
DOI: 10.1007/s00222-008-0162-6
Invent. math. 176, 169–221 (2009)

Simplicity and superrigidity of twin building lattices

Pierre-Emmanuel Caprace1,�, Bertrand Rémy2

1 Université catholique de Louvain, Département de Mathématiques, Chemin du Cy-
clotron, 2, 1348 Louvain-la-Neuve, Belgium (e-mail: pe.caprace@uclouvain.be)

2 Université de Lyon, Université Lyon 1, CNRS UMR 5208 – Institut Camille Jordan,
Bâtiment du doyen Jean Braconnier, 43, blvd du 11 novembre 1918, F-69622 Villeurbanne
Cedex, France (e-mail: remy@math.univ-lyon1.fr)

Oblatum 28-XII-2007 & 16-X-2008
Published online: 25 November 2008 – © Springer-Verlag 2008

Dedicated to Jacques Tits with our admiration

Abstract. Kac–Moodygroupsoverfinitefieldsarefinitelygeneratedgroups.
Most of them can naturally be viewed as irreducible lattices in products of
two closed automorphism groups of non-positively curved twinned build-
ings: those are the most important (but not the only) examples of twin build-
ing lattices. We prove that these lattices are simple if the corresponding
buildings are irreducible and not of affine type (i.e. they are not Bruhat–Tits
buildings). Many of them are finitely presented and enjoy property (T).
Our arguments explain geometrically why simplicity fails to hold only for
affine Kac–Moody groups. Moreover we prove that a nontrivial continuous
homomorphism from a completed Kac–Moody group is always proper. We
also show that Kac–Moody lattices fulfill conditions implying strong su-
perrigidity properties for isometric actions on non-positively curved metric
spaces. Most results apply to the general class of twin building lattices.

Introduction

Since the origin, Kac–Moody groups (both in their so-called minimal and
maximal versions) have been mostly considered as natural analogues of
semisimple algebraic groups arising in an infinite-dimensional Lie theoretic
context (see e.g. [40] and [43]). A good illustration of this analogy is the
construction of minimal Kac–Moody groups over arbitrary fields, due to
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J. Tits [71], by means of presentations generalizing in infinite dimension the
so-called Steinberg presentations of Chevalley groups over fields [68]. This
presentation provides not only a Kac–Moody group G, but also a family of
root subgroups {Uα}α∈Φ indexed by an abstract root system Φ and satisfying
a list of properties shared by the system of root groups of any isotropic
semisimple algebraic group. These properties constitute the group theoretic
counterpart of the geometric notion of a twin building: any group endowed
with such a family of root groups, which is called a twin root datum, has
a natural diagonal action on a product of two buildings, and this action
preserves a twinning. We refer to [74] and [62] for this combinatorial point
of view.

In this paper, we are mainly interested in finitely generated Kac–Moody
groups, i.e. minimal Kac–Moody groups over finite ground fields. In this
special situation, it has been noticed more recently that another viewpoint,
different from the aforementioned algebraic group theoretic one, is espe-
cially relevant: the arithmetic group viewpoint. The striking feature which
justifies in the first place this more recent analogy is the fact that finitely
generated Kac–Moody groups embed as irreducible lattices in the product
of closed automorphism groups of the associated buildings, provided the
ground field is sufficiently large, see [60]. A sufficient condition for this is
that the order of the finite ground field is at least the number of canonical
generators of the Weyl group. In fact, Kac–Moody theory is one of the few
known sources of examples of irreducible lattices in products of locally
compact groups outside the classical world of lattices in higher-rank Lie
groups. On the other hand, the intersection between Kac–Moody groups
and arithmetic groups is nonempty since Kac–Moody groups of affine type,
namely those obtained by evaluating Chevalley group schemes over rings
of Laurent polynomials, are indeed arithmetic groups. A standard example,
which is good to keep in mind, is the arithmetic group SLn(Fq[t, t−1]), which
is an irreducible lattice of SLn(Fq((t))) × SLn(Fq((t−1))). This arithmetic
group analogy, suggesting the existence of strong similarities between Kac–
Moody groups of arbitrary type and the previous examples of affine type, is
supported by several other results, see e.g. [1] for finiteness properties, [30]
for continuous cohomology, [65, §1] for some structural properties, etc.

The main result of the present paper shows that for infinite Kac–Moody
groups over finite fields, there is a sharp structural contrast between affine
and non-affine groups. Indeed, affine Kac–Moody groups over finite fields,
as finitely generated linear groups, are residually finite. On the other hand,
non-affine Kac–Moody groups are subjected to the following:

Simplicity theorem (Kac–Moody version). Let Λ be a split or almost
split Kac–Moody group over a finite field Fq. Assume that the Weyl group W
of Λ is an irreducible, infinite and non-affine Coxeter group. Then every
finite index subgroup of Λ contains the derived subgroup [Λ,Λ], which
is of finite index. Assume moreover that q � |S|. Then the group [Λ,Λ],
divided by its finite center, is simple.
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A more general result (Theorem 19 of Subsect. 4.4) holds in the abstract
framework of twin root data; it was announced in [24].

It follows from the above that for any neither spherical nor affine, in-
decomposable generalized Cartan matrix A of size n, there exists a Kac–
Moody group functor GA such that for any finite field Fq with q � n > 2,
the group Λ = GA(Fq), divided by its finite center, is an infinite finitely
generated simple group. We also note that this simplicity result for Kac–
Moody groups over finite fields implies strong non-linearity properties for
Kac–Moody groups over arbitrary fields of positive characteristic (The-
orem 25). To be more constructive, we add the following corollary (see
Corollary 21). As pointed out to us by Y. Shalom, we obtain the first infin-
ite finitely presented discrete groups to be both simple and Kazhdan. Note
that finitely generated infinite simple Kazhdan groups were constructed by
M. Gromov [33, Corollary 5.5.E] as quotients of hyperbolic groups with
property (T).

Simple Kazhdan group corollary. If the generalized Cartan matrix A is
2-spherical (i.e. every 2×2-submatrix is of spherical type) and if q > 1764n

25 ,
then the group Λ/Z(Λ) is finitely presented, simple and Kazhdan. Moreover
there exist infinitely many isomorphism classes of infinite groups with these
three properties.

Another consequence is the possibility to exhibit a large family of in-
clusions of lattices in topological groups for which the density of the com-
mensurator does not hold (see Corollary 17).

Non-arithmeticity corollary. Let Λ be a split or almost split Kac–Moody
group over a finite field Fq. Assume that the Weyl group of Λ is irreducible,
infinite and non-affine. Let B+,B− be the buildings associated with Λ

and let Λ+ and Λ− be the respective closures of the images of the nat-
ural actions Λ → Aut(B+) and Λ → Aut(B−). We view Λ/Z(Λ) as
a diagonally embedded subgroup of Λ− × Λ+. Then the commensurator
CommΛ−×Λ+(Λ/Z(Λ)) contains Λ as a finite index subgroup; in particular
it is discrete.

Let us finally mention a consequence of the simplicity theorem concern-
ing the word problem. It is a well known observation that a finitely presented
simple group has solvable word problem. In fact, a theorem of W. Boone
and G. Higman [8] asserts that a finitely generated group has solvable word
problem if and only if it embeds in a simple group which itself embeds
in a finitely presented group. Most finitely generated split or almost split
Kac–Moody groups embed in adjoint Kac–Moody groups of irreducible
2-spherical non-affine type over large finite fields, which are simple by the
theorem above and finitely presented by [3]. In particular, one obtains:

Solvable word problem corollary. Let Λ be a split or almost split Kac–
Moody group over an arbitrary finite field Fq. Assume that the Weyl group
of Λ is 2-spherical. Then Λ has solvable word problem.
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The proof of the above theorem follows a two-step strategy which owes
much to a general approach initiated by M. Burger and Sh. Mozes [18]
to construct simple groups as cocompact lattices in products of two trees;
however, the details of arguments are often substantially different. The idea
of [18] is to prove the normal subgroup property (i.e. normal subgroups
either are finite and central or have finite index) following G.A. Margulis’
proof for lattices in higher rank Lie groups [45, VIII.2] but to disprove
residual finiteness by geometric arguments in suitable cases [18, Prop-
osition 2.1]. This relies on a preliminary study of sufficiently transitive
groups of tree automorphisms [17]. Let us also recall that a finitely generated
just infinite group (i.e. all of whose proper quotients are finite) is either
residually finite or is, up to finite index, a direct product of finitely many
isomorphic simple groups [76].

In our situation, the first step of the proof, i.e. the normal subgroup
property, had been established in previous papers, in collaboration with
U. Bader and Y. Shalom: [5,64] and [67]. This fact, which is recalled here
as Theorem 18, is one of the main results supporting the analogy with
arithmetic groups mentioned above. One difference with [18, Theorem 4.1]
is that the proof does not rely on the Howe–Moore property (i.e. decay of
matrix coefficients). Instead, Y. Shalom and U. Bader use cohomology with
unitary coefficients and Poisson boundaries. In fact, it can be seen that closed
strongly transitive automorphism groups of buildings do not enjoy Howe–
Moore property in general: whenever the ambient closed automorphism
group of the buildings in consideration contains a proper parabolic subgroup
which is not of spherical type (i.e. whose Weyl subgroup is infinite), then
any such parabolic subgroup is an open subgroup which is neither compact
nor of finite index.

The second half of the simplicity proof does not actually use the notion of
residual finiteness. Instead, it establishes severe restrictions on the existence
of finite quotients of a group endowed with a twin root datum of non-affine
type (Theorem 15). Here, one confronts the properties of the system of
root subgroups to a geometric criterion which distinguishes between the
Tits cones of affine (i.e. virtually abelian) and of infinite non-affine Coxeter
groups (see [46] and [58] for another illustration of this fact). This part of
the arguments holds without any restriction on the ground field, and holds
in particular for those groups over tiny fields for which simplicity is still an
open question.

We note that the simplicity theorem above is thus obtained as the combin-
ation of two results which pertain respectively to each of the two analogies
mentioned above. In this respect, it seems that the structure of Kac–Moody
groups is enriched by the ambiguous nature of these groups, which are
simultaneously arithmetic-group-like and algebraic-group-like.

In order to conclude the presentation of our simplicity results, let us
compare quickly Burger–Mozes’ groups with simple Kac–Moody lattices.
The groups constructed thanks to [18, Theorem 5.5] are cocompact lattices
in a product of two trees; they are always finitely presented, simple, torsion
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free and amalgams of free groups (hence cannot have property (T)). Simple
Kac–Moody lattices are non-uniform lattices of products of buildings, pos-
sibly (and usually) of dimension � 2; they are often (not always, though)
finitely presented and Kazhdan and contain infinite subgroups of finite ex-
ponent. It is still an open and challenging question to construct simple
cocompact lattices in higher-dimensional buildings.

We now turn to the second series of results of this paper. It deals with
restrictions on actions of Kac–Moody lattices on various non-positively
curved spaces. This is a natural question in view of the analogy between
Kac–Moody lattices and arithmetic groups, since the latter are known
to yield some superrigidity phenomena. In fact one should expect even
stronger rigidity results for simple lattices in view of the following known
fact: a non residually finite group cannot be embedded injectively into
a compact group (see Proposition 26). In particular a simple Kazhdan
group acting non-trivially on a Gromov-hyperbolic proper metric space Y
of bounded geometry cannot fix any point in the visual compactification
Y = Y � ∂∞Y .

Therefore, it makes sense to try to use the recent superrigidity results
due to N. Monod (with CAT(0) target spaces [50]) and generalized fur-
ther by T. Gelander, A. Karlsson and G. Margulis (with suitable Busemann
non-positively curved, uniformly convex target spaces [31]). Note how-
ever that, as it is the case for Y. Shalom’s result on property (T) [67], the
non-cocompactness of Kac–Moody lattices is an obstruction to a plain ap-
plication of these results (stated for uniform lattices). Nevertheless, all the
previous references propose measure-theoretic or representation-theoretic
substitutes for cocompactness. Weak cocompactness of a lattice Γ in a topo-
logical group G is the fact that the orthogonal of the constant functions
in the regular representation L2(G/Γ) doesn’t almost have invariant vec-
tors [45, Sect. III.1.8]. It is still an interesting open question to determine
whether all Kac–Moody lattices are weakly cocompact; it is of course the
case for lattices enjoying Kazhdan’s property (T). We prove here that an-
other partial substitute for cocompactness holds (see Proposition 31).

