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2 JULIEN MAUBON1. IntrodutionMany of the rigidity questions in non-positively urved geometries that will be addressedin the more advaned letures of this summer shool either diretly onern symmetrispaes or originated in similar questions about suh spaes.This ourse is meant to provide a quik introdution to symmetri spaes of the non-ompat type, from the (di�erential) geometer's point of view. A omplementary algebraiintrodution is given in P.-E. Paradan's leture [P℄. We have tried to always start from(and stik to) geometri notions, even when the aim was to obtain more algebrai results.Sine the general topi of the summer shool is non-positively urved geometries, we haveinsisted on the aspets of non-positive urvature whih an be generalized to muh moregeneral settings than Riemannian manifolds, suh as CAT(0)-spaes.This text is however very inomplete and the reader should onsult the referenes givenat the end of the paper for muh more detailed expositions of the subjet.In what follows, (M, g) denotes a (smooth and onneted) Riemannian manifold ofdimension n. 2. Riemannian preliminariesIn this setion we review very quikly and without proofs the basis of Riemanniangeometry that will be needed in the rest of the paper. Proofs and details an be found instandard text books, for example [dC℄, [GHL℄ or [KN℄.2.1. Levi-Civitá onnetion. �A onnetion on the tangent bundle TM of M is a bilinear map
∇ : Γ(TM) × Γ(TM) −→ Γ(TM)suh that, for every funtion f ∈ C∞(M) and all vetor �elds X, Y ∈ Γ(TM),� ∇fXY = f∇XY ,� ∇XfY = df(X)Y + f∇XY (Leibniz rule).Note that the value of ∇XY at a point m of M depends only on the value of X at m.On a Riemannian manifold (M, g), there is a unique onnetion on the tangent bundle,the so-alled Levi-Civitá onnetion of g, whih is both torsion-free and metri, namely,suh that� ∇XY −∇YX = [X, Y ] for all X, Y ∈ Γ(TM),� ∇g = 0, i.e. X.g(Y, Z) = g(∇XY, Z) + g(Y,∇XZ) for all X, Y, Z ∈ Γ(TM).



SYMMETRIC SPACES : DIFFERENTIAL GEOMETRY 3The following formula for the Levi-Civitá onnetion, whih also implies its existene, isuseful:
2g(∇XY, Z) = X.g(Y, Z)+Y.g(X,Z)−Z.g(X, Y )−g(X, [Y, Z])+g(Y, [Z,X])+g(Z, [X, Y ]).2.2. Curvatures. �If X, Y, Z ∈ Γ(TM), we de�ne R(X, Y )Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z. In fat, the valueof this vetor �eld at a point m depends only on the values of the vetors �elds X, Y , Zat m. R is alled the Riemann urvature tensor of g.The metri allows us to see the Riemann urvature tensor as a (4,0)-tensor by setting
R(X, Y, Z, T ) = g(R(X, Y )Z, T )The Riemann urvature tensor has the following symmetries [GHL, Proposition 3.5℄:� R(X, Y, Z, T ) = −R(Y,X, Z, T ) = R(Z, T,X, Y ),� First Bianhi identity: R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0.The setional urvature K(P ) of a 2-plane P in TmM is de�ned as follows : pik a
g-orthonormal basis (u, v) of P and set K(P ) = R(u, v, u, v). The setional urvatureoinides with the usual notion of Gaussian urvature on a surfae. Namely, if P is atangent 2-plane in TmM and S a small piee of surfae inM tangent to P at m, then thesetional urvature of P is the Gaussian urvature of S at m [dC, p. 130-133℄.Note that the setional urvatures determine the urvature tensor [dC, p. 94℄. Forexample, a manifold (M, g) has onstant setional urvature κ if and only if its Riemannurvature tensor is given by:

R(X, Y )Z = κ
(
g(X,Z)Y − g(Y, Z)X

)
.Multiplying the metri by a onstant c multiplies the setional urvatures by the onstant

1/c, therefore there are only three interesting ases:- κ=0, the model spae being Eulidean spae En = Rn, with the metri dx2
1+ . . .+dx2

n;- κ=1, the model spae being the round sphere S
n ⊂ R

n+1, n ≥ 2, with the metriindued from the Eulidean metri of Rn+1;- κ=-1, the model spae being hyperboli spae Hn whih an be de�ned as follows (seeexample 4.4 for an equivalent de�nition). Endow Rn+1, n ≥ 2, with the quadrati form ofsignature (n, 1) given by q(x, x) = x2
1 + . . .+x2

n −x
2
n+1 and set Hn = {x ∈ Rn+1 | q(x, x) =

−1, xn+1 > 0}. Then it is easily heked that the restrition of q to the tangent spaeof Hn at x is positive de�nite and therefore q de�nes a Riemannian metri on Hn. Itssetional urvatures an be omputed to be onstant equal to −1.For a justi�ation of the term "model spae", see Example 3.7 and Remark 4.14.



4 JULIEN MAUBON2.3. Parallel transport, geodesis and the exponential map. �The Levi-Civitá onnetion allows to di�erentiate vetor �elds de�ned alongurves[GHL, Theorem 2.68℄. If c is a urve in M and X a vetor �eld along c, weall ∇ċX, or X ′ when no onfusion is possible, the ovariant derivative of X along c: itis a new vetor �eld along c.A vetor �eld X along a urve c is alled parallel if its ovariant derivative along
c vanishes identially: ∇ċX = 0. It follows from the standard theory of di�erentialequations that given a urve c and a vetor v tangent to M at c(0), there exists a uniqueparallel vetor �eld Xv along c suh that Xv(0) = v. The parallel transport along c from
c(0) to c(t) is by de�nition the linear isomorphism given by v ∈ Tc(0)M 7→ Xv(t) ∈ Tc(t)M .Sine ∇ is metri, the parallel transport is in fat a linear isometry Tc(0)M −→ Tc(t)M[GHL, Proposition 2.74℄.A geodesi is a smooth urve γ : I −→M suh that ∇γ̇ γ̇ = 0.Note that a geodesi always has onstant speed [GHL, 2.77℄.One an prove (see for example [dC, p. 62-64℄) that given a pointm inM and a tangentvetor v ∈ TmM , there exist ε > 0 and a geodesi γ : (−ε, ε) −→ M suh that γ(0) = mand γ̇(0) = v. This geodesi is unique, depends in a C∞ way on m and v. It will generallybe denoted γv (or σv).Proposition 2.1. � [dC, p. 64℄ For all m ∈ M , there exists a neighborhood U of m and
δ > 0 suh that, for all x ∈ U and all v ∈ TxM with ‖v‖ < δ, the geodesi γv is de�nedon ] − 2, 2[.Let x ∈ M . The exponential map at x is the map expx : v ∈ TxM 7→ γv(1) ∈ M ,de�ned on a su�iently small neighborhood of 0 in TxM .The di�erential at 0 ∈ TxM of expx is the identity map and therefore:Theorem 2.2. � [dC, p. 65℄ For all x ∈M , there exists δ > 0 suh that the restritionof expx : TxM −→M to the ball B(0, δ) is a di�eomorphism onto its image.A neighborhood U of m ∈ M is alled a normal neighborhood of m if it is the di�eo-morphi image under expm of a star-shaped neighborhood of 0 ∈ TmM .Theorem 2.3. � [dC, p. 72 & 76℄ Eah m ∈ M has a normal neighborhood Um whihis also a normal neighborhood of eah of its points. In partiular, any two points of Uman be joined by a unique geodesi in Um.



SYMMETRIC SPACES : DIFFERENTIAL GEOMETRY 5Suh a neighborhood will be alled a onvex normal neighborhood of m.2.4. Jaobi �elds. Di�erential of the exponential map. �Let γ be a geodesi in M . A vetor �eld Y along γ is alled a Jaobi vetor �eld if itsatis�es the di�erential equation along γ:
Y ′′ +R(γ̇, Y )γ̇ = 0.This equation is equivalent to a linear system of ordinary seond order linear equations([dC, p. 111℄) and therefore for any v, w ∈ Tγ(0)M , there exists a unique Jaobi vetor�eld Y suh that Y (0) = v and Y ′(0) = w. The spae J(γ) of Jaobi vetor �elds along

γ is 2n-dimensional.Note that t 7→ γ̇(t) and t 7→ tγ̇(t) are Jaobi vetor �elds along γ. If Y is a Jaobi �eldalong γ suh that Y (0) and Y ′(0) are orthogonal to γ̇(0) then Y (t) is orthogonal to γ̇(t)for all t (suh Jaobi �elds are alled normal Jaobi �elds).Let H be a variation of geodesis. This means that H is a di�erentiable map from aprodut I × J into M suh that for all s the urve t 7→ γs(t) := H(s, t) is a geodesi in
M . It is then easy to see that the vetor �eld Y along γ0 given by Y (t) = ∂H

∂s
(0, t) is aJaobi vetor �eld [GHL, 3.45℄.In partiular, we obtain an expliit formula for Jaobi �elds along t 7→ γ(t) vanishingat t = 0 in terms of the exponential map. Indeed, for any v, w ∈ TmM , the derivative Yof the variation of geodesis H(s, t) = expm(t(v + sw)) is a Jaobi vetor �eld along thegeodesi γ : t 7→ H(0, t) = expm(tv). But Y (t) = dtv expm(tw) and

Y ′(t) = ∇γ̇(tdtv expm(w)) = dtv expm(w) + t∇γ̇dtv expm(w)so that Y ′(0) = d0 expm(w) = w.From uniqueness, we obtain:Proposition 2.4. � [dC, p. 114℄ Let t 7→ γ(t) = expm(tv) be a geodesi in M . Thenany Jaobi vetor �eld Y along γ suh that Y (0) = 0 is given by Y (t) = dtv expm(tY ′(0)).2.5. Riemannian manifolds as metri spaes. �The length of a (pieewise) di�erentiable urve c : [a, b] −→M is de�ned to be
L(c) =

∫ b

a

‖ċ(t)‖g dt.A urve c is a geodesi if and only if it loally minimizes length, meaning that for all
t, there exists ε suh that c is the shortest urve between c(t − ε) and c(t + ε) (see forexample [GHL, p. 91℄).



6 JULIEN MAUBONA geodesi is alled minimizing if it minimizes length between any two of its points.Given two points x and y of M , de�ne d(x, y) to be the in�mum of the length of allpieewise di�erentiable urves joining x to y. Then d de�nes a distane on M ompatiblewith the manifold topology of M [GHL, p. 87℄. We all it the length metri of (M, g).We have the following very important theorem (for a proof see [dC, p. 146℄ or [GHL,p. 94℄):Theorem 2.5 (Hopf-Rinow). � Let (M, g) be a Riemannian manifold. The followingassertions are equivalent:(1) M is geodesially omplete, namely, all the geodesis are de�ned over R, or equiv-alently, for all m ∈M , expm is de�ned on TmM ;(2) There exists m ∈M suh that expm is de�ned on TmM ;(3) (M, d) is omplete as a metri spae;(4) the losed bounded subsets of M are ompat.Moreover, all these assertions imply that given any two points in M , there exists aminimizing geodesi joining them.We an also give a metri interpretation of setional urvature showing that it gives ameasurement of the rate at whih geodesis in�nitesimally spread apart:Proposition 2.6. � [C℄ Let u and v be two orthonormal tangent vetors at m ∈M . Let
σu and σv be the orresponding unit speed geodesis. Call κ the setional urvature of the2-plane spanned by u and v. Then

d(σu(t), σv(t))
2 = 2t2 −

κ

6
t4 + o(t5).2.6. Isometries. �A map f : M −→ N between two Riemannian manifolds (M, g) and (N, h) is a loalisometry if for all x ∈ M , dxf is a (linear) isometry between TxM and Tf(x)N : ∀u, v ∈

TxM , hf(x)(dxf(u), dxf(v)) = gx(u, v). Note that a loal isometry is neessarily a loaldi�eomorphism.A loal isometry is alled an isometry if it is a global di�eomorphism.If (N, h) = (M, g), a (loal) isometry f : M −→ M is simply alled a (loal) isometryof M .An isometry maps geodesis to geodesis and is therefore an a�ne transformation. Itis also obviously a distane preserving map.Conversely, one an prove :



SYMMETRIC SPACES : DIFFERENTIAL GEOMETRY 7Theorem 2.7. � [H, p. 61℄ Let (M, g) be a Riemannian manifold. Then:(1) Any a�ne transformation f of M suh that dxf is isometri for some x ∈M is anisometry of M .(2) Any distane preserving map of the metri spae (M, d) onto itself is an isometryof M .One also has the usefulLemma 2.8. � [dC, p. 163℄ Let φ and ψ be two isometries of M . Assume that at somepoint x, φ(x) = ψ(x) and dxφ = dxψ. Then φ = ψ.and theProposition 2.9. � [GHL, p. 96℄ Let f : M −→ N be a loal isometry between twoRiemannian manifolds. Assume that M is omplete. Then f is a Riemannian overingmap.The isometries of M obviously form a group I(M). We endow I(M) with the ompatopen topology, namely, the smallest topology for whih the sets
W (K,U) := {f ∈ I(M) | f(K) ⊂ U},where K is a ompat subset of M and U is an open subset of M , are open.Sine M is a loally ompat separable metri spae, this topology has a ountablebasis ([H, p. 202℄). Note that a sequene of isometries onverges in the ompat opentopology if and only if it onverges uniformly on ompat subsets of M .Theorem 2.10. � [H, p. 204℄ Endowed with the ompat open topology, the isometrygroup I(M) of a Riemannian manifold M is a loally ompat topologial transformationgroup of M . Moreover, for all x ∈ M , the isotropy subgroup I(M)x = {g ∈ G | gx = x}of I(M) at x is ompat.2.7. De Rham deomposition. �See [KN℄ for details and proofs.De�nition 2.11. � A Riemannian manifold M is said to be reduible if it admits a�nite Riemannian over M̂ whih splits as a Riemannian produt M̂1 × M̂2 of manifoldsof positive dimension. If M is not reduible, it is irreduible.



