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2 JULIEN MAUBON1. Introdu
tionMany of the rigidity questions in non-positively 
urved geometries that will be addressedin the more advan
ed le
tures of this summer s
hool either dire
tly 
on
ern symmetri
spa
es or originated in similar questions about su
h spa
es.This 
ourse is meant to provide a qui
k introdu
tion to symmetri
 spa
es of the non-
ompa
t type, from the (di�erential) geometer's point of view. A 
omplementary algebrai
introdu
tion is given in P.-E. Paradan's le
ture [P℄. We have tried to always start from(and sti
k to) geometri
 notions, even when the aim was to obtain more algebrai
 results.Sin
e the general topi
 of the summer s
hool is non-positively 
urved geometries, we haveinsisted on the aspe
ts of non-positive 
urvature whi
h 
an be generalized to mu
h moregeneral settings than Riemannian manifolds, su
h as CAT(0)-spa
es.This text is however very in
omplete and the reader should 
onsult the referen
es givenat the end of the paper for mu
h more detailed expositions of the subje
t.In what follows, (M, g) denotes a (smooth and 
onne
ted) Riemannian manifold ofdimension n. 2. Riemannian preliminariesIn this se
tion we review very qui
kly and without proofs the basi
s of Riemanniangeometry that will be needed in the rest of the paper. Proofs and details 
an be found instandard text books, for example [dC℄, [GHL℄ or [KN℄.2.1. Levi-Civitá 
onne
tion. �A 
onne
tion on the tangent bundle TM of M is a bilinear map
∇ : Γ(TM) × Γ(TM) −→ Γ(TM)su
h that, for every fun
tion f ∈ C∞(M) and all ve
tor �elds X, Y ∈ Γ(TM),� ∇fXY = f∇XY ,� ∇XfY = df(X)Y + f∇XY (Leibniz rule).Note that the value of ∇XY at a point m of M depends only on the value of X at m.On a Riemannian manifold (M, g), there is a unique 
onne
tion on the tangent bundle,the so-
alled Levi-Civitá 
onne
tion of g, whi
h is both torsion-free and metri
, namely,su
h that� ∇XY −∇YX = [X, Y ] for all X, Y ∈ Γ(TM),� ∇g = 0, i.e. X.g(Y, Z) = g(∇XY, Z) + g(Y,∇XZ) for all X, Y, Z ∈ Γ(TM).



SYMMETRIC SPACES : DIFFERENTIAL GEOMETRY 3The following formula for the Levi-Civitá 
onne
tion, whi
h also implies its existen
e, isuseful:
2g(∇XY, Z) = X.g(Y, Z)+Y.g(X,Z)−Z.g(X, Y )−g(X, [Y, Z])+g(Y, [Z,X])+g(Z, [X, Y ]).2.2. Curvatures. �If X, Y, Z ∈ Γ(TM), we de�ne R(X, Y )Z = ∇[X,Y ]Z − [∇X ,∇Y ]Z. In fa
t, the valueof this ve
tor �eld at a point m depends only on the values of the ve
tors �elds X, Y , Zat m. R is 
alled the Riemann 
urvature tensor of g.The metri
 allows us to see the Riemann 
urvature tensor as a (4,0)-tensor by setting
R(X, Y, Z, T ) = g(R(X, Y )Z, T )The Riemann 
urvature tensor has the following symmetries [GHL, Proposition 3.5℄:� R(X, Y, Z, T ) = −R(Y,X, Z, T ) = R(Z, T,X, Y ),� First Bian
hi identity: R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0.The se
tional 
urvature K(P ) of a 2-plane P in TmM is de�ned as follows : pi
k a
g-orthonormal basis (u, v) of P and set K(P ) = R(u, v, u, v). The se
tional 
urvature
oin
ides with the usual notion of Gaussian 
urvature on a surfa
e. Namely, if P is atangent 2-plane in TmM and S a small pie
e of surfa
e inM tangent to P at m, then these
tional 
urvature of P is the Gaussian 
urvature of S at m [dC, p. 130-133℄.Note that the se
tional 
urvatures determine the 
urvature tensor [dC, p. 94℄. Forexample, a manifold (M, g) has 
onstant se
tional 
urvature κ if and only if its Riemann
urvature tensor is given by:

R(X, Y )Z = κ
(
g(X,Z)Y − g(Y, Z)X

)
.Multiplying the metri
 by a 
onstant c multiplies the se
tional 
urvatures by the 
onstant

1/c, therefore there are only three interesting 
ases:- κ=0, the model spa
e being Eu
lidean spa
e En = Rn, with the metri
 dx2
1+ . . .+dx2

n;- κ=1, the model spa
e being the round sphere S
n ⊂ R

n+1, n ≥ 2, with the metri
indu
ed from the Eu
lidean metri
 of Rn+1;- κ=-1, the model spa
e being hyperboli
 spa
e Hn whi
h 
an be de�ned as follows (seeexample 4.4 for an equivalent de�nition). Endow Rn+1, n ≥ 2, with the quadrati
 form ofsignature (n, 1) given by q(x, x) = x2
1 + . . .+x2

n −x
2
n+1 and set Hn = {x ∈ Rn+1 | q(x, x) =

−1, xn+1 > 0}. Then it is easily 
he
ked that the restri
tion of q to the tangent spa
eof Hn at x is positive de�nite and therefore q de�nes a Riemannian metri
 on Hn. Itsse
tional 
urvatures 
an be 
omputed to be 
onstant equal to −1.For a justi�
ation of the term "model spa
e", see Example 3.7 and Remark 4.14.



4 JULIEN MAUBON2.3. Parallel transport, geodesi
s and the exponential map. �The Levi-Civitá 
onne
tion allows to di�erentiate ve
tor �elds de�ned along
urves[GHL, Theorem 2.68℄. If c is a 
urve in M and X a ve
tor �eld along c, we
all ∇ċX, or X ′ when no 
onfusion is possible, the 
ovariant derivative of X along c: itis a new ve
tor �eld along c.A ve
tor �eld X along a 
urve c is 
alled parallel if its 
ovariant derivative along
c vanishes identi
ally: ∇ċX = 0. It follows from the standard theory of di�erentialequations that given a 
urve c and a ve
tor v tangent to M at c(0), there exists a uniqueparallel ve
tor �eld Xv along c su
h that Xv(0) = v. The parallel transport along c from
c(0) to c(t) is by de�nition the linear isomorphism given by v ∈ Tc(0)M 7→ Xv(t) ∈ Tc(t)M .Sin
e ∇ is metri
, the parallel transport is in fa
t a linear isometry Tc(0)M −→ Tc(t)M[GHL, Proposition 2.74℄.A geodesi
 is a smooth 
urve γ : I −→M su
h that ∇γ̇ γ̇ = 0.Note that a geodesi
 always has 
onstant speed [GHL, 2.77℄.One 
an prove (see for example [dC, p. 62-64℄) that given a pointm inM and a tangentve
tor v ∈ TmM , there exist ε > 0 and a geodesi
 γ : (−ε, ε) −→ M su
h that γ(0) = mand γ̇(0) = v. This geodesi
 is unique, depends in a C∞ way on m and v. It will generallybe denoted γv (or σv).Proposition 2.1. � [dC, p. 64℄ For all m ∈ M , there exists a neighborhood U of m and
δ > 0 su
h that, for all x ∈ U and all v ∈ TxM with ‖v‖ < δ, the geodesi
 γv is de�nedon ] − 2, 2[.Let x ∈ M . The exponential map at x is the map expx : v ∈ TxM 7→ γv(1) ∈ M ,de�ned on a su�
iently small neighborhood of 0 in TxM .The di�erential at 0 ∈ TxM of expx is the identity map and therefore:Theorem 2.2. � [dC, p. 65℄ For all x ∈M , there exists δ > 0 su
h that the restri
tionof expx : TxM −→M to the ball B(0, δ) is a di�eomorphism onto its image.A neighborhood U of m ∈ M is 
alled a normal neighborhood of m if it is the di�eo-morphi
 image under expm of a star-shaped neighborhood of 0 ∈ TmM .Theorem 2.3. � [dC, p. 72 & 76℄ Ea
h m ∈ M has a normal neighborhood Um whi
his also a normal neighborhood of ea
h of its points. In parti
ular, any two points of Um
an be joined by a unique geodesi
 in Um.
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h a neighborhood will be 
alled a 
onvex normal neighborhood of m.2.4. Ja
obi �elds. Di�erential of the exponential map. �Let γ be a geodesi
 in M . A ve
tor �eld Y along γ is 
alled a Ja
obi ve
tor �eld if itsatis�es the di�erential equation along γ:
Y ′′ +R(γ̇, Y )γ̇ = 0.This equation is equivalent to a linear system of ordinary se
ond order linear equations([dC, p. 111℄) and therefore for any v, w ∈ Tγ(0)M , there exists a unique Ja
obi ve
tor�eld Y su
h that Y (0) = v and Y ′(0) = w. The spa
e J(γ) of Ja
obi ve
tor �elds along

γ is 2n-dimensional.Note that t 7→ γ̇(t) and t 7→ tγ̇(t) are Ja
obi ve
tor �elds along γ. If Y is a Ja
obi �eldalong γ su
h that Y (0) and Y ′(0) are orthogonal to γ̇(0) then Y (t) is orthogonal to γ̇(t)for all t (su
h Ja
obi �elds are 
alled normal Ja
obi �elds).Let H be a variation of geodesi
s. This means that H is a di�erentiable map from aprodu
t I × J into M su
h that for all s the 
urve t 7→ γs(t) := H(s, t) is a geodesi
 in
M . It is then easy to see that the ve
tor �eld Y along γ0 given by Y (t) = ∂H

∂s
(0, t) is aJa
obi ve
tor �eld [GHL, 3.45℄.In parti
ular, we obtain an expli
it formula for Ja
obi �elds along t 7→ γ(t) vanishingat t = 0 in terms of the exponential map. Indeed, for any v, w ∈ TmM , the derivative Yof the variation of geodesi
s H(s, t) = expm(t(v + sw)) is a Ja
obi ve
tor �eld along thegeodesi
 γ : t 7→ H(0, t) = expm(tv). But Y (t) = dtv expm(tw) and

Y ′(t) = ∇γ̇(tdtv expm(w)) = dtv expm(w) + t∇γ̇dtv expm(w)so that Y ′(0) = d0 expm(w) = w.From uniqueness, we obtain:Proposition 2.4. � [dC, p. 114℄ Let t 7→ γ(t) = expm(tv) be a geodesi
 in M . Thenany Ja
obi ve
tor �eld Y along γ su
h that Y (0) = 0 is given by Y (t) = dtv expm(tY ′(0)).2.5. Riemannian manifolds as metri
 spa
es. �The length of a (pie
ewise) di�erentiable 
urve c : [a, b] −→M is de�ned to be
L(c) =

∫ b

a

‖ċ(t)‖g dt.A 
urve c is a geodesi
 if and only if it lo
ally minimizes length, meaning that for all
t, there exists ε su
h that c is the shortest 
urve between c(t − ε) and c(t + ε) (see forexample [GHL, p. 91℄).



6 JULIEN MAUBONA geodesi
 is 
alled minimizing if it minimizes length between any two of its points.Given two points x and y of M , de�ne d(x, y) to be the in�mum of the length of allpie
ewise di�erentiable 
urves joining x to y. Then d de�nes a distan
e on M 
ompatiblewith the manifold topology of M [GHL, p. 87℄. We 
all it the length metri
 of (M, g).We have the following very important theorem (for a proof see [dC, p. 146℄ or [GHL,p. 94℄):Theorem 2.5 (Hopf-Rinow). � Let (M, g) be a Riemannian manifold. The followingassertions are equivalent:(1) M is geodesi
ally 
omplete, namely, all the geodesi
s are de�ned over R, or equiv-alently, for all m ∈M , expm is de�ned on TmM ;(2) There exists m ∈M su
h that expm is de�ned on TmM ;(3) (M, d) is 
omplete as a metri
 spa
e;(4) the 
losed bounded subsets of M are 
ompa
t.Moreover, all these assertions imply that given any two points in M , there exists aminimizing geodesi
 joining them.We 
an also give a metri
 interpretation of se
tional 
urvature showing that it gives ameasurement of the rate at whi
h geodesi
s in�nitesimally spread apart:Proposition 2.6. � [C℄ Let u and v be two orthonormal tangent ve
tors at m ∈M . Let
σu and σv be the 
orresponding unit speed geodesi
s. Call κ the se
tional 
urvature of the2-plane spanned by u and v. Then

d(σu(t), σv(t))
2 = 2t2 −

κ

6
t4 + o(t5).2.6. Isometries. �A map f : M −→ N between two Riemannian manifolds (M, g) and (N, h) is a lo
alisometry if for all x ∈ M , dxf is a (linear) isometry between TxM and Tf(x)N : ∀u, v ∈

TxM , hf(x)(dxf(u), dxf(v)) = gx(u, v). Note that a lo
al isometry is ne
essarily a lo
aldi�eomorphism.A lo
al isometry is 
alled an isometry if it is a global di�eomorphism.If (N, h) = (M, g), a (lo
al) isometry f : M −→ M is simply 
alled a (lo
al) isometryof M .An isometry maps geodesi
s to geodesi
s and is therefore an a�ne transformation. Itis also obviously a distan
e preserving map.Conversely, one 
an prove :