Uniform integrability proposition. Let Λ be a split or almost split Kac–
Moody group over Fq. Assume that Λ is a lattice of the product of its twinned
buildings B±. Then the group Λ admits a natural fundamental domain with
respect to which it is uniformly p-integrable for any p ∈ [1;+∞).

For an arbitrary inclusion of a finitely generated lattice Γ in a locally
compact group G, uniform integrability is a technical condition requiring
the existence of a fundamental domain D with respect to which some
associated cocycle is uniformly integrable (see Subsect. 7.2). This circle
of ideas enables us to prove the following superrigidity statement [31,
Theorem 1.1].

Superrigidity proposition. Let Λ be as above and assume in addition
that it is a weakly cocompact lattice of the product of its two completions
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Λ−×Λ+ (this is automatic if Λ is Kazhdan). Let X be a complete Busemann
non-positively curved, uniformly convex metric space without nontrivial
Clifford isometries. We assume that there exists a Λ-action by isometries
on X with reduced unbounded image. Then the Λ-action extends uniquely
to a Λ− × Λ+-action which factors through Λ− or Λ+.

As already mentioned, this is a corollary of a result of N. Monod’s
when the target space is complete and CAT(0) [50, Theorem 6]. In fact
the relevancy of reduced actions was pointed out in [loc. cit.]: a sub-
group L < Isom(X) is called reduced if there is no unbounded closed
convex proper subset Y of X such that gY is at finite Hausdorff distance
from Y for any g ∈ L . We also recall that a Clifford isometry of X is
a surjective isometry T : X → X such that x �→ d(T(x), x) is constant
on X.

These results about continuous extensions of group homomorphisms
call for structure results for the geometric completions Λ± of Kac–Moody
groups over finite fields, i.e. the closures of the non-discrete Λ-actions
on each building B±. Indeed, once a continuous extension has been ob-
tained by superrigidity, it is highly desirable to determine whether this
map is proper, e.g. to know whether infinite discrete subgroups can have
a global fixed point in the target metric space. When the ambient topo-
logical groups are semisimple Lie groups, the properness comes as a conse-
quence of the Cartan decomposition of such groups [16, Lemma 5.3]. The
difficulty in our situation is that, with respect to structure properties, topo-
logical groups of Kac–Moody type are not as nice as semisimple algebraic
groups over local fields. Unless the Kac–Moody group is of affine type,
there is no Cartan decomposition in which double cosets modulo a max-
imal compact subgroup are indexed by an abelian semi-group: the Weyl
group is not virtually abelian and roots cannot be put into finitely many
subsets according to parallelism classes of walls in the Coxeter complex.
This is another avatar of the strong Tits alternative for infinite Coxeter
groups [46,58]. Here is a slightly simplified version of our main properness
result (Theorem 28).

Properness theorem. Let Λ be a split or almost split simply connected
Kac–Moody group over Fq and let Λ+ be its positive topological completion.
Then any nontrivial continuous homomorphism ϕ : Λ+ → G to a locally
compact second countable group G is proper.

As an example of application of superrigidity results, we study actions
of Kac–Moody lattices on CAT(−1)-spaces. In this specific case, the most
appropriate results available are the superrigidity theorems of N. Monod
and Y. Shalom [51]. Putting these together with the abstract simplicity of
non-affine Kac–Moody lattices and the properness theorem above enables
us to exhibit strong incompatibilities between higher-rank Kac–Moody
groups and some negatively curved metric spaces (see Theorem 34 for
more details).
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“Higher-rank versus CAT(−1)” theorem. Let Λ be a simple Kac–Moody
lattice and Y be a proper CAT(−1)-space with cocompact isometry group.
If the buildings B± of Λ contain flat subspaces of dimension � 2 and if Λ is
Kazhdan, then the group Λ admits no nontrivial action by isometries on Y.

We show below, by means of a specific example, that the assumption that
Isom(Y ) is cocompact is necessary (see the remark following Theorem 34).
This theorem was motivated by [16, Corollary 0.5]. Note that we made
two assumptions (one on flat subspaces, one on property (T)) which, in the
classical case, are implied by the same algebraic condition. Namely, if Λ
were an irreducible lattice in a product of semisimple algebraic groups,
and if each algebraic group were of split rank � 2, then both “higher-
rank” assumptions would be fulfilled. In the Kac–Moody case, there is no
connection between existence of flats in the buildings and property (T).
The relevant rank here is the geometric one (the one involving flats in
the buildings). According to [6] and [21], it has a more abstract interpret-
ation relevant to the general theory of totally disconnected locally compact
groups.

The proofs of most results of the present paper use in a very soft way that
the construction of the lattices considered in this introduction pertains to
Kac–Moody theory. The actual tool which is the most natural framework for
our arguments is the notion of a twin root datum introduced in [74]. It turns
out that the class of groups endowed with a twin root datum includes split
and almost split Kac–Moody groups only as a (presumably small) subfamily
(see Sect. 1 below). Several exotic constructions of such groups outside
the strict Kac–Moody framework are known, see e.g. [73, §9] for groups
acting on twin trees, [65] for groups acting on right-angled twin buildings
and [55] for groups obtained by integration of Moufang foundations. All
these examples are discrete subgroups of the product of the automorphism
groups of the two halves of a twin building, which are actually mostly of
finite covolume. These lattices, called twin building lattices, constitute the
main object of study for the rest of this paper.

Structure of the paper. In the preliminary Sect. 0, we fix the conventions
and notation. Section 1 is devoted to collect some basic results for later
reference. Although these results are often stated in the strict Kac–Moody
framework in the literature, we have been careful to state and prove them
in the context of twin building lattices. Section 2 introduces a fixed-point
property of root subgroups and it is shown that most examples of twin
building lattices enjoy this property. It is then used to establish several
useful structural properties of these completions. In Sect. 3, we prove the
main fact needed for the simplicity theorem; it is the existence of a weakly
hyperbolic geometric configuration of walls for non-affine infinite Cox-
eter complexes. In Sect. 4, the simplicity theorem is proved together with
very strong restrictions on quotients of the groups for which the simplicity
is still unknown. In Sect. 5, we prove a non-linearity property for Kac–
Moody groups over arbitrary fields of positive characteristic. In Sect. 6,



176 P.-E. Caprace, B. Rémy

we study homomorphisms from Kac–Moody groups to locally compact
groups. The main part deals with the geometric completions of Kac–Moody
groups; it establishes that any nontrivial continuous homomorphism from
such a group to a second countable group must be proper. In Sect. 7, we
check some integrability conditions for Kac–Moody lattices and we de-
rive superrigidity statements from work by Monod-Shalom; restrictions on
actions in hyperbolic metric spaces in terms of “rank” are derived from
this.
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0. Notation and general references

Let us fix some notation, conventions and make explicit our standard refer-
ences.

0.1. About Coxeter groups. Throughout this paper, (W, S) denotes a Cox-
eter system [11, IV.1] of finite rank (i.e. with S finite) and � or �S denotes
the word length W → N with respect to the generating set S. We denote by
W(t) the canonical growth series, i.e. the series

∑
n�0 cntn where cn is the

number of elements w ∈ W such that �S(w) = n. The combinatorial root
system Φ of W is abstractly defined in [71, Sect. 5]. We adopt this point of
view because, since it is purely set-theoretic, it is useful to connect several
geometric realizations of the Coxeter complex of (W, S) [2,66]. A pair of
opposite roots here is a pair of complementary subsets W which are per-
muted by a suitable conjugate of some canonical generator s ∈ S. The set
of simple roots is denoted by Π.

Recall that a set of roots Ψ is called prenilpotent if both intersections⋂
α∈Ψ α and

⋂
α∈Ψ −α are nonempty. Given a prenilpotent pair {α, β} ⊂ Φ,

we introduce the following finite sets of roots:

[α, β] := {γ ∈ Φ |α ∩ β ⊂ γ and (−α) ∩ (−β) ⊂ −γ } and
]α, β[ := [α, β] \ {α, β}.

0.2. About geometric realizations. We denote by A the Davis complex
associated to (W, S) and by d the corresponding CAT(0) distance on A [28].
The metric space A is obtained as a gluing of compact subsets, all isometric
to one another and called chambers. The group W acts properly discontinu-
ously on A and simply transitively on the chambers. The fixed point set
of each reflection, i.e. of each element of the form wsw−1 for some s ∈ S
and w ∈ W , separates A into two disjoint halves, the closures of which are
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called root half-spaces. The fixed point set of a reflection is called a wall.
The set of root half-spaces of A is denoted by Φ(A); it is naturally in
W-equivariant bijection with Φ. We distinguish a base chamber, say c+,
which we call the standard chamber: it corresponds to 1W in the above
free W-action. We denote by Φ+ the set of root half-spaces containing c+
and by Π the set of simple roots, i.e. of positive roots bounded by a wall
associated to some s ∈ S.

0.3. About group combinatorics. The natural abstract framework in which
the main results of this paper hold is provided by the notion of a twin root
datum, which was introduced in [74] and is further discussed for instance
in [1, §1], [62, Sect. 1.5] or [2, §§7–8]. A twin root datum consists of
a couple (G, {Uα}α∈Φ) where G is a group and {Uα}α∈Φ is a collection
of subgroups indexed by the combinatorial root system of some Coxeter
system; the subgroups {Uα}α∈Φ, called root groups, are subjected to the fol-
lowing axioms, where T := ⋂

α∈Φ NG (Uα) and U+ (resp. U−) denotes the
subgroup generated by the root groups indexed by the positive roots (resp.
their opposites):

(TRD0) For each α ∈ Φ, we have Uα �= {1}.
(TRD1) For each prenilpotent pair {α, β} ⊂ Φ, the commutator group

[Uα, Uβ] is contained in the group U]α,β[ := 〈Uγ | γ ∈ ]α, β[〉.
(TRD2) For each α ∈ Π and each u ∈ Uα\{1}, there exist elements u′, u′′ ∈

U−α such that the product m(u) := u′uu′′ conjugates Uβ onto
Usα(β) for each β ∈ Φ.

(TRD3) For each α ∈ Π, the group U−α is not contained in U+ and the
group Uα is not contained in U−.

(TRD4) G = T 〈Uα| α ∈ Φ〉.
Recall that prenilpotent pairs of roots, as well as intervals of roots, where

defined in Sect. 0.1.
We also set N := T.〈m(u) | u ∈ Uα − {1}, α ∈ Π〉. A basic fact is that

the subquotient N/T is isomorphic to W ; we call it the Weyl group of G.

0.4. About twin buildings. The geometric counterpart to twin root data is
the notion of twin buildings. Some references are [74], [1, §2], [62, §2.5]
or [2, §§7–8]. Roughly speaking, a group with a twin root datum {Uα}α∈Φ

of type (W, S) admits two structures of BN-pairs which are not conjugate
to one another in general. Let (B+,B−) be the associated twinned build-
ings; their apartments are modelled on the Coxeter complex of (W, S).
We will not need the combinatorial notion of a twinning between B−
and B+. The standard twin apartment (resp. standard positive chamber)
is denoted by (A+,A−) (resp. c+). We identify the Davis complex A
with the positive apartment A+. With this identification and when the
root groups are all finite, the buildings B± are locally finite CAT(0) cell
complexes.
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1. Twin building lattices and their topological completions

As mentioned in the introduction, the main results of this paper apply not
only to split or almost split Kac–Moody groups over finite fields, but also
to the larger class of groups endowed with a twin root datum with finite
root groups. Some existing results in the literature are stated for split or
almost split Kac–Moody groups, but remain actually valid in this more
general context of twin root data. The purpose of this section is to collect
some of these results and to restate them in this context for subsequent
references.

