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Abstract. We provide new arguments to see topological Kac–Moody
groups as generalized semisimple groups over local fields: they are products
of topologically simple groups and their Iwahori subgroups are the normal-
izers of the pro-p Sylow subgroups. We use a dynamical characterization
of parabolic subgroups to prove that some countable Kac–Moody groups
with Fuchsian buildings are not linear. We show for this that the linearity
of a countable Kac–Moody group implies the existence of a closed embed-
ding of the corresponding topological group in a non-Archimedean simple
Lie group, thanks to a commensurator super-rigidity theorem proved in
the Appendix by P. Bonvin.

Introduction

This paper contains two kinds of results, according to which definition of
Kac–Moody groups is adopted. The main goal is to prove non-linearities
of countable Kac–Moody groups as defined by generators and relations by
J. Tits [T2], but our strategy, based on continuous extensions of abstract
group homomorphisms, leads to prove structure results on topological Kac–
Moody groups [RR]. Our first theorem says that infinitely many countable
Kac–Moody groups are not linear (4.C.1).

Theorem. Let Λ be a generic countable Kac–Moody group over a finite
field with right-angled Fuchsian buildings. Then Λ is not linear over any
field. Moreover for each prime number p, there are infinitely many such
non-linear groups defined over a finite field of characteristic p.

The second theorem says that topological Kac–Moody groups can be
seen as generalizations of semisimple groups over local fields. The statement
below roughly sums up 2.A.1 and 1.B.2.
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Theorem. (i) A topological Kac–Moody group over a finite field is the
direct product of topologically simple groups, with one factor for each con-
nected component of its Dynkin diagram.

(ii) The Iwahori subgroups, i.e. the chamber fixators for the natural
action on the building of the group, are characterized as the normalizers of
the pro-p Sylow subgroups.

The motivation for both results is an analogy with well-known classical
cases corresponding to the affine type in Kac–Moody theory. Affine Kac–
Moody Lie algebras are central extensions of split semisimple Lie algebras
over Laurent polynomials [K]. For Kac–Moody groups over finite fields, the
affine case corresponds to {0;∞}-arithmetic subgroups of simply connected
split semisimple groups G over function fields. It has already been observed
that general Kac–Moody groups over finite fields provide generalizations of
these arithmetic groups: there is a natural diagonal action of such a group
Λ on the product of two isomorphic buildings, and when the groundfield
is large enough, Λ is a lattice of the product of (the automorphism groups
of) the buildings [CaG], [R1]. In the affine case, when Λ = G(Fq[t, t−1]),
the two buildings are the Bruhat–Tits buildings of G over the completions
Fq((t)) and Fq((t−1)).

In the general case, most buildings are obviously new, e.g. because their
Weyl groups are neither finite nor affine. Still, on the group side, one
could imagine a situation where a well-known discrete group acts on exotic
geometries. A first step to disprove this is to prove that for a countable
Kac–Moody group over Fq, the only possible linearity is over a field of the
same characteristic p [R4]. Our first theorem above shows that there exist
Kac–Moody groups over finite fields which are not linear, even in equal
characteristic. The affine example of arithmetic groups shows that the
answer to the linearity question cannot be stated in the equal characteristic
case as for inequal characteristics, and suggests that the former case is
harder than the latter.

This is indeed the case, but the proof is fruitful since it gives structure
results for topological Kac–Moody groups. Such a group is defined in [RR]
as the closure of the non-discrete action of a countable Kac–Moody group
on only one of the two buildings. In [loc. cit.] it was proved that these
groups satisfy the axioms of a sharp refinement of Tits systems and that
the parahoric subgroups (i.e. the spherical facet fixators) are virtually pro-p
groups. These results are a posteriori not surprising in view of the affine
case: then the topological Kac–Moody groups are of the form G(Fq((t)))
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with G as above. Our second theorem makes deeper the analogy between
topological Kac–Moody groups and semisimple groups over local fields of
positive characteristic (see also 1.B.1).

Here is the connection between the two results. The general strategy of
the proof consists in strengthening the linearity assumption for a countable
Kac–Moody group to obtain a closed embedding of the corresponding topo-
logical Kac–Moody group into a simple non-Archimedean Lie group. The
main tool is a general commensurator super-rigidity, stated by M. Burger
[Bu] according to ideas of G. Margulis [M1] and proved in the Appendix
by P. Bonvin. Thanks to it, we prove the following dichotomy (3.A).

Theorem. Let Λ be a countable Kac–Moody group generated by its root
groups, with connected Dynkin diagram and large enough finite groundfield.
Then either Λ is not linear, or the corresponding topological group is a
closed subgroup of a simple non-Archimedean Lie group G, with equivariant
embedding of the vertices of the Kac–Moody building to the vertices of the
Bruhat–Tits building of G.

To prove this result we need further structure results about closures of
Levi factors: they have a Tits sub-system, are virtually products of topo-
logically simple factors and their buildings naturally appear in the building
of the ambient Kac–Moody group (2.B.1). The dichotomy of this theorem
is used to obtain complete non-linearities by proving that some topological
Kac–Moody groups are not closed subgroups of Lie groups. We concentrate
at this stage on Kac–Moody groups with right-angled Fuchsian buildings.
We define generalized parabolic subgroups as boundary point stabilizers (as
for symmetric spaces or Bruhat–Tits buildings). The last argument comes
from dynamics in algebraic groups: according to G. Prasad, to each suit-
able element of a non-Archimedean semisimple group is attached a proper
parabolic subgroup [Pr]. These results and their analogues for groups with
right-angled Fuchsian buildings enable us to exploit the incompatibility be-
tween the geometries of CAT(−1) Kac–Moody and of Euclidean Bruhat–
Tits buildings (4.C.1).

Now that we know that some Kac–Moody groups are non-linear, it
makes sense to ask whether some of them are non-residually finite, or even
simple. For this question, the work by M. Burger and Sh. Mozes [BuMo2]
on lattices of products of trees may be relevant. Moreover the work by
R. Pink on compact subgroups of non-Archimedean Lie groups [P] may
lead to a complete answer to the linearity question of countable Kac–Moody
groups, purely in terms of the Dynkin diagram (and of the size of the finite
groundfield).
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This article is organized as follows. Sect. 1 provides references on Kac–
Moody groups as defined by Tits, and recalls facts on topological Kac–
Moody groups, as well as the analogy with algebraic groups. The new
result here is the intrinsic characterization of Iwahori subgroups. In sect. 2,
we prove the topological simplicity theorem, based on Tits system and
pro-p group arguments. In sect. 3, we show that the linearity of a count-
able Kac–Moody group leads to a closed embedding of the corresponding
topological group in an algebraic one. In sect. 4, we define and analyze
generalized parabolic subgroups of topological Kac–Moody groups with
right-angled Fuchsian buildings. We prove a decomposition involving a
generalized unipotent radical, and then study these groups dynamically.
We conclude with the proof of the non-linearity theorem, followed by a ge-
ometric explanation in terms of compactifications of buildings. P. Bonvin
wrote an appendix to this paper, providing the proof of the commensurator
super-rigidity theorem used in sect. 3.

Conventions. 1) The word 〈〈building 〉〉 refers to the standard combina-
torial notion [Bro], [Ro], as well as to the metric realization of it [D]. The
latter realization of a building, due to M. Davis, is called here its CAT(0)-
realization.

2) If a group G acts on a set X, the pointwise stabilizer of a subset Y is
called its fixator and is denoted by FixG(Y ); the usual global stabilizer is
denoted by StabG(Y ). The notation G |Y means the group obtained from
G by factoring out the kernel of the action on a G-stable subset Y in X.

Acknowledgements. I thank M. Bourdon, M. Burger and Sh. Mozes
for their constant interest in this approach to Kac–Moody groups, as well
as the audiences of talks given at ETH (Zürich, June 2002) and at CIRM
(Luminy, July 2002) for motivating questions and hints. I am grateful to
G. Rousseau; his careful reading of a previous version pointed out many
mistakes. I thank also I. Chatterji and F. Paulin for useful discussions, and
the referee for simplifying remarks.

1 Structure Theorem

We review some properties of topological Kac–Moody groups, keeping in
mind the analogy with semisimple groups over local fields of positive char-
acteristic. We quote results of combinatorial nature, to be used to prove the
topological simplicity theorem, and we prove some results on pro-p Sylow
subgroups.
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1.A Topological Kac–Moody groups. Topological Kac–Moody
groups were introduced in [RR, 1.B]. Their geometric definition uses the
buildings naturally associated to the countable Kac–Moody groups defined
over finite fields.

1.A.1 According to Tits [T2, 3.6], a split Kac–Moody group is defined
by generators and Steinberg relations once a Kac–Moody root datum and
a groundfield K are given. A generalized Cartan matrix [K] is the main
ingredient of a Kac–Moody root datum, the other part determining the
maximal split torus of the group. More precisely, what Tits defines by
generators and relations is a functor on rings. When the generalized Cartan
matrix is a Cartan matrix in the usual sense (which we call of finite type),
the functor coincides over fields with the functor of points of a Chevalley–
Demazure group scheme.

An almost split Kac–Moody group is the group of fixed points of a Galois
action on a split group [R2, §11]. Let Λ be an almost split Kac–Moody
group. Any such group satisfies the axioms of a twin root datum [R2, §12].
This is a group combinatorics sharply refining the structure of a BN -pair,
and the associated geometry is a pair of twinned buildings, conventionally
one for each sign [T5]. We denote by X (resp. X−) the positive (resp.
negative) building of Λ. The group Λ acts diagonally on X×X− in a natural
way. We choose a pair of opposite chambers R (in X) and R− (in X−),
which defines a pair of opposite apartments A (in X) and A− (in X−)
[A, I.2]. We call R the standard positive chamber and A the standard
positive apartment .
Examples. 1) The group SLn(K[t, t−1]) is a Kac–Moody group of affine
type. The generalized Cartan matrix is Ãn−1 and the groundfield is K.
More generally, values of Chevalley schemes over rings of Laurent polyno-
mials are Kac–Moody of affine type [A, I.1 example 3].

2) The group SU3(Fq[t, t−1]) is an almost split Kac–Moody group of
rank one. The so-obtained geometry is a semi-homogeneous twin tree of
valencies 1 + q and 1 + q3 [R3, 3.5].

Definition. (i) We call Γ the fixator of the negative chamber R−, i.e.
Γ = FixΛ(R−).

(ii) We call Ω the fixator of the standard positive chamber R, i.e. Ω =
FixΛ(R).

Remark. In the above quoted references, the groups Λ, Γ and Ω are
denoted by G, B− and B, respectively. The reason is that the group Ω



Vol. 14, 2004 SIMPLICITY AND NON-LINEARITIES OF KAC–MOODY GROUPS 815

(resp. Γ) is the Borel subgroup of the positive (resp. negative) Tits system
of the twin root datum of Λ [T5], [R2, §7].
Example. For Λ = SLn(K[t, t−1]), a natural choice of R and R− defines
the group Ω as the subgroup of SLn(K[t]) which reduces to upper triangular
matrices modulo t, and Γ is the subgroup of SLn(K[t−1]) which reduces to
lower triangular matrices modulo t−1.

In this article, we are not interested in Tits group functors whose gener-
alized Cartan matrices are of finite type, i.e. whose values over finite fields
are finite groups of Lie type. Kac–Moody groups of affine type are seen
as a guideline to generalize classical results about algebraic and arithmetic
groups. We are mainly interested in Kac–Moody groups which do not ad-
mit any natural matrix interpretation, and we want to understand to what
extent these new groups can be compared to the obviously linear ones.

1.A.2 We now define topological groups – see [RR, 1.B] for a wider
framework.

Assumption. In this article, Λ is a countable Kac–Moody group over
the finite field Fq of characteristic p with q elements, i.e. Λ is the group
of rational points of an almost split Kac–Moody group with infinite Weyl
group W .

The kernel of the Λ-action on X is the finite center Z(Λ), and the
group Λ/Z(Λ) still enjoys the structure of twin root datum [RR, Lemma
1.B.1]. Another consequence of the finiteness of the groundfield is that the
full automorphism group Aut(X) is an uncountable totally disconnected
locally compact group.