SYMMETRIC SPACES : DIFFERENTIAL GEOMETRY 7Theorem 2.7. � [H, p. 61℄ Let (M, g) be a Riemannian manifold. Then:(1) Any a�ne transformation f of M su
h that dxf is isometri
 for some x ∈M is anisometry of M .(2) Any distan
e preserving map of the metri
 spa
e (M, d) onto itself is an isometryof M .One also has the usefulLemma 2.8. � [dC, p. 163℄ Let φ and ψ be two isometries of M . Assume that at somepoint x, φ(x) = ψ(x) and dxφ = dxψ. Then φ = ψ.and theProposition 2.9. � [GHL, p. 96℄ Let f : M −→ N be a lo
al isometry between twoRiemannian manifolds. Assume that M is 
omplete. Then f is a Riemannian 
overingmap.The isometries of M obviously form a group I(M). We endow I(M) with the 
ompa
topen topology, namely, the smallest topology for whi
h the sets
W (K,U) := {f ∈ I(M) | f(K) ⊂ U},where K is a 
ompa
t subset of M and U is an open subset of M , are open.Sin
e M is a lo
ally 
ompa
t separable metri
 spa
e, this topology has a 
ountablebasis ([H, p. 202℄). Note that a sequen
e of isometries 
onverges in the 
ompa
t opentopology if and only if it 
onverges uniformly on 
ompa
t subsets of M .Theorem 2.10. � [H, p. 204℄ Endowed with the 
ompa
t open topology, the isometrygroup I(M) of a Riemannian manifold M is a lo
ally 
ompa
t topologi
al transformationgroup of M . Moreover, for all x ∈ M , the isotropy subgroup I(M)x = {g ∈ G | gx = x}of I(M) at x is 
ompa
t.2.7. De Rham de
omposition. �See [KN℄ for details and proofs.De�nition 2.11. � A Riemannian manifold M is said to be redu
ible if it admits a�nite Riemannian 
over M̂ whi
h splits as a Riemannian produ
t M̂1 × M̂2 of manifoldsof positive dimension. If M is not redu
ible, it is irredu
ible.



8 JULIEN MAUBONTheorem 2.12 (de Rham de
omposition). � Let M be a simply 
onne
ted Rieman-nian manifold. Then M de
omposes as a Riemannian produ
t (all but one of the fa
torsmay be absent)
M = M0 ×M1 × . . .×Mk,where M0 is a Eu
lidean spa
e and for 1 ≤ i ≤ k, the manifold Mi is irredu
ible. Thisde
omposition is unique up to the order and isometri
 equivalen
e of the fa
tors Mi,

1 ≤ i ≤ k.If the manifoldM is not simply 
onne
ted, then any point inM has a simply 
onne
tedneighborhood whi
h admits su
h a de
omposition.3. Riemannian lo
ally symmetri
 spa
esStarting from the geometri
 de�nition in terms of geodesi
 symmetries, we prove thata Riemannian manifold is lo
ally symmetri
 if and only if its Riemann 
urvature tensoris parallel. A good referen
e is [H℄ (see also [W℄).De�nition 3.1. � Let (M, g) be a Riemannian manifold and let m ∈ M . The lo
algeodesi
 symmetry sm at m is the lo
al di�eomorphism de�ned on small enough normalneighborhoods of m by sm = expm ◦(−IdTmM) ◦ exp−1
m .De�nition 3.2. � A Riemannian manifold (M, g) is 
alled lo
ally symmetri
 if for ea
h

m ∈M the lo
al geodesi
 symmetry at m is an isometry.Remark 3.3. In fa
t a Riemannian manifold (M, g) is lo
ally symmetri
 if for ea
h
m ∈ M there exists a lo
al isometry φm de�ned on a neighborhood of m su
h that
φm(m) = m and whose di�erential dmφm at m is −idTmM (ne
essarily, φm is the lo
algeodesi
 symmetry at m).Sin
e the Levi-Civitá 
onne
tion ∇ and the Riemann 
urvature tensor R of g areinvariant by isometries, for any point m of M we have s⋆

m(∇R)m = dmsm ◦ (∇R)m =

−(∇R)m. But ∇R is a (4,1)-tensor and therefore s⋆
m(∇R)m = (∇R)m. Hen
e:Proposition 3.4. � A Riemannian lo
ally symmetri
 manifold has parallel Riemann
urvature tensor : ∇R = 0.In fa
t, the 
onverse of this statement is also true, as the following more general resultshows.



SYMMETRIC SPACES : DIFFERENTIAL GEOMETRY 9Theorem 3.5. � Let (M, gM) and (N, gN) be two Riemannian manifolds with parallel
urvature tensors. Let m ∈ M and n ∈ N . Assume that ϕ : TmM −→ TnN is a linearisometry preserving the Riemann 
urvature tensors, i.e. su
h that for all u, v, w in TmM ,
RN

n (ϕ(u), ϕ(v))ϕ(w) = ϕ(RM
m (u, v)w). Then there exist normal neighborhoods U and Vof m and n su
h that f := expn ◦ϕ ◦ exp−1

m is an isometry between U and V. Note that
f(m) = n and dmf = ϕ.Proof. � Let r > 0 be su
h that expm : B(0, r) −→ U = B(m, r) and expn : B(0, r) −→
V = B(n, r) are di�eomorphisms, and de�ne f : U −→ V by f = expn ◦ϕ ◦ exp−1

m . f is adi�eomorphism. Let us prove that f is an isometry.Let x ∈ U , x = expm(v), and let w ∈ TxM . Let J be the Ja
obi �eld along the geodesi

γv joining m to x su
h that J(0) = 0 and J ′(0) = dx(expm)−1(w). Then J(1) = w byProposition 2.4. Let (e1(t) = γ̇v(t), . . . , en(t)) be a parallel �eld of orthonormal framesalong the geodesi
 γv in M . In this frame, we have J(t) =

∑
i yi(t)ei(t).Let now (ε1(t), . . . , εn(t)) be the parallel orthonormal frame �eld along the geodesi


γϕ(v) in N starting from n su
h that for all i, εi(0) = ϕ(ei(0)). De�ne I(t) =
∑

i yi(t)εi(t).Then I is a Ja
obi ve
tor �eld along γϕ(v). Indeed,
gN(I ′′ +RN (γ̇ϕ(v), I)γ̇ϕ(v), εi) = y′′i +

∑
j yj R

N(ε1, εj, ε1, εi)

= y′′i +
∑

j yj R
N
n (ε1(0), εj(0), ε1(0), εi(0))

= y′′i +
∑

j yj R
N
n (ϕ(e1(0)), ϕ(ej(0)), ϕ(e1(0)), ϕ(ei(0)))

= y′′i +
∑

j yj R
M
m (e1(0), ej(0), e1(0), ei(0))

= y′′i +
∑

j yj R
M(e1, ej, e1, ei)

= gM(J ′′ +RM(γ̇v, J)γ̇v, ei)

= 0where we have used the fa
t that the 
urvature tensor R is parallel if and only if for anyparallel ve
tor �elds X, Y and Z, the ve
tor �eld R(X, Y )Z is also parallel.Now, I(0) = 0 and I ′(0) = ϕ(J ′(0)). Therefore,
dxf(w) = dϕ(v) expn(ϕ(J ′(0))) = I(1).Sin
e ‖I(1)‖2

N =
∑

i |yi(1)|2 = ‖J(1)‖2
M , f is an isometry.We therefore get:Corollary 3.6. � A Riemannian manifold (M, g) is lo
ally symmetri
 if and only if oneof the following equivalent assertions is true(1) the Riemann 
urvature tensor is parallel,



10 JULIEN MAUBON(2) any linear isometry from TxM to TyM preserving the Riemann 
urvature tensor(or equivalently the se
tional 
urvatures) is indu
ed by a (unique) lo
al isometry betweennormal neighborhoods of x and y.Example 3.7. The formula for the Riemann 
urvature tensor of a manifold of 
onstantse
tional 
urvature given in Se
tion 2.2 shows that su
h a manifold is lo
ally symmetri
.Moreover a slight modi�
ation of assertion (2) above implies that two Riemannian mani-folds of the same dimension and of (the same) 
onstant 
urvature κ are lo
ally isometri
.Remark 3.8. It is 
lear from the proof of Theorem 3.5 that if γ is a geodesi
 through
m ∈ M , then the di�erential at γ(t) of the geodesi
 symmetry sm is given by dγ(t)sm =

−γ−t
t where γs

t denotes parallel transport along γ from Tγ(t)M to Tγ(s)M .4. Riemannian globally symmetri
 spa
esOur starting point is the geometri
 de�nition of a Riemannian (globally) symmetri
spa
e M , from whi
h we dedu
e some of the algebrai
 properties of the isometry groupof M and its Lie algebra. One 
ould also go the other way around: this is the topi
 ofP.-E. Paradan's le
ture [P℄. A mu
h more detailed exposition 
an be found in [H℄ (seealso [Bo℄).4.1. De�nition and �rst results. �De�nition 4.1. � A Riemannian manifold (M, g) is said to be a Riemannian (globally)symmetri
 spa
e if for all m ∈ M , the lo
al geodesi
 symmetry at m extends to a globalisometry of M .Remark 4.2. It follows from the results of the previous se
tion that if M is lo
allysymmetri
 and if expm : TmM −→ M is a di�eomorphism for all m, then sm is a globalisometry and hen
e M is globally symmetri
. This is the 
ase for example if M is lo
allysymmetri
, simply 
onne
ted, 
omplete and non-positively 
urved.Example 4.3. (see [BH, 
hap. II.10℄ for details) Let M = P (n,R) be the open 
one ofpositive-de�nite symmetri
 n × n matri
es. The 
one M is a di�erentiable manifold ofdimension n(n+ 1)/2. The tangent spa
e at m is isomorphi
 via translation to the spa
e
S(n,R) of symmetri
 matri
es and one 
an de�ne a Riemannian metri
 on M by the



SYMMETRIC SPACES : DIFFERENTIAL GEOMETRY 11following formula: gm(X, Y ) = tr(m−1Xm−1Y ), where m ∈ M , X, Y ∈ TmM ≃ S(n,R)and trA is the tra
e of the matrix A.It is easily 
he
ked that the map x 7→ mx−1m is an isometry of M endowed with themetri
 we just de�ned. This map �xes m and its di�erential at m is −id. It is thereforethe geodesi
 symmetry sm at m and M is globally symmetri
 (
f. the remark followingDe�nition 3.2).Example 4.4. Real, 
omplex and quaternioni
 hyperboli
 spa
es (again, see [BH, 
hap.II.10℄).Let K be R, C or the quaternions and let n ∈ N⋆ (n ≥ 2 if K = R). Endow the spa
e
Kn+1 with the K-hermitian form q de�ned by q(x, y) = x̄1y1 + . . . + x̄nyn − x̄n+1yn+1(the 
onjugation being of 
ourse trivial if K = R). In the proje
tive spa
e KP

n =

(Kn+1\{0})/K⋆ 
onsider the subset KHn of negative lines, namely,
KH

n = { [x] ∈ KP
n | q(x, x) < 0}.A

ording to the 
hoi
e of K, KH

n is 
alled the real, 
omplex or quaternioni
 hyperboli

n-spa
e (whose real dimension is either n, 2n or 4n).Via the di�erential of the proje
tion Kn+1\{0} −→ KPn, the tangent spa
e of KHn at
[x] is naturally identi�ed with the orthogonal 
omplement x⊥ = {u ∈ Kn+1 | q(x, u) = 0}of x. The inner produ
t on x⊥ de�ned by −ℜ q(u, v)/q(x, x) is 
ompatible with this iden-ti�
ation and goes down to a s
alar produ
t on T[x]KHn, turning KHn into a Riemannianmanifold.The geodesi
 symmetry at [x] ∈ KH

n 
omes from the linear symmetry w.r.t. the line Kxin Kn+1: we may 
hoose x su
h that q(x, x) = −1 and we set s[x]([y]) = [2x q(x, y)+y], forany [y] ∈ KHn. This is a global isometry of KHn whi
h is therefore a globally symmetri
spa
e.Note that the real hyperboli
 spa
e RHn is nothing but the hyperboli
 spa
e Hn wehave already de�ned.Proposition 4.5. � A Riemannian globally symmetri
 spa
e M is 
omplete. Moreover,if G denotes the identity 
omponent of the isometry group of M , then G is transitive on
M ; namely, M is G-homogeneous.Proof. � We 
an use the geodesi
 symmetries to extend the geodesi
s on R and hen
e
M is 
omplete. If now x and y are two points of M then let γ be a unit speed geodesi
from x to y and 
onsider the isometries pt = sγ(t/2) ◦ sx. Then p0 = Id and hen
e pt ∈ G.For t = d(x, y), pt(x) = y thus G is indeed transitive on M .



