—u)) €XP,, is close to Id and hence tlimo W
— u—v

This implies that the triangle 7'(0, tu, tv) in T,,M goes to the comparison triangle of
T(m,o,(t),o,(t)) as t — 0, hence the result. O

= 1.

We are ready to compare geodesic triangles in Hadamard manifolds with Euclidean
ones.

FiGuRreE 1.

Lemma 5.8. — Let m € M and u,v € T,,M. Let o, and o, be the corresponding unit
speed geodesics. Let © = o,(s) and y = o,(t). Let also mg, xo yo be points in E such that
do(mg, zo) = s, do(mo,yo) =t and the angle <, (T0,yo) equals the angle between u and v
(see Figure 1). Then do(zo,y0) < d(z,y).

Consequently, if a, (3, v are the vertex angles of a geodesic triangle T in M and «g, By,
Yo the corresponding vertex angles of its comparison triangle Ty, then

a <y, B < Bo, and vy < .
In particular, o + 3+ v < 7.
Proof. — Immediate from Corollary 5.2. O

Lemma 5.9. — Let T =T (p,q,r) be a geodesic triangle in M and let Ty be its compari-
son triangle in B. Let x be a point on the side [q,r]. Then d(p,x) < do(po, o). Moreover,
if the sum of the vertex angles of T equals 7 then d(p,z) = do(po, To)-
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Proof. — Consider the geodesic triangles 7" = T'(p, q,z) and 7" = T'(p, ,r) and call T},
and Tj their respective comparison triangles in E. We can assume that 7 and 7 are
such that pj = pj and z(; = x{, and that they lie on different sides of the line through p
and z;, (see Figure 2).

’ "
P Po = Pg = Po

FIGURE 2.

If 2/, resp. 2", is the vertex angle at x of 7", resp. T”, and if z, resp. z{, is the

corresponding vertex angle in 7§, resp. Tf, then &+ 2y > &’ + 2" = w. This implies that
if we want to straighten the union 7] U T{ to form a comparison triangle for 7" (without
modifying the side lengths of T, and T} other that [p}, z}]), we have to increase (at least
not decrease) the distance from pg to xo. Hence the first part of the result.

Now assume that the sum of the vertex angles of T is . Call p’ and ¢, resp. p” and 7",
the remaining vertex angles of 77, resp. T”. Then p' +p" + ¢ + 2’ + 2" + 7" = 27. Since
p+q¢+3 <mand p”"+2"+7" <7, we have in fact p' +¢ +2' =mand p" + 3"+ 7" =7,
hence all these vertex angles are equal to their comparison angles. This implies that
&y + &y = &’ + 2" = m, hence that d(p, x) = do(po, o). O

We can now state the main property of geodesic triangles in Hadamard manifolds.

Definition 5.10. — A geodesic triangle T in a manifold is said to be CAT(0) if it is
thinner than its comparison triangle in &, namely if for any two points x and y on T,
and for xg, yo the corresponding points in the comparison triangle Ty of T in E, we have

d(z,y) < do(zo,Yo)-

Proposition 5.11. — (1) Geodesic triangles in a Hadamard manifold M are CAT(0).
(2) Moreover, if the sum of the vertex angles of a geodesic triangle T of M equals T,
then there exists a unique isometry ® from the convex hull Conv(Ty) of Ty in E into the
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convexr hull Conv(T') of T in M, such that ®(zo) = z for all zy € Ty, that is to say, T
bounds a flat solid triangle in M.