Definition. (i) We call topological Kac–Moody group (associated to Λ)
the closure in Aut(X) of the group Λ/Z(Λ). We denote it by Λ.

(ii) We call parahoric subgroup (associated to F ) the fixator in Λ of
a given spherical facet F . We denote it by ΛF , and when the facet is a
chamber, we call it an Iwahori subgroup.

Remarks. 1) The group Λ is so to speak a completion of the group Λ.
(Recall that the Λ-action on the single building X is not discrete since the
stabilizers are parabolic subgroups with infinite 〈〈unipotent radical 〉〉 [R2,
Theorem 6.2.2].) There exist other (algebraic) definitions of Kac–Moody
groups; they are also presented as completions of the groups Λ [T3, §1.5].
The relation between the groups Λ and the latter groups is not clear (see,
however [R5, Question 36]).



816 B. RÉMY GAFA

2) Parahoric subgroups can equivalently be defined as the fixators in Λ
of the facets in the CAT(0)-realization of the building X, because the class
of facets represented in it is exactly the class of spherical facets [D].

Example. For Λ = SLn(K[t, t−1]), X is the Bruhat–Tits building of
SLn(Fq((t))), that is a Euclidean building of type Ãn−1. If µn(Fq) de-
notes the n-th roots of unity in Fq, the image Λ/Z(Λ) of SLn(Fq[t, t−1])
under the action on X is SLn(Fq[t, t−1])/µn(Fq) and the completion Λ is
PSLn(Fq((t))) = SLn(Fq((t)))/µn(Fq).

1.B Refined Tits system and virtual pro-p-ness of parahoric sub-
groups. The reference for this subsection is [RR, 1.C].

1.B.1 Let us state [RR, Theorem 1.C.2] showing that topological
Kac–Moody groups generalize semisimple groups over local fields of positive
characteristic.

Theorem. Let Λ be an almost split Kac–Moody group over Fq and Λ
be its associated topological group. Let R ⊂ A be the standard chamber
and apartment of the building X associated to Λ. We denote by B the
standard Iwahori subgroup ΛR and by WR the Coxeter group associated
to A, generated by reflections along the panels of R.

(i) The topological Kac–Moody group Λ enjoys the structure of a refined
Tits system with abstract Borel subgroup B and Weyl group WR,
which is also the Weyl group of Λ.

(ii) Any parahoric subgroup ΛF is a semidirect product MF � ÛF where
MF is a finite reductive group of Lie type over Fq and ÛF is a pro-
p group. In particular, any parahoric subgroup is virtually a pro-p
group. �

Remarks. 1) The group Λ is strongly transitive on the building X, i.e.
transitive on the pairs of chambers at given W -distance from one another
[Ro, §5]. This implies that Λ is strongly transitive on X too, and that X
is also the building associated to the above Tits system of Λ.

2) Refined Tits system were defined by V. Kac and D. Peterson [KP].
For twin root data, there are two relevant standard Borel subgroups playing
symmetric roles. For refined Tits systems, only one conjugacy class of Borel
subgroups is introduced. The latter structure is abstractly implied by the
former one [R2, 1.6], but it applies to a strictly wider class of groups, e.g.
SLn(Fq((t))) satisfies the axioms of a refined Tits system while it doesn’t
admit a twin root datum structure.
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Let us also briefly mention how the groups MF and ÛF are defined
geometrically. We first note that in the CAT(0)-realization of buildings
only spherical facets appear. We denote by St(F ) the star of a facet F ,
that is the set of chambers whose closure contains F . Theorem 6.2.2 of [R2]
applies and we have a Levi decomposition ΛF = StabΛ(F ) = MF � UF ,
where MF is a Kac–Moody subgroup for a Cartan submatrix of finite type
and UF fixes pointwise St(F ). The group ÛF is the closure of UF in Λ,
hence it fixes St(F ) too. Moreover by [loc. cit., Proposition 6.2.3], St(F )
is a geometric realization of the finite building attached to MF , and the
action by MF is the standard one. Therefore the image of the surjective
homomorphism πF : ΛF → MF associated to ΛF = MF � ÛF gives the
local action of ΛF on St(F ).

These facts are analogues of classical results in Bruhat–Tits theory
[BruT, Proposition 5.1.32]. Namely, any facet in the Bruhat–Tits building
of a semisimple group G over a local field k defines an integral structure
over the valuation ring O of k. The reduction of the O-structure modulo
the maximal ideal is a semisimple group over the residue field, whose build-
ing is the star of the facet. The integral points of the O-structure act on
it via the natural action of the reduction. The splitting ΛF = MF � ÛF

of a parahoric subgroup as a semidirect product is specific to the case of
valuated fields in equal characteristic, and in the case of locally compact
fields this only occurs in characteristic p.

Example. Let v be a vertex in the Bruhat–Tits building of SLn(Fq((t))).
Then its fixator is isomorphic to SLn(Fq[[t]]) and its star is isomorphic to
the building of SLn(Fq). The subgroup Ûv is the first congruence subgroup
of SLn(Fq[[t]]), i.e. the matrices reducing to the identity modulo t. The
above reduction corresponds concretely to taking the quotient by Ûv, and
the Iwahori subgroups fixing a chamber in St(v) are the subgroups reduc-
ing to a Borel subgroup of SLn(Fq), e.g. reducing to the upper triangular
matrices.

In our case, the Bruhat decomposition and the rule to multiply double
classes [Bou, IV.2] have topological consequences.

Corollary. A topological Kac–Moody group is compactly generated.

Proof. Let Λ be such a group and let B = ΛR be the standard Iwahori
subgroup. Then Λ is generated by B and by the compact double classes
BsB, when s runs over the finite set of reflections along the panels of R. �
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1.B.2 Pro-p Sylow subgroups of totally disconnected groups are de-
fined in [S, I.1.4] for instance. The following proposition is suggested by
classical results on pro-p subgroups of non-Archimedean Lie groups, e.g.
[PlR, Theorem 3.10].

Proposition. (i) Given any chamber R, the group ÛR of the decompo-
sition ΛR = MR � ÛR is the unique pro-p Sylow subgroup of the Iwahori
subgroup ΛR.

(ii) Let K be a pro-p subgroup of Λ. Then there is a chamber R such
that K lies in the pro-p Sylow subgroup ÛR of ΛR.

(iii) The pro-p Sylow subgroups of Λ are precisely the subgroups ÛR

when R ranges over the chambers of the building X; they are all conjugate.

(iv) The Iwahori subgroups of Λ are intrinsically characterized as the
normalizers of the pro-p Sylow subgroups of Λ.

Proof. (i) By quasi-splitness of an almost split Kac–Moody group Λ over
Fq [R2, 13.2], the Levi factor MR of a chamber fixator in Λ is the Fq-
points of a torus. Therefore its order is prime to p and we conclude by the
decomposition ΛR = MR � ÛR.

(ii) Let K be a pro-p subgroup of Λ. Since it is compact, it fixes a
spherical facet F [R2, 4.6] and by Theorem 1.B.1 (ii) we can write K ⊂ ΛF

= MF � ÛF . Let us look at the local action πF : ΛF → MF (1.B.1).
By the Bruhat decomposition in split BN -pairs, the p-Sylow subgroups
of finite reductive groups of Lie type are the unipotent radicals of the
Borel subgroups [Bo+, B Corollary 3.5], so the p-subgroup πF (K) of MF is
contained in some Borel subgroup of MF , hence fixes a chamber R in St(F ).
Since ÛF fixes pointwise St(F ), the whole subgroup K fixes R and we
conclude by (i).

(iii) The first assertion follows immediately from (ii), and the second
one follows from the transitivity of Λ on the chambers of X.

(iv) According to (iii), it is enough to show that we have B = NΛ(ÛR) for
the Iwahori subgroup B = ΛR fixing the standard positive chamber R. By
1.B.1 (ii), we know that B lies in NΛ(ÛR). By [Bou, IV.2.5] the normalizer
NΛ(ÛR) is an abstract parabolic subgroup of the Tits system of 1.B.1 (i)
with abstract Borel subgroup B. If NΛ(ÛR) were bigger than B, it would
contain a reflection conjugating a positive root group to a negative one.
But this is in contradiction with axiom (RT3) of refined Tits systems [KP],
so we have B = NΛ(ÛR). �
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1.C Lattices and generalized arithmeticity. We briefly discuss ex-
istence and generalized arithmeticity of lattices in topological Kac–Moody
groups.

1.C.1 We keep the almost split Kac–Moody group Λ over Fq. The Weyl
group W is infinite, and we denote by W (t) its growth series

∑

w∈W t�(w).

Theorem. Assume that W (1/q) < ∞. Then Λ is a lattice of X×X− for its
diagonal action, and for any point x− ∈ X− the subgroup Λx− = FixΛ(x−)
is a lattice of X. These lattices are not uniform. �

This result was independently proved in [CaG] and in [R1]. In the case
of SLn(Fq[t, t−1]), the lattices of the form Λx− are all commensurable to
the arithmetic lattice SLn(Fq[t−1]) in SLn(Fq((t)). Recall that by Mar-
gulis commensurator criterion [Z, Theorem 6.2.5] , a lattice in a semisimple
Lie group G is arithmetic if and only if its commensurator is dense in G.
Taking this characterization as a definition for general situations, [RR,
Lemma 1.B.3 (ii)] says that the groups Λx− are arithmetic lattices of Λ by
the very definition of this topological group. Here is the statement, whose
proof is based on refined Tits sytem arguments.

Lemma. For any x− ∈ X−, the group Λ lies in the commensurator
CommΛ(Λx−). �

Remark. Some lattices may have big enough commensurators to be arith-
metic in Aut(X), meaning that the commensurators are dense in Aut(X).
This is the case for the Nagao lattice SL2(Fq[t−1]) in the full automor-
phism group of the q + 1-regular tree [Moz]. The proof can be formalized
and extended to exotic trees admitting a Moufang twinning [AR].

1.C.2 A way to produce lattices in automorphism groups of cell-
complexes is to take fundamental groups of complexes of groups [BrH,
III.C], the point being then to recognize the covering space. A positive
result is the following – see [Bour3]: let R be a regular right-angled r-gon
in the hyperbolic plane H2 and let q = {qi}1≤i≤r be a sequence of integers
≥ 2. (When q is constant, we replace q by its value q.) Then there exists
a unique right-angled Fuchsian building Ir,1+q with apartments isomorphic
to the tiling of H2 by R, and such that the link at any vertex of type
{i; i + 1} is the complete bipartite graph of parameters (1 + qi, 1 + qi+1).
The so-obtained lattices are uniform and abstractly defined by Γr,1+q =
〈{γi}i∈Z/rZ : γqi+1

i = 1 and [γi, γi+1] = 1〉. This uniqueness is a key
argument to prove [RR, Proposition 5.C]
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Proposition. For any prime power q, there exists a non-uniquely defined
Kac–Moody group Λ over Fq whose building is Ir,1+q. Moreover we can
choose Λ such that its natural image in Aut(Ir,1+q) contains the uniform
lattice Γr,1+q. �

This result says that the buildings Ir,1+q are relevant to both Kac–
Moody theory and generalized hyperbolic geometry since they carry a nat-
ural CAT(−1)-metric. They provide a well-understood infinite family of
exotic Kac–Moody buildings (indexed by r ≥ 5 when q is fixed). The cor-
responding countable groups Λ are actually typical groups to which our
non-linearity result applies (4.C). We study these buildings more carefully
in 4.A. Finally, combining [R4, Theorem 4.6] and [Bour1] leads to a some-
what surprising situation, with coexistence of lattices with sharply different
properties [RR, Corollary 5.C].

Corollary. Whenever q is large enough and r is even and large enough
with respect to q, the topological group Λ associated to the above Λ contains
both uniform Gromov-hyperbolic lattices embedding convex-cocompactly
into real hyperbolic spaces, and non-uniform Kac–Moody lattices which
are not linear in characteristic �= p, containing infinite groups of exponent
dividing p2. �

2 Topological simplicity theorem

We prove that topological Kac–Moody groups are direct products of topo-
logically simple groups, as well as some results on Levi factors and homo-
morphisms to non-Archimedean groups.