1.1. Kac–Moody groups versus groups with a twin root datum. Al-
though the notion of a twin root datum was initially designed as an appro-
priate tool to study Kac–Moody groups, it became rapidly clear that many
examples of twin root data arise beyond the strict scope of Kac–Moody
theory. This stands in sharp contrast to the finite-dimensional situation: as
follows from the classification achieved in [70] (see also [75]), any group
endowed with a twin root datum with finite Weyl group of rank at least 3 and
of irreducible type is associated (in a way which we will not make precise)
with some isotropic simple algebraic group over a field or with a classical
group over a (possibly skew) field. Here is a list of known constructions
which yield examples of twin root data with infinite Weyl group but not
associated with split or almost split Kac–Moody groups:

(I) [73, §9] constructs a twin root datum with infinite dihedral Weyl
group and arbitrary prescribed rank one Levi factors. The possibility
of mixing ground fields prevent these groups from being of “Kac–
Moody origin”. The associated buildings are one-dimensional, i.e.
trees.

(II) In [65], the previous construction is generalized to the case of Weyl
groups which are arbitrary right-angled Coxeter groups. In particular,
the associated buildings are of arbitrarily large dimension.

(III) Opposite to right-angled Coxeter groups are 2-spherical Coxeter
groups, i.e. those Coxeter groups in which every pair of canonical
generators generates a finite group. Twin root data with 2-spherical
Weyl group are subjected to strong structural restrictions (see [57])
showing in particular that wild constructions as in the right-angled
case are impossible. For instance, the following fact is a consequence
of the main result of [55]: a group Λ endowed with a twin root datum
{Uα}α∈Φ of irreducible type, such that the root groups are all finite of
order > 3 and generate Λ, and that every rank 2 parabolic subgroup
is of type A1 × A1, A2, B2, C2 or G2 must be a split or almost split
Kac–Moody group in the sense of [62]. Furthermore, it was mentioned
to us by B. Mühlherr, as a non-obvious strengthening of [55], that the
preceding statement remains true if one allows the rank 2 subgroups to
be twisted Chevalley groups of rank 2, with the exception of the Ree
groups 2 F4. On the other hand, the theory developed in [55] allows to
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obtain twin root data by integrating arbitrary Moufang foundations of
2-spherical type. The groups obtained in this way are not Kac–Moody
groups whenever the foundation contains a Moufang octagon (which
corresponds to a rank 2 parabolic subgroup of type 2 F4).

The conventions adopted throughout the rest of this section are the
following: we let (W, S) be a Coxeter system with root system Φ and
(Λ, {Uα}α∈Φ) be a twin root datum of type (W, S). We assume that each root
group is finite and that W is infinite. The associated twin buildings are de-
noted (B+,B−). The groups Aut(B±) are endowed with the compact-open
topology, which makes them locally compact totally disconnected second
countable topological groups. We also consider the subgroups T, N, U+, U−
of Λ defined in Sect. 0.3. The normal subgroup generated by all root groups
is denoted Λ†. If g ∈ Λ fixes the building B+ it fixes in particular the stan-
dard positive apartment and its unique opposite in B− [1, Lemma 2] since g
preserves the twinning; therefore we have: g ∈ T by [62, Corollaire 3.5.4].
Moreover by the Moufang parametrization (by means of root group actions)
of chambers having a panel in the standard apartment, such a g must central-
ize each root group. This argument shows that the kernel of the action of Λ
on B+ (resp. B−) is the centralizer ZΛ(Λ†) and is contained in T .

1.2. Topological completions: the building topology. For ε ∈ {+,−},
let Λeff

ε be the image of the natural homomorphism πε : Λ → Aut(Bε). Thus
Λeff+ � Λ/ZΛ(Λ†) � Λeff− . The closure Λ

eff
+ � Aut(B+) is the topological

completion considered in [65]. In the Kac–Moody case, another approach
was proposed in [27], using the so-called weight topology; this allows to
obtain completions of Λ without taking the effective quotient. However,
the weight topology is defined using Kac–Moody algebras and, hence, does
not have an obvious substitute in the abstract framework considered here.
Therefore, we propose the following.

For each non-negative integer n, let Kn
ε be the pointwise stabilizer in Uε

of the ball of Bε centered at cε and of combinatorial radius n. Clearly⋂
n Kn

ε ⊂ ZΛ(Λ†) ⊂ T and, hence,
⋂

n Kn
ε = {1} because T ∩ Uε = {1}

by [62, Theorem 3.5.4]. Define a map fε : Λ × Λ → R+ as follows:

fε(g, h) =
{

2 if g−1h �∈ Uε,

exp
(− max

{
n

∣
∣ g−1h ∈ Kn

ε

})
if g−1h ∈ Uε

}

.

Since Kn
ε is a group for each n, it follows that fε is a left-invariant

ultrametric distance on Λ. We let Λε be the completion of Λ with respect
to this metric [9, II.3.7 Théorème 3 and III.3.4 Théorème 3.4]; this is the
topological completion that we consider in this paper.

Definition. The so-obtained topology is called the building topology on Λε.

By left-invariance of the metric, replacing Uε and cε by Λ-conjugates
leads to the same topology. Here is a summary of some of its basic properties;
similar results hold with the signs + and − interchanged.
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Proposition 1. We have the following:

(i) The group Λ+ is locally compact and totally disconnected for the
above topology. It is second countable whenever Λ is countable, i.e.
whenever so is T .

(ii) The canonical map π+ : Λ → Λeff+ has a unique extension to a con-
tinuous surjective open homomorphism π+ : Λ+ → Λ

eff
+ .

(iii) The kernel of π+ is the discrete subgroup ZΛ(Λ†) < Λ+.
(iv) We have StabΛ+(c+) � T �U+, where U+ denotes the closure of U+

in Λ+.
(v) Every element g ∈ Λ+ may be written in a unique way as a product

g = u+nu−, with u+ ∈ U+, n ∈ N and u− ∈ U−.
(vi) The sextuple (Λ+, N, U+, U−, T, S) is a refined Tits system, as defined

in [41].

Remark. It follows from (ii) and (iii) that the canonical map Λ+/ZΛ(Λ†) →
Λ

eff
+ is an isomorphism of topological groups.

Proof. We start by noting that the restriction π+|U+ is injective since
ZΛ(Λ†) ∩ Uε = {1} by [62, Théorème 3.5.4]. Therefore, it follows from
the definitions that π+ : U+ → π+(U+) is an isomorphism of topological
groups.

We now prove (ii). Let (λn) be a Cauchy sequence of elements of Λ.
Let n0 � 0 be such that f+(λn0, λn) � 1 for all n > n0. It follows that
π+(λ−1

n0
λn) lies in the stabilizer of c+ in Aut(B+), which is compact. This

implies that π+(λn) is a converging sequence in Aut(B+). Hence π+ has
a unique continuous extension π+ : Λ+ → Λ

eff
+ and it remains to prove

that π+ is surjective. By the preliminary remark above, it follows that
π+ : U+ → π+(U+) is an isomorphism of topological groups. The sur-
jectivity of π+ follows easily since U+ is an open neighborhood of the
identity. Finally, since U+ contains a basis {K

n
ε } of open neighborhoods of

the identity, it follows that π+ maps an open subset to an open subset.
(iv). The inclusion T.U+ < StabΛ+(c+) is clear. Let g ∈ StabΛ+(c+)

and let (λn) be a sequence in Λ such that limn→+∞ λn = g. Up to passing
to a subsequence, we may – and shall – assume that λn ∈ StabΛ(c+) for
all n. We know by [62, §3.5.4] that StabΛ(c+) � T � U+. Hence each λn
has a unique writing λn = tnun with tn ∈ T and un ∈ U+. Again, up to
extracting a subsequence, we have f+(λ1, λn) < 1 for all n. In view of the
semidirect decomposition StabΛ(c+) � T�U+, this implies that tn = t1 for
all n. In particular, the sequence (un) of elements of U+ converges to t−1

1 g.
This shows that g ∈ T.U+ as desired. For every nontrivial element t ∈ T ,
we have f+(1, t) = 2 because T ∩ U+ = {1}. On the other hand, for all
u ∈ U+, we have f+(1, u) � 1. Therefore, we have T ∩ U+ = {1}.

(iii). The fact that ZΛ(Λ†) is discrete follows from ZΛ(Λ†) ∩ U+ = {1}.
Clearly we have ZΛ(Λ†) < Ker(π+). We must prove the reverse inclusion.
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Let k ∈ Ker(π+). By (iv), we have k = tu for unique elements t ∈ T and
u ∈ U+. Applying (iv) to the effective group Λ

eff
+ , we obtain π+(t) = 1

and π+(u) = 1. Since the restriction of π+ to U+ is injective by the proof
of (ii), we deduce u = 1 and hence k ∈ T < Λ. Therefore k ∈ ZΛ(Λ†) as
desired.

(i). The building topology comes from a metric, so the Hausdorff group Λ

injects densely in its completion Λ+ [9, II.3.7 Corollaire] and the latter
group is second countable whenever Λ is countable. It is locally compact
because U+ is a compact open subgroup by the proof of (ii). Furthermore,
π+ annihilates the connected component of Λ+ because Λ

eff
+ is totally

disconnected. On the other hand, the kernel of π+ is discrete by (iii). Hence
Λ+ itself is totally disconnected.

(v). The group U− acts on B+ with the apartment A+ as a fundamental
domain. The group N stabilizes A+ and acts transitively on its chambers. In
view of (iv), it follows that Λ+ = U+.N.U−. On the other hand, it follows
easily from the definition of fε that

Uε = {g ∈ Λε | fε(1, g) � 1}.
Therefore, the uniqueness assertion follows immediately from [62, §1.5.4]
and the fact that Λ ∩ U+ = U+.

(vi). The main axiom of a refined Tits system is the property of asser-
tion (v), which has just been proven. For the other axioms to be checked,
the arguments are the same as [65, Proof of Theorem 1.C.(i)]. �

1.3. Twin building lattices. Let qmin = min{|Uα| : α ∈ Π}, where Π ⊂ Φ
is the set of simple roots. The following is an adaptation of the main result
of [60]:

Proposition 2. The image of the diagonal injection

Λ → Λ+ × Λ− : λ �→ (λ, λ)

is a discrete subgroup of Λ+ × Λ−. It is an irreducible lattice if and only
if W(1/qmin) < +∞ and ZΛ(Λ†) is finite.

Proof. Let ∆(Λ) = {(λ, λ) | λ ∈ Λ} < Λ+ × Λ−. The subgroup
U+ × U− < Λ+ × Λ− is an open neighborhood of the identity. We have
∆(Λ) ∩ (U+ × U−) = ∆(U+ ∩ U−). By [62, §3.5.4], U+ ∩ U− = {1}.
Thus ∆(Λ) is discrete. The second assertion follows from the proofs of [64,
Proposition 5 and Corollary 6], which apply here without any modification:
the only requirement is that (Λ+, N, U+, U−, T, S) and (Λ−, N, U−, U+,
T, S) be refined Tits systems. This follows from Proposition 1(vi). �

Note that the group ZΛ(Λ†) may be arbitrarily large, since one may
replace Λ by the direct product of Λ with an arbitrary group; the root
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groups of Λ also provide a twin root datum for this direct product. However
it is always possible to make the group ZΛ(Λ†) finite by taking appropriate
quotients; note that if Λ = Λ†, then ZΛ(Λ†) = Z(Λ) is abelian. Finally,
since ZΛ(Λ†) < T , it follows that ZΛ(Λ†) is always finite when Λ is a split
or almost split Kac–Moody group.

Definition. If the twin root datum (Λ, {Uα}α∈Φ) is such that W(1/qmin) <
+∞ and ZΛ(Λ†) is finite, then Λ is called a twin building lattice.

1.4. Structure of U+. The first assertion of the following proposition was
proved in [65, Theorem 1.C(ii)]. Recall that a set Ψ of roots is called
prenilpotent if the intersections

⋂
α∈Ψ α and

⋂
α∈−Ψ α are both non-empty

sets of chambers; in this case Ψ is finite.

Proposition 3. We have the following:

(i) Assume that each root group Uα is a finite p-group. Then U+ is pro-p.
(ii) Assume that each root group Uα is solvable. Then U+ is pro-solvable.
(iii) Assume that each root group Uα is nilpotent. Then, for every prenilpo-

tent set of roots Ψ ⊂ Φ, the group UΨ = 〈Uα | α ∈ Ψ〉 is nilpotent.