Proof. — Let us first prove (1). Let 2 and y be two points in the triangle "= T'(p, q, ),
and Ty = T(po, qo,70) the comparison triangle of 7. We can assume z and y are not
on the same side of T', say « € [¢,r] and y € [p,q]. We know from Lemma 5.9 that
d(p,z) < do(po, o). Consider the comparison triangle T} = T'(p}, xy,qy) of T(p,z,q).
Then, again from Lemma 5.9, d(z,y) < do(xf, y;). Now, the lengths of the sides [pf, ¢(] and
[z, qp] of T} are equal to those of [pg, go] and [z, go] in Ty, whereas [py, xp] is shorter than
[0, po]. This implies that [z, y)] is shorter than [z, yo], hence that d(z,y) < d(xo, yo).
Proof of (2). The assumption is p = pg, ¢ = o and 7 = 7. From the second assertion in
Lemma 5.9 and from the proof of part (1) we get that d(x,y) = d(zo,yo) for all x,y € T.
Now we want to define ® in the interior of Conv(7}). Let yo be a point there and call 2, the
unique point on the side [qo, 7] such that yy € [po, 20]. Map 2o to its corresponding point
z on the side [¢,r] of T. Tt follows from what we just seen that the triangle T'(pq, qo, 20)
is the comparison triangle of T'(p,q, z). Since again the vertex angles are the same, the
comparison map between these triangles is an isometry and we can map zy € [po, 2] to
the corresponding point ®(zg) € [p, z]. One then checks easily that ® is isometric. O

Remark 5.12. Property (1) gives one way to generalize the notion of non-positive
curvature to metric spaces as follows.

Let (X, d) be a metric space.

A geodesic 7y joining x € X to y € X is a continuous curve v : [0,{] — X such that
v(0) =z, v(I) = y and d(v(¢t),y(t')) = |t — t| for all ¢,¢" € [0,1].

(X,d) is called a geodesic space if any two of its points can be joined by a geodesic.

The (possibly infinite) length of a (continuous) curve ¢ : [a,b] — X is defined by

n

I(c) = sup Y d(c(tio), elt;))

a=to<t1<-<tn=b "]

where the supremum is taken over all possible partitions of [a,b]. A curve c is rectifiable
if its length is finite.

The metric space (X, d) is a length space if the distance between any two of its points
is given by the infimum of the lengths of the rectifiable curves joining them.

Now, a length space (X, d) is called a CAT(0)-spaceif it is geodesic and if every geodesic
triangle in X is CAT(0). It is said to be non-positively curved (in the sense of Alexandrov)
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if it is locally a CAT(0)-space, namely if every point in X has an open neighborhood U
that is a CAT(0)-space (with the induced metric).

A complete simply connected length space of non-positive curvature is called a
Hadamard space. Tt is then a CAT(0)-space by the generalized Cartan-Hadamard
theorem, see [BH, p. 193].

It should also be noted that, as was proved by Alexandrov in [A], a smooth Riemannian
manifold has non-positive curvature in the sense of Alexandrov if and only if all its
sectional curvatures are non-positive (see [BH, p. 173| for a proof using Proposition 2.6).

Corollary 5.13 (Flat quadrilateral theorem). — Let p, q, r, s be four points in M
and let o =9,(q,s), B =94, 7), v =9,(q,), 6 =<4.(p,r). Then if a + 5+~ + 9 > 2m,
this sum equals 2w and p, q, r, s “bound” a convexr region in M isometric to a convex
quadrilateral in IE.

Proof. — Let T = T(p,q,s) and T" = T(q,r,s). Call p, ¢, $ and ¢, 7', § the vertex
angles of 7" and T”. Tt follows from the triangle inequality that 5 < ¢+ ¢ and § < §+§'.
Hence, if a + 3+~ + 6 > 2w, then p+ ¢+ 8§ > 7 and ¢ + 7' + § > 7. Therefore all these
inequalities are in fact equalities and the triangles 7" and 7" are flat. Let Ty = T'(po, qo, So)
and 7§ = T(qo,70,50) be comparison triangles for 7" and 7" so that py, and ry lie on
opposite sides of the line through gy and sg. Then the quadrilateral Qy = (po, g0, 70, So)
is convex. Let xy € Conv(Tj) and z{, € Conv(7{). The fact that ¢ + ¢ = [ implies that
Jq(x,2") =<4 (20, x(), where z, resp. ', is the image of xy, resp. z{, under the isometry
Conv(7y) — Conv(T), resp. Conv(T}) — Conv(7"). This shows that these isometries
patch together to give an isometry between Conv(po, go, 70, So) and Conv(p, g, 1, s). O

5.2.2. Convezity properties of Hadamard manifolds. Parallel geodesics. —
A Hadamard manifold shares many convexity properties with Euclidean space. Recall
that a function f : M — R is convex if its restriction to each geodesic o of M is convex.
Lemma 5.9 immediately implies

Lemma 5.14. — Let m € M. The function x — d(x,m) is conver.
We also have

Proposition 5.15. — Let o and 7 be two (unit speed) geodesics in M. The function
t— d(o(t), 7(t)) is conver.
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Proof. — Let t; < ty and let t = %(tl + ty). Call v the geodesic segment from o(¢;) to
7(t) (see Figure 3).

o

FiGURE 3.