8 JULIEN MAUBONTheorem 2.12 (de Rham deomposition). � Let M be a simply onneted Rieman-nian manifold. Then M deomposes as a Riemannian produt (all but one of the fatorsmay be absent)
M = M0 ×M1 × . . .×Mk,where M0 is a Eulidean spae and for 1 ≤ i ≤ k, the manifold Mi is irreduible. Thisdeomposition is unique up to the order and isometri equivalene of the fators Mi,

1 ≤ i ≤ k.If the manifoldM is not simply onneted, then any point inM has a simply onnetedneighborhood whih admits suh a deomposition.3. Riemannian loally symmetri spaesStarting from the geometri de�nition in terms of geodesi symmetries, we prove thata Riemannian manifold is loally symmetri if and only if its Riemann urvature tensoris parallel. A good referene is [H℄ (see also [W℄).De�nition 3.1. � Let (M, g) be a Riemannian manifold and let m ∈ M . The loalgeodesi symmetry sm at m is the loal di�eomorphism de�ned on small enough normalneighborhoods of m by sm = expm ◦(−IdTmM) ◦ exp−1
m .De�nition 3.2. � A Riemannian manifold (M, g) is alled loally symmetri if for eah

m ∈M the loal geodesi symmetry at m is an isometry.Remark 3.3. In fat a Riemannian manifold (M, g) is loally symmetri if for eah
m ∈ M there exists a loal isometry φm de�ned on a neighborhood of m suh that
φm(m) = m and whose di�erential dmφm at m is −idTmM (neessarily, φm is the loalgeodesi symmetry at m).Sine the Levi-Civitá onnetion ∇ and the Riemann urvature tensor R of g areinvariant by isometries, for any point m of M we have s⋆

m(∇R)m = dmsm ◦ (∇R)m =

−(∇R)m. But ∇R is a (4,1)-tensor and therefore s⋆
m(∇R)m = (∇R)m. Hene:Proposition 3.4. � A Riemannian loally symmetri manifold has parallel Riemannurvature tensor : ∇R = 0.In fat, the onverse of this statement is also true, as the following more general resultshows.



SYMMETRIC SPACES : DIFFERENTIAL GEOMETRY 9Theorem 3.5. � Let (M, gM) and (N, gN) be two Riemannian manifolds with parallelurvature tensors. Let m ∈ M and n ∈ N . Assume that ϕ : TmM −→ TnN is a linearisometry preserving the Riemann urvature tensors, i.e. suh that for all u, v, w in TmM ,
RN

n (ϕ(u), ϕ(v))ϕ(w) = ϕ(RM
m (u, v)w). Then there exist normal neighborhoods U and Vof m and n suh that f := expn ◦ϕ ◦ exp−1

m is an isometry between U and V. Note that
f(m) = n and dmf = ϕ.Proof. � Let r > 0 be suh that expm : B(0, r) −→ U = B(m, r) and expn : B(0, r) −→
V = B(n, r) are di�eomorphisms, and de�ne f : U −→ V by f = expn ◦ϕ ◦ exp−1

m . f is adi�eomorphism. Let us prove that f is an isometry.Let x ∈ U , x = expm(v), and let w ∈ TxM . Let J be the Jaobi �eld along the geodesi
γv joining m to x suh that J(0) = 0 and J ′(0) = dx(expm)−1(w). Then J(1) = w byProposition 2.4. Let (e1(t) = γ̇v(t), . . . , en(t)) be a parallel �eld of orthonormal framesalong the geodesi γv in M . In this frame, we have J(t) =

∑
i yi(t)ei(t).Let now (ε1(t), . . . , εn(t)) be the parallel orthonormal frame �eld along the geodesi

γϕ(v) in N starting from n suh that for all i, εi(0) = ϕ(ei(0)). De�ne I(t) =
∑

i yi(t)εi(t).Then I is a Jaobi vetor �eld along γϕ(v). Indeed,
gN(I ′′ +RN (γ̇ϕ(v), I)γ̇ϕ(v), εi) = y′′i +

∑
j yj R

N(ε1, εj, ε1, εi)

= y′′i +
∑

j yj R
N
n (ε1(0), εj(0), ε1(0), εi(0))

= y′′i +
∑

j yj R
N
n (ϕ(e1(0)), ϕ(ej(0)), ϕ(e1(0)), ϕ(ei(0)))

= y′′i +
∑

j yj R
M
m (e1(0), ej(0), e1(0), ei(0))

= y′′i +
∑

j yj R
M(e1, ej, e1, ei)

= gM(J ′′ +RM(γ̇v, J)γ̇v, ei)

= 0where we have used the fat that the urvature tensor R is parallel if and only if for anyparallel vetor �elds X, Y and Z, the vetor �eld R(X, Y )Z is also parallel.Now, I(0) = 0 and I ′(0) = ϕ(J ′(0)). Therefore,
dxf(w) = dϕ(v) expn(ϕ(J ′(0))) = I(1).Sine ‖I(1)‖2

N =
∑

i |yi(1)|2 = ‖J(1)‖2
M , f is an isometry.We therefore get:Corollary 3.6. � A Riemannian manifold (M, g) is loally symmetri if and only if oneof the following equivalent assertions is true(1) the Riemann urvature tensor is parallel,



10 JULIEN MAUBON(2) any linear isometry from TxM to TyM preserving the Riemann urvature tensor(or equivalently the setional urvatures) is indued by a (unique) loal isometry betweennormal neighborhoods of x and y.Example 3.7. The formula for the Riemann urvature tensor of a manifold of onstantsetional urvature given in Setion 2.2 shows that suh a manifold is loally symmetri.Moreover a slight modi�ation of assertion (2) above implies that two Riemannian mani-folds of the same dimension and of (the same) onstant urvature κ are loally isometri.Remark 3.8. It is lear from the proof of Theorem 3.5 that if γ is a geodesi through
m ∈ M , then the di�erential at γ(t) of the geodesi symmetry sm is given by dγ(t)sm =

−γ−t
t where γs

t denotes parallel transport along γ from Tγ(t)M to Tγ(s)M .4. Riemannian globally symmetri spaesOur starting point is the geometri de�nition of a Riemannian (globally) symmetrispae M , from whih we dedue some of the algebrai properties of the isometry groupof M and its Lie algebra. One ould also go the other way around: this is the topi ofP.-E. Paradan's leture [P℄. A muh more detailed exposition an be found in [H℄ (seealso [Bo℄).4.1. De�nition and �rst results. �De�nition 4.1. � A Riemannian manifold (M, g) is said to be a Riemannian (globally)symmetri spae if for all m ∈ M , the loal geodesi symmetry at m extends to a globalisometry of M .Remark 4.2. It follows from the results of the previous setion that if M is loallysymmetri and if expm : TmM −→ M is a di�eomorphism for all m, then sm is a globalisometry and hene M is globally symmetri. This is the ase for example if M is loallysymmetri, simply onneted, omplete and non-positively urved.Example 4.3. (see [BH, hap. II.10℄ for details) Let M = P (n,R) be the open one ofpositive-de�nite symmetri n × n matries. The one M is a di�erentiable manifold ofdimension n(n+ 1)/2. The tangent spae at m is isomorphi via translation to the spae
S(n,R) of symmetri matries and one an de�ne a Riemannian metri on M by the



SYMMETRIC SPACES : DIFFERENTIAL GEOMETRY 11following formula: gm(X, Y ) = tr(m−1Xm−1Y ), where m ∈ M , X, Y ∈ TmM ≃ S(n,R)and trA is the trae of the matrix A.It is easily heked that the map x 7→ mx−1m is an isometry of M endowed with themetri we just de�ned. This map �xes m and its di�erential at m is −id. It is thereforethe geodesi symmetry sm at m and M is globally symmetri (f. the remark followingDe�nition 3.2).Example 4.4. Real, omplex and quaternioni hyperboli spaes (again, see [BH, hap.II.10℄).Let K be R, C or the quaternions and let n ∈ N⋆ (n ≥ 2 if K = R). Endow the spae
Kn+1 with the K-hermitian form q de�ned by q(x, y) = x̄1y1 + . . . + x̄nyn − x̄n+1yn+1(the onjugation being of ourse trivial if K = R). In the projetive spae KP

n =

(Kn+1\{0})/K⋆ onsider the subset KHn of negative lines, namely,
KH

n = { [x] ∈ KP
n | q(x, x) < 0}.Aording to the hoie of K, KH

n is alled the real, omplex or quaternioni hyperboli
n-spae (whose real dimension is either n, 2n or 4n).Via the di�erential of the projetion Kn+1\{0} −→ KPn, the tangent spae of KHn at
[x] is naturally identi�ed with the orthogonal omplement x⊥ = {u ∈ Kn+1 | q(x, u) = 0}of x. The inner produt on x⊥ de�ned by −ℜ q(u, v)/q(x, x) is ompatible with this iden-ti�ation and goes down to a salar produt on T[x]KHn, turning KHn into a Riemannianmanifold.The geodesi symmetry at [x] ∈ KH

n omes from the linear symmetry w.r.t. the line Kxin Kn+1: we may hoose x suh that q(x, x) = −1 and we set s[x]([y]) = [2x q(x, y)+y], forany [y] ∈ KHn. This is a global isometry of KHn whih is therefore a globally symmetrispae.Note that the real hyperboli spae RHn is nothing but the hyperboli spae Hn wehave already de�ned.Proposition 4.5. � A Riemannian globally symmetri spae M is omplete. Moreover,if G denotes the identity omponent of the isometry group of M , then G is transitive on
M ; namely, M is G-homogeneous.Proof. � We an use the geodesi symmetries to extend the geodesis on R and hene
M is omplete. If now x and y are two points of M then let γ be a unit speed geodesifrom x to y and onsider the isometries pt = sγ(t/2) ◦ sx. Then p0 = Id and hene pt ∈ G.For t = d(x, y), pt(x) = y thus G is indeed transitive on M .