2.A Topological simplicity. Here is a further argument supporting
the analogy with semisimple algebraic groups over local fields of positive
characteristic.

2.A.1 As for the simplicity of classical groups, we need to assume the
groundfield to be large enough, because in our proof we need simplicity of
some rank-one finite groups of Lie type.

Theorem. Let Λ be a countable Kac–Moody group which is almost split
over the finite field Fq, with q > 4. We assume that Λ is generated by its
root groups.

(i) If the Dynkin diagram of Λ is connected, the associated topological
Kac–Moody group Λ is topologically simple.
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(ii) For an arbitrary Dynkin diagram, the group Λ is a direct product of
topologically simple groups, each factor being the topological Kac–
Moody group associated to a connected component of the Dynkin
diagram.

Proof. (ii) The building of a Kac–Moody group Λ is defined as a glu-
ing X = (Λ × A)/ ∼, where A is the model for an apartment, i.e. the
CAT(0)-realization of the Coxeter complex of the Weyl group W [D]. The
Λ-action comes from factorizing the map Λ × Λ × A → Λ× A which sends
(λ′, λ, x) to (λ′λ, x) [R2, §4]. The rule by which the Coxeter diagram of
W is deduced from the Dynkin diagram [T2, 3.1] implies that irreducible
factors correspond to connected components of the diagram. The model
A is then the direct product of the models for the Coxeter complexes of
the irreducible factors of W . By the defining relations of Λ [T2, 3.6], a
root group indexed by a root in the subsystem associated to a given con-
nected component of the Dynkin diagram centralizes a root group arising
from another connected component. By the relationship between buildings
and Tits systems [Ro, §5], the Kac–Moody subgroup defined by a given
connected component acts trivially on a factor of the building X arising
from any other connected component. Therefore proving (ii) is reduced to
proving (i).

(i) Let B=ΛR be the standard Iwahori subgroup. By Theorem 1.B.1 (i),
it is the Borel subgroup of a Tits system with the same Coxeter system as
the one for Λ. By the Kac–Moody analogue of Lang’s theorem [R2, 13.2.2],
the Levi factor MR in B = MR� ÛR is a maximally split maximal Fq-torus
T of Λ, i.e. the rational points of a finite Fq-torus.

Let I be the indexing set of the simple roots of Λ and let Gi be the
standard semisimple Levi factor of type i ∈ I. The group Gi is a finite
almost simple group of Lie type generated by the root groups attached
to the simple root ai and its opposite [R2, 6.2]. By our assumption they
generate Λ as an abstract group, hence Λ as a topological group. Note that
Gi has no non-trivial abelian quotient, and it has no quotient isomorphic
to a p-group either – see Remark 2 below.

We isolate the remaining arguments in a lemma also used to prove
2.B.1 (iv).

Lemma. Let G be a topological group acting continuously and strongly
transitively by type-preserving automorphisms on a building X with irre-
ducible Weyl group. We denote by B a chamber fixator and we assume that



822 B. RÉMY GAFA

it is an abelian-by-pro-p extension. We also assume that G is topologically
generated by finite subgroups admitting no non-trivial quotient isomorphic
to any abelian or p-group. Then any proper closed normal subgroup of G
acts trivially on X.

This proves the theorem by choosing G to be Λ, B to be ΛR and by
taking {Gi}i∈I as generating family of subgroups, since by definition Λ acts
faithfully on X. Note that ΛR = T � ÛR, where T is the maximally split
maximal Fq-torus attached to A. �

Let us now prove the lemma.

Proof. By [Ro, §5], G admits an irreducible Tits system with B as abstract
Borel subgroup. Assume we are given a closed normal subgroup H in G.
Then by [Bou, IV.2.7], we have either H.B = B or H.B = G. The first case
implies that H lies in B, and since H is normal in G,

H ⊂
⋂

g∈G

g FixG(R)g−1 = FixG

( ⋃

g∈G

gR
)

= FixG

( ⋃

g∈G

gR
)

= FixG(X) ,

because G is type-preserving and transitive on the chambers of the build-
ing X.

From now on, we assume that H doesn’t act trivially on X. By the pre-
vious point, this implies that we have the identification of compact groups:
G/H 
 B/(B ∩ H). We denote by 1 → Û → B → T → 1 the extension of
the assumption, and we consider the homomorphism Û → B/(B ∩ H)
sending u to u(B ∩ H). Its kernel is Û ∩ H, so we have an injection
Û/(Û ∩ H) ↪→ B/(B ∩ H), and since Û is normal in B, so is Û/(Û ∩ H)
in B/(B ∩ H). Then we consider the composition of surjective homomor-
phisms B → B

(B∩H) → B/(B∩H)

Û/(Û∩H)
. Its kernel contains Û , which shows that

B/(B∩H)

Û/(Û∩H)
is a quotient of the abelian group T . Therefore if we denote by

{Gi}i∈I the generating family of subgroups of the assumptions, the image
of each Gi under G → G

H 
 B
(B∩H) → B/(B∩H)

Û/(Û∩H)
is trivial.

In other words, the image of Gi under G → G/H 
 B/(B∩H) is a finite
subgroup of the group Û/(Û ∩ H). But the group Û/(Û ∩ H) is a pro-p
group since it is the quotient of a pro-p group by a closed normal subgroup
[DiSMS, 1.11]. Therefore, once again in view of the possible images of Gi,
we must have Gi/(Gi ∩ H) = {1}, i.e. Gi lies in H. Since the groups Gi

topologically generate G, we have H = G. �

Example. In order to see which classical result is generalized here, we
take Λ = SLn(Fq[t, t−1]). Let µn(Fq) be the n-th roots of unity in Fq. The
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image of SLn(Fq[t, t−1]) for the action on its positive Euclidean building
is SLn(Fq[t, t−1])/µn(Fq). Though SLn(Fq[t, t−1]) does not come from a
simply connected Kac–Moody root datum, it is generated by standard rank-
one Levi factors. The lemma says that the closed normal subgroups of
SLn(Fq((t))) are central, i.e. in µn(Fq).

Remarks. 1) An argument in the proof is that the Fq-almost simple finite
Levi factors of the panel fixators generate the countable group Λ and don’t
admit any quotient isomorphic to an abelian or a p-group. The same proof
works if the panel fixators are replaced by a generating family of facet
fixators with the same property on quotients. For SL3(F2((t))) the Levi
factors of the panels fixators are solvable isomorphic to SL2(F2), but the
proof works with the Levi factors for the three standard vertices, because
these groups are isomorphic to SL3(F2).

2) Assuming q > 4 is a way to have this property on quotients for any
facet fixator since non-simplicity of rational points of adjoint Fq-simple
groups occurs only for q ≤ 4 [Car, 11.1.2 and 14.4.1]. Indeed, let G be
the group generated by the p-Sylow subgroups of the rational points of an
almost simple Fq-group with q > 4, and let H = G/K be a quotient. By
simplicity, K/Z(G) equals {1} or G/Z(G). The first case implies that H
is equal to the non-abelian simple group G/Z(G). In the second case we
have G = K ·Z(G), showing that H is a quotient of Z(G), which is a group
of order prime to p since it lies in a finite torus over Fq. If U denotes a
p-Sylow subgroup of G then U/(U ∩ K) is trivial in H, implying that K
contains the p-Sylow subgroups of G, hence equals G.

2.A.2 In [R4] it is proved that the group Λ cannot be linear in char-
acteristic �= p (e.g. in characteristic 0): no homomorphism Λ → GLN (k)
hence no homomorphism Λ → GLN (k) can be injective. Combined with
the topological simplicity of Λ, this leads to

Corollary. Let k be a local field of characteristic �= p and let G be a linear
algebraic group over k. Then any continuous homomorphism ϕ : Λ → G(k)
has trivial image. �

2.B Closures of Levi factors and maps to non-Archimedean
groups. We investigate the structure of closures of Levi factors. This
enables us to prove a result on continuous homomorphisms from topologi-
cal Kac–Moody groups to Lie groups over non-Archimedean fields.
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2.B.1 We keep our Kac–Moody group Λ and the inclusion of the cham-
ber R in the apartment A. We denote by {ai}i∈I the finite family of sim-
ple roots, which we see as half-spaces of A whose intersection equals R.
Let us now choose a subset J of I. We can thus introduce the standard
parabolic subgroup ΛJ in Λ, which is the union ΛJ =

⊔

w∈WJ
ΩwΩ indexed

by the Coxeter group generated by the reflections along the walls ∂ai for
i ∈ J . By [R2, Theorem 6.2.2], the group ΛJ admits a Levi decomposition
ΛJ = MJ � UJ , where the Levi factor MJ is the Kac–Moody subgroup
generated by the maximal split torus T and the root groups indexed by the
roots w.ai for w ∈ WJ and i ∈ J .

Definition. (i) We denote by MJ the closure of MJ in Λ, and by GJ the
topological group generated by the root groups U±ai when i ranges over J .

(ii) The intersection of roots
⋂

i∈J ai is called the inessential chamber of
MJ in X, and is denoted by RJ .

(iii) We denote by BJ the stabilizer of RJ in MJ .

(iv) The union of closures
⋃

g∈MJ
g.RJ is called the inessential building

of MJ in X, and is denoted by XJ .

What supports the terminology is the following

Proposition. (i) The closure group MJ admits a natural refined Tits
system with Weyl group WJ and abstract Borel subgroup BJ .

(ii) The subgroup BJ fixes pointwise RJ and admits a decomposition

BJ = T � ÛJ , where T is the maximally split maximal Fq-torus attached

to A and ÛJ is a pro-p group.

(iii) The space XJ is a geometric realization of the building of MJ

arising from the above Tits system structure.

(iv) The group GJ is of finite index in MJ and when q > 4 it admits a
direct product decomposition into topologically simple factors.

Proof. (ii) By [R2, 6.2], the group MJ has a twin root datum structure with
positive Borel subgroup Ω ∩ MJ (which we denote by ΩJ), negative Borel
subgroup Γ∩MJ (which we denote by ΓJ), and Weyl group WJ . Moreover
the group ΩJ is generated by T and the root groups Ua where a is a positive
root of the form w.ai with i ∈ J and w ∈ WJ . By the proof of Corollary 1
in [MooP, 5.7], such a root contains RJ , so the corresponding group Ua

fixes RJ pointwise. Since T fixes pointwise the whole apartment A and
BJ = ΩJ , we proved the first assertion. We have T ⊂ ΩJ and BJ ⊂ B

since BJ fixes R: this proves the second point by setting ÛJ = BJ ∩ ÛR.
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The Borel subgroup ΩJ of the positive Tits system of MJ is the fixator
of RJ , so XJ is a geometric realization of the corresponding building and
MJ is strongly transitive on XJ . This proves (iii) and the fact that MJ

admits a natural Tits system with Weyl group WJ and abstract Borel
subgroup BJ . We are now in position to apply the same arguments as
in [RR, 1.C] to prove that we actually have a refined Tits system, which
proves (i).

(iv) The first assertion follows from the fact that we have MJ = GJ ·T .
The same argument as for Theorem 2.A.1 (ii) implies that we are reduced to
considering the groups corresponding to the connected components of the
Dynkin subdiagram obtained from the one of Λ by removing the vertices
of type �∈ J (and the edges containing one of them). Such groups commute
with one another, and they are topologically simple by Lemma 2.A.1. �

Remarks. 1) Any proper submatrix of an irreducible affine generalized
Cartan matrix is of finite type [K, Theorem 4.8]. Consequently, the Levi
factors of the parabolic subgroups of Λ are all finite groups of Lie type in
this case.

2) Conversely, if the submatrix of type J of the generalized Cartan
matrix of Λ is not spherical (i.e. of finite type), then MJ contains an infinite
topologically simple subgroup. Such a group comes from a non-spherical
connected component of the Dynkin subdiagram given by J .

2.B.2 The virtual topological simplicity of closures of Levi factors
enables us to prove the following result about actions of Kac–Moody groups
on Euclidean buildings.