Remark. One might expect that, under the assumption that all root groups
are nilpotent, the group U+ is pro-nilpotent. This is however not true in
general. Counterexamples are provided by twin root data over ground fields
of mixed characteristics, constructed in [65]. More precisely, consider a twin
root datum (Λ, {Uα}α∈Φ) of rank 2 with infinite Weyl group, such that the
rank one subgroups are SL2(F3) and SL2(F4). The associated twin building
is a biregular twin tree. Then the U+-action induced on the ball of combina-
torial radius 2 centered at c+ is not nilpotent: indeed, the corresponding
finite quotient of U+ contains a subgroup isomorphic to the wreath product
(Z/2Z × Z/2Z) � Z/3Z, which is not nilpotent.

Proof. For (i), see [65, 1.C Lemma 1 p.198]. The arguments given in [loc.
cit.] can be immediately adapted to provide a proof of (ii): the essential
fact is that an extension of a solvable group (resp. a p-group) by a solvable
group (resp. a p-group) is again solvable (resp. a p-group).

(iii). A set of roots Ψ is called nilpotent if it is prenilpotent and if, more-
over, for each pair {α, β} ⊂ Ψ one has [α, β] ⊂ Ψ. Since every prenilpotent
set of roots is contained in a nilpotent set (see [62, §1.4.1 and §2.2.6]), it
suffices to prove the assertion for nilpotent sets. The proof is by induction
on the cardinality of Ψ, the result being obvious when Ψ is a singleton.
The elements of Ψ can be ordered in a nibbling sequence α1, α2, . . . , αn;
hence the sets Ψ1 = Ψ\{α1} and Ψn = Ψ\{αn} are nilpotent [loc. cit.,
§1.4.1]. Furthermore, one has [Uα1, UΨ1] � UΨ1 and [Uαn , UΨn ] � UΨn

as a consequence of (TRD1). Therefore, the subgroups UΨ1 and UΨn are
normal in UΨ, and are nilpotent by the induction hypothesis. It follows
that UΨ is nilpotent [34, Theorem 10.3.2]. This part of the proof does not
require that the root groups be finite. �
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2. Further properties of topological completions

In this section, we introduce a property of fixed points of root subgroups
of a group Λ endowed with a twin root datum; this property is called
(FPRS). We first provide sufficient conditions which ensure that this prop-
erty holds for any split or almost split Kac–Moody group, as well as for
all exotic twin building lattices mentioned in Sect. 1.1. We then show that
(FPRS) implies that the topological completion Λ+ is topologically simple
(modulo the kernel of the action on the building, see Proposition 11). Prop-
erty (FPRS) will be used again below, as a sufficient condition implying that
any nontrivial continuous homomorphism whose domain is Λ+ is proper
(Theorem 28).

Throughout this section, we let Λ be a group endowed with a twin root
datum {Uα}α∈Φ of type (W, S) and let (B+,B−) be the associated twin
buildings.

2.1. Fixed points of root subgroups. For any subgroup Γ � Λ, we define
r(Γ) to be the supremum of the set of all non-negative real numbers r such
that Γ fixes pointwise the (combinatorial) closed ball B(c+, r) of (combina-
torial) radius r centered at c+. In the present subsection, we consider the
following condition:

(FPRS) Given any sequence of roots (αn)n�0 of Φ(A) such that
limn→+∞ d(c+, αn) = +∞, we have: limn→+∞ r(U−αn ) = +∞.

Remark. This property can be seen as a non-quantitative generalization
of [15, Prop. 7.4.33].

In other words, this means that if the sequence of roots (αn)n�0 is
such that limn→+∞ d(c+, αn) = +∞, then the sequence of root subgroups
(U−αn)n�0 tends uniformly to the identity in the building topology. The
purpose of this subsection is to establish sufficient conditions on the twin
root datum (Λ, {Uα}α∈Φ) which ensure that property (FPRS) holds. To this
end, we will need the following conditions:

(PP) For any prenilpotent pair of roots {α, β} such that 〈rα , rβ〉 is infinite,
either [Uα, Uβ] = {1} or there exists a root φ such that rφ(α) = −β,
[Uα, Uβ] � Uφ and [Uα, Uφ] = {1} = [Uβ, Uφ].

(2-sph) The Coxeter system (W, S) is 2-spherical and Λ possesses no
critical rank 2 subgroup.
This means that any pair of elements of S generates a finite group
and moreover that for any pair {α, β} ⊂ Π, the group Xα,β gener-
ated by the four root groups U±α, U±β, divided by its center, is not
isomorphic to any of the groups B2(2), G2(2), G2(3) or 2 F4(2).

The main result of this section is the following:

Proposition 4. Assume that the twin root datum (Λ, {Uα}α∈Φ) satisfies (PP)
or (2-sph) or that Λ is a split or almost split Kac–Moody group. Then
property (FPRS) holds.
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Remark. The exotic examples of twin root data mentioned in Sect. 1.1(I) and
(II) satisfy condition (PP). In fact, they satisfy even the stronger condition
that all commutation relations are trivial: for any prenilpotent pair of distinct
roots {α, β}, one has [Uα, Uβ] = {1}. Moreover, the examples of type (III)
satisfy (2-sph). However, it was communicated to us by B. Mühlherr that
there exists an example of a group endowed with a twin root datum, which
does not satisfy condition (FPRS). In this example, whose construction is
nontrivial, the Weyl group is the free Coxeter group of rank 3 (i.e., a free
product of 3 copies of the group of order 2) and the ground field is F2.

The proof of Proposition 4 splits into a sequence of lemmas which we
prove separately.

Lemma 5. Assume that (PP) holds. For each integer n � 0, each root
α ∈ Φ(A) and each chamber c ∈ A+, if d(c, α) � 4n+1−1

3 , then U−α fixes
B(c, n) pointwise. In particular (FPRS) holds.

Proof. We work by induction on n. If d(c, α) � 1, then c �∈ α whence
c ∈ −α. In particular c is fixed by U−α. Thus the desired property holds for
n = 0.

Assume now that n > 0 and let α be a root such that d(c, α) � 4n+1−1
3 . By

induction, the group U−α fixes the ball B(c, n − 1) pointwise. Furthermore,
if c′ is a chamber contained in A+ and adjacent to c, then d(c′, α) �
d(c, α) − 1; therefore, the induction hypothesis also implies that U−α fixes
the ball B(c′, n − 1) pointwise.

Let now x be a chamber at distance n from c. Let c0 = c, c1, . . . , cn = x
be a minimal gallery joining c to x. We must prove that U−α fixes x. If c1 is
contained in A+ then we are done by the above. Thus we may assume that c1
is not in A+. Let c′ be the unique chamber of A+ such that c, c1 and c′ share
a panel. Let β ∈ Φ(A) be one of the two roots such that the wall ∂β separ-
ates c from c′. Upon replacing β by its opposite if necessary, we may – and
shall – assume by [73, Proposition 9] that the pair {−α, β} is prenilpotent.
Let u ∈ Uβ be the (unique) element such that u(c1) belongs to A+; thus we
have u(c1) = c or c′. Since u(c1), u(c2), . . . , u(cn) is a minimal gallery, it
follows that u(x) is contained in B(c, n − 1) ∪ B(c′, n − 1).

There are three cases.
Suppose first that [U−α, Uβ] = {1}. For any g ∈ U−α, we have g = u−1gu

whence g(x) = u−1gu(x) = x because g ∈ U−α fixes B(c, n − 1) ∪
B(c′, n − 1) pointwise.

Suppose now that [U−α, Uβ] �= {1} and that 〈rα, rβ〉 is infinite. By
property (PP) there exists a root φ ∈ Φ(A) such that [U−α, Uβ] � Uφ

and rφ(α) = β. Let y0 = c, y1, . . . , yk be a gallery of minimal possible
length joining c to a chamber of −φ. Thus we have yk ∈ −φ, yk−1 ∈ φ
and k = d(c,−φ). Since rφ(β) = α and since either c or c′ belongs to β, it
follows by considering the (possibly non-minimal) gallery

c = y0, . . . , yk−1, yk = rφ(yk−1), rφ(yk−2), . . . , rφ(c), rφ(c
′)
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of length 2k, that d(c, α)�2k, whence d(c,−φ)� 1
2d(c, α)� 4n+1−1

6 > 4n−1
3 .

A similar argument shows that d(c′,−φ) � 1
2d(c′, α) � 4n+1−4

6 > 4n−1
3 .

Therefore, the induction hypothesis shows that Uφ fixes B(c, n − 1) ∪
B(c′, n − 1) pointwise. Now, for any g ∈ U−α, we have

g(x) = [g, u−1]u−1gu(x) = [g, u−1](x)
because g ∈ U−α fixes B(c, n − 1) ∪ B(c′, n − 1) pointwise. By (PP), the
commutator [g, u−1] commutes with u and, hence, we have [g, u−1](x) =
u−1[g, u−1]u(x) = x because [g, u−1] ∈ Uφ fixes B(c, n −1)∪ B(c′, n −1)
pointwise.

Suppose finally that [U−α, Uβ] �= {1} and that 〈rα, rβ〉 is finite. This im-
plies that the pairs {−α, β} and {−α,−β} are both prenilpotent. Therefore,
up to replacing β by its opposite if necessary, we may – and shall – assume
that c �∈ β, whence u(c1) = c. Note that 〈rα, rβ〉 is contained in a rank 2
parabolic subgroup P of W . Since any such subgroup is the Weyl group
of a Levi factor of rank 2 of Λ, which is itself endowed with a twin root
datum of rank 2, it follows from [75, Theorem 17.1] that P is of order at
most 16. Let [−α, β] = {γ ∈ Φ(A) | (−α) ∩ β ⊆ γ, α ∩ (−β) ⊆ −γ };
thus [−α, β] has at most 8 elements because for every γ ∈ [−α, β], the
reflection rγ belongs to P. Order the elements of [β,−α] in a natural
cyclic order: [β,−α] = {β = β0, β1, . . . , βm = −α}; this means that
rβi (βi−1) = βi+1 for i = 1, . . . , k − 1. Such an ordering does exist because
the group 〈rγ | γ ∈ [β,−α]〉 is (finite) dihedral. Let c = y0, y1, . . . , yk be
a gallery of minimal possible length joining c to a chamber of −β1. Thus
we have yk ∈ −β1, yk−1 ∈ β1 and k = d(c,−β1). Since rβ1(β) = −β2 and
since c′ belongs to β, it follows from considering the gallery

c = y0, . . . , yk−1, yk = rβ1(yk−1), rβ1(yk−2), . . . , rβ1(c), rβ1(c
′)

of length 2k, that d(c,−β2) � 2k. A straightforward induction yields
d(c,−βi) � ik for i = 1, . . . , m. In particular, we have d(c, α) � mk =
m.d(c,−β1). Recall that m + 1 is the cardinality of [−α, β].

We may now choose a natural cyclic order [−β,−α] = {−β = β′
0, β

′
1,

. . . , β′
m′ = −α} and repeat the same arguments with c replaced by c′, β

replaced by −β and each βi replaced by rβ(βi). This yields d(c′,−β′
i) �

id(c′,−β′
1) for each i. Note that d(c,−β1) = d(rβ(c),−rβ(β1)) =

d(c′,−β′
1). We obtain that d(c, α) − 1 � d(c′, α) � m′.d(c,−β1), where

m′ + 1 is the cardinality of [−α,−β]. Observe now that m + m′ = |P|
2 � 8.

In particular, we have min{m, m′} � 4. Therefore, we deduce from the
inequalities above that for each i = 1, . . . , m, we have

d(c,−βi) � d(c,−β1) �
d(c, α) − 1

4
� 4n − 1

3
.