12 JULIEN MAUBONGiven a unit speed geodesi γ inM , the isometry t 7→ pt := sγ(t/2) ◦sγ(0) of the previousproof is alled a transvetion along γ (see Lemma 4.18 below).Let K = Gm be the isotropy group at m ∈ M of the identity omponent G of theisometry group of M .We know from theorem 2.10 that endowed with the ompat open topology, the group
G is a loally ompat topologial transformation group of M and that K is a ompatsubgroup of G. Sine G is transitive on M , this implies that the map gK 7→ g.m from
G/K to M is a homeomorphism. Furthermore, one has the following result, due toMyers-Steenrod:Theorem 4.6. � [H, pp. 205-209℄ The topologial group G is a Lie transformation groupof M and M is di�eomorphi to G/K.Example 4.7. The group GL+(n,R) of invertible matries with positive determinantats transitively and isometrially on M = P (n,R) by g.m := gm tg. The stabilizerof id ∈ M is SO(n,R). Therefore M an be identi�ed with GL+(n,R)/SO(n,R). Oneshould notie that if n is even, GL+(n,R) does not at e�etively on M : the identityomponent of the isometry group of M is GL+(n,R)/{±id}.Example 4.8. The identity omponent of the isometry group of hyperboli spae KHnan be seen to be isomorphi to the group POK(n, 1) whih is the image in PGL(n+1,K)of the subgroup OK(n, 1) of GL(n + 1,K) onsisting of elements preserving the form qused to de�ne KHn. The isotropy group in POK(n, 1) of a point in KHn is isomorphito P(OK(n) × OK(1)), where OK(n) is the subgroup of GL(n,K) onsisting of elementspreserving the form x̄1y1 + . . .+ x̄nyn on K

n.Before analyzing in more details the struture of G and its Lie algebra, we prove thatif a Riemannian manifold is loally symmetri, omplete and simply onneted, it isglobally symmetri. In partiular, this implies that the universal over of a ompleteloally symmetri spae is a globally symmetri spae. For this, we need two lemmas [H,pp. 62-63℄.Lemma 4.9. � Let M and N be omplete Riemannian loally symmetri manifolds. Let
m ∈ M , U a normal neighborhood of m and f : U −→ N an isometry. Let σ be a urvein M starting from m. Then f an be ontinued along σ, i.e. for eah t ∈ [0, 1], thereexists an isometry ft from a neighborhood Ut of σ(t) into N suh that U0 = U , f0 = fand there exists ε suh that for |t− s| < ε, Us ∩ Ut 6= ∅ and fs = ft on Us ∩ Ut.



SYMMETRIC SPACES : DIFFERENTIAL GEOMETRY 13Remark 4.10. Suh a ontinuation is unique beause ft(σ(t)) and dσ(t)ft vary ontinu-ously with t.Proof. � Assume that f is de�ned on a normal ball B(x, ρ) around some x ∈M and thatfor some r > ρ, B(x, r) and B(f(x), r) are normal balls around x and f(x). Theorem 3.5says that the map expf(x) ◦dxf ◦ exp−1
x is an isometry from B(x, r) to B(f(x), r). It mustoinide with f on B(x, ρ) sine it maps x to f(x) and its di�erential at x equals dxf .Therefore f an be extended to B(x, r).De�ne I = {t ∈ [0, 1] | f an be extended near σ(t)} and T = sup I. I is an opensubinterval of [0, 1] and 0 ∈ I.Let then q = lim

t→T
ft(σ(t)). This limit exists by ompleteness. Choose r suh that

B(σ(T ), 3r) and B(q, 3r) are onvex normal balls around σ(T ) and q, and let t be suhthat σ(t) ∈ B(σ(T ), r) and ft(σ(t)) ∈ B(q, r). Then B(σ(t), 2r) and B(ft(σ(t)), 2r) arenormal balls around σ(t) and ft(σ(t)). Hene f an be extended to B(σ(t), 2r), whihontains σ(T ). Thus T ∈ I and I = [0, 1].Lemma 4.11. � Let M and N be omplete Riemannian loally symmetri manifolds.Let m ∈ M , U a normal neighborhood of m and f : U −→ N an isometry. Let σ bea urve in M starting from m and τ be another urve, homotopi to σ with end points�xed. Call fσ and f τ the ontinuations of f along σ and τ . Then fσ and f τ agree in aneighborhood of σ(1) = τ(1).Proof. � Let H : [0, 1]2 −→ M be the homotopy between σ and τ : ∀t, s, H(t, 0) = σ(t),
H(t, 1) = τ(t), H(0, s) = m, H(1, s) = σ(1) = τ(1).Call f s the ontinuation of f along the urve Hs : t 7→ H(t, s).Let I = {s ∈ [0, 1] | ∀a ≤ s, fa(1) = f 0(1) = fσ(1) near σ(1)}. I is learly an opensubinterval of [0, 1] ontaining 0. Let S = sup I.The urves HS and fS ◦ HS are ontinuous, hene there exists r suh that for all t,
B(HS(t), 2r) and B(fS ◦ HS(t), 2r) are normal balls. But then there exists ε suh thatfor 0 < S− s < ε and for all t, Hs(t) ∈ B(HS(t), r). Then fS is a ontinuation of f along
Hs and therefore by uniqueness fS = f s near σ(1). Hene S ∈ I and I = [0, 1].We may now state:Theorem 4.12. � Let M and N be omplete Riemannian loally symmetri spaes. As-sume that M is simply onneted. If m ∈ M , n ∈ N , and ϕ : TmM −→ TnN is a linear



14 JULIEN MAUBONisometry preserving the Riemann urvature tensors, then there exists a unique Rieman-nian overing f : M −→ N suh that f(m) = n and dmf = ϕ.Proof. � It follows from the lemmas above that setting f(expm(v)) = expn(ϕ(v)) givesa well-de�ned map f from M onto N . Moreover this map is a loal isometry and sine
M is omplete, it is a Riemannian overing map by Proposition 2.9.Corollary 4.13. � Let M be a omplete simply onneted Riemannian manifold. Thefollowing onditions are equivalent:(1) M is loally symmetri,(2) M is globally symmetri,(3) Any linear isometry between TxM and TyM preserving the Riemann urvature ten-sor (or equivalently the setional urvatures) is indued by an (unique) isometry of M .Remark 4.14. Assertion (3) above shows that up to isometry, there is only one ompletesimply onneted Riemannian manifold of dimension n and of onstant setional urvature
κ. We will all this model spae Mκ.4.2. Struture of the Lie algebra of the isometry group. �Let now (M, g) be a globally symmetri Riemannian spae, G the identity omponentof the isometry group of M , m ∈ M , s = sm the geodesi symmetry at m, and K theisotropy group of m in G. K is a ompat subgroup of G and it follows from whatwe have seen that the linear isotropy representation k ∈ K 7→ dmk identi�es K withthe (losed) subgroup of O(TmM, gm) onsisting of linear isometries whih preserve theurvature tensor Rm. Reall that M is identi�ed with the quotient G/K. We all m themap G −→M , g 7→ g.m.The Lie algebra g of G an be seen as a Lie algebra of Killing vetor �elds on M : if
X ∈ g, the orresponding vetor �eld X⋆ is de�ned by X⋆(x) = d

dt
etXx|t=0, for any x ∈M .It should also be noted that, under this identi�ation, [X, Y ]⋆ = −[X⋆, Y ⋆], where in theright-hand side, [ , ] denotes the usual braket of vetor �elds on M . Remember that avetor �eld X is a Killing vetor �eld of (M, g) if and only if g(∇YX,Z)+g(∇ZX, Y ) = 0for any vetor �elds Y and Z.The symmetry s indues an involution σ of G given by σ(g) = sgs and the di�erential

deσ = Ad(s) is an involution of the Lie algebra g of G.We therefore have a splitting g = k ⊕ p where k and p are respetively the +1 and
−1 eigenspaes of Ad(s). Note that sine Ad(s)[X, Y ] = [Ad(s)X,Ad(s)(Y )] for all
X, Y ∈ g, we have [k, k] ⊂ k, i.e. k is a subalgebra of g, [k, p] ⊂ p, i.e. p is ad(k)-invariant,



SYMMETRIC SPACES : DIFFERENTIAL GEOMETRY 15and [p, p] ⊂ k. Suh a deomposition g = k ⊕ p is alled the Cartan deomposition of gassoiated to m.Proposition 4.15. � The group K lies between Gσ := {g ∈ G | σg = g} and Gσ
0 , theidentity omponent of Gσ. The Lie algebra k of K is also the kernel of dem : g −→ TmM .Consequently, dem|p : p −→ TmM is an isomorphism.Proof. � Let k ∈ K. Then sks(m) = m = k(m) and dm(sks) = −Id◦dmk◦(−Id) = dmk,hene sks = k. Thus K ⊂ Gσ and Lie(K) ⊂ k.Now, let X ∈ k. This is equivalent to etX ∈ Gσ

0 sine setXs = etAd(s)X = etX . Then
etXm is �xed by s for all t. Sine m is an isolated �xed point of s, we have etXm = m forall t. Thus Gσ

0 ⊂ K and k ⊂ Lie(K).If X ∈ k, then dem(X) = d
dt
etXm|t=0 = d

dt
m|t=0 = 0. On the other hand, assume that

X ∈ g is suh that dem(X) = 0. Let f : M −→ R be any funtion and let h be thefuntion on M de�ned by h(p) = f(eaXp) for some a ∈ R. Then
0 = dmh(demX) =

d

dt
h(etXm)|t=0 =

d

dt
f(eaXetXm)|t=0 =

d

dt
f(etXm)|t=a.Hene t 7→ f(etXm) is onstant. This implies etX ∈ K and X ∈ k.The map dem|p is therefore injetive. Sine p and TmM have the same dimension, weare done.Finally, the salar produt gm on TmM gives a positive de�nite inner produt Q on pwhih is ad(k)-invariant. Indeed, for X ∈ k and V,W ∈ p, Q([X, V ],W )+Q(V, [X,W ]) =

gm([X, V ]⋆(m),W ⋆(m))+gm(V ⋆(m), [X,W ]⋆(m)) = (X.g(V,W ))|m = 0 sine X⋆(m) = 0.This inner produt an be extended to g by hoosing any ad(k)-invariant inner produton k.Altogether, these data de�ne what is alled a struture of orthogonal involutive Liealgebra on g.Example 4.16. In the ase of the symmetri spaeM = P (n,R) = GL+(n,R)/SO(n,R),the involution σ of GL+(n,R) orresponding to the geodesi symmetry s = sid : x 7→ x−1is easily seen to be the map g 7→ tg−1. Its di�erential at e is the map X 7→ − tX.Therefore the Cartan deomposition of g = gl(n,R) is just the deomposition of a matrixinto its symmetri and skew-symmetri parts: k = o(n,R) and p = S(n,R).Example 4.17. The Lie algebra of the group POK(n, 1) onsists of the trae free matries
X in GL(n + 1,K) suh that In,1X + tX̄In,1 = 0, where In,1 is the (n + 1) × (n + 1)diagonal matrix whose n �rst oe�ients equal 1 and whose last one is −1. The Cartan



16 JULIEN MAUBONinvolution is given by the map X 7→ − tX̄. Therefore we get that k is isomorphi to thespae o(n,K) of n × n matries A with oe�ients in K suh that tĀ = −A, whereas
p ≃ Kn.We end this setion with a little lemma about transvetions along a geodesi.Lemma 4.18. � Let v ∈ TmM and let γ : t 7→ expm(tv) be the orresponding geodesi.The transvetions pt = sγ(t/2)sm along γ form a 1-parameter group of isometries. More-over, if X ∈ p is suh that dem(X) = v, then pt = etX , so that in partiular etXm = γ(t)and dme

tX = γt
0, the parallel transport along γ from TmM to Tγ(t)M .Proof. � Clearly, pt(γ(u)) = γ(u+t). Moreover, dγ(u)pt : Tγ(u)M −→ Tγ(u+t)M is paralleltransport along γ. Indeed dγ(u)pt = dγ(u)(sγ(t/2)sm) = dγ(−u)sγ(t/2) ◦dγ(u)sm = γu+t

−u ◦γ−u
u =

γu+t
u . Therefore, ptpu = pu+t sine they agree at m along with their di�erentials. t 7→ ptis hene a 1-parameter group of isometries. Thus there exists X ∈ g suh that pt = etX .Now, dem(X) = d

dt
ptm|t=0 = v.4.3. Further identi�ations and urvature omputation. �As we said, p an be identi�ed with TmM , whereas k an be identi�ed with a subalgebra

t of o(TmM, gm). More preisely,
t = {T ∈ o(TmM, gm) | ∀u, v ∈ TmM, T◦Rm(u, v) = Rm(Tu, v)+Rm(u, Tv)+Rm(u, v)◦T}.We will denote by TX the element of t orresponding to X ∈ k.Therefore, g is isomorphi to t ⊕ TmM as a vetor spae. We will now see what is theLie algebra struture indued on t ⊕ TmM by this isomorphism.Let X ∈ k and Y ∈ p, and let f be a funtion on M . Then,

[X, Y ]⋆.f = −[X⋆, Y ⋆].f = Y ⋆.X⋆.f −X⋆.Y ⋆.fBut (X⋆.(Y ⋆.f))(m) = 0 sine X⋆(m) = 0. On the other hand, X⋆.f = lim
t−→0

1

t
(f ◦etX−f).Therefore,

(Y ⋆.(X⋆.f))(m) = lim
t−→0

1

t

(
Y ⋆.(f ◦ etX)(m) − (Y ⋆.f)(m)

)

= lim
t−→0

1

t

(
dmf ◦ dme

tX(Y ⋆(m)) − dmf(Y ⋆(m))
)

= dmf
(

lim
t−→0

1

t
(dme

tX(Y ⋆(m)) − Y ⋆(m))
)

= dmf
(
TX(Y ⋆(m))

)Hene [X, Y ]⋆(m) = TX(Y ⋆(m)).