12 JULIEN MAUBONGiven a unit speed geodesi
 γ inM , the isometry t 7→ pt := sγ(t/2) ◦sγ(0) of the previousproof is 
alled a transve
tion along γ (see Lemma 4.18 below).Let K = Gm be the isotropy group at m ∈ M of the identity 
omponent G of theisometry group of M .We know from theorem 2.10 that endowed with the 
ompa
t open topology, the group
G is a lo
ally 
ompa
t topologi
al transformation group of M and that K is a 
ompa
tsubgroup of G. Sin
e G is transitive on M , this implies that the map gK 7→ g.m from
G/K to M is a homeomorphism. Furthermore, one has the following result, due toMyers-Steenrod:Theorem 4.6. � [H, pp. 205-209℄ The topologi
al group G is a Lie transformation groupof M and M is di�eomorphi
 to G/K.Example 4.7. The group GL+(n,R) of invertible matri
es with positive determinanta
ts transitively and isometri
ally on M = P (n,R) by g.m := gm tg. The stabilizerof id ∈ M is SO(n,R). Therefore M 
an be identi�ed with GL+(n,R)/SO(n,R). Oneshould noti
e that if n is even, GL+(n,R) does not a
t e�e
tively on M : the identity
omponent of the isometry group of M is GL+(n,R)/{±id}.Example 4.8. The identity 
omponent of the isometry group of hyperboli
 spa
e KHn
an be seen to be isomorphi
 to the group POK(n, 1) whi
h is the image in PGL(n+1,K)of the subgroup OK(n, 1) of GL(n + 1,K) 
onsisting of elements preserving the form qused to de�ne KHn. The isotropy group in POK(n, 1) of a point in KHn is isomorphi
to P(OK(n) × OK(1)), where OK(n) is the subgroup of GL(n,K) 
onsisting of elementspreserving the form x̄1y1 + . . .+ x̄nyn on K

n.Before analyzing in more details the stru
ture of G and its Lie algebra, we prove thatif a Riemannian manifold is lo
ally symmetri
, 
omplete and simply 
onne
ted, it isglobally symmetri
. In parti
ular, this implies that the universal 
over of a 
ompletelo
ally symmetri
 spa
e is a globally symmetri
 spa
e. For this, we need two lemmas [H,pp. 62-63℄.Lemma 4.9. � Let M and N be 
omplete Riemannian lo
ally symmetri
 manifolds. Let
m ∈ M , U a normal neighborhood of m and f : U −→ N an isometry. Let σ be a 
urvein M starting from m. Then f 
an be 
ontinued along σ, i.e. for ea
h t ∈ [0, 1], thereexists an isometry ft from a neighborhood Ut of σ(t) into N su
h that U0 = U , f0 = fand there exists ε su
h that for |t− s| < ε, Us ∩ Ut 6= ∅ and fs = ft on Us ∩ Ut.
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h a 
ontinuation is unique be
ause ft(σ(t)) and dσ(t)ft vary 
ontinu-ously with t.Proof. � Assume that f is de�ned on a normal ball B(x, ρ) around some x ∈M and thatfor some r > ρ, B(x, r) and B(f(x), r) are normal balls around x and f(x). Theorem 3.5says that the map expf(x) ◦dxf ◦ exp−1
x is an isometry from B(x, r) to B(f(x), r). It must
oin
ide with f on B(x, ρ) sin
e it maps x to f(x) and its di�erential at x equals dxf .Therefore f 
an be extended to B(x, r).De�ne I = {t ∈ [0, 1] | f 
an be extended near σ(t)} and T = sup I. I is an opensubinterval of [0, 1] and 0 ∈ I.Let then q = lim

t→T
ft(σ(t)). This limit exists by 
ompleteness. Choose r su
h that

B(σ(T ), 3r) and B(q, 3r) are 
onvex normal balls around σ(T ) and q, and let t be su
hthat σ(t) ∈ B(σ(T ), r) and ft(σ(t)) ∈ B(q, r). Then B(σ(t), 2r) and B(ft(σ(t)), 2r) arenormal balls around σ(t) and ft(σ(t)). Hen
e f 
an be extended to B(σ(t), 2r), whi
h
ontains σ(T ). Thus T ∈ I and I = [0, 1].Lemma 4.11. � Let M and N be 
omplete Riemannian lo
ally symmetri
 manifolds.Let m ∈ M , U a normal neighborhood of m and f : U −→ N an isometry. Let σ bea 
urve in M starting from m and τ be another 
urve, homotopi
 to σ with end points�xed. Call fσ and f τ the 
ontinuations of f along σ and τ . Then fσ and f τ agree in aneighborhood of σ(1) = τ(1).Proof. � Let H : [0, 1]2 −→ M be the homotopy between σ and τ : ∀t, s, H(t, 0) = σ(t),
H(t, 1) = τ(t), H(0, s) = m, H(1, s) = σ(1) = τ(1).Call f s the 
ontinuation of f along the 
urve Hs : t 7→ H(t, s).Let I = {s ∈ [0, 1] | ∀a ≤ s, fa(1) = f 0(1) = fσ(1) near σ(1)}. I is 
learly an opensubinterval of [0, 1] 
ontaining 0. Let S = sup I.The 
urves HS and fS ◦ HS are 
ontinuous, hen
e there exists r su
h that for all t,
B(HS(t), 2r) and B(fS ◦ HS(t), 2r) are normal balls. But then there exists ε su
h thatfor 0 < S− s < ε and for all t, Hs(t) ∈ B(HS(t), r). Then fS is a 
ontinuation of f along
Hs and therefore by uniqueness fS = f s near σ(1). Hen
e S ∈ I and I = [0, 1].We may now state:Theorem 4.12. � Let M and N be 
omplete Riemannian lo
ally symmetri
 spa
es. As-sume that M is simply 
onne
ted. If m ∈ M , n ∈ N , and ϕ : TmM −→ TnN is a linear



14 JULIEN MAUBONisometry preserving the Riemann 
urvature tensors, then there exists a unique Rieman-nian 
overing f : M −→ N su
h that f(m) = n and dmf = ϕ.Proof. � It follows from the lemmas above that setting f(expm(v)) = expn(ϕ(v)) givesa well-de�ned map f from M onto N . Moreover this map is a lo
al isometry and sin
e
M is 
omplete, it is a Riemannian 
overing map by Proposition 2.9.Corollary 4.13. � Let M be a 
omplete simply 
onne
ted Riemannian manifold. Thefollowing 
onditions are equivalent:(1) M is lo
ally symmetri
,(2) M is globally symmetri
,(3) Any linear isometry between TxM and TyM preserving the Riemann 
urvature ten-sor (or equivalently the se
tional 
urvatures) is indu
ed by an (unique) isometry of M .Remark 4.14. Assertion (3) above shows that up to isometry, there is only one 
ompletesimply 
onne
ted Riemannian manifold of dimension n and of 
onstant se
tional 
urvature
κ. We will 
all this model spa
e Mκ.4.2. Stru
ture of the Lie algebra of the isometry group. �Let now (M, g) be a globally symmetri
 Riemannian spa
e, G the identity 
omponentof the isometry group of M , m ∈ M , s = sm the geodesi
 symmetry at m, and K theisotropy group of m in G. K is a 
ompa
t subgroup of G and it follows from whatwe have seen that the linear isotropy representation k ∈ K 7→ dmk identi�es K withthe (
losed) subgroup of O(TmM, gm) 
onsisting of linear isometries whi
h preserve the
urvature tensor Rm. Re
all that M is identi�ed with the quotient G/K. We 
all m themap G −→M , g 7→ g.m.The Lie algebra g of G 
an be seen as a Lie algebra of Killing ve
tor �elds on M : if
X ∈ g, the 
orresponding ve
tor �eld X⋆ is de�ned by X⋆(x) = d

dt
etXx|t=0, for any x ∈M .It should also be noted that, under this identi�
ation, [X, Y ]⋆ = −[X⋆, Y ⋆], where in theright-hand side, [ , ] denotes the usual bra
ket of ve
tor �elds on M . Remember that ave
tor �eld X is a Killing ve
tor �eld of (M, g) if and only if g(∇YX,Z)+g(∇ZX, Y ) = 0for any ve
tor �elds Y and Z.The symmetry s indu
es an involution σ of G given by σ(g) = sgs and the di�erential

deσ = Ad(s) is an involution of the Lie algebra g of G.We therefore have a splitting g = k ⊕ p where k and p are respe
tively the +1 and
−1 eigenspa
es of Ad(s). Note that sin
e Ad(s)[X, Y ] = [Ad(s)X,Ad(s)(Y )] for all
X, Y ∈ g, we have [k, k] ⊂ k, i.e. k is a subalgebra of g, [k, p] ⊂ p, i.e. p is ad(k)-invariant,
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h a de
omposition g = k ⊕ p is 
alled the Cartan de
omposition of gasso
iated to m.Proposition 4.15. � The group K lies between Gσ := {g ∈ G | σg = g} and Gσ
0 , theidentity 
omponent of Gσ. The Lie algebra k of K is also the kernel of dem : g −→ TmM .Consequently, dem|p : p −→ TmM is an isomorphism.Proof. � Let k ∈ K. Then sks(m) = m = k(m) and dm(sks) = −Id◦dmk◦(−Id) = dmk,hen
e sks = k. Thus K ⊂ Gσ and Lie(K) ⊂ k.Now, let X ∈ k. This is equivalent to etX ∈ Gσ

0 sin
e setXs = etAd(s)X = etX . Then
etXm is �xed by s for all t. Sin
e m is an isolated �xed point of s, we have etXm = m forall t. Thus Gσ

0 ⊂ K and k ⊂ Lie(K).If X ∈ k, then dem(X) = d
dt
etXm|t=0 = d

dt
m|t=0 = 0. On the other hand, assume that

X ∈ g is su
h that dem(X) = 0. Let f : M −→ R be any fun
tion and let h be thefun
tion on M de�ned by h(p) = f(eaXp) for some a ∈ R. Then
0 = dmh(demX) =

d

dt
h(etXm)|t=0 =

d

dt
f(eaXetXm)|t=0 =

d

dt
f(etXm)|t=a.Hen
e t 7→ f(etXm) is 
onstant. This implies etX ∈ K and X ∈ k.The map dem|p is therefore inje
tive. Sin
e p and TmM have the same dimension, weare done.Finally, the s
alar produ
t gm on TmM gives a positive de�nite inner produ
t Q on pwhi
h is ad(k)-invariant. Indeed, for X ∈ k and V,W ∈ p, Q([X, V ],W )+Q(V, [X,W ]) =

gm([X, V ]⋆(m),W ⋆(m))+gm(V ⋆(m), [X,W ]⋆(m)) = (X.g(V,W ))|m = 0 sin
e X⋆(m) = 0.This inner produ
t 
an be extended to g by 
hoosing any ad(k)-invariant inner produ
ton k.Altogether, these data de�ne what is 
alled a stru
ture of orthogonal involutive Liealgebra on g.Example 4.16. In the 
ase of the symmetri
 spa
eM = P (n,R) = GL+(n,R)/SO(n,R),the involution σ of GL+(n,R) 
orresponding to the geodesi
 symmetry s = sid : x 7→ x−1is easily seen to be the map g 7→ tg−1. Its di�erential at e is the map X 7→ − tX.Therefore the Cartan de
omposition of g = gl(n,R) is just the de
omposition of a matrixinto its symmetri
 and skew-symmetri
 parts: k = o(n,R) and p = S(n,R).Example 4.17. The Lie algebra of the group POK(n, 1) 
onsists of the tra
e free matri
es
X in GL(n + 1,K) su
h that In,1X + tX̄In,1 = 0, where In,1 is the (n + 1) × (n + 1)diagonal matrix whose n �rst 
oe�
ients equal 1 and whose last one is −1. The Cartan



16 JULIEN MAUBONinvolution is given by the map X 7→ − tX̄. Therefore we get that k is isomorphi
 to thespa
e o(n,K) of n × n matri
es A with 
oe�
ients in K su
h that tĀ = −A, whereas
p ≃ Kn.We end this se
tion with a little lemma about transve
tions along a geodesi
.Lemma 4.18. � Let v ∈ TmM and let γ : t 7→ expm(tv) be the 
orresponding geodesi
.The transve
tions pt = sγ(t/2)sm along γ form a 1-parameter group of isometries. More-over, if X ∈ p is su
h that dem(X) = v, then pt = etX , so that in parti
ular etXm = γ(t)and dme

tX = γt
0, the parallel transport along γ from TmM to Tγ(t)M .Proof. � Clearly, pt(γ(u)) = γ(u+t). Moreover, dγ(u)pt : Tγ(u)M −→ Tγ(u+t)M is paralleltransport along γ. Indeed dγ(u)pt = dγ(u)(sγ(t/2)sm) = dγ(−u)sγ(t/2) ◦dγ(u)sm = γu+t

−u ◦γ−u
u =

γu+t
u . Therefore, ptpu = pu+t sin
e they agree at m along with their di�erentials. t 7→ ptis hen
e a 1-parameter group of isometries. Thus there exists X ∈ g su
h that pt = etX .Now, dem(X) = d

dt
ptm|t=0 = v.4.3. Further identi�
ations and 
urvature 
omputation. �As we said, p 
an be identi�ed with TmM , whereas k 
an be identi�ed with a subalgebra

t of o(TmM, gm). More pre
isely,
t = {T ∈ o(TmM, gm) | ∀u, v ∈ TmM, T◦Rm(u, v) = Rm(Tu, v)+Rm(u, Tv)+Rm(u, v)◦T}.We will denote by TX the element of t 
orresponding to X ∈ k.Therefore, g is isomorphi
 to t ⊕ TmM as a ve
tor spa
e. We will now see what is theLie algebra stru
ture indu
ed on t ⊕ TmM by this isomorphism.Let X ∈ k and Y ∈ p, and let f be a fun
tion on M . Then,

[X, Y ]⋆.f = −[X⋆, Y ⋆].f = Y ⋆.X⋆.f −X⋆.Y ⋆.fBut (X⋆.(Y ⋆.f))(m) = 0 sin
e X⋆(m) = 0. On the other hand, X⋆.f = lim
t−→0

1

t
(f ◦etX−f).Therefore,

(Y ⋆.(X⋆.f))(m) = lim
t−→0

1

t

(
Y ⋆.(f ◦ etX)(m) − (Y ⋆.f)(m)

)

= lim
t−→0

1

t

(
dmf ◦ dme

tX(Y ⋆(m)) − dmf(Y ⋆(m))
)

= dmf
(

lim
t−→0

1

t
(dme

tX(Y ⋆(m)) − Y ⋆(m))
)

= dmf
(
TX(Y ⋆(m))

)Hen
e [X, Y ]⋆(m) = TX(Y ⋆(m)).