By the induction hypothesis, it follows that for each γ ∈ ]−α, β[= [−α, β]\
{−α, β}, the root subgroup Uγ fixes the ball B(c, n − 1) pointwise.
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Now, for any g ∈ U−α, we have g(x) = [g, u−1]u−1gu(x) = [g, u−1](x)
because g ∈ U−α fixes B(c, n −1) pointwise. Moreover, we have [g, u−1] ∈
U]−α,β[ = 〈Uγ | γ ∈ ]−α, β[〉 by (TRD1). Therefore, the commutator
[g, u−1] fixes u(x) and we have

g(x) = [g, u−1](x) = ([[g, u−1], u−1])u−1[g, u−1]u(x)

= [[g, u−1], u−1](x).
Repeating the argument m times successively, we finally obtain g(x) =
[. . . [[g, u−1], u−1], . . . , u−1](x) where the commutator is iterated m times.
By (TRD1), we have [. . . [[g, u−1], u−1], . . . , u−1] ∈ U]β1,β[, which is trivial
since ]β1, β[ is empty. Therefore, we deduce finally that g fixes x, as desired.

�
Lemma 6. Suppose that Λ is a split Kac–Moody group and that {Uα}α∈Φ is
its natural system of root subgroups. Then the twin root datum (Λ, {Uα}α∈Φ)
satisfies (PP).

Proof. This follows by combining [54, Theorem 2] with some results
from [7] (see also [72, Sect. 3.2]). In order to be more precise, we freely use
the notation and terminology of these references in the present proof. In par-
ticular, we use the ‘linear’ root system of the Lie algebra associated with the
Kac–Moody group Λ, instead of the ‘abstract’ root system introduced above
and which is appropriate to the case of general twin root data. A compre-
hensive introduction to linear root systems can be found in [53, Chapt. 5].

Commutation relations in split Kac–Moody groups are described pre-
cisely by [54, Theorem 2]. Combining the latter result together with
[7, Proposition 1], one sees easily that if {α, β} is a prenilpotent pair such
that 〈rα, rβ〉 is infinite and [Uα, Uβ] �= {1}, then [Uα, Uβ] � Uα+β and
the α-string through β is of length � 5 and contains exactly 4 real roots,
which are β − 〈β, α∨〉α, β − (〈β, α∨〉 − 1)α, β and β + α. In particular,
β + 2α is not a root, whence {−α, α + β} is W-conjugate to a Morita pair
by [7, Proposition 3(i)]. In particular, we have 〈−α, (α + β)∨〉 = −1 by
[7, Proposition 2]. We deduce that

rα+β(−α) = −α + 〈−α, (α + β)∨〉(α + β) = β.

Finally, since 2α + β is not a root, it follows from [54, Theorem 2] that
[Uα, Uα+β] = {1}. Hence property (PP) holds, as desired. �
Lemma 7. Suppose that Λ is an almost split Kac–Moody group and that
{Uα}α∈Φ is its natural system of root subgroups. Then the twin root datum
(Λ, {Uα}α∈Φ) satisfies (FPRS).

Proof. A reference for almost split Kac–Moody groups is [62,Chap. 11–13].
Let K be the ground field of Λ, let Ks be a separable closure of K, let
Γ = Gal(Ks/K) and let Λ̃ be a split Kac–Moody group over Ks, such that
Λ is the fixed point set of a Γ-action on Λ̃. We henceforth view Λ as a sub-
group of Λ̃. We denote by (Ũα)α∈Φ̃ the natural system of root subgroups of
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Λ̃ and by (B̃+, B̃−) the twin building associated with the twin root datum
(Λ̃, (Ũα)α∈Φ̃). By [62, Théorème 12.4.4], the twin building (B+,B−) is
embedded in a Λ-equivariant way in (B̃+, B̃−), as the fixed point set of
Γ-action on (B̃+, B̃−). This embedding maps chambers of (B+,B−) to K-
chambers of (B̃+, B̃−), which are minimal Γ-invariant spherical residues.
Let r be the rank of such a spherical residue. Two K-chambers are adjacent
(as chambers of (B+,B−)) if they are contained in a common spherical
residue of rank r +1 and either coincide or are opposite in that residue. This
shows that bounded subsets of (B+,B−) are also bounded in (B̃+, B̃−) and,
moreover, that every ball of large radius in (B̃+, B̃−) which is centered at
a point of a K-chamber contains a ball of large radius of (B+,B−).

Let (αn)n�0 be a sequence of roots of Φ = Φ(A) such that d(c+, αn)
tends to infinity with n. We must prove that r(U−αn ) also tends to infinity
with n. We choose the base chamber c̃+ of (B̃+, B̃−) such that it is contained
in the K-chamber c+, and denote by r̃(H) the supremum of the radius of
a ball centered at c̃+ which is pointwise fixed by H . In view of the preceding
paragraph, it suffices to show that r̃(U−αn ) tends to infinity with n. To this
end, we will use the fact that (Λ̃, (Ũα)α∈Φ̃) satisfies property (FPRS) by
Lemmas 5 and 6. Let β ∈ Φ be a K-root and consider the root subgroup Uβ.
Let x, y be two adjacent K-chambers such that β contains x but not y. Let
Φ̃(β) be the set of (Ks-)roots containing x but not y; it is independent of
the choice of x and y. Furthermore Φ̃(β) is a prenilpotent subset of Φ̃ and
Uβ ⊂ ŨΦ̃(β) = 〈Ũγ | γ ∈ Φ̃(β)〉 by [62, §12.4.3]. Therefore, in order to
finish the proof, it suffices to show that min{d( c̃+, γ) | γ ∈ Φ̃(αn)} tends to
infinity with n.

Assume for a contradiction that this is not the case. Then there exists
a subsequence (αnj ) j�0 and an element γj ∈ Φ̃(αnj ) such that d( c̃+, γj) is
a bounded function of j. Since the apartments are locally finite, it follows
that, up to extracting a subsequence, we may – and shall – assume that γj
is constant. On the other hand, we claim (and prove below) that if α, α′
are two distinct K-roots, then the sets Φ̃(α) and Φ̃(α′) are disjoint; this
implies that the sequence (αnj ) j�0 is constant, contradicting the fact that
d(c+, αnj ) tends to infinity with j. It remains to prove the claim. This is most
easily done using the notion of (combinatorial) projections in buildings.
Let π (resp. π ′) be a K-panel stabilized by the K-reflection rα (resp. rα′).
Thus π and π ′ are spherical residues of B̃+ of rank r + 1. Note that
projπ(π ′) (resp. projπ′(π)) contains a K-chamber. Furthermore, given any
γ ∈ Φ̃(α) ∩ Φ̃(α′), the (Ks-)reflection rγ stabilizes both π and π ′, but
it does not stabilize any K-chamber. Therefore projπ(π ′) (resp. projπ′(π))
cannot be reduced to a single K-chamber; since projπ(π ′) (resp. projπ′(π))
is a sub-residue of π (resp. π ′), it must be of rank r + 1, which yields
projπ(π ′) = π (resp. projπ′(π) = π ′). In other words the K-panels π and π ′
are parallel. Since rα stabilizes any K-panel which is parallel to π by [23,
Proposition 2.7], this implies that the K-reflections rα and rα′ stabilize
a common K-panel. Since α �= α′, we deduce that α = −α′, which implies
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that Φ̃(α) = −Φ̃(α′) = {−γ | γ ∈ Φ̃(α′)}. In particular, the sets Φ̃(α) and
Φ̃(α′) are disjoint, a contradiction. �
Lemma 8. Suppose that Λ satisfies condition (2-sph) and that all root
groups are finite. Then property (FPRS) holds.

Remark. It appears that the proof given below uses the finiteness of the root
subgroups in exactly one place, in order to show that U+ is pro-nilpotent
in the building topology. It turns out that this holds in the general case
of groups satisfying (2-sph), without any assumption on the cardinality
of the root subgroups (recall from the Remark following Proposition 3 that
condition (2-sph) is necessary for this to hold). However, although in the case
of finite root subgroups, this will be established in an elementary way using
the fact that finite p-groups are nilpotent, the infinite case is more delicate
and requires B. Mühlherr’s embedding theorem (see [56] and references
therein), showing that any group satisfying (2-sph) admits a geometric
embedding in some split Kac–Moody group. The desired assumption then
follows from the fact that in the case of Kac–Moody groups, the group U+
is always pro-nilpotent in the building topology.

In fact, since split Kac–Moody groups satisfy (FPRS) by Lemmas 6
and 5, Mühlherr’s embedding theorem may be used to deduce directly that
groups satisfying (2-sph) also satisfy (FPRS), as was done in the proof of
Lemma 7.

In order to keep the paper reasonably self-contained, we shall content
ourselves with a detailed proof in the case of finite root subgroups, without
appealing to the aforementioned embedding theorem. This is in fact the
only relevant case for all the applications discussed in the rest of the paper.

Proof. As before, we denote by (W, S) the Coxeter system consisting of the
Weyl group W together with its canonical generating set S. If (W, S) is not
of irreducible type, then the buildings B+ and B− split into direct products
of irreducible components, and it is easy to see that checking (FPRS) for
the Λ-action on B+ is equivalent to checking (FPRS) for the induced action
on each irreducible component. We henceforth assume that (W, S) is of
irreducible type. If W is finite, then there is no sequence of roots (αn)n�0
such that d(c+, αn) tends to infinity with n. Assume now that W is infinite;
in particular (W, S) is of rank � 3. Consider a sequence of roots (αn)n�0
such that d(c+, αn) tends to infinity with n. We must prove that r(U−αn )
tends to infinity with n.

Given any two basis roots α, α′, there exists a sequence of basis roots
α = α0, α1, . . . , αk = α′ such that rαi−1 does not commute with rαi for
i = 1, . . . , k because (W, S) is irreducible. This implies that each rank two
subgroup Xαi−1,αi = 〈U±αi−1 , U±αi 〉 is endowed with a twin root datum of
irreducible spherical type and rank 2, since (W, S) is 2-spherical. By the
classification of such groups [75], it follows that Uαi−1 and Uαi are both
pi-groups (of nilpotency degree ≤ 3) for some prime pi . Since this is true
for each i, we have pi = pi−1, whence the sequence (pi) is constant. This
shows that there exists a prime p such that each root group is a finite p-group.
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By Proposition 3(i), it follows that U+ is pro-p, whence pro-nilpotent. In
particular, the descending central series (U (n)

+ )n�0 tends to the identity in
the building topology when n → +∞. In other words, this means that
for each k there is some n such that the group U (n)

+ acts trivially on the
ball of radius k centered at the base chamber c+. Therefore, in order to
finish the proof, it suffices to show that limn→+∞ q(−αn) = +∞, where
q(α) = max{n � 0 : Uα � U (n)

+ } for each positive root α ∈ Φ+.
For each integer n � 0, we set Φn+ = {α ∈ Φ+ : q(α) = n}. We

claim that each Φn+ is finite. By assumption, for every n there exists n′
such that the set {αj : j � n′} does not contain any element of Φn+, the
desired assertion follows from the claim. In order to prove the claim, we
proceed by induction on n. We first need to recall a consequence of condi-
tion (2-sph).

A pair {α, β} ⊂ Φ+ is called fundamental if the following conditions
hold:

(FP1) The group 〈rα, rβ〉 is finite.
(FP2) For each γ ∈ Φ+ such that the group 〈rα, rβ, rγ 〉 is dihedral, we have

γ ∈ [α, β]. In other words, this means that the pair {α, β} is a basis
of the root subsystem it generates.

We have the following:

(a) Let {α, β} ⊂ Φ+ be a fundamental pair. Then, for all γ ∈ ]α, β[, we
have Uγ � [Uα, Uβ] by [1, Proposition 7].

(b) Let γ ∈ Φ+ be a root such that d(c+,−γ) > 1. Then there exists a fun-
damental pair {α, β} ⊂ Φ+ such that γ ∈ ]α, β[. This follows from
[14, Lemma 1.7] together with the fact that (W, S) is 2-spherical.

We now prove by induction on n that Φn+ is finite. The set Φ0+ coincides
with Π. Indeed, for each simple root α ∈ Π, the group Uα fixes c+ but
acts non-trivially on the chambers adjacent to c+. Since on the other hand,
the derived group U (1)

+ fixes the ball B(c+, 1) pointwise, we deduce that Uα

is not contained in U (1)
+ , whence q(α) = 0. Thus Π ⊂ Φ0+. Conversely, if

α ∈ Φ+ does not belong to Π, then d(c+,−α) > 1 and property (a) implies
that Uα � U (1)

+ . Thus q(α) � 1 and α �∈ Φ0+. This shows that Φ0+ = Π. In
particular Φ0+ is finite.