SYMMETRIC SPACES : DIFFERENTIAL GEOMETRY 17Let now X, Y ∈ p and X⋆, Y ⋆ the orresponding Killing �elds on M . We want toalulate the Riemann urvature tensor R(X⋆, Y ⋆) at m. We drop the upper-sripts ⋆ forthe omputation.First, it is immediate from the formula for the Levi-Civitá onnetion that for any
Z ∈ p seen as a Killing �eld on M ,

2g(∇XY, Z) = g([X, Y ], Z) + g([Y, Z], X) + g([X,Z], Y ),sine X.g(Y, Z) = g([X, Y ], Z)+g(Y, [X,Z]) for Killing �elds. The r.h.s. vanishes at m byProposition 4.15, for the braket of two elements of p belongs to k. Hene (∇XY )(m) = 0.Of ourse we also have (∇YX)(m) = 0, (∇XX)(m) = 0 and (∇Y Y )(m) = 0.Now,
R(X, Y,X, Y ) = g(∇[X,Y ]X, Y ) − g(∇X∇YX, Y ) + g(∇Y ∇XX, Y ).Sine X is Killing, g(∇[X,Y ]X, Y ) = −g(∇YX, [X, Y ]) and
g(∇X∇YX, Y ) = X.g(∇YX, Y ) − g(∇YX,∇XY ) = −g(∇YX,∇XY ).Thus, g(∇[X,Y ]X, Y ) − g(∇X∇YX, Y ) = ‖∇YX‖2. On the other hand,
g(∇Y ∇XX, Y ) = Y.g([X, Y ], X) − g(∇XX,∇Y Y )

= g([Y, [X, Y ]], X) − ‖[X, Y ]‖2 − g(∇XX,∇Y Y )beause Y is also Killing.Therefore, at m, Rm(X⋆(m), Y ⋆(m), X⋆(m), Y ⋆(m)) = gm([[X⋆, Y ⋆], X⋆](m), Y ⋆(m)).This implies that the urvature tensor is given by
Rm(X⋆(m), Y ⋆(m))Z⋆(m) = [[X⋆, Y ⋆], Z⋆](m) = [[X, Y ], Z]⋆(m) = T[X,Y ](Z

⋆(m)).Thus T[X,Y ] = Rm(X⋆(m), Y ⋆(m)).One then heks easily that if X, Y ∈ k, T[X,Y ] = TXTY − TY TX .Summarizing, we haveProposition 4.19. � The Lie algebra struture on g = t ⊕ TmM is given by:
[T, S] = TS − ST for T, S ∈ t;
[T, u] = −[u, T ] = T (u) for T ∈ t and u ∈ TmM ;
[u, v] = Rm(u, v) for u, v ∈ TmM .Remark 4.20. For any Riemannian loally symmetri spae (M, g), the Lie algebra

t ⊕ TmM is de�ned and is an orthogonal involutive Lie algebra. It is the in�nitesimalversion of the isometry group of a globally symmetri spae.



18 JULIEN MAUBON5. Riemannian manifolds of non-positive urvatureIn this setion we review some of the most important "omparison" results for manifoldsof non-positive urvature. They will be useful in our study of symmetri spaes of non-ompat type. We will stik to Riemannian manifolds but most of these results generalizeto the setting of metri spaes (see Remark 5.12). Good referenes for the material inthis setion are the books [Ba℄ and [BH℄ (and also [E℄).5.1. The Rauh omparison theorem. �Before speializing to non-positive urvature, we prove (see also [dC, hap. 10℄) thefollowingTheorem 5.1 (Rauh omparison theorem). � Let M be a Riemannian manifoldand let γ : [0, T ) −→M be a unit speed geodesi. Assume that all the setional urvaturesof M along γ are bounded from above by some real number κ. Let Y be a normal Jaobi�eld along γ. Then, for all t suh that ‖Y ‖(t) 6= 0, we have
‖Y ‖′′(t) + κ‖Y ‖(t) ≥ 0.In partiular, if yκ is the solution of the di�erential equation y′′ + κy = 0, with the sameinitial onditions as ‖Y ‖, then ‖Y ‖(t) ≥ yκ(t) for t ∈ [0, T ).Proof. � This is just a omputation. ‖Y ‖′ = 〈Y, Y ′〉‖Y ‖−1, hene

‖Y ‖′′ = (〈Y, Y ′′〉 + 〈Y ′, Y ′〉)‖Y ‖−1 − 〈Y, Y ′〉2‖Y ‖−3

= ‖Y ′‖2‖Y ‖−1 − 〈R(γ̇, Y )γ̇, Y 〉‖Y ‖−1 − 〈Y, Y ′〉2‖Y ‖−3

≥ ‖Y ′‖2‖Y ‖−1 − κ‖Y ‖ − 〈Y, Y ′〉2‖Y ‖−3where for the seond equality we used the de�nition of a Jaobi �eld, and for the inequalitythe fat that Y is normal to γ. Thus
‖Y ‖′′ + κ‖Y ‖ ≥ ‖Y ‖−3(‖Y ′‖2‖Y ‖2 − 〈Y, Y ′〉2) ≥ 0by Cauhy-Shwarz inequality.Let now f := ‖Y ‖′yκ −‖Y ‖y′κ. Then f(0) = 0 and f ′ = ‖Y ‖′′yκ −‖Y ‖y′′κ ≥ −‖Y ‖(y′′κ +

κyκ) = 0. Hene f ≥ 0 and therefore (‖Y ‖/yκ)
′ ≥ 0 and we are done.This result allows to ompare di�erent geometri quantities in a manifold M all ofwhose setional urvatures are bounded from above by κ to orresponding quantities ina omplete simply onneted manifold Mκ of onstant setional urvature κ. Reall that

Mκ is unique up to isometry. By saling the metri, we an assume κ ∈ {−1, 0, 1}, and the



SYMMETRIC SPACES : DIFFERENTIAL GEOMETRY 19orresponding model spaes of dimension n are hyperboli n-spae M−1 = Hn, Eulidean
n-spae M0 = E

n and the n-sphere M1 = S
n with its standard metri.Corollary 5.2. � LetM be a Riemannian manifold all of whose setional urvatures arebounded from above by κ ∈ R. Let Mκ be the model spae of onstant setional urvature

κ (of the same dimension as M).Let m ∈ M , p ∈ Mκ and ϕ a linear isometry between TmM and TpMκ. Let r be sosmall that B(m, r) and Bκ(p, r) are normal onvex neighborhoods of m in M and p in
Mκ. Let f : B(m, r) −→ Bκ(p, r) be given by f = expp ◦ϕ ◦ exp−1

m . Then f is distanenon-inreasing.Proof. � Let x ∈ B(m, r), x = expm(v), and γ the geodesi t 7→ expm(tv). Let w ∈ TxM ,and all w⊥ the omponent of w orthogonal to γ̇(1) and wT = w − w⊥.Let Y be the Jaobi �eld along γ suh that Y (0) = 0 and Y (1) = w. We an alsowrite Y = Y T +Y ⊥ where Y T (t) = ‖wT ‖
‖γ̇(1)‖

tγ̇(t) is a Jaobi �eld along γ ollinear to γ̇ suhthat Y T (1) = wT and Y ⊥ = Y − Y T is a normal Jaobi vetor �eld along γ suh that
Y ⊥(1) = w⊥.Call Yκ the Jaobi �eld along the geodesi expp(tϕ(v)) in Mκ suh that Yκ(0) = 0 and
Y ′

κ(0) = ϕ(Y ′(0)). With the obvious notation, we have Yκ = Y T
κ + Y ⊥

κ .Then dxf(w) = Yκ(1). Hene
‖dxf(w)‖2 = ‖Yκ(1)‖2 = ‖Y T

κ (1)‖2 + ‖Y ⊥
κ (1)‖2.Now, ‖Y T

κ (1)‖ = ‖Y T (1)‖ and it follows from the Rauh omparison theorem that ‖Y ⊥‖ ≥
yκ = ‖Y ⊥

κ ‖. Hene ‖dxf(w)‖ ≤ ‖w‖.Therefore if x and y are two points in B(m, r) and if γ ⊂ B(m, r) is the geodesi joiningthese two points, then dκ(f(x), f(y)) ≤ L(f ◦ γ) ≤ L(γ) = d(x, y).5.2. Hadamard manifolds. �From now on, we will fous on the ase κ = 0, namely, (M, g) is non-positively urved.De�nition 5.3. � A omplete simply onneted non-positively urved manifold is alleda Hadamard manifold.It follows immediately from the Rauh omparison theorem that in a Hadamard man-ifold M , a Jaobi vetor �eld Y along a geodesi γ suh that Y (0) = 0 never vanishesagain. This implies that for all m ∈ M , expm is a loal di�eomorphism from TmM onto
M (sine M is omplete). Endowing TmM with the metri exp⋆

m g, expm beomes a loal



20 JULIEN MAUBONisometry. Now, (TmM, exp⋆
m g) is omplete sine the geodesis through 0 are straight lines.Hene expm is a overing map and sineM is simply onneted, expm is a di�eomorphism:Theorem 5.4. � A Hadamard spae of dimension n is di�eomorphi to Rn.Note that two points in a Hadamard manifold are joined by a unique minimizinggeodesi.Until the end of this setion, M will be a Hadamard manifold and E will be Eulidean2-spae. We will assume all geodesis parameterized by ar length.5.2.1. Geodesi triangles in Hadamard manifolds. The CAT(0) Property. �Given three points p, q, r in M (or in E) we will denote by <)p(q, r) the angle betweenthe geodesi segments [p, q] and [p, r] emanating from p, that is, the Riemannian anglebetween the tangent vetors to these geodesis at p.De�nition 5.5. � A geodesi triangle T in a Riemannian manifold onsists of threepoints p, q, r, its verties, and three geodesi ars [p, q], [q, r] and [r, p] joining them, itssides or edges. Note that in a Hadamard manifold a geodesi triangle is determined by itsverties.We will sometimes denote by p̂ (resp. q̂, r̂) the vertex angle of a geodesi triangle

T = T (p, q, r) at p (resp. q, r), i.e. p̂ =<)p(q, r).De�nition 5.6. � A omparison triangle of a geodesi triangle T ⊂M in E is a geodesitriangle T0 in E whose side lengths equal the side lengths of T . Suh a triangle alwaysexists and is unique up to isometries of E.Given an �objet� a in a geodesi triangle T in M , we will always denote by a0 theomparison objet in the omparison triangle T0. For example, if p is a vertex of T , p0will be the orresponding vertex of T0. If x is a point on the side [p, q] of T , x0 will bethe point on the omparison side [p0, q0] of T0 suh that d0(p0, x0) = d(p, x).We begin with the following remark onerning angles.Lemma 5.7. � [A℄ The Riemannian angle between two unit tangent vetors u, v ∈ TmMis the limit as t goes to zero of the vertex angle at m0 of the omparison triangle of
T (m, σu(t), σv(t)).



SYMMETRIC SPACES : DIFFERENTIAL GEOMETRY 21Proof. � It follows from Corollary 5.2 that d(σu(t), σv(t)) ≥ t‖u− v‖. Now, onsider thepath c : s 7→ expm(tu+ st(v − u)) from σu(t) to σv(t).
d(σu(t), σv(t)) ≤ L(c) = t

∫ 1

0

‖dt(u+s(v−u)) expm(v − u)‖ds.For t lose to 0, dt(u+s(v−u)) expm is lose to Id and hene lim
t−→0

d(σu(t), σv(t))

t‖u− v‖
= 1.This implies that the triangle T (0, tu, tv) in TmM goes to the omparison triangle of

T (m, σu(t), σv(t)) as t −→ 0, hene the result.We are ready to ompare geodesi triangles in Hadamard manifolds with Eulideanones.
m0

x0

y0

α
α

x

m
yFigure 1.Lemma 5.8. � Let m ∈ M and u, v ∈ TmM . Let σu and σv be the orresponding unitspeed geodesis. Let x = σu(s) and y = σv(t). Let also m0, x0 y0 be points in E suh that

d0(m0, x0) = s, d0(m0, y0) = t and the angle <)m0
(x0, y0) equals the angle between u and v(see Figure 1). Then d0(x0, y0) ≤ d(x, y).Consequently, if α, β, γ are the vertex angles of a geodesi triangle T in M and α0, β0,

γ0 the orresponding vertex angles of its omparison triangle T0, then
α ≤ α0, β ≤ β0, and γ ≤ γ0.In partiular, α + β + γ ≤ π.Proof. � Immediate from Corollary 5.2.Lemma 5.9. � Let T = T (p, q, r) be a geodesi triangle in M and let T0 be its ompari-son triangle in E. Let x be a point on the side [q, r]. Then d(p, x) ≤ d0(p0, x0). Moreover,if the sum of the vertex angles of T equals π then d(p, x) = d0(p0, x0).