SYMMETRIC SPACES : DIFFERENTIAL GEOMETRY 17Let now X, Y ∈ p and X⋆, Y ⋆ the 
orresponding Killing �elds on M . We want to
al
ulate the Riemann 
urvature tensor R(X⋆, Y ⋆) at m. We drop the upper-s
ripts ⋆ forthe 
omputation.First, it is immediate from the formula for the Levi-Civitá 
onne
tion that for any
Z ∈ p seen as a Killing �eld on M ,

2g(∇XY, Z) = g([X, Y ], Z) + g([Y, Z], X) + g([X,Z], Y ),sin
e X.g(Y, Z) = g([X, Y ], Z)+g(Y, [X,Z]) for Killing �elds. The r.h.s. vanishes at m byProposition 4.15, for the bra
ket of two elements of p belongs to k. Hen
e (∇XY )(m) = 0.Of 
ourse we also have (∇YX)(m) = 0, (∇XX)(m) = 0 and (∇Y Y )(m) = 0.Now,
R(X, Y,X, Y ) = g(∇[X,Y ]X, Y ) − g(∇X∇YX, Y ) + g(∇Y ∇XX, Y ).Sin
e X is Killing, g(∇[X,Y ]X, Y ) = −g(∇YX, [X, Y ]) and
g(∇X∇YX, Y ) = X.g(∇YX, Y ) − g(∇YX,∇XY ) = −g(∇YX,∇XY ).Thus, g(∇[X,Y ]X, Y ) − g(∇X∇YX, Y ) = ‖∇YX‖2. On the other hand,
g(∇Y ∇XX, Y ) = Y.g([X, Y ], X) − g(∇XX,∇Y Y )

= g([Y, [X, Y ]], X) − ‖[X, Y ]‖2 − g(∇XX,∇Y Y )be
ause Y is also Killing.Therefore, at m, Rm(X⋆(m), Y ⋆(m), X⋆(m), Y ⋆(m)) = gm([[X⋆, Y ⋆], X⋆](m), Y ⋆(m)).This implies that the 
urvature tensor is given by
Rm(X⋆(m), Y ⋆(m))Z⋆(m) = [[X⋆, Y ⋆], Z⋆](m) = [[X, Y ], Z]⋆(m) = T[X,Y ](Z

⋆(m)).Thus T[X,Y ] = Rm(X⋆(m), Y ⋆(m)).One then 
he
ks easily that if X, Y ∈ k, T[X,Y ] = TXTY − TY TX .Summarizing, we haveProposition 4.19. � The Lie algebra stru
ture on g = t ⊕ TmM is given by:
[T, S] = TS − ST for T, S ∈ t;
[T, u] = −[u, T ] = T (u) for T ∈ t and u ∈ TmM ;
[u, v] = Rm(u, v) for u, v ∈ TmM .Remark 4.20. For any Riemannian lo
ally symmetri
 spa
e (M, g), the Lie algebra

t ⊕ TmM is de�ned and is an orthogonal involutive Lie algebra. It is the in�nitesimalversion of the isometry group of a globally symmetri
 spa
e.



18 JULIEN MAUBON5. Riemannian manifolds of non-positive 
urvatureIn this se
tion we review some of the most important "
omparison" results for manifoldsof non-positive 
urvature. They will be useful in our study of symmetri
 spa
es of non-
ompa
t type. We will sti
k to Riemannian manifolds but most of these results generalizeto the setting of metri
 spa
es (see Remark 5.12). Good referen
es for the material inthis se
tion are the books [Ba℄ and [BH℄ (and also [E℄).5.1. The Rau
h 
omparison theorem. �Before spe
ializing to non-positive 
urvature, we prove (see also [dC, 
hap. 10℄) thefollowingTheorem 5.1 (Rau
h 
omparison theorem). � Let M be a Riemannian manifoldand let γ : [0, T ) −→M be a unit speed geodesi
. Assume that all the se
tional 
urvaturesof M along γ are bounded from above by some real number κ. Let Y be a normal Ja
obi�eld along γ. Then, for all t su
h that ‖Y ‖(t) 6= 0, we have
‖Y ‖′′(t) + κ‖Y ‖(t) ≥ 0.In parti
ular, if yκ is the solution of the di�erential equation y′′ + κy = 0, with the sameinitial 
onditions as ‖Y ‖, then ‖Y ‖(t) ≥ yκ(t) for t ∈ [0, T ).Proof. � This is just a 
omputation. ‖Y ‖′ = 〈Y, Y ′〉‖Y ‖−1, hen
e

‖Y ‖′′ = (〈Y, Y ′′〉 + 〈Y ′, Y ′〉)‖Y ‖−1 − 〈Y, Y ′〉2‖Y ‖−3

= ‖Y ′‖2‖Y ‖−1 − 〈R(γ̇, Y )γ̇, Y 〉‖Y ‖−1 − 〈Y, Y ′〉2‖Y ‖−3

≥ ‖Y ′‖2‖Y ‖−1 − κ‖Y ‖ − 〈Y, Y ′〉2‖Y ‖−3where for the se
ond equality we used the de�nition of a Ja
obi �eld, and for the inequalitythe fa
t that Y is normal to γ. Thus
‖Y ‖′′ + κ‖Y ‖ ≥ ‖Y ‖−3(‖Y ′‖2‖Y ‖2 − 〈Y, Y ′〉2) ≥ 0by Cau
hy-S
hwarz inequality.Let now f := ‖Y ‖′yκ −‖Y ‖y′κ. Then f(0) = 0 and f ′ = ‖Y ‖′′yκ −‖Y ‖y′′κ ≥ −‖Y ‖(y′′κ +

κyκ) = 0. Hen
e f ≥ 0 and therefore (‖Y ‖/yκ)
′ ≥ 0 and we are done.This result allows to 
ompare di�erent geometri
 quantities in a manifold M all ofwhose se
tional 
urvatures are bounded from above by κ to 
orresponding quantities ina 
omplete simply 
onne
ted manifold Mκ of 
onstant se
tional 
urvature κ. Re
all that

Mκ is unique up to isometry. By s
aling the metri
, we 
an assume κ ∈ {−1, 0, 1}, and the
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orresponding model spa
es of dimension n are hyperboli
 n-spa
e M−1 = Hn, Eu
lidean
n-spa
e M0 = E

n and the n-sphere M1 = S
n with its standard metri
.Corollary 5.2. � LetM be a Riemannian manifold all of whose se
tional 
urvatures arebounded from above by κ ∈ R. Let Mκ be the model spa
e of 
onstant se
tional 
urvature

κ (of the same dimension as M).Let m ∈ M , p ∈ Mκ and ϕ a linear isometry between TmM and TpMκ. Let r be sosmall that B(m, r) and Bκ(p, r) are normal 
onvex neighborhoods of m in M and p in
Mκ. Let f : B(m, r) −→ Bκ(p, r) be given by f = expp ◦ϕ ◦ exp−1

m . Then f is distan
enon-in
reasing.Proof. � Let x ∈ B(m, r), x = expm(v), and γ the geodesi
 t 7→ expm(tv). Let w ∈ TxM ,and 
all w⊥ the 
omponent of w orthogonal to γ̇(1) and wT = w − w⊥.Let Y be the Ja
obi �eld along γ su
h that Y (0) = 0 and Y (1) = w. We 
an alsowrite Y = Y T +Y ⊥ where Y T (t) = ‖wT ‖
‖γ̇(1)‖

tγ̇(t) is a Ja
obi �eld along γ 
ollinear to γ̇ su
hthat Y T (1) = wT and Y ⊥ = Y − Y T is a normal Ja
obi ve
tor �eld along γ su
h that
Y ⊥(1) = w⊥.Call Yκ the Ja
obi �eld along the geodesi
 expp(tϕ(v)) in Mκ su
h that Yκ(0) = 0 and
Y ′

κ(0) = ϕ(Y ′(0)). With the obvious notation, we have Yκ = Y T
κ + Y ⊥

κ .Then dxf(w) = Yκ(1). Hen
e
‖dxf(w)‖2 = ‖Yκ(1)‖2 = ‖Y T

κ (1)‖2 + ‖Y ⊥
κ (1)‖2.Now, ‖Y T

κ (1)‖ = ‖Y T (1)‖ and it follows from the Rau
h 
omparison theorem that ‖Y ⊥‖ ≥
yκ = ‖Y ⊥

κ ‖. Hen
e ‖dxf(w)‖ ≤ ‖w‖.Therefore if x and y are two points in B(m, r) and if γ ⊂ B(m, r) is the geodesi
 joiningthese two points, then dκ(f(x), f(y)) ≤ L(f ◦ γ) ≤ L(γ) = d(x, y).5.2. Hadamard manifolds. �From now on, we will fo
us on the 
ase κ = 0, namely, (M, g) is non-positively 
urved.De�nition 5.3. � A 
omplete simply 
onne
ted non-positively 
urved manifold is 
alleda Hadamard manifold.It follows immediately from the Rau
h 
omparison theorem that in a Hadamard man-ifold M , a Ja
obi ve
tor �eld Y along a geodesi
 γ su
h that Y (0) = 0 never vanishesagain. This implies that for all m ∈ M , expm is a lo
al di�eomorphism from TmM onto
M (sin
e M is 
omplete). Endowing TmM with the metri
 exp⋆

m g, expm be
omes a lo
al



20 JULIEN MAUBONisometry. Now, (TmM, exp⋆
m g) is 
omplete sin
e the geodesi
s through 0 are straight lines.Hen
e expm is a 
overing map and sin
eM is simply 
onne
ted, expm is a di�eomorphism:Theorem 5.4. � A Hadamard spa
e of dimension n is di�eomorphi
 to Rn.Note that two points in a Hadamard manifold are joined by a unique minimizinggeodesi
.Until the end of this se
tion, M will be a Hadamard manifold and E will be Eu
lidean2-spa
e. We will assume all geodesi
s parameterized by ar
 length.5.2.1. Geodesi
 triangles in Hadamard manifolds. The CAT(0) Property. �Given three points p, q, r in M (or in E) we will denote by <)p(q, r) the angle betweenthe geodesi
 segments [p, q] and [p, r] emanating from p, that is, the Riemannian anglebetween the tangent ve
tors to these geodesi
s at p.De�nition 5.5. � A geodesi
 triangle T in a Riemannian manifold 
onsists of threepoints p, q, r, its verti
es, and three geodesi
 ar
s [p, q], [q, r] and [r, p] joining them, itssides or edges. Note that in a Hadamard manifold a geodesi
 triangle is determined by itsverti
es.We will sometimes denote by p̂ (resp. q̂, r̂) the vertex angle of a geodesi
 triangle

T = T (p, q, r) at p (resp. q, r), i.e. p̂ =<)p(q, r).De�nition 5.6. � A 
omparison triangle of a geodesi
 triangle T ⊂M in E is a geodesi
triangle T0 in E whose side lengths equal the side lengths of T . Su
h a triangle alwaysexists and is unique up to isometries of E.Given an �obje
t� a in a geodesi
 triangle T in M , we will always denote by a0 the
omparison obje
t in the 
omparison triangle T0. For example, if p is a vertex of T , p0will be the 
orresponding vertex of T0. If x is a point on the side [p, q] of T , x0 will bethe point on the 
omparison side [p0, q0] of T0 su
h that d0(p0, x0) = d(p, x).We begin with the following remark 
on
erning angles.Lemma 5.7. � [A℄ The Riemannian angle between two unit tangent ve
tors u, v ∈ TmMis the limit as t goes to zero of the vertex angle at m0 of the 
omparison triangle of
T (m, σu(t), σv(t)).



SYMMETRIC SPACES : DIFFERENTIAL GEOMETRY 21Proof. � It follows from Corollary 5.2 that d(σu(t), σv(t)) ≥ t‖u− v‖. Now, 
onsider thepath c : s 7→ expm(tu+ st(v − u)) from σu(t) to σv(t).
d(σu(t), σv(t)) ≤ L(c) = t

∫ 1

0

‖dt(u+s(v−u)) expm(v − u)‖ds.For t 
lose to 0, dt(u+s(v−u)) expm is 
lose to Id and hen
e lim
t−→0

d(σu(t), σv(t))

t‖u− v‖
= 1.This implies that the triangle T (0, tu, tv) in TmM goes to the 
omparison triangle of

T (m, σu(t), σv(t)) as t −→ 0, hen
e the result.We are ready to 
ompare geodesi
 triangles in Hadamard manifolds with Eu
lideanones.
m0

x0

y0

α
α

x

m
yFigure 1.Lemma 5.8. � Let m ∈ M and u, v ∈ TmM . Let σu and σv be the 
orresponding unitspeed geodesi
s. Let x = σu(s) and y = σv(t). Let also m0, x0 y0 be points in E su
h that

d0(m0, x0) = s, d0(m0, y0) = t and the angle <)m0
(x0, y0) equals the angle between u and v(see Figure 1). Then d0(x0, y0) ≤ d(x, y).Consequently, if α, β, γ are the vertex angles of a geodesi
 triangle T in M and α0, β0,

γ0 the 
orresponding vertex angles of its 
omparison triangle T0, then
α ≤ α0, β ≤ β0, and γ ≤ γ0.In parti
ular, α + β + γ ≤ π.Proof. � Immediate from Corollary 5.2.Lemma 5.9. � Let T = T (p, q, r) be a geodesi
 triangle in M and let T0 be its 
ompari-son triangle in E. Let x be a point on the side [q, r]. Then d(p, x) ≤ d0(p0, x0). Moreover,if the sum of the vertex angles of T equals π then d(p, x) = d0(p0, x0).