Proposition. Let Λ be a countable Kac–Moody group which is almost
split over the finite field Fq with q > 4, which is generated by its root
groups and which has connected Dynkin diagram. We assume we are given
a continuous group homomorphism µ : Λ → G(k), where G is a semisimple
group defined over a non-Archimedean local field k. We denote by ∆ the
Bruhat–Tits building of G over k, and for each point x in the Kac–Moody
building X, we denote by Λx the fixator FixΛ(x).

(i) For any point x in the Kac–Moody building X, the set of fixed points

∆µ(Λx) of µ(Λx) in ∆ is a non-empty closed convex union of facets in
the Euclidean building ∆.

(ii) If the image µ(Λ) is non-trivial, then for any pair of distinct vertices

v �= v′ in X, the sets of fixed points ∆µ(Λv) and ∆µ(Λv′) are disjoint.
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Remark. As W is infinite, (ii) implies that µ(Λ) is unbounded in G(k)
since it has no global fixed point in ∆.

Proof. (i) Let x ∈ X. By the very definition of the topology on Aut(X),
the group Λx is compact, and so is its continuous image µ(Λx). By the
Bruhat–Tits fixed point lemma [Bro, VI.4], the set of µ(Λx)-fixed points
in ∆ is non-empty. The G(k)-action on ∆ is simplicial, and since Λ is
topologically simple (2.A.1) and µ is continuous, the µ(Λ)-action is type-
preserving. Therefore each time a subgroup of µ(Λ) fixes a point, it fixes
the closure of the facet containing it. The convexity of ∆µ(Λx) comes from
the intrinsic definition of a geodesic segment in ∆ [Bro, VI.3A], and from
the fact that G(k) acts isometrically on ∆.

(ii) A type of vertex in the CAT(0)-realization of a building defines a
subdiagram in the Dynkin diagram of Λ which is spherical and maximal for
this property [R2, 4.3]. Therefore the fixator of a vertex v in the building
X is a maximal spherical parabolic subgroup of the Tits system of 1.B.1
with Borel subgroup the Iwahori subgroup B. Now let v′ be another vertex
in X. By [Bou, IV.2.5], the group generated by Λv and Λv′ is a parabolic
subgroup of the latter Tits system, which cannot be spherical since it is
strictly bigger than Λv. By the second remark in 2.B.1, the closed subgroup
〈Λv,Λv′〉 generated by Λv and Λv′ contains an infinite topologically simple
group H; up to conjugacy, this group is a factor of Proposition 2.B.1 (iv).

We assume now that there exist two vertices v �= v′ in X such that
∆µ(Λv) ∩ ∆µ(Λv′) contains a point y ∈ ∆. Then the image of 〈Λv,Λv′〉 by
µ lies in the compact fixator of y in G(k). Restricting µ to the topolog-
ically simple group H, and composing with an embedding of k-algebraic
groups G ⊂ GLm, we are in position to apply the lemma below: µ(H) is
trivial since it is bounded. But then the kernel of µ is non-trivial hence
equal to Λ by topological simplicity (2.A.1). Finally µ(Λ) �= {1} implies
∆µ(Λv) ∩ ∆µ(Λv′) = ∅ whenever v �= v′. �

We finally prove the following quite general and probably well-known
lemma.

Lemma. Let H be an infinite topological group all of whose proper closed
normal subgroups are finite. Let k be a non-Archimedean local field and let
µ : H → GLm(k) be a continuous homomorphism for some m ≥ 1. Then
µ(H) is either trivial or unbounded.

Proof. We denote by O the valuation ring and choose a uniformizer �.
Let us assume that µ(H) is bounded. After conjugation, we may – and
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shall – assume that µ(H) lies in GLm(O) [PlR, 1.12]. For each integer
N ≥ 1, the group GLm(O) (denoted by K) has an open finite index con-
gruence subgroup K(N) = ker(GLm(O) → GLm(O/�N )). For each N ≥ 1,
µ−1(K(N)) is a closed normal finite index subgroup of H. Since H is infi-
nite, so is µ−1(K(N)), and by the hypothesis on closed normal subgroups
of H we have H = µ−1(K(N)). Since

⋂

N≥1 K(N) = {1}, we finally have
µ(H) = {1}. �

3 Embedding Theorem

We use the commensurator super-rigidity to prove that the linearity of
a countable Kac–Moody group implies that the corresponding topological
group is a closed subgroup of a non-Archimedean Lie group.

3.A Embedding theorem and non-amenability. We first state the
result. Then we discuss its hypotheses, mostly the one involving amenabil-
ity.

Theorem. Let Λ be an almost split Kac–Moody group over the finite field
Fq of characteristic p with q > 4 elements, with infinite Weyl group W and
buildings X and X−. Let Λ be the corresponding Kac–Moody topological
group. We make the following assumptions:

(TS) the group Λ is topologically simple;

(NA) the group Λ is not amenable;

(LT) the group Λ is a lattice of X × X− for its diagonal action.

Then, if Λ is linear over a field of characteristic p, there exists:

– a local field k of characteristic p and a connected adjoint k-simple
group G,

– a topological embedding µ : Λ → G(k) with Hausdorff unbounded
and Zariski dense image,

– and a µ-equivariant embedding ι : VX → V∆ from the set of vertices of
the Kac–Moody building X of Λ to the set of vertices of the Bruhat–
Tits building ∆ of G(k).

When q > 4 and Λ is generated by its root groups, condition (TS)
is equivalent to the connectedness of the Dynkin diagram of Λ (2.A.1).
Condition (LT) is equivalent to Γ being a lattice of Λ, which holds whenever
q is big enough (1.C.1). Finally, condition (NA) is fulfilled for q large
enough, too.
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Lemma. Let Λ be an almost split Kac–Moody group over the finite field
Fq of characteristic p with q > 4 elements, with infinite Weyl group W and
buildings X and X−. Let Λ be the corresponding Kac–Moody topological
group. Then, if q is large enough, neither Λ for the discrete topology nor
Λ for its topology of closed subgroup of Aut(X) is amenable.

Proof. Let us start with preliminary remarks. The group Λ is chamber-
transitive on X, so it is non-compact, and Λ is cocompact in Aut(X).
Therefore Λ is amenable (resp. Kazhdan) if and only if Aut(X) is [Z,
4.1.11] (resp. [M1, III.2.12]). Since amenable groups with property (T) are
compact [Z, 7.1.9], condition (NA) is satisfied whenever Aut(X) has (T).
Another case when (NA) is fulfilled is when the building X admits a
CAT(−1) metric. Indeed, amenability of Aut(X) would imply the exis-
tence of an Aut(X)-invariant probability measure on ∂∞X. Since Aut(X)
is non-compact, the relevant Furstenberg lemma in this context [BuMo1,
Lemma 2.3] would imply that the support of this measure consists of at
most two points. This would imply the stability of a boundary point or
a geodesic, in contradiction with the chamber-transitivity of the Λ-action
on X .

We henceforth assume that (LT) holds, so that amenability of Λ, of Λ×Λ
and of Λ are equivalent. Since the Weyl group W of Λ is infinite, its Coxeter
diagram has at least one non-spherical connected component. As for the
proof of Theorem 2.A.1 and since a closed subgroup of an amenable group is
amenable, we are reduced to considering the case when the Coxeter diagram
of W is connected. If W is of affine type, then we use the above remarks: if
W is infinite dihedral then the building X is a tree hence CAT(−1), and in
any other case [DyJ] implies that Aut(X) has property (T) when q is large
enough. Otherwise, [MV, Corollary 2] shows that W virtually surjects onto
a non-abelian free group, which implies that W is non-amenable; then the
group N , which lifts W modulo the finite Fq-torus T , is not amenable, and
neither is Λ which contains it. �

The remainder of this section is devoted to the proof of the embedding
theorem.

3.B Semisimple Zariski closure and injectivity. The linearity as-
sumption says that there is a field F of characteristic p and an injective
group homomorphism η : Λ ↪→ GLN (F) to a general linear group over F.
We choose an algebraic closure F of F, and denote by H the Zariski closure
η(Λ)

Z
of the image of η in GLN . Let RH◦ be the radical of the identity
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component H◦ of H in the Zariski topology. The group H◦/RH◦ is con-
nected normal and of finite index in H/RH◦, hence it is its (semisimple)
identity component. We denote by L the quotient of H/RH◦ by its fi-
nite center Z(H/RH◦), and by q the natural quotient map H → L. Note
that L◦ is adjoint semisimple and that the identity component of ker(q) is
solvable. We consider the composed homomorphism,

ϕ : Λ
η−→H

q−→L .

Let L ↪→ GLM be an embedding of linear algebraic groups. Since Λ is
finitely generated, there is a finitely generated field extension E of Z/pZ in
F such that ϕ(Λ) lies in GLM (E). The group ϕ(Λ) is Zariski dense in L,
so the group L is defined over E [Bo, AG 14.4], and ϕ(Λ) lies in L(E).

Lemma. The group homomorphism ϕ : Λ → L(E) is injective.

Proof. Let us assume that the kernel of ϕ is non-trivial, so that its closure
is a non-trivial closed normal subgroup of Λ. By topological simplicity
(2.A.1) we have ker(ϕ) = Λ. But since ϕ = q ◦ η and since η is injective,
we have ker(ϕ) = η−1(η(Λ) ∩ ker(q)) 
 η(Λ) ∩ ker(q). This would imply
that ker(ϕ) is virtually solvable, hence amenable for the discrete topology
[Z, 4.1.7]. Then ker(ϕ) = Λ and [Z, 4.1.13] would imply that Λ is amenable,
which is excluded by (NA). �

3.C Unbounded image and continuous extension. Our next goal
is to check that we are in position to use commensurator super-rigidity.

Proposition. (i) There exist an infinite order element γ in the lattice Γ
and a field embedding σ : E → k into a local field of characteristic p such
that σ(ϕ(γ)) is semisimple with an eigenvalue of absolute value > 1 in the
adjoint representation of L(k).

(ii) There is a connected adjoint k-simple group G and an injective
continuous group homomorphism µ : Λ → G(k). The map µ coincides on
a finite index subgroup of Λ with the composition of ϕ with the projec-
tion onto a k-simple factor of L◦; its image is Zariski dense and Hausdorff
unbounded.

Proof. (i) Let us fix a reflection s in a wall Hs containing a panel of the stan-
dard chamber R, and let us denote by as the simple root bordered by Hs.
The condition (TS) implies that the Weyl group W of Λ (or Λ) is indecom-
posable (of non-spherical type). Therefore by [H, Proposition 8.1, p. 309]
there is a reflection r in a wall Hr such that rs has infinite order, implying
that Hr and Hs don’t meet in the interior of the Tits cone of W [R2, 5.2].
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We call −b the negative root bordered by Hr. If −as ∩ −b = ∅ then by
definition {−as;−b} is a non-prenilpotent pair of roots [T2, 3.2]; otherwise
{−as;−s.b} is. In any case the group generated by the corresponding root
groups is isomorphic to Fq ∗ Fq [T4, Proposition 5]. Therefore it contains
an element γ̃ ∈ Γ of infinite order, and by injectivity ϕ(γ̃) has infinite order
too. Since the field E has characteristic p > 0, a suitable power pr kills the
unipotent part of the Jordan decomposition of ϕ(γ̃). Let us set γ = γ̃(pr),
so that ϕ(γ) is semisimple. It has an eigenvalue λ of infinite multiplicative
order, so by [T1, Lemma 4.1] there is a local field k endowed with a valu-
ation v and a field embedding σ : E[λ] → k such that v(σ(λ)) �= 0. Up to
replacing γ by γ−1, this proves (i).

(ii) By (i) the composed map (L(σ) ◦ ϕ) : Λ → L(E[λ]) → L(k), which
for short we still denote by ϕ, is such that Γ has unbounded image in L(k).
Let us introduce the preimage Λ◦ = ϕ−1(L◦). It is a normal finite index
subgroup of Λ. We also set Γ◦ = Γ ∩ Λ◦. Since Γ◦ is of finite index in Γ,
ϕ(Γ◦) is not relatively compact in L◦(k). The connected adjoint semisimple
k-group L◦ decomposes as a direct product of adjoint connected k-simple
factors. One of them, which we denote by G, is such that the projection
of ϕ(Γ◦) is not relatively compact. The abstract group homomorphism we
consider now, and which we denote by ϕ |Λ◦ , is obtained by composing with
the projection onto G. Therefore we obtain ϕ |Λ◦ : Λ◦ → G(k) such that
ϕ(Γ◦) is unbounded in G(k). We also have ϕ(Λ◦)

Z
= G.