22 JULIEN MAUBONProof. � Consider the geodesi triangles T ′ = T (p, q, x) and T ′′ = T (p, x, r) and all T ′
0and T ′′

0 their respetive omparison triangles in E. We an assume that T ′
0 and T ′′

0 aresuh that p′0 = p′′0 and x′0 = x′′0, and that they lie on di�erent sides of the line through p′0and x′0 (see Figure 2).
T ′

x

T ′′

p

T ′

0

r

q

x0

p0 = p
′

0
= p

′′

0

r0

q0 = q
′

0

T ′′

0

x
′

0
= x

′′

0

r
′′

0

22 3 34 41 5 5 311 2Figure 2.If x̂′, resp. x̂′′, is the vertex angle at x of T ′, resp. T ′′, and if x̂′0, resp. x̂′′0, is theorresponding vertex angle in T ′
0, resp. T ′′

0 , then x̂′0 + x̂′′0 ≥ x̂′ + x̂′′ = π. This implies thatif we want to straighten the union T ′
0 ∪ T

′′
0 to form a omparison triangle for T (withoutmodifying the side lengths of T ′

0 and T ′′
0 other that [p′0, x

′
0]), we have to inrease (at leastnot derease) the distane from p0 to x0. Hene the �rst part of the result.Now assume that the sum of the vertex angles of T is π. Call p̂′ and q̂′, resp. p̂′′ and r̂′′,the remaining vertex angles of T ′, resp. T ′′. Then p̂′ + p̂′′ + q̂′ + x̂′ + x̂′′ + r̂′′ = 2π. Sine

p̂′ + q̂′ + x̂′ ≤ π and p̂′′ + x̂′′ + r̂′′ ≤ π, we have in fat p̂′ + q̂′ + x̂′ = π and p̂′′ + x̂′′ + r̂′′ = π,hene all these vertex angles are equal to their omparison angles. This implies that
x̂′0 + x̂′′0 = x̂′ + x̂′′ = π, hene that d(p, x) = d0(p0, x0).We an now state the main property of geodesi triangles in Hadamard manifolds.De�nition 5.10. � A geodesi triangle T in a manifold is said to be CAT(0) if it isthinner than its omparison triangle in E, namely if for any two points x and y on T ,and for x0, y0 the orresponding points in the omparison triangle T0 of T in E, we have
d(x, y) ≤ d0(x0, y0).Proposition 5.11. � (1) Geodesi triangles in a Hadamard manifold M are CAT(0).(2) Moreover, if the sum of the vertex angles of a geodesi triangle T of M equals π,then there exists a unique isometry Φ from the onvex hull Conv(T0) of T0 in E into the



SYMMETRIC SPACES : DIFFERENTIAL GEOMETRY 23onvex hull Conv(T ) of T in M , suh that Φ(x0) = x for all x0 ∈ T0, that is to say, Tbounds a �at solid triangle in M .Proof. � Let us �rst prove (1). Let x and y be two points in the triangle T = T (p, q, r),and T0 = T (p0, q0, r0) the omparison triangle of T . We an assume x and y are noton the same side of T , say x ∈ [q, r] and y ∈ [p, q]. We know from Lemma 5.9 that
d(p, x) ≤ d0(p0, x0). Consider the omparison triangle T ′

0 = T (p′0, x
′
0, q

′
0) of T (p, x, q).Then, again from Lemma 5.9, d(x, y) ≤ d0(x

′
0, y

′
0). Now, the lengths of the sides [p′0, q

′
0] and

[x′0, q
′
0] of T ′

0 are equal to those of [p0, q0] and [x0, q0] in T0, whereas [p′0, x
′
0] is shorter than

[x0, p0]. This implies that [x′0, y
′
0] is shorter than [x0, y0], hene that d(x, y) ≤ d(x0, y0).Proof of (2). The assumption is p̂ = p̂0, q̂ = q̂0 and r̂ = r̂0. From the seond assertion inLemma 5.9 and from the proof of part (1) we get that d(x, y) = d(x0, y0) for all x, y ∈ T .Now we want to de�ne Φ in the interior of Conv(T0). Let y0 be a point there and all z0 theunique point on the side [q0, r0] suh that y0 ∈ [p0, z0]. Map z0 to its orresponding point

z on the side [q, r] of T . It follows from what we just seen that the triangle T (p0, q0, z0)is the omparison triangle of T (p, q, z). Sine again the vertex angles are the same, theomparison map between these triangles is an isometry and we an map z0 ∈ [p0, z0] tothe orresponding point Φ(z0) ∈ [p, z]. One then heks easily that Φ is isometri.Remark 5.12. Property (1) gives one way to generalize the notion of non-positiveurvature to metri spaes as follows.Let (X, d) be a metri spae.A geodesi γ joining x ∈ X to y ∈ X is a ontinuous urve γ : [0, l] −→ X suh that
γ(0) = x, γ(l) = y and d(γ(t), γ(t′)) = |t− t′| for all t, t′ ∈ [0, l].

(X, d) is alled a geodesi spae if any two of its points an be joined by a geodesi.The (possibly in�nite) length of a (ontinuous) urve c : [a, b] −→ X is de�ned by
l(c) = sup

a=t0≤t1≤···≤tn=b

n∑

i=1

d(c(ti−1), c(ti))where the supremum is taken over all possible partitions of [a, b]. A urve c is reti�ableif its length is �nite.The metri spae (X, d) is a length spae if the distane between any two of its pointsis given by the in�mum of the lengths of the reti�able urves joining them.Now, a length spae (X, d) is alled a CAT(0)-spae if it is geodesi and if every geodesitriangle in X is CAT(0). It is said to be non-positively urved (in the sense of Alexandrov)



24 JULIEN MAUBONif it is loally a CAT(0)-spae, namely if every point in X has an open neighborhood Uthat is a CAT(0)-spae (with the indued metri).A omplete simply onneted length spae of non-positive urvature is alled aHadamard spae. It is then a CAT(0)-spae by the generalized Cartan-Hadamardtheorem, see [BH, p. 193℄.It should also be noted that, as was proved by Alexandrov in [A℄, a smooth Riemannianmanifold has non-positive urvature in the sense of Alexandrov if and only if all itssetional urvatures are non-positive (see [BH, p. 173℄ for a proof using Proposition 2.6).Corollary 5.13 (Flat quadrilateral theorem). � Let p, q, r, s be four points in Mand let α =<)p(q, s), β =<)q(p, r), γ =<)r(q, s), δ =<)r(p, r). Then if α + β + γ + δ ≥ 2π,this sum equals 2π and p, q, r, s �bound� a onvex region in M isometri to a onvexquadrilateral in E.Proof. � Let T = T (p, q, s) and T ′ = T (q, r, s). Call p̂, q̂, ŝ and q̂′, r̂′, ŝ′ the vertexangles of T and T ′. It follows from the triangle inequality that β ≤ q̂ + q̂′ and δ ≤ ŝ+ ŝ′.Hene, if α+ β + γ + δ ≥ 2π, then p̂+ q̂ + ŝ ≥ π and q̂′ + r̂′ + ŝ′ ≥ π. Therefore all theseinequalities are in fat equalities and the triangles T and T ′ are �at. Let T0 = T (p0, q0, s0)and T ′
0 = T (q0, r0, s0) be omparison triangles for T and T ′ so that p0 and r0 lie onopposite sides of the line through q0 and s0. Then the quadrilateral Q0 = (p0, q0, r0, s0)is onvex. Let x0 ∈ Conv(T0) and x′0 ∈ Conv(T ′

0). The fat that q̂ + q̂′ = β implies that
<)q(x, x

′) =<)q0
(x0, x

′
0), where x, resp. x′, is the image of x0, resp. x′0, under the isometry

Conv(T0) −→ Conv(T ), resp. Conv(T ′
0) −→ Conv(T ′). This shows that these isometriespath together to give an isometry between Conv(p0, q0, r0, s0) and Conv(p, q, r, s).5.2.2. Convexity properties of Hadamard manifolds. Parallel geodesis. �A Hadamard manifold shares many onvexity properties with Eulidean spae. Reallthat a funtion f : M −→ R is onvex if its restrition to eah geodesi σ of M is onvex.Lemma 5.9 immediately impliesLemma 5.14. � Let m ∈M . The funtion x 7→ d(x,m) is onvex.We also haveProposition 5.15. � Let σ and τ be two (unit speed) geodesis in M . The funtion

t 7→ d(σ(t), τ(t)) is onvex.



SYMMETRIC SPACES : DIFFERENTIAL GEOMETRY 25Proof. � Let t1 < t2 and let t = 1
2
(t1 + t2). Call γ the geodesi segment from σ(t1) to

τ(t2) (see Figure 3).

τ

σ(t1)

τ(t1)

τ(t)

τ(t2)

γ(t)

σ(t2)

σ

σ(t)

Figure 3.We have d(σ(t), τ(t)) ≤ d(σ(t), γ(t)) + d(γ(t), τ(t)). The CAT(0) property impliesthat d(σ(t), γ(t)) ≤ 1
2
d(σ(t2), τ(t2)) sine equality holds in the omparison triangle of

T (σ(t1), σ(t2), τ(t2)). In the same way, d(γ(t), τ(t)) ≤ 1
2
d(σ(t1), τ(t1)). Hene the propo-sition.More generally, the following proposition holds:Proposition 5.16. � Let C ⊂ M be a losed onvex set. Then for every x ∈ M thereexists a unique point πC(x) ∈ C suh that d(x, πC(x)) = d(x, C). Moreover the map

πC : x 7→ πC(x) is 1-Lipshitz and the funtion x 7→ d(x, C) is onvex.De�nition 5.17. � Two (unit speed) geodesis σ1 and σ2 in M are alled parallel ifthere exists k > 0 suh that ∀t ∈ R, d(σ1(t), σ2) ≤ k and d(σ2(t), σ1) ≤ k.Corollary 5.18 (Flat strip theorem). � Let σ1 and σ2 be two parallel geodesis in
M . Then σ1 and σ2 bound a �at strip, namely, there exist D ∈ R and an isometry Φ from
R × [0, D] with its Eulidean metri into M suh that (up to a�ne reparameterizationsof σ1 and σ2), Φ(t, 0) = σ1(t) and Φ(t, D) = σ2(t), ∀t ∈ R.Proof. � The funtion t 7→ d(σ1(t), σ2(t)) is onvex and bounded on R, hene onstant,say equal to D ∈ R. We an assume that the losest point to p := σ1(0) on σ2(R)is q := σ2(0). We laim that for t 6= 0, the angle <)q(p, σ2(t)) ≥ π

2
. If not, then byLemma 5.7 there is a point x in the geodesi segment [q, p] and a point y on the geodesi



26 JULIEN MAUBONsegment [q, σ2(t)] suh that the vertex angle at q0 of the omparison triangle T (q0, x0, y0)of T (q, x, y) is stritly less than π
2
. This would implies that there are points x′ on [q, x]and y′ on [q, y] suh that d(x′, y′) < d(x′, q). But then q wouldn't be the point on σ2(R)losest to p. Hene, for all t 6= 0, <)σ2(0)(σ1(0), σ2(t)) = π

2
, and p = σ1(0) is the pointon σ1(R) losest to q = σ2(0) so that for all t 6= 0 we also have <)σ1(0)(σ2(0), σ1(t)) = π