22 JULIEN MAUBONProof. � Consider the geodesi
 triangles T ′ = T (p, q, x) and T ′′ = T (p, x, r) and 
all T ′
0and T ′′

0 their respe
tive 
omparison triangles in E. We 
an assume that T ′
0 and T ′′

0 aresu
h that p′0 = p′′0 and x′0 = x′′0, and that they lie on di�erent sides of the line through p′0and x′0 (see Figure 2).
T ′

x

T ′′

p

T ′

0

r

q

x0

p0 = p
′

0
= p

′′

0

r0

q0 = q
′

0

T ′′

0

x
′

0
= x

′′

0

r
′′

0

22 3 34 41 5 5 311 2Figure 2.If x̂′, resp. x̂′′, is the vertex angle at x of T ′, resp. T ′′, and if x̂′0, resp. x̂′′0, is the
orresponding vertex angle in T ′
0, resp. T ′′

0 , then x̂′0 + x̂′′0 ≥ x̂′ + x̂′′ = π. This implies thatif we want to straighten the union T ′
0 ∪ T

′′
0 to form a 
omparison triangle for T (withoutmodifying the side lengths of T ′

0 and T ′′
0 other that [p′0, x

′
0]), we have to in
rease (at leastnot de
rease) the distan
e from p0 to x0. Hen
e the �rst part of the result.Now assume that the sum of the vertex angles of T is π. Call p̂′ and q̂′, resp. p̂′′ and r̂′′,the remaining vertex angles of T ′, resp. T ′′. Then p̂′ + p̂′′ + q̂′ + x̂′ + x̂′′ + r̂′′ = 2π. Sin
e

p̂′ + q̂′ + x̂′ ≤ π and p̂′′ + x̂′′ + r̂′′ ≤ π, we have in fa
t p̂′ + q̂′ + x̂′ = π and p̂′′ + x̂′′ + r̂′′ = π,hen
e all these vertex angles are equal to their 
omparison angles. This implies that
x̂′0 + x̂′′0 = x̂′ + x̂′′ = π, hen
e that d(p, x) = d0(p0, x0).We 
an now state the main property of geodesi
 triangles in Hadamard manifolds.De�nition 5.10. � A geodesi
 triangle T in a manifold is said to be CAT(0) if it isthinner than its 
omparison triangle in E, namely if for any two points x and y on T ,and for x0, y0 the 
orresponding points in the 
omparison triangle T0 of T in E, we have
d(x, y) ≤ d0(x0, y0).Proposition 5.11. � (1) Geodesi
 triangles in a Hadamard manifold M are CAT(0).(2) Moreover, if the sum of the vertex angles of a geodesi
 triangle T of M equals π,then there exists a unique isometry Φ from the 
onvex hull Conv(T0) of T0 in E into the
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onvex hull Conv(T ) of T in M , su
h that Φ(x0) = x for all x0 ∈ T0, that is to say, Tbounds a �at solid triangle in M .Proof. � Let us �rst prove (1). Let x and y be two points in the triangle T = T (p, q, r),and T0 = T (p0, q0, r0) the 
omparison triangle of T . We 
an assume x and y are noton the same side of T , say x ∈ [q, r] and y ∈ [p, q]. We know from Lemma 5.9 that
d(p, x) ≤ d0(p0, x0). Consider the 
omparison triangle T ′

0 = T (p′0, x
′
0, q

′
0) of T (p, x, q).Then, again from Lemma 5.9, d(x, y) ≤ d0(x

′
0, y

′
0). Now, the lengths of the sides [p′0, q

′
0] and

[x′0, q
′
0] of T ′

0 are equal to those of [p0, q0] and [x0, q0] in T0, whereas [p′0, x
′
0] is shorter than

[x0, p0]. This implies that [x′0, y
′
0] is shorter than [x0, y0], hen
e that d(x, y) ≤ d(x0, y0).Proof of (2). The assumption is p̂ = p̂0, q̂ = q̂0 and r̂ = r̂0. From the se
ond assertion inLemma 5.9 and from the proof of part (1) we get that d(x, y) = d(x0, y0) for all x, y ∈ T .Now we want to de�ne Φ in the interior of Conv(T0). Let y0 be a point there and 
all z0 theunique point on the side [q0, r0] su
h that y0 ∈ [p0, z0]. Map z0 to its 
orresponding point

z on the side [q, r] of T . It follows from what we just seen that the triangle T (p0, q0, z0)is the 
omparison triangle of T (p, q, z). Sin
e again the vertex angles are the same, the
omparison map between these triangles is an isometry and we 
an map z0 ∈ [p0, z0] tothe 
orresponding point Φ(z0) ∈ [p, z]. One then 
he
ks easily that Φ is isometri
.Remark 5.12. Property (1) gives one way to generalize the notion of non-positive
urvature to metri
 spa
es as follows.Let (X, d) be a metri
 spa
e.A geodesi
 γ joining x ∈ X to y ∈ X is a 
ontinuous 
urve γ : [0, l] −→ X su
h that
γ(0) = x, γ(l) = y and d(γ(t), γ(t′)) = |t− t′| for all t, t′ ∈ [0, l].

(X, d) is 
alled a geodesi
 spa
e if any two of its points 
an be joined by a geodesi
.The (possibly in�nite) length of a (
ontinuous) 
urve c : [a, b] −→ X is de�ned by
l(c) = sup

a=t0≤t1≤···≤tn=b

n∑

i=1

d(c(ti−1), c(ti))where the supremum is taken over all possible partitions of [a, b]. A 
urve c is re
ti�ableif its length is �nite.The metri
 spa
e (X, d) is a length spa
e if the distan
e between any two of its pointsis given by the in�mum of the lengths of the re
ti�able 
urves joining them.Now, a length spa
e (X, d) is 
alled a CAT(0)-spa
e if it is geodesi
 and if every geodesi
triangle in X is CAT(0). It is said to be non-positively 
urved (in the sense of Alexandrov)



24 JULIEN MAUBONif it is lo
ally a CAT(0)-spa
e, namely if every point in X has an open neighborhood Uthat is a CAT(0)-spa
e (with the indu
ed metri
).A 
omplete simply 
onne
ted length spa
e of non-positive 
urvature is 
alled aHadamard spa
e. It is then a CAT(0)-spa
e by the generalized Cartan-Hadamardtheorem, see [BH, p. 193℄.It should also be noted that, as was proved by Alexandrov in [A℄, a smooth Riemannianmanifold has non-positive 
urvature in the sense of Alexandrov if and only if all itsse
tional 
urvatures are non-positive (see [BH, p. 173℄ for a proof using Proposition 2.6).Corollary 5.13 (Flat quadrilateral theorem). � Let p, q, r, s be four points in Mand let α =<)p(q, s), β =<)q(p, r), γ =<)r(q, s), δ =<)r(p, r). Then if α + β + γ + δ ≥ 2π,this sum equals 2π and p, q, r, s �bound� a 
onvex region in M isometri
 to a 
onvexquadrilateral in E.Proof. � Let T = T (p, q, s) and T ′ = T (q, r, s). Call p̂, q̂, ŝ and q̂′, r̂′, ŝ′ the vertexangles of T and T ′. It follows from the triangle inequality that β ≤ q̂ + q̂′ and δ ≤ ŝ+ ŝ′.Hen
e, if α+ β + γ + δ ≥ 2π, then p̂+ q̂ + ŝ ≥ π and q̂′ + r̂′ + ŝ′ ≥ π. Therefore all theseinequalities are in fa
t equalities and the triangles T and T ′ are �at. Let T0 = T (p0, q0, s0)and T ′
0 = T (q0, r0, s0) be 
omparison triangles for T and T ′ so that p0 and r0 lie onopposite sides of the line through q0 and s0. Then the quadrilateral Q0 = (p0, q0, r0, s0)is 
onvex. Let x0 ∈ Conv(T0) and x′0 ∈ Conv(T ′

0). The fa
t that q̂ + q̂′ = β implies that
<)q(x, x

′) =<)q0
(x0, x

′
0), where x, resp. x′, is the image of x0, resp. x′0, under the isometry

Conv(T0) −→ Conv(T ), resp. Conv(T ′
0) −→ Conv(T ′). This shows that these isometriespat
h together to give an isometry between Conv(p0, q0, r0, s0) and Conv(p, q, r, s).5.2.2. Convexity properties of Hadamard manifolds. Parallel geodesi
s. �A Hadamard manifold shares many 
onvexity properties with Eu
lidean spa
e. Re
allthat a fun
tion f : M −→ R is 
onvex if its restri
tion to ea
h geodesi
 σ of M is 
onvex.Lemma 5.9 immediately impliesLemma 5.14. � Let m ∈M . The fun
tion x 7→ d(x,m) is 
onvex.We also haveProposition 5.15. � Let σ and τ be two (unit speed) geodesi
s in M . The fun
tion

t 7→ d(σ(t), τ(t)) is 
onvex.
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2
(t1 + t2). Call γ the geodesi
 segment from σ(t1) to

τ(t2) (see Figure 3).

τ

σ(t1)

τ(t1)

τ(t)

τ(t2)

γ(t)

σ(t2)

σ

σ(t)

Figure 3.We have d(σ(t), τ(t)) ≤ d(σ(t), γ(t)) + d(γ(t), τ(t)). The CAT(0) property impliesthat d(σ(t), γ(t)) ≤ 1
2
d(σ(t2), τ(t2)) sin
e equality holds in the 
omparison triangle of

T (σ(t1), σ(t2), τ(t2)). In the same way, d(γ(t), τ(t)) ≤ 1
2
d(σ(t1), τ(t1)). Hen
e the propo-sition.More generally, the following proposition holds:Proposition 5.16. � Let C ⊂ M be a 
losed 
onvex set. Then for every x ∈ M thereexists a unique point πC(x) ∈ C su
h that d(x, πC(x)) = d(x, C). Moreover the map

πC : x 7→ πC(x) is 1-Lips
hitz and the fun
tion x 7→ d(x, C) is 
onvex.De�nition 5.17. � Two (unit speed) geodesi
s σ1 and σ2 in M are 
alled parallel ifthere exists k > 0 su
h that ∀t ∈ R, d(σ1(t), σ2) ≤ k and d(σ2(t), σ1) ≤ k.Corollary 5.18 (Flat strip theorem). � Let σ1 and σ2 be two parallel geodesi
s in
M . Then σ1 and σ2 bound a �at strip, namely, there exist D ∈ R and an isometry Φ from
R × [0, D] with its Eu
lidean metri
 into M su
h that (up to a�ne reparameterizationsof σ1 and σ2), Φ(t, 0) = σ1(t) and Φ(t, D) = σ2(t), ∀t ∈ R.Proof. � The fun
tion t 7→ d(σ1(t), σ2(t)) is 
onvex and bounded on R, hen
e 
onstant,say equal to D ∈ R. We 
an assume that the 
losest point to p := σ1(0) on σ2(R)is q := σ2(0). We 
laim that for t 6= 0, the angle <)q(p, σ2(t)) ≥ π

2
. If not, then byLemma 5.7 there is a point x in the geodesi
 segment [q, p] and a point y on the geodesi




26 JULIEN MAUBONsegment [q, σ2(t)] su
h that the vertex angle at q0 of the 
omparison triangle T (q0, x0, y0)of T (q, x, y) is stri
tly less than π
2
. This would implies that there are points x′ on [q, x]and y′ on [q, y] su
h that d(x′, y′) < d(x′, q). But then q wouldn't be the point on σ2(R)
losest to p. Hen
e, for all t 6= 0, <)σ2(0)(σ1(0), σ2(t)) = π

2
, and p = σ1(0) is the pointon σ1(R) 
losest to q = σ2(0) so that for all t 6= 0 we also have <)σ1(0)(σ2(0), σ1(t)) = π