Let now n � 1 and assume that Φk+ is finite for all k < n. We must
prove that Φn+ is finite. Let us enumerate its elements: Φn+ = {γ1, γ2, . . . }.
Since n � 1 and since Φ0+ = Π, we have d(c+,−γi) > 1 for all i � 1.
Hence, by property (b), for each i there is a fundamental pair {αi, βi} such
that γi ∈ ]αi, βi[. By property (b), this implies Uγi < [Uαi , Uβi ]. Therefore,
we have n = q(γ) > max{q(αi), q(βi)}. In particular:

⋃

i>0

{αi, βi} ⊂
n−1⋃

k=0

Φk
+.
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The set
⋃

i>0 {αi, βi} is thus finite. By the definition of the γi’s, we have

Φn
+ ⊂

⋃

i>0

]αi, βi[.

Since each interval ]αi, βi[ is finite [62, 2.2.6], this shows that Φn+ is finite.
�

This concludes the proof of Proposition 4.

2.2. Density of the commutator subgroup. As before, (Λ, {Uα}α∈Φ) is
a twin root datum of type (W, S) and (B+,B−) is the associated twin
buildings. We assume moreover, for the rest of this section, that all root
groups are finite.

Lemma 9. Assume that property (FPRS) holds, that the Weyl group W is
infinite and that the associated Coxeter system (W, S) is irreducible. If Λ is
generated by its root subgroups, then the commutator subgroup [Λ+,Λ+]
is dense in Λ+.

Remark. If each rank one subgroup Xα = 〈Uα ∪ U−α〉 of Λ is perfect and
if Λ is generated by its root subgroups, then [Λ+,Λ+] ⊃ Λ and, hence,
[Λ+,Λ+] is dense in Λ+. However, there are many examples of groups
endowed with a twin root datum satisfying (FPRS) but whose rank one sub-
groups are not perfect, e.g. Kac–Moody groups over F2 or F3, or twin build-
ing lattices as in Sect. 1.1(II) where the rank one subgroups may be solvable.

Proof. Let ϕ : Λ+ → G be a continuous homomorphism to an abelian
topological group G. Let Π be the standard root basis of Φ, where Φ is the
root system of (W, S) indexing the twin root datum of Λ. For each α ∈ Π,
let Xα = 〈Uα ∪ U−α〉.

Assume by contradiction that ϕ is nontrivial. Since Λ = 〈Uα | α ∈ Φ〉 =
〈Uα | ± α ∈ Π〉, it follows that there is some α ∈ Π such that ϕ(Uα) is
nontrivial. Let u ∈ Uα be such that ϕ(u) �= 1. Since W is infinite and (W, S)
is irreducible, there exists β ∈ Φ such that α ∩ β = ∅ [37, Proposition 8.1
p. 309]. Let t = rβrα ∈ W and αn = tn(α) for all n � 0. By definition, we
have limn→+∞ d(c+,−αn) = +∞. Let τ ∈ N be such that ν(τ) = t ∈ W ,
where ν : N → N/T = W is the canonical projection. For each n � 0, let
un = τn.u.τ−n . Since G is abelian, we have ϕ(un) = ϕ(u) �= 1 for all n.
On the other hand, by definition un ∈ Uαn and, hence limn→+∞ un = 1 by
(FPRS). This contradicts the continuity of ϕ. �

The following lemma will be used again below, in order to establish
restrictions on finite quotients of a group endowed with a twin root datum.

Lemma 10. Let (X, {Uα, U−α}) be a twin root datum of rank one. We have
the following:

(i) The group X is not nilpotent.
(ii) Given a homomorphism ϕ : X → G whose kernel does not centralize

Xα = 〈Uα ∪ U−α〉, we have ϕ(Uα) = ϕ(U−α).
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Proof. We identify the building B associated with the twin root datum
(X, {Uα, U−α}) with the conjugacy class {gUαg−1}g∈X of Uα in X, on
which X acts by conjugation. The axioms of a root datum imply that there
exists n ∈ Xα such that nUαn−1 = U−α and that Uα acts simply transitively
on the X-conjugates of Uα different from Uα itself; the latter conjugates can
be described as the subgroups uU−αu−1 for u varying in Uα. Let g ∈ X
act trivially on B. We deduce first that g normalizes Uα and U−α and then
from the previous simple transitivity property, we deduce that g actually
centralizes Uα. Therefore, up to switching α and −α, we deduce that the
kernel of the X-action on the building is the centralizer Z X(Xα).

(i). This implies that the group Xα is not nilpotent: up to dividing Xα by
its center, we obtain a group endowed with a twin root datum of rank one
which acts faithfully on the associated building, and is therefore center-free.

(ii). Since (X, {Uα, U−α}) is a twin root datum of rank one, the group X
acts 2-transitively, hence primitively, on the conjugacy class B of Uα in X.
The preliminary remark shows that the kernel of the X-action on B is
Z X(Xα), so from the assumption on Ker(ϕ) and the previous primitivity
property, we deduce that Ker(ϕ) acts transitively on B. In particular, this
proves that ϕ(Uα) = ϕ(U−α). �
2.3. Topological simplicity. The following proposition is an improvement
of the topological simplicity theorem of [63] (see also [26, Theorem 3.2]).
We also note that, under some additional assumptions, topological com-
pletions of Kac–Moody lattices have recently been shown to be abstractly
simple by L. Carbone, M. Ershov and G. Ritter [26].

Proposition 11. Let (W, S) be an irreducible Coxeter system of non-spher-
ical type with associated root system Φ. Let (Λ, {Uα}α∈Φ) be a twin root
datum of type (W, S) with finite root groups and let Λ+ be its positive
topological completion. We assume that the root groups are all solvable
and that [Λ+,Λ+] is dense in Λ+. Then:

(i) Every closed subgroup of Λ+ normalized by Λ† either contains Λ†

or centralizes Λ†. In particular, the group Λ
†
+/Z(Λ†) is topologically

simple.
(ii) Let J be an irreducible non-spherical type in S and let GJ be the closure

in Λ+ of the group generated by the root groups indexed by the simple
roots in J and their opposites. Assume that [GJ , GJ ] is dense in GJ .
Then any proper closed normal subgroup of GJ is contained in the
center Z(GJ ).

Remark. This is the opportunity to correct a mistake in [63, Prop-
osition 2.B.1(iv)]. The factor groups there are not topologically simple
but simply have property (ii) above: their proper closed normal subgroups
fix inessential buildings, but this does not seem to imply easily that the
whole ambient building is fixed. This does not affect the rest of the paper.
The second author thanks M. Ershov for pointing out this mistake to him.
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Proof. For both (i) and (ii), the proof is an easy “topological” adaptation of
the “abstract” arguments from Bourbaki. The argument is provided in detail
in [25, §7.2]; here, we sketch the proof of (ii). The essential point is that the
group U+, and hence also GJ ∩ U+, is pro-solvable by Proposition 3(ii).
Let H be a normal subgroup of GJ not contained in the center. As the
closure of a Levi subgroup, GJ has an irreducible Tits system, with Borel
subgroup B̂+ ∩ GJ . Therefore, by Tits’ transitivity lemma [11, Lemma 2
of Sect. IV.2.7], we have: GJ = H.(B̂+ ∩ GJ ). Since GJ is topologically
generated by the root groups indexed by the simple roots in J , we can even
obtain GJ = H.(Û+ ∩ GJ ). It follows that GJ/H � (Û+ ∩ GJ )/(Û+ ∩ H).
Since GJ is assumed to be topologically perfect, so is GJ/H . But Û+ is pro-
solvable, hence the derived series of Û+ ∩ GJ meets any open neighborhood
of the identity in Û+ ∩ GJ . This implies that the only topologically perfect
continuous quotient of Û+ is the trivial one, hence H = GJ . �

3. Non-affine Coxeter groups

This section is mainly Coxeter theoretic. We prove that in any non-affine
infinite Coxeter complex, given any root there exist two other roots such
that any two roots in the so-obtained triple have empty intersection. Such
a triple is called a fundamental hyperbolic configuration and used in the
next section to prove strong restrictions on finite index normal subgroups
for twin root data.

3.1. Parabolic closure. Let (W, S) be a Coxeter system. Given a subset R
of W , we denote by Pc(R) the parabolic closure of R, namely the intersec-
tion of all parabolic subgroups of W containing R. This notion is defined
in D. Krammer’s Ph.D. thesis [42]. It is itself a parabolic subgroup which
can be characterized geometrically as follows. Let C be the Coxeter com-
plex associated with (W, S). Given R ⊂ W and any simplex ρ of maximal
dimension stabilized by 〈R〉, we have: Pc(R) = StabW(ρ).

By a Euclidean triangle group, we mean a reflection subgroup of
Isom(E2) which is the automorphism group of a regular tessellation of
the Euclidean plane E2 by triangles. Recall that there are three isomorph-
ism classes of such groups, corresponding respectively to tessellations by
triangles with angles (π

3 , π
3 , π

3 ), (π
2 , π

4 , π
4 ), (π

2 , π
3 , π

6 ).

Lemma 12. Let (W, S) be a Coxeter system and let r, s be reflections in W.
Assume that the product τ = rs is of infinite order. Then the following holds.

(i) The Coxeter diagram of Pc(τ) is irreducible.
(ii) The reflections r and s belong to Pc(τ).
(iii) Let t be a reflection which does not centralize τ and such that 〈r, s, t〉

is isomorphic to a Euclidean triangle group. Then t belongs to Pc(τ).
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Proof. We first prove that (ii) implies (i). Let us assume that (ii) holds. By
a suitable conjugation in W , we may – and shall – assume that Pc(τ) = WJ
for some subset J ⊆ S. Let Jr be the connected component of J such
that the irreducible factor WJr contains r. If s did not belong to WJr then r
and s would generate a subgroup isomorphic to Z/2Z×Z/2Z, contradicting
that τ is of infinite order. Therefore s ∈ Jr and by definition of the parabolic
closure we have J = Jr .

Suppose (ii) fails. Without loss of generality, this means that r �∈ Pc(τ).
Let C be the Coxeter complex associated with (W, S) and ρ be a simplex of
maximal dimension which is stabilized by 〈τ〉. Since r �∈ Pc(τ), it follows
that ρ is contained in the interior of one of the two half-spaces determined
by r. Let α be this half-space. We have ρ ⊂ α, and hence ρ ⊂ ⋂

n∈Z τn.α
because ρ is τ-invariant. This is absurd since

⋂
n∈Z τn.α is empty.

The proof of (iii) is similar. Let t be a reflection which does not cen-
tralize τ and such that 〈r, s, t〉 is isomorphic to a Euclidean triangle group.
Let β be any of the two half-spaces associated with t. Using the fact that τ
does not centralize t, it is immediate to check in the Euclidean plane that the
intersection

⋂
n∈Z τn.β is empty. Hence the same argument as in the proof

of (ii) can be applied and yields t ∈ Pc(τ). �
We also need the following result due to D. Krammer. It is a first evi-

dence that non-affine infinite Coxeter groups have some weak hyperbolic
properties.

Proposition 13. Let (W, S) be an irreducible, non-affine Coxeter system.
Let w ∈ W be such that Pc(w) = W. Then the cyclic group generated by w
is of finite index in its centralizer.

Reference. This is [42, Corollary 6.3.10]. �
Remark. This result is of course false for affine Coxeter groups whose
subgroup of translations is isomorphic to Zn with n � 2, since the centralizer
of any translation in such a group contains the translation subgroup.

3.2. Fundamental hyperbolic configuration. The non-linearity proof in
[63, §4] makes crucial use (for a very specific case of Weyl groups) of
the fundamental hyperbolic configuration defined in the introduction of this
section. We prove here that the Coxeter complex of any infinite non-affine
irreducible Coxeter group contains many such configurations. Note that
an affine Coxeter complex does not contain any fundamental hyperbolic
configuration. We do not assume the generating set S to be finite.