2
.Therefore the sum of the vertex angles of the quadrilateral (σ1(−t), σ1(t), σ2(t), σ2(−t))is 2π. Thus this quadrilateral is isometri to [−t, t] × [0, D] with its Eulidean metri.Letting t −→ ∞ yields the result.Corollary 5.19. � Let σ be a geodesi in M and let P (σ) be the union of all geodesisin M that are parallel to σ. Then P (σ) is a losed onvex subset of M . Moreover, P (σ)splits isometrially as a produt Q × R, where Q is losed and onvex and {q} × R isparallel to σ for all q ∈ Q.Proof. � The onvexity of P (σ) is a diret onsequene of the �at strip theorem. Now,let (xn)n∈N be a sequene of points in P (σ) onverging to some x∞ ∈M . For all n, thereexists a unit speed geodesi σn parallel to σ suh that σn(0) = xn. Now, for all n, m, thegeodesis σn and σm are parallel and hene the funtion t 7→ d(σn(t), σm(t)) is onstantequal to d(σn(0), σm(0)) = d(xn, xm). Hene, for all t, the sequene (σn(t))n∈N is a Cauhysequene and therefore, by ompleteness of M , onverges to a point, say σ∞(t). It is noweasily heked that t 7→ σ∞(t) is a geodesi in M parallel to σ. Thus P (σ) is losed.Let x and y be two points in P (σ), and let q = σ(0). Up to parameterization there isa unique unit speed geodesi σx, resp. σy, through x, resp. y, and parallel to σ. We anhoose the parameterization of σx, resp. σy, so that qx := σx(0), resp. qy := σy(0), is thepoint on σx(R), resp. σy(R), losest to q.The geodesis σ and σx bound a �at strip and therefore, for all a ∈ R,

d(σ(t), σx(a)) − t =
(
d(σ(a), σx(a))

2 + (t− a)2
) 1

2 − t −→ −a, as t −→ +∞.Hene qx, resp. q, is the only point on σx(R), resp. σ(R), so that d(σ(t), qx) − t −→ 0 as
t −→ ∞, resp. d(σx(t), q) − t −→ 0 as t −→ ∞.Now, d(σy(t), qx)−t ≤ d(σy(t), σ(t/2))− t

2
+d(σ(t/2), qx)−

t
2
and sine d(σy(t), σ(t/2))−

t
2
−→ 0 as t −→ ∞, we get

lim
t−→∞

d(σy(t), qx) − t = 0and, similarly,
lim

t−→∞
d(σx(t), qy) − t = 0



SYMMETRIC SPACES : DIFFERENTIAL GEOMETRY 27Sine σx and σy are parallel, they bound a �at strip and therefore qx, resp. qy, is the pointon σx(R), resp. σy(R), losest to qy, resp. qx. Hene,
d(x, y)2 = d(qx, qy)

2 +
(
d(y, qy) − d(x, qx)

)2
,thus the result with Q = {qx, x ∈ P (σ)}.5.2.3. The boundary at in�nity. �Let M be a Hadamard manifold.De�nition 5.20. � Two (unit speed) geodesis rays σ, τ : [0,+∞) −→ M are alledasymptoti if the funtion t 7→ d(σ(t), τ(t)) is bounded.De�nition 5.21. � The boundary at in�nity ∂∞M ofM is the set of equivalene lassesof rays for the equivalene relation �being asymptoti�. The equivalene lass of a ray σwill be denoted σ(∞).It follows from the results in the previous setion that if σ and τ are two asymptotigeodesi rays, then <)σ(0)(σ(1), τ(0))+ <)τ(0)(τ(1), σ(0)) ≤ π with equality if and only if

σ and τ bound a �at half strip, namely a region isometri to [0, D] × [0,+∞), where
D = d(σ(0), τ(0)).The distane funtion t 7→ d(σ(t), τ(t)) between two rays σ and τ is onvex and thereforetwo asymptoti rays annot have a point in ommon unless they are equal. Hene, givena point x ∈ M , the map Φx from the unit sphere UxM ⊂ TxM into ∂∞M given by
Φx(v) = γv(∞) is injetive.If σ is geodesi a ray and x a point in M , all γn the geodesi ray starting at xand passing through σ(n), n ∈ N. Comparison with Eulidean triangles shows that
<)σ(n)(σ(0), x) −→ 0 as n −→ +∞ sine d(σ(0), σ(n)) −→ +∞. Hene <)σ(n)(x, σ(n +

k)) −→ π as n −→ +∞ uniformly on k so that <)x(σ(n), σ(n + k)) −→ π as n −→ +∞uniformly on k. This implies that for all t ≥ 0, (γn(t))n∈N is a Cauhy sequene andhene onverges to a point that we all γ(t). The urve t 7→ γ(t) is easily seen to bea geodesi ray in M . Now, d(γ(t), σ(t)) ≤ d(γ(t), γn(t)) + d(γn(t), σ(t)). For n largeenough, d(γ(t), γn(t)) is small whereas d(γn(t), σ(t)) is bounded by d(x, σ(0)). Hene
t 7→ d(γ(t), σ(t)) is bounded and γ is asymptoti to σ.Thus, for all x ∈M , Φx : UxM −→ ∂∞M is a bijetive map.Given x ∈ M , the bijetion Φx allows to de�ne a distane <)x on ∂∞M as follows : if
ξ and η are two point at in�nity, then <)x(ξ, η) is the distane in UxM of the vetors uand v suh that σu(∞) = ξ and σv(∞) = η. This metri de�nes a topology on ∂∞M .



28 JULIEN MAUBONThe following lemma shows that this topology is in fat independent of the point x. It isalled the one topology.Lemma 5.22. � Let x and y be two points in M . The map Φ−1
y ◦ Φx : UxM −→ UyMis a homeomorphism.Proof. � Let (un) be a sequene of unit tangent vetors at x, onverging to some u ∈

UxM . Let σn : t 7→ expx(tun) and σ : t 7→ expx(tu) be the orresponding geodesi rays.Let now vn and v be the unit tangent vetors at y suh that the geodesi rays γn : t 7→

expy(tvn) and γ : t 7→ expy(tv) satisfy γn(∞) = σn(∞) and γ(∞) = σ(∞). We want toprove that the sequene (vn) onverges to v in UyM , namely that <)y(σn(∞), σ(∞)) −→ 0as n −→ ∞.For k ∈ N,
<)y(σn(∞), σ(∞)) ≤<)y(σn(∞), σn(k))+ <)y(σn(k), σ(k))+ <)y(σ(k), σ(∞)).Moreover, <)y(σn(∞), σn(k)) ≤ π− <)σn(k)(y, σn(∞)) =<)σn(k)(x, y). Clearly, if x0 and

y0 are two points in Eulidean 2-spae and if pk is a point at distane k from x0, then
<)pk

(x0, y0) −→ 0 as k −→ ∞. Therefore <)σn(k)(x, y) −→ 0 as k −→ ∞, uniformly on n.Similarly, <)y(σ(k), σ(∞)) ≤ π− <)σ(k)(y, σ(∞)) =<)σ(k)(x, y) −→ 0 as k −→ ∞.Therefore, given ε > 0, we an �nd k so that <)y(σn(∞), σ(∞)) < 2ε+ <

)y(σn(k), σ(k)). Now, the sequene (σn(k))n∈N onverges to σ(k), hene, for n bigenough, <)y(σn(k), σ(k)) < ε and the result follows.The union M := M ∪ ∂∞M an also be given a topology extending both the topologyof M and of ∂∞M : a basis of open sets is given by� the open metri balls in M , and� the sets W (m, ξ, r, ε) := {x ∈ M | <)m(σmx(∞), ξ) < ε}\B(m, r), where m ∈ M ,
ξ ∈ ∂∞M , r > 0, ε > 0, and σmx denotes the geodesi ray starting from m andpassing through x.With this topology, M is homeomorphi to a losed ball.It should be noted that the isometries of M at by homeomorphisms on M and ∂∞M .5.2.4. Busemann funtions and horospheres. �Let M be a Hadamard manifold (see [BH, hap. II.8℄ for a more general disussion).



SYMMETRIC SPACES : DIFFERENTIAL GEOMETRY 29De�nition 5.23. � Let σ : [0,+∞) −→ M be a geodesi ray. The Busemann funtionassoiated to σ is the funtion bσ : M −→ R de�ned by
bσ(x) = lim

t−→+∞

(
d(x, σ(t)) − t

)
.One proves that the limit de�ning a Busemann funtion indeed exists, that a Busemannfuntion is C2 and onvex, and that the Busemann funtions assoiated to asymptotirays di�er by an additive onstant. This allows to de�ne:De�nition 5.24. � Let x be a point in M and ξ a point on the boundary at in�nity of

M . The horosphere through x entered at ξ is the set
Hξ,x = {y ∈M | bσ(y) = bσ(x)},where bσ is the Busemann funtion assoiated to a ray σ belonging to the equivalene lass

ξ.Geometrially, if {xn} is a sequene of points inM onverging to ξ, the horosphere Hξ,xis the limit of the metri spheres entered at xn and passing through x.6. Symmetri spaes of non-ompat typeWe now apply what we saw in the preeding setions to symmetri spaes of non-ompat type. We try to give geometri proofs of some algebrai results. Our expositionfollows quite losely [E, hap. 2℄.6.1. De�nition and �rst properties. �De�nition 6.1. � A Riemannian symmetri spae (M, g) is said to be of non-ompattype if it is non-positively urved and if it has no Eulidean de Rham loal fator (i.e. theuniversal over of M does not split isometrially as Rk ×N , k ≥ 1, see 2.7).Example 6.2. It follows from Proposition 4.19 that the symmetri spae M = P (n,R)is non-positively urved. However, it is not a symmetri spae of non-ompat type sineit does split isometrially as R ×M1, where M1 = P1(n,R) = SL(n,R)/SO(n,R) is thespae of positive-de�nite symmetri matries of determinant 1. M1 is a symmetri spaeof non-ompat type. The Lie algebra of its isometry group g = sl(n,R) admits theCartan deomposition g = p ⊕ k, where p is the spae of trae free symmetri matriesand k the spae of skew-symmetri matries.



30 JULIEN MAUBONExample 6.3. Hyperboli spae KHn is a symmetri spae of non-ompat type. More-over, it is in fat negatively urved.Proposition 6.4. � A Riemannian symmetri spae of non-ompat type M is simplyonneted (and therefore di�eomorphi to RdimM).Proof. � Let M be a symmetri spae of non-ompat type and assume that M is notsimply onneted. Let Γ be its fundamental group and π : M̃ −→ M be its universalover, so that M = M̃/Γ. Then M̃ is symmetri. Call G the identity omponent of itsisometry group and Z(Γ) the entralizer of Γ in G.We laim that Z(Γ) is transitive on M̃ . Indeed, let x and y be two points of M̃ andhoose f in the identity omponent of the isometry group ofM suh that f(π(x)) = π(y).Then, f ◦π : M̃ −→M is a Riemannian overing. We an lift f ◦π to a map F : M̃ −→ M̃suh that F (x) = y and π ◦F = f ◦π. F is a loal isometry between omplete manifolds,hene a Riemannian overing, hene an isometry sine M̃ is simply onneted. Therefore
F ∈ G (sine we an also lift homotopies).For γ ∈ Γ, π ◦ F ◦ γ = f ◦ π ◦ γ = f ◦ π = π ◦ F . Hene there exists γ′ in Γ suh that
F ◦ γ = γ′ ◦ F , i.e. F belongs to the normalizer N(Γ) of Γ in G and this normalizer istransitive on M̃ . Thus the identity omponent of N(Γ), whih entralizes Γ (sine Γ isdisrete), is still transitive on M̃ .This implies that the elements of Γ are Cli�ord translations, namely, that their dis-plaement funtion is onstant on M̃ (i.e. ∀γ ∈ Γ, ∀x, y ∈ M̃ , d(x, γx) = d(y, γy)).For if x and y are in M̃ and if z ∈ Z(Γ) is suh that zx = y, then for all γ ∈ Γ,
d(y, γy) = d(zx, γzx) = d(zx, zγx) = d(x, γx).Let now γ ∈ Γ and x ∈ M̃ . Call σ the geodesi from x to γx. Then σ is γ-invariantsine γx ∈ σ ∩ γσ and, γ being a Cli�ord translation, σ and γσ are parallel. γ ats on σby translation.Pik a point y in M̃ and onsider the geodesi zσ, where z ∈ Z(Γ) is suh that zx = y.Then

d(zσ(t), σ(t)) = d(γzσ(t), γσ(t)) = d(zγσ(t), γσ(t)) = d(zσ(t+ δ), σ(t+ δ))and therefore, if γ 6= Id, the funtion t 7→ d(zσ(t), σ(t)) is periodi and hene bounded(sine ontinuous). Thus zσ is parallel to σ and we have shown that every point of M̃belongs to a geodesi parallel to σ.Corollary 5.19 then implies that M̃ has a non-trivial Eulidean de Rham fator. Con-tradition.