2
.Therefore the sum of the vertex angles of the quadrilateral (σ1(−t), σ1(t), σ2(t), σ2(−t))is 2π. Thus this quadrilateral is isometri
 to [−t, t] × [0, D] with its Eu
lidean metri
.Letting t −→ ∞ yields the result.Corollary 5.19. � Let σ be a geodesi
 in M and let P (σ) be the union of all geodesi
sin M that are parallel to σ. Then P (σ) is a 
losed 
onvex subset of M . Moreover, P (σ)splits isometri
ally as a produ
t Q × R, where Q is 
losed and 
onvex and {q} × R isparallel to σ for all q ∈ Q.Proof. � The 
onvexity of P (σ) is a dire
t 
onsequen
e of the �at strip theorem. Now,let (xn)n∈N be a sequen
e of points in P (σ) 
onverging to some x∞ ∈M . For all n, thereexists a unit speed geodesi
 σn parallel to σ su
h that σn(0) = xn. Now, for all n, m, thegeodesi
s σn and σm are parallel and hen
e the fun
tion t 7→ d(σn(t), σm(t)) is 
onstantequal to d(σn(0), σm(0)) = d(xn, xm). Hen
e, for all t, the sequen
e (σn(t))n∈N is a Cau
hysequen
e and therefore, by 
ompleteness of M , 
onverges to a point, say σ∞(t). It is noweasily 
he
ked that t 7→ σ∞(t) is a geodesi
 in M parallel to σ. Thus P (σ) is 
losed.Let x and y be two points in P (σ), and let q = σ(0). Up to parameterization there isa unique unit speed geodesi
 σx, resp. σy, through x, resp. y, and parallel to σ. We 
an
hoose the parameterization of σx, resp. σy, so that qx := σx(0), resp. qy := σy(0), is thepoint on σx(R), resp. σy(R), 
losest to q.The geodesi
s σ and σx bound a �at strip and therefore, for all a ∈ R,

d(σ(t), σx(a)) − t =
(
d(σ(a), σx(a))

2 + (t− a)2
) 1

2 − t −→ −a, as t −→ +∞.Hen
e qx, resp. q, is the only point on σx(R), resp. σ(R), so that d(σ(t), qx) − t −→ 0 as
t −→ ∞, resp. d(σx(t), q) − t −→ 0 as t −→ ∞.Now, d(σy(t), qx)−t ≤ d(σy(t), σ(t/2))− t

2
+d(σ(t/2), qx)−

t
2
and sin
e d(σy(t), σ(t/2))−

t
2
−→ 0 as t −→ ∞, we get

lim
t−→∞

d(σy(t), qx) − t = 0and, similarly,
lim

t−→∞
d(σx(t), qy) − t = 0
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e σx and σy are parallel, they bound a �at strip and therefore qx, resp. qy, is the pointon σx(R), resp. σy(R), 
losest to qy, resp. qx. Hen
e,
d(x, y)2 = d(qx, qy)

2 +
(
d(y, qy) − d(x, qx)

)2
,thus the result with Q = {qx, x ∈ P (σ)}.5.2.3. The boundary at in�nity. �Let M be a Hadamard manifold.De�nition 5.20. � Two (unit speed) geodesi
s rays σ, τ : [0,+∞) −→ M are 
alledasymptoti
 if the fun
tion t 7→ d(σ(t), τ(t)) is bounded.De�nition 5.21. � The boundary at in�nity ∂∞M ofM is the set of equivalen
e 
lassesof rays for the equivalen
e relation �being asymptoti
�. The equivalen
e 
lass of a ray σwill be denoted σ(∞).It follows from the results in the previous se
tion that if σ and τ are two asymptoti
geodesi
 rays, then <)σ(0)(σ(1), τ(0))+ <)τ(0)(τ(1), σ(0)) ≤ π with equality if and only if

σ and τ bound a �at half strip, namely a region isometri
 to [0, D] × [0,+∞), where
D = d(σ(0), τ(0)).The distan
e fun
tion t 7→ d(σ(t), τ(t)) between two rays σ and τ is 
onvex and thereforetwo asymptoti
 rays 
annot have a point in 
ommon unless they are equal. Hen
e, givena point x ∈ M , the map Φx from the unit sphere UxM ⊂ TxM into ∂∞M given by
Φx(v) = γv(∞) is inje
tive.If σ is geodesi
 a ray and x a point in M , 
all γn the geodesi
 ray starting at xand passing through σ(n), n ∈ N. Comparison with Eu
lidean triangles shows that
<)σ(n)(σ(0), x) −→ 0 as n −→ +∞ sin
e d(σ(0), σ(n)) −→ +∞. Hen
e <)σ(n)(x, σ(n +

k)) −→ π as n −→ +∞ uniformly on k so that <)x(σ(n), σ(n + k)) −→ π as n −→ +∞uniformly on k. This implies that for all t ≥ 0, (γn(t))n∈N is a Cau
hy sequen
e andhen
e 
onverges to a point that we 
all γ(t). The 
urve t 7→ γ(t) is easily seen to bea geodesi
 ray in M . Now, d(γ(t), σ(t)) ≤ d(γ(t), γn(t)) + d(γn(t), σ(t)). For n largeenough, d(γ(t), γn(t)) is small whereas d(γn(t), σ(t)) is bounded by d(x, σ(0)). Hen
e
t 7→ d(γ(t), σ(t)) is bounded and γ is asymptoti
 to σ.Thus, for all x ∈M , Φx : UxM −→ ∂∞M is a bije
tive map.Given x ∈ M , the bije
tion Φx allows to de�ne a distan
e <)x on ∂∞M as follows : if
ξ and η are two point at in�nity, then <)x(ξ, η) is the distan
e in UxM of the ve
tors uand v su
h that σu(∞) = ξ and σv(∞) = η. This metri
 de�nes a topology on ∂∞M .



28 JULIEN MAUBONThe following lemma shows that this topology is in fa
t independent of the point x. It is
alled the 
one topology.Lemma 5.22. � Let x and y be two points in M . The map Φ−1
y ◦ Φx : UxM −→ UyMis a homeomorphism.Proof. � Let (un) be a sequen
e of unit tangent ve
tors at x, 
onverging to some u ∈

UxM . Let σn : t 7→ expx(tun) and σ : t 7→ expx(tu) be the 
orresponding geodesi
 rays.Let now vn and v be the unit tangent ve
tors at y su
h that the geodesi
 rays γn : t 7→

expy(tvn) and γ : t 7→ expy(tv) satisfy γn(∞) = σn(∞) and γ(∞) = σ(∞). We want toprove that the sequen
e (vn) 
onverges to v in UyM , namely that <)y(σn(∞), σ(∞)) −→ 0as n −→ ∞.For k ∈ N,
<)y(σn(∞), σ(∞)) ≤<)y(σn(∞), σn(k))+ <)y(σn(k), σ(k))+ <)y(σ(k), σ(∞)).Moreover, <)y(σn(∞), σn(k)) ≤ π− <)σn(k)(y, σn(∞)) =<)σn(k)(x, y). Clearly, if x0 and

y0 are two points in Eu
lidean 2-spa
e and if pk is a point at distan
e k from x0, then
<)pk

(x0, y0) −→ 0 as k −→ ∞. Therefore <)σn(k)(x, y) −→ 0 as k −→ ∞, uniformly on n.Similarly, <)y(σ(k), σ(∞)) ≤ π− <)σ(k)(y, σ(∞)) =<)σ(k)(x, y) −→ 0 as k −→ ∞.Therefore, given ε > 0, we 
an �nd k so that <)y(σn(∞), σ(∞)) < 2ε+ <

)y(σn(k), σ(k)). Now, the sequen
e (σn(k))n∈N 
onverges to σ(k), hen
e, for n bigenough, <)y(σn(k), σ(k)) < ε and the result follows.The union M := M ∪ ∂∞M 
an also be given a topology extending both the topologyof M and of ∂∞M : a basis of open sets is given by� the open metri
 balls in M , and� the sets W (m, ξ, r, ε) := {x ∈ M | <)m(σmx(∞), ξ) < ε}\B(m, r), where m ∈ M ,
ξ ∈ ∂∞M , r > 0, ε > 0, and σmx denotes the geodesi
 ray starting from m andpassing through x.With this topology, M is homeomorphi
 to a 
losed ball.It should be noted that the isometries of M a
t by homeomorphisms on M and ∂∞M .5.2.4. Busemann fun
tions and horospheres. �Let M be a Hadamard manifold (see [BH, 
hap. II.8℄ for a more general dis
ussion).



SYMMETRIC SPACES : DIFFERENTIAL GEOMETRY 29De�nition 5.23. � Let σ : [0,+∞) −→ M be a geodesi
 ray. The Busemann fun
tionasso
iated to σ is the fun
tion bσ : M −→ R de�ned by
bσ(x) = lim

t−→+∞

(
d(x, σ(t)) − t

)
.One proves that the limit de�ning a Busemann fun
tion indeed exists, that a Busemannfun
tion is C2 and 
onvex, and that the Busemann fun
tions asso
iated to asymptoti
rays di�er by an additive 
onstant. This allows to de�ne:De�nition 5.24. � Let x be a point in M and ξ a point on the boundary at in�nity of

M . The horosphere through x 
entered at ξ is the set
Hξ,x = {y ∈M | bσ(y) = bσ(x)},where bσ is the Busemann fun
tion asso
iated to a ray σ belonging to the equivalen
e 
lass

ξ.Geometri
ally, if {xn} is a sequen
e of points inM 
onverging to ξ, the horosphere Hξ,xis the limit of the metri
 spheres 
entered at xn and passing through x.6. Symmetri
 spa
es of non-
ompa
t typeWe now apply what we saw in the pre
eding se
tions to symmetri
 spa
es of non-
ompa
t type. We try to give geometri
 proofs of some algebrai
 results. Our expositionfollows quite 
losely [E, 
hap. 2℄.6.1. De�nition and �rst properties. �De�nition 6.1. � A Riemannian symmetri
 spa
e (M, g) is said to be of non-
ompa
ttype if it is non-positively 
urved and if it has no Eu
lidean de Rham lo
al fa
tor (i.e. theuniversal 
over of M does not split isometri
ally as Rk ×N , k ≥ 1, see 2.7).Example 6.2. It follows from Proposition 4.19 that the symmetri
 spa
e M = P (n,R)is non-positively 
urved. However, it is not a symmetri
 spa
e of non-
ompa
t type sin
eit does split isometri
ally as R ×M1, where M1 = P1(n,R) = SL(n,R)/SO(n,R) is thespa
e of positive-de�nite symmetri
 matri
es of determinant 1. M1 is a symmetri
 spa
eof non-
ompa
t type. The Lie algebra of its isometry group g = sl(n,R) admits theCartan de
omposition g = p ⊕ k, where p is the spa
e of tra
e free symmetri
 matri
esand k the spa
e of skew-symmetri
 matri
es.



30 JULIEN MAUBONExample 6.3. Hyperboli
 spa
e KHn is a symmetri
 spa
e of non-
ompa
t type. More-over, it is in fa
t negatively 
urved.Proposition 6.4. � A Riemannian symmetri
 spa
e of non-
ompa
t type M is simply
onne
ted (and therefore di�eomorphi
 to RdimM).Proof. � Let M be a symmetri
 spa
e of non-
ompa
t type and assume that M is notsimply 
onne
ted. Let Γ be its fundamental group and π : M̃ −→ M be its universal
over, so that M = M̃/Γ. Then M̃ is symmetri
. Call G the identity 
omponent of itsisometry group and Z(Γ) the 
entralizer of Γ in G.We 
laim that Z(Γ) is transitive on M̃ . Indeed, let x and y be two points of M̃ and
hoose f in the identity 
omponent of the isometry group ofM su
h that f(π(x)) = π(y).Then, f ◦π : M̃ −→M is a Riemannian 
overing. We 
an lift f ◦π to a map F : M̃ −→ M̃su
h that F (x) = y and π ◦F = f ◦π. F is a lo
al isometry between 
omplete manifolds,hen
e a Riemannian 
overing, hen
e an isometry sin
e M̃ is simply 
onne
ted. Therefore
F ∈ G (sin
e we 
an also lift homotopies).For γ ∈ Γ, π ◦ F ◦ γ = f ◦ π ◦ γ = f ◦ π = π ◦ F . Hen
e there exists γ′ in Γ su
h that
F ◦ γ = γ′ ◦ F , i.e. F belongs to the normalizer N(Γ) of Γ in G and this normalizer istransitive on M̃ . Thus the identity 
omponent of N(Γ), whi
h 
entralizes Γ (sin
e Γ isdis
rete), is still transitive on M̃ .This implies that the elements of Γ are Cli�ord translations, namely, that their dis-pla
ement fun
tion is 
onstant on M̃ (i.e. ∀γ ∈ Γ, ∀x, y ∈ M̃ , d(x, γx) = d(y, γy)).For if x and y are in M̃ and if z ∈ Z(Γ) is su
h that zx = y, then for all γ ∈ Γ,
d(y, γy) = d(zx, γzx) = d(zx, zγx) = d(x, γx).Let now γ ∈ Γ and x ∈ M̃ . Call σ the geodesi
 from x to γx. Then σ is γ-invariantsin
e γx ∈ σ ∩ γσ and, γ being a Cli�ord translation, σ and γσ are parallel. γ a
ts on σby translation.Pi
k a point y in M̃ and 
onsider the geodesi
 zσ, where z ∈ Z(Γ) is su
h that zx = y.Then

d(zσ(t), σ(t)) = d(γzσ(t), γσ(t)) = d(zγσ(t), γσ(t)) = d(zσ(t+ δ), σ(t+ δ))and therefore, if γ 6= Id, the fun
tion t 7→ d(zσ(t), σ(t)) is periodi
 and hen
e bounded(sin
e 
ontinuous). Thus zσ is parallel to σ and we have shown that every point of M̃belongs to a geodesi
 parallel to σ.Corollary 5.19 then implies that M̃ has a non-trivial Eu
lidean de Rham fa
tor. Con-tradi
tion.