Theorem 14. Let (W, S) be an irreducible non-affine and non-spherical
Coxeter system and let C be the associated Coxeter complex. Let α, β be
two disjoint non-opposite root half-spaces of C. Then there exists a root
half-space γ such that γ ∩ α = γ ∩ β = ∅.

Proof. Let us first deal with the case when S is infinite. The pair {rα, rβ}
is contained in a finitely generated standard parabolic subgroup of W : take
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explicit (minimal) writings of rα and rβ in the generating system S; the
union of all elements used in these writings defines a finite non-spherical
subdiagram. Up to adding a finite number of vertices to this subdiagram,
we may assume that it is irreducible and non-affine. The corresponding
standard parabolic subgroup of W is finitely generated and contains rα

and rβ.
We henceforth assume that the generating system S is finite and denote

by |S| its cardinality. We prove the assertion by induction on |S|. The
roots α and β being non-opposite, the corresponding reflections rα and rβ

generate an infinite dihedral subgroup in W . This excludes |S| = 1 and
|S| = 2, except possibly when the two vertices are connected by an edge
labelled by ∞. But since the latter diagram is affine, the induction starts at
|S| = 3.

Assume first that |S| = 3, i.e. that the Coxeter diagram of (W, S) is a tri-
angle. Denoting by a, b and c the labels of its edges, we have a, b, c � 3,
and also 1

a + 1
b + 1

c < 1 because (W, S) is non-affine. Let H2 denote
the hyperbolic plane and let T be a geodesic triangle in H2 of angles
π
a , π

b and π
c (an angle equal to 0 correspond to a vertex in the boundary

of H2). It follows from Poincaré’s polyhedron theorem that the reflec-
tion group generated by T is isomorphic to W and that the so-obtained
hyperbolic tiling is a geometric realization of the Coxeter complex of
(W, S) [47, Sect. IV.H]. Thanks to this geometric realization, the result
is then clear when |S| = 3.

Assume now that |S| > 3 and that the result is proved for any Coxeter
system as in the theorem and whose canonical set of generators has less
than |S| elements. Denote by τ the infinite order element rαrβ . Using a suit-
able conjugation, we may – and shall – assume that Pc(τ) is standard
parabolic, i.e. Pc(τ) = WJ for some J ⊆ S. According to Lemma 12, the
Coxeter system (WJ, J) is irreducible by (i) and we have rα, rβ ∈ WJ by (ii).
Then two cases occur.

The first case is when (WJ , J) is non-affine. By the induction hypothesis,
we only have to deal with the case J = S and WJ = W . If all canonical
generators in S centralized τ , then we would have W = ZW(τ); but τ cannot
be central in W since τ = rαrβ does not centralize rα and rβ. Therefore
there exists a reflection t ∈ S such that t does not centralize τ . Let T be the
subgroup generated by t, rα and rβ. If T were isomorphic to a Euclidean
triangle group, then ZT (τ) would contain a free abelian group of rank 2. This
is impossible by Proposition 13. Therefore, T is isomorphic to a hyperbolic
triangle group and we can conclude as in the case |S| = 3.

The remaining case is when (WJ , J) is affine. Then J is properly con-
tained in S because W is non-affine and there exists an element s ∈ S \ J
which does not normalize WJ . In particular s does not centralize τ because
Pc(τ) = WJ . Let T ′ be the subgroup generated by s, rα and rβ . If T ′ is
isomorphic to a Euclidean triangle group, then Lemma 12 (iii) implies that
s ∈ WJ , which is excluded. Thus T ′ is isomorphic to a hyperbolic triangle
group and we are again reduced to the case |S| = 3. �
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4. Simplicity of twin building lattices

As mentioned in the introduction, the proof of the main simplicity theorem
applies to the general setting of twin building lattices: the only required
assumption is that root groups are nilpotent (see Theorem 19). The proof
splits into two parts, each of which is presented in a separate subsection
below. These two parts have each their own specific hypotheses and are
each of independent interest.

4.1. Finite quotients of groups with a twin root datum. Here, we prove
strong restrictions on finite index normal subgroups of a group endowed
with a twin root datum, under the assumption that root groups are nilpotent.
These conditions are fulfilled by Kac–Moody groups over arbitrary fields
since their Levi factors are abstractly isomorphic to reductive algebraic
groups.

Theorem 15. Let (W, S) be a Coxeter system with associated root system Φ
and let Π be the root basis associated to S. Let G be a group endowed with
a twin root datum {Uα}α∈Φ indexed by Φ. Suppose that:

(1) The Coxeter system (W, S) is irreducible, non-spherical and non-affine;
(2) For any α ∈ Π, the root group Uα is nilpotent.

Let H be a normal subgroup of G such that N/T.(N ∩ H) is finite. Let G†

be the subgroup of G generated by the root groups, let H† = H ∩ G†, let
π : G† → G†/H† be the canonical projection and for each α ∈ Π, denote
by fα the inclusion Uα → G†. Then the composed map:

∏
α∈Π Uα −−−→∏

fα
G† −−−→

π
G†/H†

is a surjective homomorphism. In particular, the group G†/H† is nilpotent.

Remark. The finiteness of N/T.(N ∩ H) is automatically satisfied when H
has finite index in G.

Proof. We identify the elements of Φ with the half-spaces of the Davis
complex A associated with (W, S). We set h = [N : T.(N ∩ H)].

Let α be an arbitrary root. By [37, Proposition 8.1, p. 309] there is
a root η such that α ∩ η = ∅. The product τ = rηrα has infinite order. We
set β = τh.(−α) ∈ Φ. We have β ⊂ η and, hence, the roots α and β are
disjoint (see Fig. 1). By Theorem 14, there exists a root ξ ∈ Φ such that
α ∩ ξ = η ∩ ξ = ∅. In particular β ∩ ξ = ∅. Again the product τ ′ = rξrβ

has infinite order. We set γ = (τ ′)h .(−β).
By construction, we have γ ⊂ ξ (see Fig. 1). Hence the roots α, β

and γ are pairwise disjoint. Therefore it follows from Assumption (2) and
Proposition 3(iii) that the group U ′ = 〈Uα ∪ U−γ 〉 is nilpotent, and so is its
image π(U ′). But by (TRD2) we have

Uβ = τhU−ατ
−h and U−γ = (τ ′)hUβ(τ

′)−h.
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η

ξ

α

τ = rη ◦ rα

β = (τ)h.(−α)

τ = rξ ◦ rβ

γ = (τ ′)h.(−β)

Fig. 1 Proof of Theorem 15

Note that N/T.(N ∩ H) is the quotient of the Weyl group W = N/T induced
by H � G. Since h is the order of the quotient N/T.(N ∩ H), applying π
provides π(U−α) = π(Uβ) = π(U−γ ), which implies

π(U ′) = 〈π(Uα) ∪ π(U−α)〉 = π(Xα).

This shows that π(Xα) is a nilpotent group.
Note that (Xα, {Uα, U−α}) is a twin root datum of rank one. By

Lemma 10(i), the group Xα is not nilpotent and, hence, Xα∩H = Ker(π|Xα
)

is not central in Xα. Therefore, we have π(Uα) = π(U−α) by Lemma 10(ii).
Finally, for any two distinct roots α, β ∈ Π, we have [Uα, U−β] = 1

by axiom (TRD1). In view of the preceding paragraph, this implies that
[π(Uα), π(Uβ)] = 1 for all distinct α, β ∈ Π. The desired result follows by
noticing that G† is generated by

⋃
±α∈Π Uα. This is easily seen using axiom

(TRD2) of twin root data to produce elements in N and then to conjugate
the simple root groups by these elements to produce any desired root group.

�
The following corollary applies to all split and almost split Kac–Moody

groups over finite fields.

Corollary 16. Let G be a group as in Theorem 15, maintain the assumptions
(1) and (2) and assume moreover that root groups are finite. Here we let
H† denote the intersection of all finite index normal subgroups of G†.
Then

[G† : H†] �
∏

α∈Π

|Uα|.
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Furthermore, we have H† = G† whenever one of the following holds:

(3) Each group Xα, α ∈ Π, is a finite group of Lie type and the minimal
order qmin = min{|Uα| : α ∈ Π} > 3;

(4) The Coxeter system (W, S) is 2-spherical, i.e. every 2-subset of S gen-
erates a finite group, and qmin > 2;

(5) The Coxeter system (W, S) is simply laced, i.e. every 2-subset of S
generates a group of order 4 or 6.

Remark. The above group H† is contained in any finite index subgroup
of G.

Proof. Let H be a finite index normal subgroup in G†. Applying The-
orem 15 to G† we see that the index [G† : H] is uniformly bounded, so
that finite index subgroups of G† are finite in number. This implies that
the intersection defining H† is finite, so that H† is itself a finite index sub-
group. It remains to apply again Theorem 15 to obtain the desired bound on
[G† : H†].

If condition (3) holds, then each Xα is perfect (in fact: simple modulo
center), so admits no non-trivial nilpotent quotient. We combine this remark
with Theorem 15 applied to G†: this shows that the image of each sub-
group Xα is trivial in G†/H†. Since G† is generated by the subgroups Xα,
this implies the equality H† = G†. Similarly, if (4) or (5) holds then
for each α ∈ Π there exists β ∈ Π − {α} such that Xα,β = 〈Xα, Xβ〉
is a rank 2 finite group of Lie type. All such groups are perfect except
B2(2) and G2(2) (which contain both a simple subgroup of index 2).
Since (4) implies qmin > 2 and (5) implies that Xα,β is of type A2, the
group Xα,β is isomorphic to neither of the latter groups and we have again
H† = G†. �

Theorem 15 and its corollary imply that any split Kac–Moody group
over a finite field of irreducible non-spherical and non-affine type, admits at
most a finite number of finite quotients, which are necessarily abelian since
so are root groups in the split case. Then Λ/Λ† is a quotient of a finite split
torus, that is a quotient of finitely many copies of the multiplicative group
of the finite ground field.

Furthermore, if the ground field is of cardinality at least 4 and if the
group is generated by its root groups, e.g. because it is simply connected,
then all finite quotients are trivial.

We close this subsection with an example of a Kac–Moody group which
admits nontrivial finite quotients when the ground field is F2 or F3. We set
I = {1, 2, 3} and consider the generalized Cartan matrix

A = (Aij )i, j∈I =
(

2 −2 −2
−2 2 −2
−2 −2 2

)

.

Let GA be the simply connected Tits functor of type A [71, 3.7.c]. We
set Λ = GA(F2). For each i ∈ I , we let ϕi : SL2(F2) → Λ be the
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standard homomorphism [71, §2 and Sect. 3.9] and let fi : SL2(F2) →
F2 be the surjective homomorphism defined by fi

(
1 1
0 1

) = fi

(
1 0
1 1

) = 1.
Using the defining relations of Λ [62, §8.3], we see that there is a unique
homomorphism f : Λ → ∏

i∈I F2 such that f ◦ (
∏

i∈I ϕi) = ∏
i∈I fi . By

the definition of fi , the homomorphism f is surjective.

4.2. Non-arithmeticity. For the next statement we recall that for a group
inclusion A < B, the commensurator of A in B, denoted CommB(A),
consists of the elements b ∈ B such that A and bAb−1 share a finite index
subgroup. According to a well-known theorem of G. Margulis, a lattice in
a semisimple Lie group is arithmetic if and only if its commensurator is
dense in the ambient Lie group [77, Th. 6.2.5].

Corollary 17. Let Λ be a group as in Theorem 15. Suppose moreover that
assumption (3) of Corollary 16 holds and let Λ+ (resp. Λ−) be the posi-
tive (resp. negative) topological completion of Λ. Then the commensurator
CommΛ+×Λ−(Λ†) is a discrete subgroup of Λ+ × Λ−.