By Lemma 1.C.1 the group Λ is contained in the commensurator
CommΛ(Γ). Since Γ◦ is of finite index in Γ, we have CommΛ(Γ) =
CommΛ(Γ◦), so we are in position to apply the commensurator superrigidity
theorem of the Appendix in order to extend ϕ |Λ◦ to a continuous homomor-
phism µ : Λ◦ → G(k), where Λ◦ denotes the closure of Λ◦ in Aut(X). The
non-trivial closed subgroup Λ◦ is normal in Λ, hence it is Λ by topological
simplicity (2.A.1). Therefore there is a map µ : Λ → G(k) which coincides
with the abstract group homomorphism ϕ on Λ◦. By topological simplicity
of Λ, µ is either injective or trivial. By Zariski density of the image, the
only possible case is that µ be injective. Summing up, we have obtained an
injective continuous group homomorphism µ : Λ ↪→ G(k) such that µ(Γ◦)
is unbounded in G(k) and µ(Λ◦)

Z
= G. �

3.D Embedding of vertices and closed image. We can finally con-
clude in view of the following lemma.

Lemma. (i) There is a µ-equivariant injective unbounded map ι : VX ↪→ V∆
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from the vertices of the Kac–Moody building X into the vertices of the
Bruhat–Tits building ∆ of G(k).

(ii) The continuous homomorphism µ sends closed subsets of Λ to closed
subsets of G(k).

First, let us briefly recall some facts (see [Ro, §5] for the general connec-
tion between Tits systems and buildings, 1.B for our specific case). We keep
the inclusion R ⊂ A of the standard chamber in the standard apartment.
Let WR be the quotient of the stabilizer NA = StabΛ(A) by the fixator
ΩA = FixΛ(A), which is the Weyl group of the building X (and of the
groups Λ and Λ). It is generated by the reflections along the panels of R,
and is simply transitive on the chambers of A. We denote by B the stan-
dard Iwahori subgroup ΛR. By Theorem 1.B.1, B is the Borel subgroup of
a Tits system in Λ with Weyl group WR. The Tits system structure implies
a Bruhat decomposition [Bou, IV.2.3]: Λ =

⊔

w∈WR
BwB.

Proof. (i) By 2.B.2 (i) we choose, for each vertex v in the closure of the
chamber R, a µ(Λv)-fixed vertex ι(v) ∈ ∆. We can extend µ-equivariantly
this choice R ∩ VX → V∆ to obtain a map ι : VX → V∆, where ι(v) is
a µ(Λv)-fixed vertex in ∆ for each vertex v in X. By 2.B.2 (ii), the sets
of fixed points ∆µ(Λv) are mutually disjoint when v ranges over VX , so ι
is injective. By discreteness of the vertices in ∆, the unboundedness of ι
follows from its injectivity because VX is infinite (since so is W ).

(ii) Let F be a closed subset of Λ; we must show that µ(F ) ⊂ µ(F ).
Let g = limn→∞ µ(hn) be in µ(F ), with hn ∈ F for each n ≥ 1. It
is enough to show that {hn}n≥1 has a converging subsequence. By the
Bruhat decomposition Λ =

⊔

w∈WR
BwB, we can write hn = knwnk′

n with
kn, k′

n ∈ B and wn ∈ NA. Since by compactness of B the sequences {kn}n≥1

and {k′
n}n≥1 admit cluster values, we are reduced to the situation where

g = limn→∞ µ(wn) with wn ∈ NA for each n ≥ 1.
Let us assume that the union of chambers

⋃

n≥1 wn.R is unbounded
in A. Then there is an injective subsequence of chambers {wnj .R}j≥1. Let
us fix a vertex v ∈ R. Since its stabilizer in WR is finite, possibly after
extracting again a subsequence, we get an injective sequence of vertices
{wnj .v}j≥1. But µ(wnj ).ι(v) = ι(wnj .v) where ι : VX ↪→ V∆ is the µ-
equivariant embedding of vertices of (i). Since g = limn→∞ µ(wn), the
continuity of the G(k)-action on ∆ implies: limj→∞ µ(wnj).ι(v) = g.ι(v).
By discreteness of the vertices in ∆, the sequence {ι(wnj .v)}j≥1 hence the
sequence {wnj .v}j≥1 is eventually constant: a contradiction.

We henceforth know that the sequence {wn.R}n≥1 is bounded, hence
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takes finitely many values. So there is a subsequence {wnj}j≥1 and w ∈ NA

such that {wnj}j≥1 is constant equal to w modulo ΩA. This proves the
lemma, possibly after extracting a converging subsequence in the compact
subgroup ΩA of B. �

4 Some Concrete Non-linear Examples

We prove that most countable Kac–Moody groups with right-angled Fuch-
sian buildings are not linear over any field. This requires to settle structure
results for boundary point stabilizers and generalized unipotent radicals.
Dynamical arguments due to Prasad play a crucial role. The geometry of
compactifications of buildings sheds some light on ideas of the proof.

4.A Groups with right-angled Fuchsian buildings. Let R be a
regular hyperbolic right-angled r-gon, so that r ≥ 5. To obtain a countable
Kac–Moody group with a building covered by chambers isometric to R,
we need to lift the Coxeter diagram of the corresponding Fuchsian Weyl
group WR to a Dynkin diagram. The Coxeter diagram of the latter group
is connected and all its edges are labelled by ∞, so according to the rule
[T2, 3.1] infinitely many Dynkin diagrams are suitable. Henceforth, Λ de-
notes a Kac–Moody group over Fq whose positive building X is isomorphic
to some Ir,1+q (1.C.2). We choose a standard positive chamber R in a
standard positive apartment A 
 H2 (1.A.1). We denote by d the nat-
ural CAT(−1) distance on X and by � the length of any edge. We fix a
numbering {Ei}i∈Z/rZ by Z/rZ of the edges of R, and we denote by ai the
simple root containing R whose wall contains Ei. Note that since all wall
intersections are orthogonal, all the edges in a given wall L have the same
type, which we also call the type of L [RR, 4.A].

4.A.1 A geodesic ray in a geodesic CAT(−1) metric space (X, d) is
an isometry r : [0;∞) → X. The Busemann function of r is the function
fr : X → R defined by fr(x) = limt→∞(d(x, r(t)) − t). The horosphere
(resp. horoball) associated to r is the level set {fr = 0} (resp. {fr ≤ 0}),
which we denote by H(r) (resp. Hb(r)). Let ξ ∈ ∂∞X be a boundary point
of X 
 Ir,1+q, i.e. an asymptotic class of geodesic ray [GH, §7].
Definition. (i) We call parabolic subgroup attached to ξ the stabilizer
StabΛ(ξ). We denote it by Pξ.

(ii) We call horospheric subgroup attached to ξ the subgroup of Pξ

stabilizing each horosphere centered at ξ. We denote it by Dξ.
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Remark. The terminology mimicks the geometric definition of proper
parabolic subgroups in semisimple Lie groups, but there are differences.
There are two kinds of boundary points, according to whether the point is
the end of a wall or not. A point of the first kind is called singular ; oth-
erwise, it is called regular . This provides two kinds of parabolic subgroups
which are both amenable by [BuMo1, Proposition 1.6]. The only classical
case when all proper parabolic subgroups are amenable is when they are
minimal, i.e. when the split rank equals one. But then all proper parabolics
are conjugate.

We are now interested in singular boundary points. Let L be a wall and
let a and b be two roots such that a contains b, and whose walls ∂a and ∂b
intersect transversally L. The reflection along ∂a (resp. ∂b) is denoted by ra

(resp. rb) and rb.ra is a hyperbolic translation along L with attracting point
ξ contained in a, which we denote by τ . We assume henceforth that the
strip a∩ (−b) of A doesn’t contain any other wall intersecting L. Then τ is
a two-step hyperbolic translation, i.e. a translation of (minimal) length 2�.
We set a0 = a, a1 = b, a2j = τ j .a, a2j+1 = τ j.b for j ∈ Z, so that ak

contains ak+1, and for each n ∈ Z we denote by vn the vertex ∂an ∩L. The
image of the geodesic ray r : [0;∞) → X such that r(k�) = vn+k for each
k ≥ 0, is [vnξ) = an ∩ L.

translation τ

root group in KL

ξ

b

� w.R

a

wall L

roots ±c

an+1

an
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Definition. (i) We denote by Vn the closed subgroup generated by the
root groups Uak

such that k ≤ n. We denote
⋃

n∈Z Vn by Vξ,A and call it a
generalized unipotent radical.

(ii) We denote by KL the fixator of the wall L in Λ.
(iii) We denote by ML,A the finite reductive group over Fq generated

by the torus T and the two opposite root groups U±c such that ∂c = L.

Remark. For each n ≥ 1 the group Vn is compact since it fixes the
half-space an of A.

Two half-walls define the same germ if they intersect along a half-wall.
Two half-walls in the same germ clearly define the same boundary point,
and the converse is true because any two disjoint closed edges are at dis-
tance ≥ �, so we can talk of the germ of a singular boundary point. Since
any element of Λ sends a wall onto a wall, we have the following character-
izations.

Lemma. The group Pξ is the stabilizer of the germ of ξ, and Dξ is the
fixator of this germ, meaning that there is a half-wall in it which is fixed
under Dξ. �

4.A.2 Thanks to the Moufang property and the language of horoballs,
we can say more about the groups Vn. Let us denote by E the intersection
of the wall L with the strip a∩(−b). By the previously assumed minimality
of a ∩ (−b), E is reduced to the edge of a chamber w.R. Transforming the
objects above by w−1 ∈ WR, we may – and shall – assume that we are
in the case where L is the wall ∂ai (where i the type of E), and either
a = ai−1 and b = −ai+1, or a = ai+1 and b = −ai−1. These two situations
are completely analogous, and we assume that a = ai−1 and b = −ai+1.
We denote by rj the reflection in the edge Ej of R, we set J = {i−1; i+1},
WJ = 〈ri−1, ri+1〉 and we use notions and notation of 2.B.1. Then Vξ,A

is a subgroup of the topologically simple group GJ , and the inessential
building XJ is a combinatorial tree. Its vertices (resp. edges) are the GJ -
transforms of a line ∂ai−1 or ∂ai+1 (resp. of the strip ai−1 ∩ ai+1). The
root groups in GJ are those indexed by the roots a = w.aj with w ∈ WJ

and j ∈ J . They are automorphisms of the tree XJ fulfilling the Moufang
condition [Ro, §6.4]. Selecting in each strip of XJ the GJ -transform of the
edge Ei of R provides a bijection between the inessential tree XJ and the
tree-wall attached to Ei. Recall that a tree-wall is a class of the equivalence
relation on edges for which two edges are equivalent if they are contained
in the same wall of some apartment [Bour2, 2.4]. We henceforth adopt
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the tree-wall viewpoint when dealing with XJ , so that vi are vertices and
ξ is a boundary point of it. Moreover the geodesic rays, horospheres and
horoballs, mentioned below, are those defined in the tree-wall XJ .

Lemma. We assume that all the root groups indexed by the roots a = w.aj

with w ∈ WJ and j ∈ J , and containing ξ, commute with one another.

(i) The group Vn acts trivially on the horoball defined by [vnξ).
(ii) For each vertex v on the horosphere defined by [vnξ), the group Uan

is simply transitive on the edges containing v which are outside the
corresponding horoball.

(iii) We have
⋂

n≥1 Vn = {1}.
(iv) Any g ∈ Vξ,A stabilizing [vnξ) = an ∩ L belongs to Vn.