SYMMETRIC SPACES : DIFFERENTIAL GEOMETRY 31Using the same kind of ideas, one provesTheorem 6.5. � [E, p. 69℄ The identity 
omponent G of the isometry group of a sym-metri
 spa
e M of non-
ompa
t type is semi-simple and has trivial 
enter.Proof. � By 
ontradi
tion. If G is not semi-simple then there are non-trivial 
onne
tednormal Abelian Lie subgroups of G. Let A be su
h a subgroup. We 
an assume thatthe Lie algebra a of A is maximal, i.e. not properly 
ontained in a bigger Abelian idealof the Lie algebra g of G. Let m ∈ M , s the geodesi
 symmetry at m and g = k + pthe 
orresponding Cartan de
omposition. We 
laim that a ∩ Ad(s)a 6= {0}. Indeed, ifnot, then Ad(s)a is also an Abelian ideal and so is a ⊕ Ad(s)a, whi
h properly 
ontains
a. Therefore, b := a ∩ Ad(s)a is a non-trivial Ad(s)-invariant Abelian ideal of g. Hen
e
b = (b∩ k)⊕ (b ∩ p). Now, b ∩ p 6= {0}. For if b ⊂ k, then on the one hand [b, p] ⊂ b ⊂ kbe
ause b is an ideal, and on the other hand [b, p] ⊂ [k, p] ⊂ p, hen
e [b, p] = 0 whi
himplies b = 0 sin
e the linear isotropy representation of k is faithful. We 
on
lude that
A 
ontains a 1-parameter subgroup of transve
tions t 7→ pt along some geodesi
 γ : t 7→

pt(m).Assume that some η ∈ ∂∞M 
an be joined to γ(+∞) by a geodesi
, say σ: σ(+∞) = ηand σ(−∞) = γ(+∞). Call t 7→ qt the 1-parameter group of transve
tions along σ.For any x ∈M , we have
<)σ(0)(qtx, η) =<)q−1

t σ(0)(x, q
−1
t η) =<)σ(−t)(x, η) =<)σ(−t)(x, σ(0)) −→ 0 as t −→ +∞,hen
e qtx −→ η as t −→ +∞. Moreover,

<)m(qtγ(−∞), η) ≤ <)m(qtγ(−∞), qtm)+ <)m(qtm, η)

≤ <)q−1

t m(γ(−∞), m)+ <)m(qtm, η)

≤ π− <)m(q−1
t m, γ(−∞))+ <)m(qtm, η)

≤ <)m(q−1
t m, γ(+∞))+ <)m(qtm, η)Sin
e γ(+∞) = σ(−∞), we get <)m(qtγ(−∞), η) −→ 0 as t −→ +∞.This implies that η is in the 
losure of the orbit of γ(−∞) under the group G. Denoteby Λ(A) the set of 
luster points in ∂∞M of the orbit A.x of some point x ∈ M under

A. The subset Λ(A) is 
losed and independent of the 
hoi
e of the point x. Sin
e
p−1

t m −→ γ(−∞), γ(−∞) ∈ Λ(A). The subgroup A being normal in G, Λ(A) is stable by
G and therefore η ∈ Λ(A) = Λ(A). Now, the fa
t that A is Abelian implies that A �xes
Λ(A) pointwise. Hen
e for all t, ptη = η. But the proof above shows that p−tη −→ γ(−∞)as t −→ +∞. Thus η = γ(−∞).



32 JULIEN MAUBONWe have proved that every point inM belongs to a geodesi
 joining γ(−∞) to γ(+∞),hen
e parallel to γ. Corollary 5.19 then implies that M has a non-trivial Eu
lidean deRham fa
tor. Contradi
tion.Assume now that A is a dis
rete Abelian normal subgroup in G. Take a ∈ A and
x ∈ M . For ea
h y ∈ M there exists g ∈ G su
h that y = gx. Therefore d(y, ay) =

d(gx, agx) = d(x, g−1agx) = d(x, ax) sin
e A being dis
rete and G 
onne
ted, G a
tually
entralizes A. The 
ontradi
tion follows as in the proof of the previous proposition, hen
e
G has trivial 
enter.Con
erning the a
tion on ∂∞M of the identity 
omponent G of the isometry group of
M , we have:Proposition 6.6. � [E, pp. 59 & 101℄ Let ξ ∈ ∂∞M , m ∈M and let K be the isotropysubgroup of G at m. Then G.ξ = K.ξ. Moreover, the stabilizer Gξ of ξ in G a
tstransitively on M .Remark 6.7. This property is a weak geometri
 version of the Iwasawa de
ompositionof non-
ompa
t semisimple Lie groups. The full geometri
 version of the latter de
ompo-sition requires to introdu
e horospheri
 
oordinates.Proof. � Call γ the geodesi
 ray emanating from m and belonging to ξ and t 7→ pt the1-parameter group of transve
tions along this ray.Let g ∈ G. We want to prove that there exists k ∈ K so that kξ = gξ. Call σt thegeodesi
 ray starting from m and passing through the point gptm and set ξt = σt(∞).Let qt be the transve
tion along σt su
h that qtm = gptm. Note that qtξt = ξt.The isometry kt := q−1

t gpt belongs to K. Moreover,
<)m(ktξ, ξt) =<)qtm(gptξ, qtξt) =<)gptm(gξ, ξt) =<)gptm(m, gm)and this last quantity goes to 0 as t goes to ∞. Similarly,

<)m(ξt, gξ) =<)m(gptm, gξ) ≤ π− <)gptm(m, gξ) =<)gptm(m, gm) −→ 0.Hen
e ktξ −→ gξ as t −→ ∞. Sin
e K is 
ompa
t, there exists k ∈ K so that kξ = gξ aswanted.Now let m′ be another point of M and let g ∈ G be su
h that gm = m′. It followsfrom what we just proved that there exists k ∈ K so that kξ = g−1ξ. Now gkξ = ξ and
gkm = m′. Therefore Gξ is transitive on M .



SYMMETRIC SPACES : DIFFERENTIAL GEOMETRY 33Example 6.8. ForM1 = SL(n,R)/SO(n,R), the points at in�nity 
an be identi�ed witheigenvalues-�ag pairs, as follows: For ξ ∈ ∂∞M1, there is a unique X ∈ p (namely, a tra
efree symmetri
 matrix) of norm one su
h that ξ = γX(+∞), where γX(t) = etX . Call
λi(ξ) the distin
t eigenvalues of X arranged so that λ1(ξ) > . . . > λk(ξ), and let Ei(ξ) bethe 
orresponding eigenspa
es. Put Vi(ξ) =

⊕
j≤iEj(ξ). To the point ξ, we have thereforeasso
iated a ve
tor λ(ξ) = (λ1(ξ), . . . , λk(ξ)) and a �ag V (ξ) = (V1(ξ) ⊂ . . . ⊂ Vk(ξ)) of

Rn su
h that� λ1(ξ) > . . . > λk(ξ),� ∑
i(dimVi(ξ) − dimVi−1(ξ))λi(ξ) = 0 (sin
e X is tra
e free),� ∑
i(dimVi(ξ) − dimVi−1(ξ))λi(ξ)

2 = 1 (sin
e X has norm 1).Conversely, it is easily seen that given a ve
tor λ = (λ1, . . . , λk) and a �ag V = (V1 ⊂

. . . ⊂ Vk) satisfying those 
onditions, there is a unique point ξ ∈ ∂∞M1 su
h that λ(ξ) = λand V (ξ) = V .One 
an also 
he
k that the a
tion of g ∈ SL(n,R) on the eigenvalues-�ag pairs 
or-responding to its a
tion on ∂∞M1 is given by g.(λ, V ) = (λ, gV ) where gV is the �ag
gV1 ⊂ . . . ⊂ gVk.Example 6.9. The boundary at in�nity of hyperboli
 spa
e KHn 
an be identi�ed withthe set of null lines in Kn+1: ∂∞KHn = { [x] ∈ KP

n | q(x, x) = 0}.6.2. Totally geodesi
 subspa
es. �A submanifold N of (M, g) is said to be totally geodesi
 if the Levi-Civitá 
onne
tionof the metri
 on N indu
ed by g is simply the restri
tion of the Levi-Civitá 
onne
tion of
g. This means that any geodesi
 γ of M su
h that γ(0) ∈ N and γ̇(0) ∈ Tγ(0)N stays in
N .Let N be a totally geodesi
 submanifold ofM and let m ∈ N . Then ne
essarily, for anytangent ve
tors u, v, w to N at m, R(u, v)w is also tangent to N at m (sin
e R is also the
urvature tensor of the indu
ed metri
 on N). If we 
onsider the Cartan de
ompositionof g asso
iated to m, this means that, if we see TmN as a subspa
e q of p, [[q, q], q] ⊂ q.Su
h a q is 
alled a Lie triple system.Conversely, if q ⊂ p is a Lie triple system, then the (
omplete) manifold eqm is totallygeodesi
. Indeed, one 
he
ks that h = [q, q] + q is a subalgebra of g. If H is the analyti
subgroup of G whose Lie algebra is h then let N be the orbit H.m. Clearly, a geodesi
tangent to N at m is of the form t 7→ etXm with X ∈ q. Hen
e a geodesi
 through x ∈ Nis of the form t 7→ hetXm with X ∈ q and h ∈ H su
h that hm = x, thus is 
ontained in
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N . Hen
e N is totally geodesi
. Now any point x of N 
an be joined to m by a geodesi
inside N , hen
e N = eqm = expm(TmN).6.3. Flats. �De�nition 6.10. � A k-�at F in M is a 
omplete totally geodesi
 submanifold of Misometri
 to a Eu
lidean spa
e Rk.Obviously, if F is a k-�at of M , then 1 ≤ k ≤ dimM .De�nition 6.11. � The rank r = rk(M) of the symmetri
 spa
e M is de�ned to be themaximal dimension of a �at in M . A r-�at is therefore a �at of maximal dimension.Proposition 6.12. � The �ats through m ∈ M are in one-to-one 
orresponden
e withAbelian subspa
es of p = TmM . Moreover, if a is su
h an Abelian subspa
e (seen as asubspa
e of TmM), then expm : a −→ F := expm(a) is an isometry.Proof. � The �rst assertion is a dire
t 
onsequen
e of the 
urvature formula and thedis
ussion about totally geodesi
 submanifolds of M . Now let A ∈ a seen as a subspa
eof TmM and ξ ∈ TAa = a. Then

dA expm(ξ) =
d

dt
expm(A+ tξ)|t=0 =

d

dt
eA+tξm|t=0 =

d

dt
eAetξm|t=0 = dme

A(ξ).Sin
e eA is an isometry, ‖dA expm(ξ)‖expm(A) = ‖ξ‖m.Example 6.13. For M1 = SL(n,R)/SO(n,R), a maximal Abelian subspa
e a of p =

TidM is the spa
e of tra
e free diagonal matri
es. Therefore, the rank of M1 is n− 1.Example 6.14. Sin
e the hyperboli
 spa
es are negatively 
urved, their only �ats arethe geodesi
s: the rank of KH
n is 1.The identity 
omponent G of the isometry group of the symmetri
 spa
e M in generaldoes not a
t transitively on the tangent bundle TM of M (nor on geodesi
s in M), butit a
ts transitively on the pairs (x, F ), where x is a point in M and F a r-�at through x.Indeed:Theorem 6.15. � Let g = k+ p be a Cartan de
omposition of the Lie algebra of G, andlet a and a′ be two maximal Abelian subspa
es of p. Then there exists k ∈ K su
h that

Ad(k)a = a′.Proof. � See P.-E. Paradan's le
ture [P℄.
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ular, any geodesi
 of M is 
ontained in a maximal �at.6.4. Regular geodesi
s. Weyl 
hambers. �We refer to [E, p. 85-94℄ for details.A geodesi
 ofM is 
alled regular if it is 
ontained in a unique maximal �at. Otherwise,it is 
alled singular. In the same way, a tangent ve
tor v ∈ TmM (or the 
orrespondingelement of p) is de�ned to be regular, resp. singular, if the geodesi
 γv : t 7→ expm(tv) isregular, resp. singular.Example 6.16. For the symmetri
 spa
eM1 = SL(n,R)/SO(n,R), an element of a (thatis, a diagonal matrix of tra
e zero) is regular if and only if its 
oe�
ients are all distin
t.If a geodesi
 γ, resp. a tangent ve
tor v, is regular, we denote by F (γ), resp. F (v), theunique maximal �at 
ontaining γ, resp. γv.If σ and τ are two asymptoti
 rays, it follows from Proposition 6.6 that σ is regular ifand only if τ is. Therefore we may de�ne a point ξ ∈ ∂∞M to be regular if some (hen
eany) ray belonging to ξ is regular.If v is a unit tangent ve
tor at some point m ∈ M and if x is a point inM , we 
all v(x)the unit tangent ve
tor at x asymptoti
 to v, namely, su
h that γv(x)(+∞) = γv(+∞).Note that if v is regular, then v(x) is regular for all x ∈M .We will de�ne three kinds of Weyl 
hambers: in the tangent bundle TM (or the unittangent bundle UM) of M , in M itself, and on the boundary at in�nity of M .Let v0 and v1 be two regular (unit) tangent ve
tors at a point m ∈ M . Call v0 and v1equivalent if there is a �at F through m and a 
urve t 7→ v(t) of regular (unit) tangentve
tors at m, joining v0 to v1, and tangent to F for all t. The equivalen
e 
lasses for thisequivalen
e relation on the regular ve
tors in TmM (in UmM) are 
alled Weyl 
hambersat m. Given a regular ve
tor v ∈ TmM (or UmM), we 
all C(v) the Weyl 
hamber of v.Example 6.17. There are therefore n! Weyl 
hambers in the maximal Abelian subspa
e
a of p for M1 = SL(n,R)/SO(n,R): if A is a diagonal matrix with distin
t 
oe�
ients
a1, . . . , an, there exists a permutation τ su
h that aτ(1) > . . . > aτ(n) and the WeylChamber of A is the set of diagonal matri
es A′ = diag(a′1, . . . , a