SYMMETRIC SPACES : DIFFERENTIAL GEOMETRY 31Using the same kind of ideas, one provesTheorem 6.5. � [E, p. 69℄ The identity omponent G of the isometry group of a sym-metri spae M of non-ompat type is semi-simple and has trivial enter.Proof. � By ontradition. If G is not semi-simple then there are non-trivial onnetednormal Abelian Lie subgroups of G. Let A be suh a subgroup. We an assume thatthe Lie algebra a of A is maximal, i.e. not properly ontained in a bigger Abelian idealof the Lie algebra g of G. Let m ∈ M , s the geodesi symmetry at m and g = k + pthe orresponding Cartan deomposition. We laim that a ∩ Ad(s)a 6= {0}. Indeed, ifnot, then Ad(s)a is also an Abelian ideal and so is a ⊕ Ad(s)a, whih properly ontains
a. Therefore, b := a ∩ Ad(s)a is a non-trivial Ad(s)-invariant Abelian ideal of g. Hene
b = (b∩ k)⊕ (b ∩ p). Now, b ∩ p 6= {0}. For if b ⊂ k, then on the one hand [b, p] ⊂ b ⊂ kbeause b is an ideal, and on the other hand [b, p] ⊂ [k, p] ⊂ p, hene [b, p] = 0 whihimplies b = 0 sine the linear isotropy representation of k is faithful. We onlude that
A ontains a 1-parameter subgroup of transvetions t 7→ pt along some geodesi γ : t 7→

pt(m).Assume that some η ∈ ∂∞M an be joined to γ(+∞) by a geodesi, say σ: σ(+∞) = ηand σ(−∞) = γ(+∞). Call t 7→ qt the 1-parameter group of transvetions along σ.For any x ∈M , we have
<)σ(0)(qtx, η) =<)q−1

t σ(0)(x, q
−1
t η) =<)σ(−t)(x, η) =<)σ(−t)(x, σ(0)) −→ 0 as t −→ +∞,hene qtx −→ η as t −→ +∞. Moreover,

<)m(qtγ(−∞), η) ≤ <)m(qtγ(−∞), qtm)+ <)m(qtm, η)

≤ <)q−1

t m(γ(−∞), m)+ <)m(qtm, η)

≤ π− <)m(q−1
t m, γ(−∞))+ <)m(qtm, η)

≤ <)m(q−1
t m, γ(+∞))+ <)m(qtm, η)Sine γ(+∞) = σ(−∞), we get <)m(qtγ(−∞), η) −→ 0 as t −→ +∞.This implies that η is in the losure of the orbit of γ(−∞) under the group G. Denoteby Λ(A) the set of luster points in ∂∞M of the orbit A.x of some point x ∈ M under

A. The subset Λ(A) is losed and independent of the hoie of the point x. Sine
p−1

t m −→ γ(−∞), γ(−∞) ∈ Λ(A). The subgroup A being normal in G, Λ(A) is stable by
G and therefore η ∈ Λ(A) = Λ(A). Now, the fat that A is Abelian implies that A �xes
Λ(A) pointwise. Hene for all t, ptη = η. But the proof above shows that p−tη −→ γ(−∞)as t −→ +∞. Thus η = γ(−∞).



32 JULIEN MAUBONWe have proved that every point inM belongs to a geodesi joining γ(−∞) to γ(+∞),hene parallel to γ. Corollary 5.19 then implies that M has a non-trivial Eulidean deRham fator. Contradition.Assume now that A is a disrete Abelian normal subgroup in G. Take a ∈ A and
x ∈ M . For eah y ∈ M there exists g ∈ G suh that y = gx. Therefore d(y, ay) =

d(gx, agx) = d(x, g−1agx) = d(x, ax) sine A being disrete and G onneted, G atuallyentralizes A. The ontradition follows as in the proof of the previous proposition, hene
G has trivial enter.Conerning the ation on ∂∞M of the identity omponent G of the isometry group of
M , we have:Proposition 6.6. � [E, pp. 59 & 101℄ Let ξ ∈ ∂∞M , m ∈M and let K be the isotropysubgroup of G at m. Then G.ξ = K.ξ. Moreover, the stabilizer Gξ of ξ in G atstransitively on M .Remark 6.7. This property is a weak geometri version of the Iwasawa deompositionof non-ompat semisimple Lie groups. The full geometri version of the latter deompo-sition requires to introdue horospheri oordinates.Proof. � Call γ the geodesi ray emanating from m and belonging to ξ and t 7→ pt the1-parameter group of transvetions along this ray.Let g ∈ G. We want to prove that there exists k ∈ K so that kξ = gξ. Call σt thegeodesi ray starting from m and passing through the point gptm and set ξt = σt(∞).Let qt be the transvetion along σt suh that qtm = gptm. Note that qtξt = ξt.The isometry kt := q−1

t gpt belongs to K. Moreover,
<)m(ktξ, ξt) =<)qtm(gptξ, qtξt) =<)gptm(gξ, ξt) =<)gptm(m, gm)and this last quantity goes to 0 as t goes to ∞. Similarly,

<)m(ξt, gξ) =<)m(gptm, gξ) ≤ π− <)gptm(m, gξ) =<)gptm(m, gm) −→ 0.Hene ktξ −→ gξ as t −→ ∞. Sine K is ompat, there exists k ∈ K so that kξ = gξ aswanted.Now let m′ be another point of M and let g ∈ G be suh that gm = m′. It followsfrom what we just proved that there exists k ∈ K so that kξ = g−1ξ. Now gkξ = ξ and
gkm = m′. Therefore Gξ is transitive on M .



SYMMETRIC SPACES : DIFFERENTIAL GEOMETRY 33Example 6.8. ForM1 = SL(n,R)/SO(n,R), the points at in�nity an be identi�ed witheigenvalues-�ag pairs, as follows: For ξ ∈ ∂∞M1, there is a unique X ∈ p (namely, a traefree symmetri matrix) of norm one suh that ξ = γX(+∞), where γX(t) = etX . Call
λi(ξ) the distint eigenvalues of X arranged so that λ1(ξ) > . . . > λk(ξ), and let Ei(ξ) bethe orresponding eigenspaes. Put Vi(ξ) =

⊕
j≤iEj(ξ). To the point ξ, we have thereforeassoiated a vetor λ(ξ) = (λ1(ξ), . . . , λk(ξ)) and a �ag V (ξ) = (V1(ξ) ⊂ . . . ⊂ Vk(ξ)) of

Rn suh that� λ1(ξ) > . . . > λk(ξ),� ∑
i(dimVi(ξ) − dimVi−1(ξ))λi(ξ) = 0 (sine X is trae free),� ∑
i(dimVi(ξ) − dimVi−1(ξ))λi(ξ)

2 = 1 (sine X has norm 1).Conversely, it is easily seen that given a vetor λ = (λ1, . . . , λk) and a �ag V = (V1 ⊂

. . . ⊂ Vk) satisfying those onditions, there is a unique point ξ ∈ ∂∞M1 suh that λ(ξ) = λand V (ξ) = V .One an also hek that the ation of g ∈ SL(n,R) on the eigenvalues-�ag pairs or-responding to its ation on ∂∞M1 is given by g.(λ, V ) = (λ, gV ) where gV is the �ag
gV1 ⊂ . . . ⊂ gVk.Example 6.9. The boundary at in�nity of hyperboli spae KHn an be identi�ed withthe set of null lines in Kn+1: ∂∞KHn = { [x] ∈ KP

n | q(x, x) = 0}.6.2. Totally geodesi subspaes. �A submanifold N of (M, g) is said to be totally geodesi if the Levi-Civitá onnetionof the metri on N indued by g is simply the restrition of the Levi-Civitá onnetion of
g. This means that any geodesi γ of M suh that γ(0) ∈ N and γ̇(0) ∈ Tγ(0)N stays in
N .Let N be a totally geodesi submanifold ofM and let m ∈ N . Then neessarily, for anytangent vetors u, v, w to N at m, R(u, v)w is also tangent to N at m (sine R is also theurvature tensor of the indued metri on N). If we onsider the Cartan deompositionof g assoiated to m, this means that, if we see TmN as a subspae q of p, [[q, q], q] ⊂ q.Suh a q is alled a Lie triple system.Conversely, if q ⊂ p is a Lie triple system, then the (omplete) manifold eqm is totallygeodesi. Indeed, one heks that h = [q, q] + q is a subalgebra of g. If H is the analytisubgroup of G whose Lie algebra is h then let N be the orbit H.m. Clearly, a geodesitangent to N at m is of the form t 7→ etXm with X ∈ q. Hene a geodesi through x ∈ Nis of the form t 7→ hetXm with X ∈ q and h ∈ H suh that hm = x, thus is ontained in



34 JULIEN MAUBON
N . Hene N is totally geodesi. Now any point x of N an be joined to m by a geodesiinside N , hene N = eqm = expm(TmN).6.3. Flats. �De�nition 6.10. � A k-�at F in M is a omplete totally geodesi submanifold of Misometri to a Eulidean spae Rk.Obviously, if F is a k-�at of M , then 1 ≤ k ≤ dimM .De�nition 6.11. � The rank r = rk(M) of the symmetri spae M is de�ned to be themaximal dimension of a �at in M . A r-�at is therefore a �at of maximal dimension.Proposition 6.12. � The �ats through m ∈ M are in one-to-one orrespondene withAbelian subspaes of p = TmM . Moreover, if a is suh an Abelian subspae (seen as asubspae of TmM), then expm : a −→ F := expm(a) is an isometry.Proof. � The �rst assertion is a diret onsequene of the urvature formula and thedisussion about totally geodesi submanifolds of M . Now let A ∈ a seen as a subspaeof TmM and ξ ∈ TAa = a. Then

dA expm(ξ) =
d

dt
expm(A+ tξ)|t=0 =

d

dt
eA+tξm|t=0 =

d

dt
eAetξm|t=0 = dme

A(ξ).Sine eA is an isometry, ‖dA expm(ξ)‖expm(A) = ‖ξ‖m.Example 6.13. For M1 = SL(n,R)/SO(n,R), a maximal Abelian subspae a of p =

TidM is the spae of trae free diagonal matries. Therefore, the rank of M1 is n− 1.Example 6.14. Sine the hyperboli spaes are negatively urved, their only �ats arethe geodesis: the rank of KH
n is 1.The identity omponent G of the isometry group of the symmetri spae M in generaldoes not at transitively on the tangent bundle TM of M (nor on geodesis in M), butit ats transitively on the pairs (x, F ), where x is a point in M and F a r-�at through x.Indeed:Theorem 6.15. � Let g = k+ p be a Cartan deomposition of the Lie algebra of G, andlet a and a′ be two maximal Abelian subspaes of p. Then there exists k ∈ K suh that

Ad(k)a = a′.Proof. � See P.-E. Paradan's leture [P℄.