Remark. The roots a = w.aj with w ∈ WJ and j ∈ J are the real
roots of a rank 2 Kac–Moody root system, and the corresponding root
groups generate a rank 2 countable Kac–Moody group with generalized
Cartan matrix

(
2 Ai−1,i+1

Ai−1,i+1 2

)

. As explained in 4.A, these off-diagonal
coefficients are ≤ −1, and their product is ≥ 4. According to the explicit
commutator relations due to J. Morita [Mor, §3 (6)], the group generated
by the root groups Ua such that ā contains ξ is abelian whenever the off-
diagonal coefficients are both ≤ −2 (otherwise it may be metabelian), so
the assumption made in the lemma is quite non-restrictive.

Proof. Let v be a vertex in XJ and let vN be the projection of v on
the geodesic {vi}i∈Z for some N ∈ Z. By the Moufang property, there
are uniquely defined m ≥ 0 and ui ∈ Uai for N − m < i ≤ N such that
v = (uNuN−1 . . . uN−m+1).vN−m. Denoting by fρ the Busemann function of
ρ = [v0ξ), we have fρ(v) = (m−N)�. The Moufang property thus provides
a parametrization of the horoballs centered at ξ in XJ since H([vjξ)) =
{(uNuN−1 . . . uN−m+1).vN−m : N ∈ Z, m ≥ 0, N − m = j, uN �= 1 if
m �= 0, and ui ∈ Uai for N −m < i ≤ N}. The commutation of all the root
groups Uak

, along with the parametrization of the horoballs by means of
root groups, proves (i) and (ii). Moreover if h ∈ ⋂

n≥1 Vn, then (i) implies
that h fixes all the horoballs centered at ξ in XJ , so h belongs to the kernel
of the GJ -action on XJ . We have h = 1 by topological simplicity (2.A.1),
which proves (iii).

(iv) By (i) any g ∈ Vξ,A stabilizes the horospheres centered at ξ, so if
g stabilizes [vnξ), it fixes it. By definition of Vξ,A as an increasing union
of groups, it is enough to show that FixVN

([vnξ)) = Vn for each N > n.
This follows from the fact that an element of Vm \ Vm for m > n sends the
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segment [vn; vm] on a segment with origin vm whose first edge is different
from [vn; vn+1]. �

4.A.3 We can now state the main properties of the boundary point
stabilizers and of their generalized unipotent radicals in the commutative
case, keeping the previous notation.

Proposition. We assume that all the root groups indexed by the roots
a = w.aj with w ∈ WJ and j ∈ J , and containing ξ, commute with one
another.

(i) The group Vξ,A is closed, normalized by 〈τ〉 but not by KL. Each
group Vn is abelian of exponent p, hence so is Vξ,A.

(ii) The group KL is normalized but not centralized by 〈τ〉. It admits
a semidirect product decomposition ML,A � ÛL, where ÛL is a pro-p
group. In particular, KL is virtually a pro-p group.

(iii) The following decompositions hold: Pξ = KL · 〈τ〉 · Vξ,A and Dξ =
KL ·Vξ,A, with trivial pairwise intersections of the factors 〈τ〉∩KL =
〈τ〉 ∩ Vξ,A = KL ∩ Vξ,A = {1}.

Proof. (i) Let u ∈ V ξ,A. We write: u = limj→∞ uj with uj ∈ Vξ,A for each
j ≥ 1, and we have u ∈ Pξ . By Lemma 4.A.1, there is an n ∈ Z such that
u sends the geodesic ray [vnξ) to a geodesic ray contained in L and ending
at ξ, hence this last geodesic ray is [vm, ξ). The point u(vn), which is equal
to uj(vn) for j large enough, if different from vn, would not belong to L.
This implies that u ∈ Vn ⊂ Vξ,A, hence Vξ,A is closed.

We turn now to the group-theoretic properties of Vξ,A. By assumption,
all the groups Uak

commute, so the continuous commutator map [ . , . ] is
trivial on a topologically generating set for each Vn. This proves the com-
mutativity of each group Vn. Any of the commuting root groups Uak

is
isomorphic to (Fq,+) so replacing [ . , . ] by . p shows that each Vn is of ex-
ponent p. By definition, Vξ,A is normalized but not centralized by τ . Pick
n ∈ Z and a root a′ containing L so that Ua′ lies in KL and −a′∩−an = ∅
(i.e. {a′; an} is not prenilpotent). By [T4, Proposition 5], the free product
Ua′ ∗Uan injects in Λ, so for any u′ ∈ Ua′ \ {1} and u ∈ Uan \ {1} the order
of [u, u′] is infinite whereas it would divide p if KL normalized Vξ,A.

(ii) If Π is a panel in the wall L, we have KLgΛΠ = MΠ � ÛΠ (1.B.1)
and MΠ = ML,A by the precise version of the Levi decomposition [R2,
Theorem 6.2.2]. The group ML,A fixes L, so ML,A lies in KL. Moreover the
kernel ÛΠ∩KL of the restricted map KL → ML,A, which we denote by ÛL,
is a pro-p group, and we have ML,A ∩ ÛL = {1} by the same argument
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as for [RR, Lemma 1.C.5 (i)]. The group KL = FixΛ(L) is normalized
by 〈τ〉 because τ stabilizes L. Now we pick a root a′ �= ±c containing L,
so that Ua′ lies in KL. For a large enough integer M , the root τM .a′

contains L but a′ ∩ τM .a′ is a strip in A, implying that {a′; τM .a′} is not
prenilpotent. As for (i) the free product Ua′ ∗ UτM .a′ injects in Λ. Let
us pick u ∈ Ua′ \ {1}. Since τ lifts an element of the Weyl group (which
naturally permutes the root groups [T5, 3.3, Axiom (RGD2)]), we see that
τMuτ−M lies in UτM .a′ \ {1}. This shows that the commutator [τM , u] lies
in (UτM .a′ \ {1}).(Ua′ \ {1}). Therefore [τM , u] has infinite order whereas it
would be trivial if KL were centralized by τ .

(iii) Let r : [0;∞) → X be the geodesic ray such that r(n�) = vn for
each n ≥ 0, and let g ∈ Pξ. By Lemma 4.A.1, there are integers N ≥ 1
and t ∈ Z such that (g.r)(n�) = r((n + t)�) for n ≥ N . Since the Λ-
action on X is type-preserving, t is an even number, say 2m, and we have
(τ−mg.r)(n�) = r(n�) for each n ≥ N . Thus τ−mg fixes the geodesic ray
[vN ξ), hence belongs to Dξ, and we are reduced to decompose Dξ.

Let d ∈ Dξ, which fixes a geodesic ray [vNξ) by Lemma 4.A.1. The link
of the vertex vN is complete bipartite, so there is a chamber R′ whose clo-
sure contains both d.[vN ; vN−1] and an edge E′ contained in the wall ∂aN .
By the Moufang property, there exists uN ∈ UaN

such that (u−1
N d).R′ is the

chamber in A whose closure contains both [vN ; vN−1] and E′; in particular,
u−1

N d fixes the geodesic ray [vN−1ξ). By a downwards induction, for each
m < N we pick um ∈ Uam such that u−1

m u−1
m+1...u

−1
N d fixes the geodesic ray

[vm−1ξ). By compactness of VN , the sequence {uN ...um+1um}m<N has a
cluster value u ∈ Vξ,A such that u−1d fixes the geodesic L, hence belongs
to KL. Taking inverses, we proved Dξ = KL · Vξ,A, and along with the
previous paragraph, Pξ = KL · 〈τ〉 · Vξ,A since τ normalizes Vξ,A and KL.

The trivial intersection 〈τ〉∩Vξ,A = {1} follows from the fact that 〈τ〉
Z
whereas any non-trivial element in Vξ,A has order p, and 〈τ〉 ∩ KL={1}
follows from the fact that no non-trivial power τm fixes L. An element
in KL ∩ Vξ,A lies in any FixVξ,A

([vnξ)) (n ∈ Z), hence in any Vn by
Lemma 4.A.2 (iv), so KL ∩ Vξ,A = {1} follows from (iii) in the same
lemma. �

Remark. 1) Horoball arguments as in 4.A.2 show that each group
Vn is isomorphic to (Fq[[t]],+) and that there is an isomorphism Vξ,A 

(Fq((t)),+) under which conjugation by τ corresponds to multiplication by
t−2 and the t-valuation corresponds to the index n.

2) Let us denote by −ξ the other end of L, so that L = (−ξξ). By



838 B. RÉMY GAFA

definition, Dξ ∩D−ξ stabilizes L and actually fixes it since Dξ stabilizes the
horospheres centered at ξ. Therefore we have Dξ ∩ D−ξ = KL.

4.B Dynamics and parabolics. Let us have a dynamical viewpoint
on the above groups. The prototype for parabolics, used in 4.C.1, is
Prasad’s work in the algebraic group case [Pr].

4.B.1 A first consequence of the existence of many hyperbolic transla-
tions is the connection with Furstenberg boundaries – see [M1, VI.1.5] for
a definition, where this notion is simply called a boundary . We denote by
M1(∂∞X) the space of probability measures on ∂∞X; it is compact and
metrizable for the weak-∗ topology. This subsection owes its existence to
discussions with M. Bourdon and Y. Guivarc’h.

Lemma. The asymptotic boundary ∂∞X is a Furstenberg boundary for Λ.

Proof. Let us prove that the Λ-space ∂∞X is both minimal and strongly
proximal [M1, VI.1].

Strong proximality. Let µ ∈ M1(∂∞X). Since some unions of walls
in X are trees (of valency ≥ 3), the set of singular points is uncountable.
Therefore Λ contains a hyperbolic translation τ along a wall, whose re-
pelling point is not one of the at most countably many atoms for µ. By
dominated convergence, the sequence converges in M1(∂∞X) to the Dirac
mass centered at the attracting point of τ .

Minimality. Let ξ ∈ ∂∞X. We write it ξ = r(∞) for a geodesic
ray r : [0;∞) → X with r(0) ∈ R. For each n ≥ 1, r(n) is in the
closure of a chamber gn.R with gn ∈ Λ. By the Bruhat decomposition
Λ =

⊔

w∈WR
BwB, we have r(n) ∈ knwn.R, hence k−1

n .r(n) ∈ A. Let us de-
note by rn the geodesic ray in A 
 H2 starting at r(0) and passing through
k−1

n .r(n). By compactness of ∂∞H2 
 S1 and B, there is an increasing se-
quence {nj}j≥1 such that rnj(∞) converges to some η ∈ ∂∞A and knj con-
verges to some k ∈ B as j → ∞. Thus in the Λ-compactification X �∂∞X,
we have ξ = limn→∞ r(n) = limj→∞ r(nj) = limj→∞ knj .(k

−1
nj

.r(nj)) = k.η,
which proves that ∂∞A is a complete set of representatives for the B-action
on ∂∞X . Since the action of the Weyl group WR, a lattice of PSL2(R), is
minimal on ∂∞A, we proved the minimality of the Λ-action on ∂∞X. �

Remark. Note that the group Λ admits a Furstenberg boundary on
which it doesn’t act transitively, whereas any such boundary for a semi-
simple algebraic group is an equivariant image of the maximal flag variety
[BuMo1, §5].
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4.B.2 Iteration of hyperbolic translations along walls also leads to
computations of limits of later use for the non-linearity theorem.

Proposition. Let τ in Λ be a hyperbolic translation along a wall L, with
attracting point ξ. Let v be a vertex on the wall L.

(i) We have limn→∞ τnΛvτ
−n = Dξ in the compact metrizable space SΛ

of closed subgroups of Λ, endowed with the Chabauty topology.

(ii) For any u ∈ Vξ,A, we have limn→∞ τ−nuτn = 1.
(iii) For any g ∈ Dξ, the sequence {τ−ngτn}n≥1 is bounded in Λ.

Remark. Point (i) about the Chabauty topology on closed subgroups is
used in the final discussion 4.C.2. This topology is always compact, and
when S is Hausdorff, locally compact and second countable, it is separa-
ble and metrizable [CEG, 3.1.2]. When S is locally compact, a sequence
{An}n≥1 of closed subsets converges in the Chabauty topology to a closed
subset A if and only if

1. Any limit x = limk→∞ xn(k) for an increasing {n(k)}k≥1 with
xn(k) ∈ An(k) satisfies x ∈ A.

2. Any x ∈ A is the limit of a sequence {xn}n≥1 with xn ∈ An for each
n ≥ 1.

This characterization of convergence implies that for a locally compact
group G, the subset SG of closed subgroups is closed, hence compact.