′
n) su
h that a′τ(1) > . . . >

a′τ(n).If C ⊂ UmM is a Weyl 
hamber, we de�ne its 
enter to be the unit ve
tor at mpointing in the same dire
tion as ∫
C
ι(u)dµS(u), where S ⊂ UmM is the great subsphere
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ontaining C, µS is Lebesgue measure on S, and ι : UmM −→ TmMis the in
lusion.Let v ∈ UmM be a regular ve
tor and F (v) the 
orresponding maximal �at. We de�nethe Weyl 
hamber of v in F (v) as follows:
W (v) = {expm(tu)| u ∈ C(v), t > 0}.One proves that the singular geodesi
s through a point m in a maximal �at F form theunion of a �nite number of hyperplanes in F , 
alled walls, and the 
onne
ted 
omponentsof F\{walls} are pre
isely the Weyl 
hambers W (v) for v regular unit tangent ve
tors to

F at m.We now give, without proof, some of the most important properties of Weyl 
hambers(see [E℄).1. If v ∈ UmM is a regular ve
tor and if F (v) is the maximal �at through m tangentto v, then W (v) is an open unbounded 
onvex subset of F (v).2. If v ∈ UmM is a regular ve
tor and if x ∈ M , then the Weyl 
hambers W (v) and
W (v(x)) are asymptoti
, more pre
isely, the Hausdor� distan
e between them isbounded by the distan
e between m and x.3. For v ∈ UmM and v′ ∈ Um′M two regular ve
tors, there exists an element g ∈ Gsu
h that gm = m′ and dmg(v) ∈ C(v′), hen
e g C(v) = C(v′) and gW (v) = W (v′),thus implying that any two Weyl 
hambers are isometri
.The third kind of Weyl 
hambers is simply the asymptoti
 version of the previous ones.Let ξ be a regular point on ∂∞M and let m and v ∈ UmM be su
h that γv(∞) = ξ. Thenset

C(ξ) = {γu(∞)| u ∈ C(v)}.This is well-de�ned by Property (2) above. Note that C(ξ) and C(ξ) are subsets of theboundary at in�nity of F (v).We say that a regular point ξ ∈ ∂∞M is the 
enter of its Weyl 
hamber C(ξ) if ξ = γv(∞)for some v ∈ UM 
enter of its Weyl 
hamber C(v)6.5. Di
hotomy between rank 1 and higher rank symmetri
 spa
es. �There are many di�eren
es, whi
h have very important impli
ations (for example forlatti
es), between symmetri
 spa
es of non-
ompa
t type of rank 1 and of rank at least2. Here we list only straightforward 
onsequen
es of what we have seen.
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 spa
e of non-
ompa
t type. The followingassertions are equivalent:(1) M has rank 1;(2) M has stri
tly negative se
tional 
urvatures (hen
e, sin
e the isometry group of Ma
ts transitively on M , there exist b > a > 0 su
h that the se
tional 
urvatures of M arepin
hed between −b2 and −a2);(3) The isotropy group of G at some point m ∈ M is transitive on the unit tangentve
tors at m;(4) any two points on the boundary at in�nity of M 
an be joined by a geodesi
.Proof. � (2) obviously implies (1). Conversely, assume that u, v ∈ TmM are su
h that
Rm(u, v, u, v) = 0. Then Rm(u, v)u = 0 be
ause v 7→ Rm(u, v)u is negative semi-de�nite.Hen
e [[u, v], u] = 0, i.e. (adu)2v = 0. Now, adu is symmetri
 w.r.t. the bilinear form Bθ(see [P℄). Thus Ker(adu)2 ⊂ Ker(adu) and [u, v] = 0, namely u and v are tangent to amaximal �at through m.(1) implies (3) by Theorem 6.15. Conversely, if the rank of M is greater than 1, thena singular geodesi
 
an not be sent to a regular one.Assume (2). The fa
t that the se
tional 
urvatures of M are bounded from above by astri
tly negative 
onstant −a2 implies that geodesi
 triangles in M are thinner than their
omparison triangles in M−a2 , the 2-dimensional model spa
e of 
onstant 
urvature −a2(in other words, M is CAT(−a2)). Let ξ and η be two points on ∂∞M and let σ and τbe two geodesi
 rays starting from some point x ∈M su
h that σ(∞) = ξ and τ(∞) = η.The distan
e between x and the geodesi
 segment [σ(n), τ(n)] is bounded independentlyof n ∈ N (be
ause this is true in M−a2). Hen
e it will be possible to �nd a 
onvergentsubsequen
e and this will be the geodesi
 joining ξ to η: (2) implies (4).We prove that (4) implies (1) by 
ontradi
tion: assume there exists a 2-dimensional �at
F inM , and 
hoose points x and y on the boundary at in�nity of F that 
annot be joinedby a geodesi
 in F . Then x and y 
an not be joined by a geodesi
 in M . Indeed, if γ issu
h a geodesi
, m a point of F , and σ, τ the geodesi
 rays emanating from m su
h that
σ(∞) = x and τ(∞) = y, then the Hausdor� distan
e between γ(R) and σ(R+) ∪ τ(R+)is bounded by some k > 0. Now, the interse
tion of F with the k-neighborhood of γ(R)is 
onvex and 
ontained in the 2k-neighborhood of σ(R+) ∪ τ(R+). Hen
e, for all n ∈ N,the geodesi
 segment [σ(n), τ(n)] is 
ontained in the 2k-neighborhood of σ(R+) ∪ τ(R+).This is possible only if the angle between σ and τ at m is π, i.e. if x and y are joined bya geodesi
 inside F .



38 JULIEN MAUBONExample 6.19. Using the eigenvalues-�ag pair des
ription of the boundary at in�nity of
M1 = P1(n,R), one 
an prove (see [E, p. 93℄) that two points ξ and η on ∂∞M1 
orrespond-ing to the eigenvalues-�ag pairs ((λi(ξ))1≤i≤k, (Vi(ξ))1≤i≤k) and ((λi(η))1≤i≤l, (Vi(η))1≤i≤l)
an be joined by a geodesi
 if and only if� k = l,� ∀i, λi(η) = −λk−i+1(ξ),� ∀i, R

n is the dire
t sum of Vi(ξ) and Vk−i(η).Remark 6.20. It follows from the 
lassi�
ation of symmetri
 spa
es that up to dilata-tions, the rank 1 symmetri
 spa
es of non-
ompa
t type are exa
tly the hyperboli
 spa
es
KHn we des
ribed earlier, together with one ex
eptional example, the Cayley hyperboli
plane, whi
h is of real dimension 16.6.6. Toward the building stru
ture of the boundary at in�nity. �We just saw that in rank one symmetri
 spa
es, two points at in�nity 
an always bejoined by a geodesi
. In higher rank symmetri
 spa
es, they 
an be joined by �ats. Amu
h stronger result is true: the boundary at in�nity of a symmetri
 spa
e of non-
ompa
ttype admits the stru
ture of a building whose apartments are the boundaries at in�nityof the maximal �ats (see the le
ture of G. Rousseau [R℄ for the de�nition of a building).Here we will only prove the followingTheorem 6.21. � Let M be a symmetri
 spa
e of non-
ompa
t type. Any two pointson the boundary at in�nity ∂∞M of M lie on the boundary at in�nity ∂∞F of a maximal�at F of M .(sket
h, adapted from [BS℄). � Let n be the dimension of M and r its rank. We mayassume that r ≥ 2.Let ξ0 and η0 be two points of ∂∞M . Let ξ and η be regular points of ∂∞M so that
ξ0 ∈ C(ξ) and η0 ∈ C(η). We 
an assume that η is the 
enter of its Weyl 
hamber. It isenough to prove that there exists a �at F su
h that ξ and η belong to ∂∞F .Let m be a point of M and v ∈ UmM so that γv(−∞) = ξ. Note that γv is aregular geodesi
. Let φ be a transve
tion along γv and F (v) be the unique maximal �at
ontaining γv. The boundary at in�nity ∂∞F (v) of F (v) is the union of a �nite numberof Weyl 
hambers whi
h are permuted by φ. Up to taking a power of φ, we 
an assumethat φ �xes the 
enters of the Weyl 
hambers in ∂∞F (v).
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laim that, up to extra
tion of a subsequen
e, the sequen
e (φjη)j∈N 
onverges tosome point η′ ∈ ∂∞F (v). Indeed, for all x ∈ ∂∞M ,
<)m(φx, γv(+∞)) =<)m(φx, φm) ≤ π− <)φm(φx,m) = π− <)m(x, φ−1m) =<)m(x, γv(+∞))with equality if and only if the triangle T (m,φm, φx) is �at, i.e. if and only if x ∈ ∂∞F (v),sin
e v is regular and ∂∞F (v) is invariant by φ. Now, if y is any limit point of {φjx, j ∈ N},we have <)m(φy, γv(+∞)) =<)m(y, γv(+∞)), hen
e y ∈ ∂∞F (v).Let vj ∈ UmM be su
h that γvj

(∞) = φjη. Sin
e φjη is the 
enter of its Weyl
hamber, so is vj . Now, all the Weyl 
hambers are isometri
. Therefore, the angle
<)m(vj,walls of C(vj)) is 
onstant and this implies that η′ is regular and is the 
enter ofits Weyl 
hamber.Call γ the (regular) geodesi
 of F (v) su
h that γ(0) = m and γ(+∞) = η′ and let
ζ = γ(−∞). Again, ζ is regular and is the 
enter of its Weyl 
hamber.Let Hsu be the strong unstable horosphere of γ̇(0). Hsu is a submanifold of the unstablehorosphere Hu of γ̇(0), that is, of the horosphere 
entered at ζ = γ(−∞) and passingthrough m = γ(0). Hsu is (roughly) de�ned as follows. Through ea
h point x of thehorosphere Hu there is a (unique) maximal �at Fx 
ontaining the ray joining x to ζ .Consider the distribution Q of (n− r)-planes in THu given by Qx = TxFx

⊥ ⊂ TxH
u. Oneproves that this distribution is integrable and Hsu is de�ned to be the maximal integralsubmanifold through m. For all x ∈ Hsu, Hsu ∩ Fx = {x}.Consider the map f : Hsu×C(ζ) −→ ∂∞M given by f(m′, ζ ′) = γm′ζ′(−∞), where γm′ζ′is the geodesi
 joining m′ to ζ ′. This map is 
ontinuous. Moreover, it is inje
tive. Indeed,assume that γ1 := γm1ζ1 and γ2 := γm2ζ2 satisfy γ1(−∞) = γ2(−∞). Let P be the maximal�at 
ontaining γ1. Then, sin
e ζ1 and ζ2 belongs to the same Weyl 
hamber, ∂∞P 
ontains

γ2(+∞) = ζ2 and γ2(−∞) = γ1(−∞). Therefore (see the proof of Proposition 6.18), thereis a geodesi
 σ in P su
h that σ(+∞) = γ2(+∞) and σ(−∞) = γ2(−∞). The geodesi
s σand γ1 are both 
ontained in P and satisfy σ(−∞) = γ1(−∞): they must be parallel andhen
e ζ1 = γ1(+∞) = σ(+∞) = ζ2. The geodesi
s γ1 and γ2 are therefore parallel, hen
ethey bound a �at strip, and sin
e they are regular, they both must be 
ontained in themaximal �at P . Now P also 
ontains the geodesi
 joining m1 to ζ , and by the de�nitionof the strong unstable horosphere Hsu, the interse
tion of P and Hsu is redu
ed to m1.Hen
e m1 = m2 and f is inje
tive as 
laimed. Sin
e the domain and the target of f havethe same dimension, f is in fa
t a homeomorphism from a neighborhood U × V of (m, ζ)to a neighborhood W of η′.
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e (φjη)j∈N 
onverges to η′, we may assume that for all j, there exists (mj , ζj) ∈ U×Vsu
h that f(mj, ζj) = φjη. But φjη is the 
enter of its Weyl 
hamber thus so is ζj, i.e.
ζj = ζ for all j. Hen
e for all j there exists γj = γmjζ joining ζ to φjη. Sin
e γj −→ γ wemay assume that the geodesi
s γj are regular.Therefore, for all j, φ−jγj is a regular geodesi
 joining ζ to η. By the �at strip theorem,these geodesi
s, being regular and parallel, must all lie in the same maximal �at F . Thus
η ∈ ∂∞F . Now, φ−jmj ∈ F for all j. Sin
e the sequen
e (mj)j∈N is bounded and
φ−jx −→ γv(−∞) as j −→ ∞ for all x ∈ M , we have φ−jmj −→ γv(−∞) as j −→ ∞.Hen
e ξ = γv(−∞) belongs to ∂∞F and we are done.
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