SYMMETRIC SPACES : DIFFERENTIAL GEOMETRY 35In partiular, any geodesi of M is ontained in a maximal �at.6.4. Regular geodesis. Weyl hambers. �We refer to [E, p. 85-94℄ for details.A geodesi ofM is alled regular if it is ontained in a unique maximal �at. Otherwise,it is alled singular. In the same way, a tangent vetor v ∈ TmM (or the orrespondingelement of p) is de�ned to be regular, resp. singular, if the geodesi γv : t 7→ expm(tv) isregular, resp. singular.Example 6.16. For the symmetri spaeM1 = SL(n,R)/SO(n,R), an element of a (thatis, a diagonal matrix of trae zero) is regular if and only if its oe�ients are all distint.If a geodesi γ, resp. a tangent vetor v, is regular, we denote by F (γ), resp. F (v), theunique maximal �at ontaining γ, resp. γv.If σ and τ are two asymptoti rays, it follows from Proposition 6.6 that σ is regular ifand only if τ is. Therefore we may de�ne a point ξ ∈ ∂∞M to be regular if some (heneany) ray belonging to ξ is regular.If v is a unit tangent vetor at some point m ∈ M and if x is a point inM , we all v(x)the unit tangent vetor at x asymptoti to v, namely, suh that γv(x)(+∞) = γv(+∞).Note that if v is regular, then v(x) is regular for all x ∈M .We will de�ne three kinds of Weyl hambers: in the tangent bundle TM (or the unittangent bundle UM) of M , in M itself, and on the boundary at in�nity of M .Let v0 and v1 be two regular (unit) tangent vetors at a point m ∈ M . Call v0 and v1equivalent if there is a �at F through m and a urve t 7→ v(t) of regular (unit) tangentvetors at m, joining v0 to v1, and tangent to F for all t. The equivalene lasses for thisequivalene relation on the regular vetors in TmM (in UmM) are alled Weyl hambersat m. Given a regular vetor v ∈ TmM (or UmM), we all C(v) the Weyl hamber of v.Example 6.17. There are therefore n! Weyl hambers in the maximal Abelian subspae
a of p for M1 = SL(n,R)/SO(n,R): if A is a diagonal matrix with distint oe�ients
a1, . . . , an, there exists a permutation τ suh that aτ(1) > . . . > aτ(n) and the WeylChamber of A is the set of diagonal matries A′ = diag(a′1, . . . , a

′
n) suh that a′τ(1) > . . . >

a′τ(n).If C ⊂ UmM is a Weyl hamber, we de�ne its enter to be the unit vetor at mpointing in the same diretion as ∫
C
ι(u)dµS(u), where S ⊂ UmM is the great subsphere



36 JULIEN MAUBONof smallest dimension ontaining C, µS is Lebesgue measure on S, and ι : UmM −→ TmMis the inlusion.Let v ∈ UmM be a regular vetor and F (v) the orresponding maximal �at. We de�nethe Weyl hamber of v in F (v) as follows:
W (v) = {expm(tu)| u ∈ C(v), t > 0}.One proves that the singular geodesis through a point m in a maximal �at F form theunion of a �nite number of hyperplanes in F , alled walls, and the onneted omponentsof F\{walls} are preisely the Weyl hambers W (v) for v regular unit tangent vetors to

F at m.We now give, without proof, some of the most important properties of Weyl hambers(see [E℄).1. If v ∈ UmM is a regular vetor and if F (v) is the maximal �at through m tangentto v, then W (v) is an open unbounded onvex subset of F (v).2. If v ∈ UmM is a regular vetor and if x ∈ M , then the Weyl hambers W (v) and
W (v(x)) are asymptoti, more preisely, the Hausdor� distane between them isbounded by the distane between m and x.3. For v ∈ UmM and v′ ∈ Um′M two regular vetors, there exists an element g ∈ Gsuh that gm = m′ and dmg(v) ∈ C(v′), hene g C(v) = C(v′) and gW (v) = W (v′),thus implying that any two Weyl hambers are isometri.The third kind of Weyl hambers is simply the asymptoti version of the previous ones.Let ξ be a regular point on ∂∞M and let m and v ∈ UmM be suh that γv(∞) = ξ. Thenset

C(ξ) = {γu(∞)| u ∈ C(v)}.This is well-de�ned by Property (2) above. Note that C(ξ) and C(ξ) are subsets of theboundary at in�nity of F (v).We say that a regular point ξ ∈ ∂∞M is the enter of its Weyl hamber C(ξ) if ξ = γv(∞)for some v ∈ UM enter of its Weyl hamber C(v)6.5. Dihotomy between rank 1 and higher rank symmetri spaes. �There are many di�erenes, whih have very important impliations (for example forlatties), between symmetri spaes of non-ompat type of rank 1 and of rank at least2. Here we list only straightforward onsequenes of what we have seen.



SYMMETRIC SPACES : DIFFERENTIAL GEOMETRY 37Proposition 6.18. � Let M be a symmetri spae of non-ompat type. The followingassertions are equivalent:(1) M has rank 1;(2) M has stritly negative setional urvatures (hene, sine the isometry group of Mats transitively on M , there exist b > a > 0 suh that the setional urvatures of M arepinhed between −b2 and −a2);(3) The isotropy group of G at some point m ∈ M is transitive on the unit tangentvetors at m;(4) any two points on the boundary at in�nity of M an be joined by a geodesi.Proof. � (2) obviously implies (1). Conversely, assume that u, v ∈ TmM are suh that
Rm(u, v, u, v) = 0. Then Rm(u, v)u = 0 beause v 7→ Rm(u, v)u is negative semi-de�nite.Hene [[u, v], u] = 0, i.e. (adu)2v = 0. Now, adu is symmetri w.r.t. the bilinear form Bθ(see [P℄). Thus Ker(adu)2 ⊂ Ker(adu) and [u, v] = 0, namely u and v are tangent to amaximal �at through m.(1) implies (3) by Theorem 6.15. Conversely, if the rank of M is greater than 1, thena singular geodesi an not be sent to a regular one.Assume (2). The fat that the setional urvatures of M are bounded from above by astritly negative onstant −a2 implies that geodesi triangles in M are thinner than theiromparison triangles in M−a2 , the 2-dimensional model spae of onstant urvature −a2(in other words, M is CAT(−a2)). Let ξ and η be two points on ∂∞M and let σ and τbe two geodesi rays starting from some point x ∈M suh that σ(∞) = ξ and τ(∞) = η.The distane between x and the geodesi segment [σ(n), τ(n)] is bounded independentlyof n ∈ N (beause this is true in M−a2). Hene it will be possible to �nd a onvergentsubsequene and this will be the geodesi joining ξ to η: (2) implies (4).We prove that (4) implies (1) by ontradition: assume there exists a 2-dimensional �at
F inM , and hoose points x and y on the boundary at in�nity of F that annot be joinedby a geodesi in F . Then x and y an not be joined by a geodesi in M . Indeed, if γ issuh a geodesi, m a point of F , and σ, τ the geodesi rays emanating from m suh that
σ(∞) = x and τ(∞) = y, then the Hausdor� distane between γ(R) and σ(R+) ∪ τ(R+)is bounded by some k > 0. Now, the intersetion of F with the k-neighborhood of γ(R)is onvex and ontained in the 2k-neighborhood of σ(R+) ∪ τ(R+). Hene, for all n ∈ N,the geodesi segment [σ(n), τ(n)] is ontained in the 2k-neighborhood of σ(R+) ∪ τ(R+).This is possible only if the angle between σ and τ at m is π, i.e. if x and y are joined bya geodesi inside F .



38 JULIEN MAUBONExample 6.19. Using the eigenvalues-�ag pair desription of the boundary at in�nity of
M1 = P1(n,R), one an prove (see [E, p. 93℄) that two points ξ and η on ∂∞M1 orrespond-ing to the eigenvalues-�ag pairs ((λi(ξ))1≤i≤k, (Vi(ξ))1≤i≤k) and ((λi(η))1≤i≤l, (Vi(η))1≤i≤l)an be joined by a geodesi if and only if� k = l,� ∀i, λi(η) = −λk−i+1(ξ),� ∀i, R

n is the diret sum of Vi(ξ) and Vk−i(η).Remark 6.20. It follows from the lassi�ation of symmetri spaes that up to dilata-tions, the rank 1 symmetri spaes of non-ompat type are exatly the hyperboli spaes
KHn we desribed earlier, together with one exeptional example, the Cayley hyperboliplane, whih is of real dimension 16.6.6. Toward the building struture of the boundary at in�nity. �We just saw that in rank one symmetri spaes, two points at in�nity an always bejoined by a geodesi. In higher rank symmetri spaes, they an be joined by �ats. Amuh stronger result is true: the boundary at in�nity of a symmetri spae of non-ompattype admits the struture of a building whose apartments are the boundaries at in�nityof the maximal �ats (see the leture of G. Rousseau [R℄ for the de�nition of a building).Here we will only prove the followingTheorem 6.21. � Let M be a symmetri spae of non-ompat type. Any two pointson the boundary at in�nity ∂∞M of M lie on the boundary at in�nity ∂∞F of a maximal�at F of M .(sketh, adapted from [BS℄). � Let n be the dimension of M and r its rank. We mayassume that r ≥ 2.Let ξ0 and η0 be two points of ∂∞M . Let ξ and η be regular points of ∂∞M so that
ξ0 ∈ C(ξ) and η0 ∈ C(η). We an assume that η is the enter of its Weyl hamber. It isenough to prove that there exists a �at F suh that ξ and η belong to ∂∞F .Let m be a point of M and v ∈ UmM so that γv(−∞) = ξ. Note that γv is aregular geodesi. Let φ be a transvetion along γv and F (v) be the unique maximal �atontaining γv. The boundary at in�nity ∂∞F (v) of F (v) is the union of a �nite numberof Weyl hambers whih are permuted by φ. Up to taking a power of φ, we an assumethat φ �xes the enters of the Weyl hambers in ∂∞F (v).



SYMMETRIC SPACES : DIFFERENTIAL GEOMETRY 39We laim that, up to extration of a subsequene, the sequene (φjη)j∈N onverges tosome point η′ ∈ ∂∞F (v). Indeed, for all x ∈ ∂∞M ,
<)m(φx, γv(+∞)) =<)m(φx, φm) ≤ π− <)φm(φx,m) = π− <)m(x, φ−1m) =<)m(x, γv(+∞))with equality if and only if the triangle T (m,φm, φx) is �at, i.e. if and only if x ∈ ∂∞F (v),sine v is regular and ∂∞F (v) is invariant by φ. Now, if y is any limit point of {φjx, j ∈ N},we have <)m(φy, γv(+∞)) =<)m(y, γv(+∞)), hene y ∈ ∂∞F (v).Let vj ∈ UmM be suh that γvj

(∞) = φjη. Sine φjη is the enter of its Weylhamber, so is vj . Now, all the Weyl hambers are isometri. Therefore, the angle
<)m(vj,walls of C(vj)) is onstant and this implies that η′ is regular and is the enter ofits Weyl hamber.Call γ the (regular) geodesi of F (v) suh that γ(0) = m and γ(+∞) = η′ and let
ζ = γ(−∞). Again, ζ is regular and is the enter of its Weyl hamber.Let Hsu be the strong unstable horosphere of γ̇(0). Hsu is a submanifold of the unstablehorosphere Hu of γ̇(0), that is, of the horosphere entered at ζ = γ(−∞) and passingthrough m = γ(0). Hsu is (roughly) de�ned as follows. Through eah point x of thehorosphere Hu there is a (unique) maximal �at Fx ontaining the ray joining x to ζ .Consider the distribution Q of (n− r)-planes in THu given by Qx = TxFx

⊥ ⊂ TxH
u. Oneproves that this distribution is integrable and Hsu is de�ned to be the maximal integralsubmanifold through m. For all x ∈ Hsu, Hsu ∩ Fx = {x}.Consider the map f : Hsu×C(ζ) −→ ∂∞M given by f(m′, ζ ′) = γm′ζ′(−∞), where γm′ζ′is the geodesi joining m′ to ζ ′. This map is ontinuous. Moreover, it is injetive. Indeed,assume that γ1 := γm1ζ1 and γ2 := γm2ζ2 satisfy γ1(−∞) = γ2(−∞). Let P be the maximal�at ontaining γ1. Then, sine ζ1 and ζ2 belongs to the same Weyl hamber, ∂∞P ontains

γ2(+∞) = ζ2 and γ2(−∞) = γ1(−∞). Therefore (see the proof of Proposition 6.18), thereis a geodesi σ in P suh that σ(+∞) = γ2(+∞) and σ(−∞) = γ2(−∞). The geodesis σand γ1 are both ontained in P and satisfy σ(−∞) = γ1(−∞): they must be parallel andhene ζ1 = γ1(+∞) = σ(+∞) = ζ2. The geodesis γ1 and γ2 are therefore parallel, henethey bound a �at strip, and sine they are regular, they both must be ontained in themaximal �at P . Now P also ontains the geodesi joining m1 to ζ , and by the de�nitionof the strong unstable horosphere Hsu, the intersetion of P and Hsu is redued to m1.Hene m1 = m2 and f is injetive as laimed. Sine the domain and the target of f havethe same dimension, f is in fat a homeomorphism from a neighborhood U × V of (m, ζ)to a neighborhood W of η′.



40 JULIEN MAUBONSine (φjη)j∈N onverges to η′, we may assume that for all j, there exists (mj , ζj) ∈ U×Vsuh that f(mj, ζj) = φjη. But φjη is the enter of its Weyl hamber thus so is ζj, i.e.
ζj = ζ for all j. Hene for all j there exists γj = γmjζ joining ζ to φjη. Sine γj −→ γ wemay assume that the geodesis γj are regular.Therefore, for all j, φ−jγj is a regular geodesi joining ζ to η. By the �at strip theorem,these geodesis, being regular and parallel, must all lie in the same maximal �at F . Thus
η ∈ ∂∞F . Now, φ−jmj ∈ F for all j. Sine the sequene (mj)j∈N is bounded and
φ−jx −→ γv(−∞) as j −→ ∞ for all x ∈ M , we have φ−jmj −→ γv(−∞) as j −→ ∞.Hene ξ = γv(−∞) belongs to ∂∞F and we are done.
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