We have d(cr(t),T(t)) < d(o(t),y(t)) + d(y(t),7(t)). The CAT(0) property implies

that d(o(t),7(t)) < 3d(o(ts), 7(t2)) since equality holds in the comparison triangle of
T(o(t1),0(t2), 7(t2)). In the same way, d(v(t), 7(t)) < 3d(o(t1), 7(t1)). Hence the propo-
sition. U

More generally, the following proposition holds:

Proposition 5.16. — Let C' C M be a closed convex set. Then for every x € M there
exists a unique point no(x) € C such that d(z, 7o (x)) = d(x,C). Moreover the map
7o« +— me(x) is 1-Lipschitz and the function x — d(z,C) is conver.

Definition 5.17. — Two (unit speed) geodesics o1 and oy in M are called parallel if
there exists k > 0 such that ¥t € R, d(o1(t),02) < k and d(os(t),01) < k.

Corollary 5.18 (Flat strip theorem). — Let 0, and o9 be two parallel geodesics in
M. Then o, and oo bound a flat strip, namely, there exist D € R and an isometry ® from
R x [0, D] with its Euclidean metric into M such that (up to affine reparameterizations
of o1 and 04), ®(t,0) = 01(t) and ®(t, D) = o4(t), Vt € R.

Proof. — The function ¢t — d(o4(t),02(t)) is convex and bounded on R, hence constant,
say equal to D € R. We can assume that the closest point to p := 01(0) on o2(R)
is ¢ := 02(0). We claim that for ¢ # 0, the angle J,(p,02(t)) > 5. If not, then by
Lemma 5.7 there is a point = in the geodesic segment [g, p] and a point y on the geodesic
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of T'(q,z,y) is strictly less than 7. This would implies that there are points 2’ on [g,z

and 3’ on [g,y] such that d(2’,y’) < d(z',q). But then ¢ wouldn’t be the point on o3(R)
t

closest to p. Hence, for all t # 0, J4,(0)(01(0),02(t)) = 5, and p = 0,(0) is the poin
on o1 (R) closest to ¢ = 02(0) so that for all ¢ # 0 we also have g, ()(02(0),01(t)) = 3.

Therefore the sum of the vertex angles of the quadrilateral (oy(—t), 01(t), 0a(t), 02(—t))
is 27r. Thus this quadrilateral is isometric to [—t, ] x [0, D] with its Euclidean metric.
Letting t — oo yields the result. O

segment [q, 0o(t)] such that the vertex angle at ¢q of the comparison triangle T'(qo, o, o)
]

Corollary 5.19. — Let o be a geodesic in M and let P(o) be the union of all geodesics
in M that are parallel to o. Then P(o) is a closed convex subset of M. Moreover, P (o)
splits isometrically as a product Q@ x R, where Q is closed and convexr and {q} x R is
parallel to o for all g € Q.

Proof. — The convexity of P(o) is a direct consequence of the flat strip theorem. Now,
let (x,)nen be a sequence of points in P(o) converging to some xo, € M. For all n, there
exists a unit speed geodesic o, parallel to o such that ¢,(0) = z,,. Now, for all n, m, the
geodesics 0, and o, are parallel and hence the function ¢ — d(o, (), 0,,(t)) is constant
equal to d(0,(0),0,(0)) = d(x,, x,,). Hence, for all ¢, the sequence (,,(t))nen is a Cauchy
sequence and therefore, by completeness of M, converges to a point, say o (t). It is now
easily checked that ¢t — 0., (t) is a geodesic in M parallel to 0. Thus P(o) is closed.

Let x and y be two points in P(c), and let ¢ = ¢(0). Up to parameterization there is
a unique unit speed geodesic o, resp. oy, through z, resp. y, and parallel to . We can
choose the parameterization of o,, resp. oy, so that ¢, := 0,(0), resp. ¢, := 0,(0), is the
point on o, (R), resp. o,(R), closest to g.