Proof. (i) By compactness of SΛ it is enough to show that any accumula-
tion point D of {τnΛvτ

−n}n≥1 is equal to Dξ. In one direction, the very
definition of the Chabauty topology implies that D contains KL and Vξ,A,
hence Dξ by Proposition 4.A.3 (iii). Indeed, the group KL lies in D since
it fixes all the vertices in L, hence lies in all the conjugates τnΛvτ

−n. The
limit group D also contains Vξ,A since for each m ∈ Z there is N ∈ N such
that τn.v ∈ am, hence Vm lies in τnΛvτ

−n for any n ≥ N .
We are thus reduced to proving that any accumulation point D lies

in Dξ. Since τnv converges to ξ and τnΛvτ
−n = FixΛ(τnv), by continuity

of the extension of isometries to the boundary, we first have D < Pξ.
Let g ∈ D, which by the previous paragraph and Proposition 4.A.3 (iii)

we write g = uτNk with u ∈ Vξ,A, N ∈ Z and k ∈ KL. We choose
this order to forget the factor k when g acts on v. Since D is a limit
group, we also have g = limj→∞ τnjkjτ

−nj for a sequence {kj}j≥1 in Λv

and integers nj → ∞ as j → ∞. Therefore there is an index J ≥ 1 for
which j ≥ J implies (uτN ).v = (τnjkjτ

−nj).v. Since u stabilizes all the
horospheres centered at ξ, there is a vertex z ∈ L with (uτN ).v and τN .v
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at same distance from z. We choose an integer j which is big enough to
have d(τnj .v, (uτN ).v) = (nj −N)δ, where δ is the translation length of τ .
But the group τnjΛvτ

−nj stabilizes the spheres centered at τnj .v, so that
d
(
τnj .v, (τnjkjτ

−nj ).v
)

= njδ. In order to have (uτN ).v = (τnjkjτ
−nj ).v,

we must have N = 0, i.e. g = uk: this shows that D lies in Dξ.
(ii) Let u ∈ Vξ,A. Then u ∈ Vm for some m ∈ Z. For each N ≥ 1,

the sequence {τ−nuτn}n≥N lies in the compact group Vm−N , so that any
cluster value of {τ−nuτn}n≥1 belongs to Vm−N . By Lemma 4.A.2 (iii),
this shows that the only cluster value of the sequence {τ−nuτn}n≥1 in the
compact subset Vm is the identity element, which proves (ii).

(iii) Let g ∈ Dξ, which we write g = ku with k ∈ KL and u ∈ Vξ,A by
Proposition 4.A.3 (iii). Since u ∈ Vm for some m ∈ Z, we have τ−nuτn ∈ Vm

for each n ≥ 1. By Proposition 4.A.3 (i) KL is normalized by τ , so we finally
have τ−ngτn ∈ KL · Vm for each n ≥ 1. �

4.C Non-linearity in equal characteristic. We finally state and
prove the non-linearity theorem for some countable Kac–Moody groups
with hyperbolic buildings. It applies to an infinite family of groups, the
Weyl group of which being of arbitrarily large rank.

4.C.1 The previous dynamical results from 4.B and the embedding
Theorem 3.A provide the main arguments to prove the result below.

Theorem. Let Λ be a countable Kac–Moody group over a finite field
Fq of characteristic p, and let r be an integer ≥ 5. We assume that the
geometry of Λ is a twinned pair of right-angled Fuchsian buildings Ir,q+1

with q ≥ max{r − 2; 5}, and that a generalized unipotent radical of Λ is
abelian. Then Λ is not linear over any field.

Remark. According to 4.A.2, the assumption of the commutativity of a
generalized unipotent radical is mild, since it amounts to requiring that for
some i ∈ Z/rZ, both negative coefficients Ai−1,i+1 and Ai+1,i−1 be ≤ −2
(their product must always be ≥ 4 to have X 
 Ir,q+1 – see 4.A).

Proof. By [R4, Proposition 4.3], it is enough to disprove linearity in
equal characteristic. Let us assume that there is an abstract injective
homomorphism from Λ to a linear group in characteristic p, in order to
obtain a contradiction. Up to replacing Λ by a finite index subgroup, we
may – and shall – assume that Λ is generated by its root groups.

The proof of Lemma 3.A shows that (NA) holds because X is CAT(−1)
and Λ is chamber-transitive. By [RR, 1.C.1 last remark] the growth series
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of the Weyl group is W (t) = (1+t)2

(1−(r−2)t+t2)
∈ Z[[t]], and W

(
1
q

)
is finite if and

only if q ≥ r− 2; so (LT) holds by 1.C.1. Theorem 2.A.1 implies that (TS)
is satisfied because the Dynkin diagrams leading to the buildings Ir,q+1 are
connected [R2, 13.3.2] and q > 4. Consequently, we can apply Theorem 3.A
to get a closed embedding µ : Λ ↪→ G(k) of topological groups.

Let L be a wall with end ξ such that Vξ,A is abelian. We pick in Λ a
hyperbolic translation τ along L with attracting point ξ as in 4.A.1, and
u ∈ Vξ,A \ {1}. We set B = (Ad ◦ µ)(τ) and Y = (Ad ◦ µ)(u), where
Ad is the adjoint representation of G. Then Lemma 4.B.2 (ii) implies
that {B−iY Bi}i≥1 contains the identity element in its closure, so [M1,
Lemma II.1.4] says that the element B has two eigenvalues with differ-
ent absolute values. We can thus use [Pr, Lemma 2.4], which provides
us parabolic subgroups: by [loc. cit. (i)] and 4.B.2 (iii), there is a proper
parabolic k-subgroup Pµ(τ) whose k-points Pµ(τ) contain µ(Dξ). Replac-
ing τ by τ−1, the attracting point becomes the boundary point −ξ such
that (−ξξ) = L. By [loc. cit. (ii)], the corresponding parabolic subgroup
Pµ(τ−1) is opposite Pµ(τ), so that µ(Dξ) ∩ µ(D−ξ) lies in the Levi factor
Mµ(τ) = Pµ(τ)∩Pµ(τ−1). By the second remark following Proposition 4.A.3,
we have KL = Dξ ∩ D−ξ, so we finally obtain that µ(KL) lies in Mµ(τ).

The contradiction comes when we look at the image µ(Vξ,A). By
[loc. cit. (i)] and 4.B.2 (ii), it lies in the unipotent radical RuPµ(τ). The de-
composition Dξ = KL ·Vξ,A of Proposition 4.A.3 (iii) then implies µ(KL) =
µ(Dξ) ∩ Mµ(τ) and µ(Vξ,A) = µ(Dξ) ∩ RuPµ(τ). But according to Proposi-
tion 4.A.3 (i), the group Vξ,A is not normalized by KL. �

4.C.2 Let us give a geometric flavour to the above proof by using the
framework of group-theoretic compactifications of buildings [AnGR]. We
keep the notation of the previous proof, choose a k-embedding G ↪→ GLr

of algebraic groups and still call µ the composed closed embedding µ :
Λ → GLr(k). Replacing τ by τ (pr) for a big enough integer r, and taking a
finite extension which we still denote by k, we may – and shall – assume that
µ(τ), which we denote by t, is diagonal with respect to a basis {ei}1≤i≤r

of kr. We write: t.ei = ui�
νi(t)ei where � is the uniformizer of k, ui ∈ O×

and νi(t) ∈ Z. Composing µ with a permutation matrix enables to assume
that ν1(t) ≤ ν2(t) ≤ . . . ≤ νr(t). The basis {ei}1≤i≤r defines a maximal
flat F 
 Rr−1 in the Bruhat–Tits building ∆ of GLr(k), whose vertices
are the homothety classes of O-lattices [

⊕

i �
νiOei] when ν = {νi}1≤i≤r

ranges over Zr. We denote by o the origin [
⊕

i Oei]. The same use of [M1,
Lemma II.1.4] as in 4.C.1 shows that there is i ∈ {1; 2; . . . ; r− 1} such that
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νi(t) < νi+1(t). Geometrically, this means that {tn.o}n≥1 is a sequence of
vertices in the Weyl chamber {ν1 ≤ ν2 ≤ . . . ≤ νr} which goes to infinity,
staying in the intersection of the fundamental walls indexed by the indices
i for which νi(t) = νi+1(t).

Sequences of points staying at given distance from some walls in a Weyl
chamber while leaving the others typically converge in Furstenberg com-
pactifications of symmetric spaces [Gu]. This is a hint to consider compacti-
fications of Bruhat–Tits buildings in our context [AnGR]. We denote by SG

the space of closed subgroups of a locally compact metrizable group G, and
we endow SG with the compact metrizable Chabauty topology [CEG, 3.1.1].
The vertices V∆ in ∆ are seen as the maximal compact subgroups in SLr(k).
Therefore V∆ lies in SSLr(k) and we can sum up some results from [AnGR].

Theorem. The above procedure leads to a GLr(k)-compactification of ∆
where the boundary points are the following closed subgroups of SLr(k).
Start with a Levi decomposition M �U of some proper parabolic subgroup
and select K a maximal compact subgroup in M . Then K � U is a limit
group, and any limit group is of this form. �

Remark. In higher rank (i.e. for r ≥ 3), this compactification is not the
one obtained by asymptotic classes of geodesic rays.

Now Proposition 4.B.2 (i) says that limn→∞ τnΛvτ
−n = Dξ in SΛ. It

follows from the geometric characterization of convergence in the Chabauty
topology (4.B.2), that µ induces an embedding µ : SΛ ↪→ SSLr(k). Applying
µ to the above limit and using the theorem imply that µ(Dξ) lies in K�U
and µ(D−ξ) ⊂ K � U−, with U− opposite U . This shows that µ(KL) lies
in K, an important step in the previous proof.

The comparison of hyperbolic and Euclidean apartments emphasizes a
sharp difference between Fuchsian and affine root systems. In a Euclidean
apartment, there is a finite number of parallelism classes of walls, whereas
in the hyperbolic tiling there are arbitrarily large families of roots pair-
wise intersecting along strips. This explains why there are so many non-
prenilpotent pairs of roots (hence free products Fq ∗Fq) in the latter case.
This is used to prove that KL doesn’t normalize Vξ,A (4.A.3), a key fact for
non-linearity. Another crucial difference is the dynamics of the Weyl groups
on the boundaries of apartments: in the hyperbolic case, there are infinitely
many hyperbolic translations with strong dynamics [GH, §8], whereas the
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limit group Dξ

geodesic L

limit group D−ξ

wandering sequence

limit group K � U−

limit group K � U

hyperbolic translation τ

On the right-hand side: a compactified apartment for SL3

finite index translation subgroup of a Euclidean Weyl group acts trivially
on the boundary of a maximal flat. This makes the computation of limit
groups easier in the former case (4.B.2), but the boundary of the Fursten-
berg compactification of a Bruhat–Tits building has a much richer group-
theoretic structure since it contains compactifications of smaller Euclidean
buildings [L, §14].

Appendix: Strong Boundaries and Commensurator
Super-rigidity
by P. Bonvin

Introduction

Let G be a locally compact second countable group, and let Γ be a lattice
of G, i.e. a discrete subgroup such that G/Γ carries a finite G-invariant
measure. The commensurator of Γ in G is the group CommG(Γ) :=
{g ∈ G | Γ ∩ gΓg−1 has finite index in both Γ and gΓg−1}. Our purpose is
to use the recent double ergodicity theorem by V. Kaimanovich on Poisson
boundaries, in order to show that G. Margulis’ proof of the commensurator
super-rigidity – as analyzed and generalized by N. A’Campo and M. Burger
– extends to a quite general setting.
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Theorem 1. Let G be a locally compact second countable topological
group, Γ < G be a lattice and Λ be a subgroup of G with Γ < Λ <
CommG(Γ). Let k be a local field and H be a connected almost k-simple
algebraic group. Assume π : Λ → Hk is a homomorphism such that π(Λ)
is Zariski dense in H and π(Γ) is unbounded in the Hausdorff topology
on Hk. Then π extends to a continuous homomorphism Λ → Hk/Z(Hk),
where Z(Hk) is the center of Hk.

This theorem is basically due to Margulis, who proved it in the case
where G is a semisimple group over a locally compact field [M1, VII.5.4].
A deep idea in the proof is that the existence of the continuous exten-
sion follows from the existence of a Λ-equivariant map from the maxi-
mal Furstenberg boundary of G to a homogeneous space Hk/Lk, where
L is a proper k-subgroup of H. A’Campo and Burger extended the re-
sult to the case where G is as above [A’CB], assuming the existence of a
closed subgroup P playing the same measure-theoretic role as a minimal
parabolic subgroup. This led Burger to state the above result assuming
the existence of a substitute for a maximal Furstenberg boundary rather
than a minimal parabolic subgroup [Bu]. The assumption that k be of
characteristic 0, made so far, was removed too. M. Burger and N. Monod
then constructed suitable boundaries for compactly generated groups (up
to finite index, see [BuM, Theorem 6]), which implied the above result for
a compactly generated group G [BuM, Remark 7]. The last step was made
by V. Kaimanovich [Ka] (Theorem 2 below), who proved that the Poisson
boundary for a nice measure on any locally compact second countable group
is a strong hence a suitable boundary. Let us finish this historical sum-
mary by mentioning previous works: T.N. Venkataramana [V] first proved
super-rigidity and arithmeticity theorems in arbitrary characteristics, and
G.A. Margulis [M2] wrote an unpublished manuscript on equivariant gen-
eralized harmonic mappings leading to commensurator super-rigidity; at
last Y. Shalom’s representation-theoretic approach [Sh] also leads to a very
general statement on super-rigidity of commensurators.

This note, which relies heavily on the proof given by A’Campo and
Burger in [A’CB], shows how to use the previously quoted references to
prove the above commensurator super-rigidity theorem. It is organized as
follows. We first quote the results about boundaries of groups. Then we re-
call how the existence of the continuous extension is reduced to finding a Λ-
equivariant map from a boundary of G to a non-trivial homogeneous space
Hk/Lk. We finally sketch the steps to construct the required Λ-equivariant
map, taking care of the fact that k is possibly of positive characteristic.
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Poisson Boundaries and Strong Boundaries

Given a topological group G, a Banach G-module is a pair (π,E) where E is
a Banach space and π is an isometric linear representation of G on E. The
module (π,E) is continuous if the action map G×E → E is continuous. A
coefficient G-module is a Banach G-module (π,E) contragredient to some
separable continuous Banach G-module, i. e. E is the dual of some separable
Banach space E� and π consists of operators adjoint to a continuous action
of G on E� (see [Mo, Chapter 1]). Denote by Xsep the class of all separable
coefficient modules.

Let G be a locally compact group, and (S, µ) be a Lebesgue space
endowed with a measure class preserving action of G. Given any class of
coefficient Banach modules X, the action of G on S is called doubly X-
ergodic if for every coefficient G-module E in X, any weak-* measurable
G-equivariant function f : S×S → E (with respect to the diagonal action)
is a.e. constant [Mo, 11.1.1].

Recall [Z, 4.3.1] that the G-action on S is called amenable if for every
separable Banach space E and every measurable right cocycle α : S ×G →
Iso(E) the following holds for α∗, the adjoint of the α-twisted action on
L1(S,E): any α∗-invariant measurable field {As}s∈S of non-empty convex
weak-* compact subsets As of the closed unit ball in E∗ admits a measurable
α∗-invariant section. We can now state V. Kaimanovich’s result.

Theorem 2 [Ka]. Let G be a locally compact σ-compact group. There
exists a Lebesgue space (S, µ) endowed with a measure class preserving
action of G such that

(i) The G-action on S is amenable.

(ii) The G-action on S is doubly Xsep-ergodic.

Such a space (S, µ) is called a strong G-boundary [MoS, Def. 2.3].

The space S is a Poisson boundary for a suitable measure on G. As
mentioned before, this theorem strengthens a result of Burger and Monod
[BuM], who proved that any compactly generated locally compact group
possesses a finite index open subgroup which has a strong boundary. Note
that the double Xsep-ergodicity of the G-action on S implies that the
Γ-action on S is doubly Xsep-ergodic [BuM, Prop. 3.2.4] and that G (as
well as any finite index subgroup of Γ) acts ergodically on S and on S ×S.
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Reduction to Finding a Suitable Equivariant Map

First, in view of the conclusion of the theorem, we may – and shall –
assume until the end of the note that the group H is adjoint. Recall also
that if f : X → Y is a measurable map from a Lebesgue space (X,λ) to
a topological space Y , its essential image is the closed subset of Y defined
by Essv(f) := {y ∈ Y | λ(f−1(V )) > 0 for any neighbourhood V of y}, and
f is called essentially constant if Essv(f) reduces to a point. Here is the
reduction theorem.

Theorem 3. Let G be a locally compact second countable topological
group, with strong G-boundary (S, µ). Let Γ < G be a lattice and Λ be
a subgroup of G with Γ < Λ < CommG(Γ). Let k be a local field and H
be a connected almost k-simple algebraic group. Assume that π : Λ → Hk

is a homomorphism with Zariski dense image in H and that there exists
a Λ-equivariant non-essentially constant measurable map θ : S → Hk/Lk,
where L is a proper k-subgroup of H. Then there exists a continuous
extension Λ → Hk of π.

The proof uses a simple and powerful ergodic argument [A’CB, Sect. 2.3],
used many times in the full proof of super-rigidity. We will often deal with
measurable maps Θ : B → M where B is an ergodic Γ-space, M is a space
with a continuous Hk-action and Θ is equivariant with respect to a group
homomorphism Γ → Hk. Then if M is a separable complete metrizable
space and if the Hk-orbits are locally closed in M , there is a Hk-orbit O in
M such that a conull subset of B is sent to O by Θ. This is to be combined
with the fact that a k-algebraic action of a k-group G on a k-variety V
induces a continuous action of Gk on Vk in the Hausdorff topology, and
with the following crucial result, due to I. Bernstein and A. Zelevinski.

Theorem 4 [BZ, 6.15]. Let k be a local field, V be a k-variety and G
be a k-group acting k-algebraically on V . Then the orbits of Gk in Vk are
locally closed.

This theorem has a wide range of application because it implies local
closedness of orbits in many spaces. Let F(S,Wk) be the space of classes
of measurable maps from S to Wk, where W is a k-variety. We endow
F(S,Wk) with the topology of convergence in measure on F(S,Wk). It
is metrizable by a complete separable metric. Then, according to [A’CB,
Lemma 6.7], the Hk-orbits in F(S,Wk) are locally closed. The proof there
is given for a local field k of characteristic 0, but it goes through in the
general case once the stabilizer StabH(w) of any k-rational point w ∈ Wk,
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only k-closed in general, is replaced by the k-subgroup StabHk
(w)

Z
. The

ergodic argument applied to the function space F(S,Wk) is a key point in
the proof of the above reduction theorem, whose proof can now be sketched
(see [A’CB, Sect. 7] for further details).

Proof. Since π(Λ)
Z
=H and since θ is Λ-equivariant, we have Essv(θ)

Z
=W

where W := H/L. We define θ : Λ → F(S,Wk) by θ(λ)(s) := θ(λs).
It is Λ-equivariant and continuous. Since Λ acts ergodically on Λ and
since the Hk-orbits in F(S,Wk) are locally closed, there is an Hk-orbit
O ⊂ F(S,Wk) such that θ(λ) ∈ O for almost all λ ∈ Λ. One deduces then
from the fact that O is open in O and θ is continuous, that θ(Λ) ⊂ O. In
particular O = Hkθ. Then it follows from Essv(θ)

Z
= W that StabHk

(θ)
fixes pointwise W and thus is trivial since H is adjoint. Therefore the
map h : Λ → Hk defined by θ(λ) = h(λ)θ for any λ ∈ Λ, is a continuous
homomorphism. Since θ is Λ-equivariant, h is the desired extension of π.

Constructing the Required Equivariant Map

We now sketch the proof of the existence of a Λ-equivariant map as above
under the hypotheses of Theorem 1. Since k is of arbitrary characteristic,
the adjoint representation Ad of H needs no longer be irreducible. Still,
we can choose ρ : H → GL(V ) a faithful rational representation of H,
defined and irreducible over k, on a finite-dimensional k-vector space V .
The induced map ρ : Hk → PGL(Vk) is injective because H is adjoint, and
by [M1, I.2.1.3] it is a closed embedding. We have a homomorphism ρ ◦ π :
Γ → PGL(Vk), so that Γ acts by homeomorphisms on the compact metric
space PVk. This induces a continuous action Γ × M1(PVk) → M1(PVk),
where M1(PVk) is the space of probability measures on PVk endowed with
the compactmetrizable weak-∗ topology.
Proposition 1. Let G be a locally compact group and (S, µ) be a
Lebesgue space on which G acts amenably. Then, possibly after discarding
an invariant null set in S, there exists a measurable Γ-equivariant map
φ : S → M1(PVk).

Proof. This follows immediately from Theorem 4.3.5 and Proposition 4.3.9
in [Z]. �

At this stage, we have a measurable map φ : S → M1(PVk) which is
equivariant for the Γ-action only, and which goes to a space of probability
measures. The next step provides a Γ-equivariant map to a homogeneous
space Hk/Lk.
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We denote by Vark(PV ) the set of algebraic subvarieties of PV defined
over k and by suppZ : M1(PVk) → Vark(PV ) the map which to a prob-
ability measure µ associates supp(µ)

Z
, the Zariski closure of its support.

For any n-dimensional k-vector space Wk we set Gr(Wk) :=
⊔n

l=0 Grl(Wk),
where Grl(Wk) is the compact Grassmannian of l-planes in Wk. By attach-
ing to each projective variety X ⊂ PV its graded defining ideal IX , we see
Vark(PV ) as a subspace of the compact space

∏∞
d=0 Gr(k[V ]d), where k[V ]d

is the space of d-homogeneous polynomials on Vk. This induces a topol-
ogy on Vark(PV ), and it is proved in[A’CB, Sect. 5], by characteristic-free
arguments, that the map suppZ is measurable and PGL(Vk)-equivariant.
Therefore we obtain by composition a Γ-equivariant measurable map Φ :
S → Vark(PV ), sending each s ∈ S to the Zariski closure of the support
of φ(s). We denote it by Φ, and call it boundary map.

Theorem 5 [A’CB, Theorem 5.1]. The boundary map Φ is not essentially
constant.

This result follows from the arguments in [A’CB, Sect. 5]. To see this,
we first note that since H is k-simple, π(Γ) is unbounded and π(Λ) is
Zariski dense, the inclusion Λ < CommG(Γ) and the fact that the identity
component of an algebraic group is always a finite index subgroup imply
that π(Γ) is Zariski dense in H. The other facts needed in [A’CB, Sect. 5]
are the ergodicity of Γ on S and on S × S, and the Furstenberg lemma, all
available in our context. It follows from Theorem 5 that there is a d for
which Φ : S → Gr(k[V ]d) is not essentially constant. The ergodic argument
of the previous section and the ergodicity of the Γ-action on S imply that
Φ essentially sends S to an Hk-orbit in Gr(k[V ]d), which is homeomorphic
to a space Hk/Lk for some proper algebraic subgroup L of H: we have thus
obtained a Γ-equivariant measurable map φ : S → Hk/Lk.

The very last step consists in passing from Γ- to Λ-equivariance. Once
maps as above are known to exist, the descending chain condition for al-
gebraic subgroups and Zorn’s lemma, as used in [A’CB, Sect. 7], prove the
existence of a couple (φ,Hk/Lk) satisfying a universal property. The nor-
malizer of Lk in H may only be k-closed, but if we denote by L′ the Zariski
closure of the normalizer of Lk in Hk, we get a k-subgroup, which is proper
by k-simplicity of H and such that

Theorem 6 [A’CB, Corollary 7.2]. The composed map θ : S → Hk/Lk →
Hk/L

′
k is Λ-equivariant and measurable.
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Astérisque 277 (2002).
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baki 700, Astérisque 177–178 (1989), 1–31.
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