The geodesics o and o, bound a flat strip and therefore, for all a € R,

d(o(t), 04(a) — t = (d(o(a), 0u(a)* + (t — a)?)> —t — —a, as t — +oc.

Hence ¢,, resp. ¢, is the only point on o,(R), resp. o(R), so that d(o(t),q,) —t — 0 as
t — 00, resp. d(o,(t),q) —t — 0 as t — oc.
Now, d(0(t), gz)—t < d(oy(t),0(t/2)) —5+d(0(t/2), ¢») — % and since d(o, (1), o(t/2))—
L — 0ast— oo, we get
lim d(oy(t),q;) —t=0

t——00

and, similarly,
lim d(o,(t),q,) —t=0

t— o0
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Since o, and o, are parallel, they bound a flat strip and therefore ¢, resp. g,, is the point
on 0,(R), resp. o,(R), closest to g,, resp. ¢,. Hence,
2

d(z,y)* = d(gs, ) + (dy, q) — d(2, )",
thus the result with @ = {q., © € P(0)}. O

5.2.3. The boundary at infinity. —
Let M be a Hadamard manifold.

Definition 5.20. — Two (unit speed) geodesics rays o,7 : [0,+00) — M are called
asymptotic if the function t — d(o(t), 7(t)) is bounded.

Definition 5.21. — The boundary at infinity Osc M of M is the set of equivalence classes
of rays for the equivalence relation “being asymptotic”. The equivalence class of a ray o
will be denoted o(00).

It follows from the results in the previous section that if ¢ and 7 are two asymptotic
geodesic rays, then <,y (0(1),7(0))+ ) (7(1),0(0)) < 7 with equality if and only if
o and 7 bound a flat half strip, namely a region isometric to [0, D] x [0,400), where
D = d(c(0),7(0)).

The distance function t — d(o(t), 7(t)) between two rays o and 7 is convex and therefore
two asymptotic rays cannot have a point in common unless they are equal. Hence, given
a point x € M, the map ®, from the unit sphere U,M C T,M into 0,,M given by
D, (v) = v,(00) is injective.

If 0 is geodesic a ray and x a point in M, call v, the geodesic ray starting at x
and passing through o(n), n € N. Comparison with Euclidean triangles shows that
Jom)(0(0),2) — 0 as n — o0 since d(c(0),0(n)) — +oo. Hence G, (z,0(n +
k)) — m as n — +o0 uniformly on k so that <,(o(n),o(n +k)) — 7 as n — 400
uniformly on k. This implies that for all t > 0, (7,(t))nen is a Cauchy sequence and
hence converges to a point that we call v(¢). The curve t — ~(t) is easily seen to be
a geodesic ray in M. Now, d(y(t),0(t)) < d(y(t),v(t)) + d(7y.(t),o(t)). For n large
enough, d(v(t),v,(t)) is small whereas d(~,(t),o(t)) is bounded by d(z,o(0)). Hence
t — d(y(t),o(t)) is bounded and ~ is asymptotic to o.

Thus, for all z € M, ®, : U, M — 0, M is a bijective map.

Given x € M, the bijection ®, allows to define a distance g, on 0, M as follows : if
¢ and 7 are two point at infinity, then <,(§,n) is the distance in U, M of the vectors u
and v such that o,(c0) = € and 0,(c0) = 1. This metric defines a topology on 0., M.
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The following lemma shows that this topology is in fact independent of the point x. It is
called the cone topology.

Lemma 5.22. — Let x and y be two points in M. The map @;1 o®, : UM — U,M
1s a homeomorphism.

Proof. — Let (u,) be a sequence of unit tangent vectors at x, converging to some u €
UM. Let 0, : t — exp,(tu,) and o : t — exp,(tu) be the corresponding geodesic rays.
Let now v, and v be the unit tangent vectors at y such that the geodesic rays v, : t —
exp, (tv,) and 7 : t +— exp,(tv) satisfy v,(00) = 0,(c0) and y(c0) = o(o0). We want to
prove that the sequence (v,,) converges to v in U, M, namely that 4, (o,,(c0), o(c0)) —