Proof. Recall that Λ† is viewed here as a diagonal subgroup of Λ+ × Λ−. By
Corollary 16, the commensurator CommΛ+×Λ−(Λ†) is equal to the normal-
izer NΛ+×Λ−(Λ†) because any finite index subgroup of a given group con-
tains a finite index normal subgroup. Furthermore, the centralizer ZΛ+(Λ†)

(resp. ZΛ−(Λ†)) is nothing but the kernel of the Λ+-action (resp. Λ−-
action) on the positive (resp. negative) building associated with Λ. By
Proposition 1(iii), we have ZΛ+(Λ†) = ZΛ(Λ†) (resp. ZΛ−(Λ†) = ZΛ(Λ†)).
Therefore, we have an exact sequence:

1 −→ ZΛ(Λ†) × ZΛ(Λ†) −→ NΛ+×Λ−(Λ†) −→ Aut(Λ†).

This yields an exact sequence

1 −→ (
ZΛ(Λ†) × ZΛ(Λ†)

)
.Λ† −→ NΛ+×Λ−(Λ†) −→ Out(Λ†),

where Out(Λ†) = Aut(Λ†)/ Inn(Λ†) is the outer automorphism group.
By [23, Corollary B], the group Out(Λ†) is finite. Since (ZΛ(Λ†) ×
ZΛ(Λ†)).Λ† is a discrete subgroup of Λ+ × Λ− by Propositions 1(iii) and 2,
it finally follows that CommΛ+×Λ−(Λ†) = NΛ+×Λ−(Λ†) is discrete as well.

�
Remark. In fact, the non-existence of any proper finite index subgroup for Λ
implies that its group of abstract commensurators coincides with Aut(Λ),
which by [23, Corollary B] is a finite extension of Λ.

4.3. Normal subgroup property. In view of Corollary 16, the comple-
mentary property necessary in order to obtain simplicity of the group H†
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(modulo center) is that any non-central normal subgroup has finite index.
This is called the normal subgroup property and is well-known for irre-
ducible higher rank lattices in Lie groups [45, Th. IV.4.9]. The general-
ization to irreducible cocompact lattices in products of topological groups
follows from work by U. Bader and Y. Shalom, following Margulis’ gen-
eral strategy (see [67] and mostly [5, Introduction] for an explanation
of the substantial differences with the classical case). In the attempt of
adapting these results to Kac–Moody groups over finite fields, one has
to overcome the fact that Kac–Moody lattices are never cocompact. This
was done in [64] by proving that one can find a fundamental domain D
for Λ in Λ+ × Λ− with respect to which the associated cocycle is square
integrable.

The following result is a restatement of the normal subgroup theorem
proved in [5] and [64], in the general framework of twin building lattices.

Theorem 18. Let (Λ, {Uα}α∈Φ) be a twin root datum of type (W, S). We
assume that:

(NSP1) Each root group Uα is finite.
(NSP2) With the notation of Sect. 1.3, the series W(1/qmin) converges.

Then any subgroup of Λ which is normalized by Λ†, either centralizes Λ†

or contains a finite index subgroup of Λ†.

Remarks. 1. There is no condition excluding affine diagrams. Indeed, Kac–
Moody groups of affine type are {0,∞}-arithmetic groups and as such are
irreducible lattices in higher-rank algebraic groups: this case was already
covered by Margulis’ theorem.

2. As pointed out to us by M. Burger, an infinite group with the normal
subgroup property cannot be hyperbolic since it is incompatible with SQ-
universality, the property that any countable group embeds in a suitable
quotient of the group under consideration. Any non-elementary hyperbolic
group is SQ-universal [29,59]. The fact that no Kac–Moody group can be
hyperbolic can also be derived from the specific property that Kac–Moody
groups over finite fields contain infinitely many conjugacy classes of finite
subgroups.

Proof. Note that a subgroup of Λ (resp. Λ±) centralizes Λ† if and only if
it acts trivially on the building B±. Without loss of generality, we may –
and shall – assume that Z(Λ†) is trivial. Hence Λ and Λ+ act faithfully
on the building B+. Let H be a nontrivial normal subgroup of Λ and
set H† = H ∩ Λ†. We must show that the index of H† in Λ† is finite.
To this end, we apply the main results of [5]. This requires to ensure
that two conditions are fulfilled. The first condition is that the closure
of H† in Λ

†
± is cocompact. Since H† is normal in Λ†, it follows from Tits’

transitivity lemma (see [11, Ch. IV, §2, Lemma 2]) that H† is transitive on the
chambers of both B+ and B−. Since the chamber-stabilizers are compact-
open subgroups of Λ±, the desired cocompactness condition clearly holds.
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The second condition is the existence of a fundamental domain D for Λ
with respect to which the associated cocycle is square integrable; this is
provided by the same arguments as in [64]. We do not go into details
here because this question is more carefully examined Subsect. 7.2, where
we prove a refinement of the square integrability. We merely remark that
the group combinatorics needed to prove the existence of D, namely the
structure of refined Tits system defined in [41], is available for arbitrary
twin root data, and not only for those arising from Kac–Moody groups, see
Proposition 1(vi). �

4.4. Simplicity of lattices. We can now put together the two ingredients
needed to prove the simplicity theorem for twin building lattices.

Theorem 19. Let (Λ, {Uα}α∈Φ) be a twin root datum of type (W, S). Let Λ†

be the subgroup generated by all root groups and assume that:

(S0) The Coxeter system (W, S) is irreducible, non-spherical and non-
affine.

(S1) Each root group Uα is finite and nilpotent.
(S2) With the notation of Sect. 1.3, the series W(1/qmin) converges.

Then the quotient Λ†/Z(Λ†) is infinite virtually simple and all of its finite
quotients are nilpotent.

Assume moreover that:

(S3) Each rank one group Xα = 〈Uα ∪ U−α〉 is perfect.

Then any subgroup of Λ, normalized by Λ†, either centralizes Λ† or con-
tains Λ†.

Remark. This theorem applies to the groups of mixed characteristics defined
in [65] provided the minimal size of the finite ground fields is large enough
with respect to the growth of the (right-angled) Weyl group. In this case the
lattices are by definition generated by their root groups and condition (S3)
is fulfilled. One can push a little further this construction by replacing the
rank 1 Levi factors, isomorphic to some suitable SL2(q)’s, by affine groups.
In this case, the root groups are isomorphic to multiplicative groups of
finite fields, so the thicknesses are prime powers, and rank 1 subgroups are
solvable.

Proof. Let H† be the intersection of all finite index normal subgroups of Λ†.
The center of H† is a normal subgroup of Λ†, which must be central in Λ†

in view of Theorem 18. In particular the canonical projection of H† in
Λ†/Z(Λ†) is isomorphic to H†/Z(H†) and coincides with the intersection
of all finite index subgroups of Λ†/Z(Λ†).

By Corollary 16, the index of H† in Λ† is finite. On the other hand,
it follows from Theorem 18 that Λ†/Z(Λ†) is just infinite (i.e. every non-
trivial quotient is finite). Therefore, it follows from [76, Proposition 1] that
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H†/Z(H†) is a direct product of finitely many isomorphic simple groups.
Write H†/Z(H†) = H1 × · · · × Hk. We must prove that k = 1.

Notice that H†, viewed as a diagonally embedded subgroup, is a lattice
in Λ

†
+ × Λ

†
−, because it is a finite index subgroup of the lattice Λ†. Further-

more, H† is irreducible. Indeed, since H† is a finite index normal subgroup
of Λ†, its closure H

†
in Λ

†
+ is a non-central closed normal subgroup, which

must coincide with Λ
†
+ by Proposition 11(i).

Assume now that k > 1. It follows that the simple group H1 is a quotient
of H† which is not co-central, since we have a composed map

H† → H†/Z(H†) = H1 × · · · × Hk → H1.

The closure of the projection of the corresponding normal subgroup of H†

in Λ
†
+ is thus a non-central closed normal subgroup of Λ

†
+. Hence it co-

incides with Λ
†
+ by Proposition 11(i). By [5, Theorem 1.3], this implies

that H1 is amenable. Since the Hi’s are all isomorphic, it follows that
H†/Z(H†) is amenable, and so is Λ† since Z(H†) and [Λ† : H†] are finite.
Recall that Λ† acts on the associated positive building B+, which may be
viewed as a proper CAT(0)-space. Amenability of Λ† implies that its action
on B+ stabilizes a Euclidean flat or fixes a point in the visual boundary
at infinity [4]. Both eventualities are absurd. This shows that k = 1 as
desired.

Assume now that (S3) also holds. Note that a subgroup of Λ (resp. Λ+)
centralizes Λ† if and only if it acts trivially on the building B+. Hence, in
view of what has already been proven, it suffices to show that H† = Λ†.
This follows from Corollary 16. �

Here is now the Kac–Moody specialization of this theorem:

Theorem 20. Let Λ be a split or almost split Kac–Moody group over a finite
field Fq of order q. Let us denote by (W, S) the natural Coxeter system of
the Weyl group W and by W(t) the growth series of W with respect to S.
Assume that (W, S) is irreducible, neither of spherical nor of affine type
and that W( 1

q ) < +∞. Then the derived group of Λ, divided by its center,
is simple.

Proof. All root groups of Λ are nilpotent (of class at most 2). Thus condi-
tions (S0), (S1) and (S2) are clearly satisfied. In order to deduce the desired
statement from Theorem 19 and its proof, it remains to show that the de-
rived group [Λ,Λ] coincides with the intersection H† of all finite index
subgroups of Λ†.

Each rank one subgroup Xα = 〈Uα∪U−α〉 is isomorphic to the Fq-points
of a simple algebraic group of relative rank one. Therefore, the group Xα

is perfect except if Uα is of order 2 or 3 in which case it is abelian. In view
of Theorem 15, this implies in particular that the quotient Λ/H† is abelian.
Thus [Λ,Λ] ⊂ H†. It follows from the proof of Theorem 19 that the latter
inclusion cannot be proper, as desired. �
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Note that if q > 3 then every rank one subgroup of the Kac–Moody
group Λ is perfect and, hence, condition (S3) holds. In that case, we have
[Λ,Λ] = Λ†.

Kac–Moody groups are the values over fields of group functors defined
by J. Tits thanks to combinatorial data called Kac–Moody root data [71].
The main information in a Kac–Moody root datum is given by a generalized
Cartan matrix, say A. Once A is fixed we can still make some choices in
order for Λ to be generated by its root groups. In this case, e.g. when we
choose the simply connected Kac–Moody root datum [71, Sect. 3.7.c], we
have Λ = Λ† = [Λ,Λ] (if q > 3) and we recover the situation described
in the comment to the simplicity theorem (Introduction).

Let us now state a corollary on property (T). Its proof is a straight-
forward combination of work by J. Dymara and T. Januszkiewicz and by
P. Abramenko and B. Mühlherr, but the corollary has interesting rigidity
consequences (Theorem 34).

Corollary 21. Let Λ be a group endowed with a twin root datum satisfying
(S0), (S1), (S2) and (S3) of Theorem 19. We assume furthermore that
any two canonical reflections in S generate a finite subgroup of W. If
qmin > 1764n

25 , then Λ has Kazhdan’s property (T). In particular there exist
infinitely many isomorphism classes of finitely presented infinite simple
groups with Kazhdan’s property (T).

Proof. This is a straightforward application of [30, Theorem E], which
provides the vanishing of the first cohomology useful to a well-known cri-
terion for property (T) [36, Chapitre 4]. Finite presentation follows from [3]
under the hypothesis that qmin > 3. Finally, it follows from [23] that Kac–
Moody groups over non isomorphic finite fields (or of different types) are
not isomorphic. �

Concretely, in order to produce infinite simple Kazhdan groups, it is
enough to pick a generalized Cartan matrix A = [As,t ]s,t∈S such that
As,t At,s � 3 for each s �= t and a finite ground field, whose order is
at least the size of A. The above simple groups seem to be the first ex-
amples of infinite finitely presented simple groups enjoying property (T).
The simple lattices in products of trees constructed by M. Burger and
Sh. Mozes [18] are finitely presented but they cannot have property (T)
since they act fixed-point-freely on trees. However these lattices are torsion
free, while a Kac–Moody group over a finite field of characteristic p contains
infinite abelian subgroups of exponent p [61, proof of Theorem 4.6]. Note
that finitely generated infinite simple Kazhdan groups were constructed by
M. Gromov [33, Corollary 5.5.E] as quotients of hyperbolic groups with
property (T).

4.5. Application to the word problem. As mentioned in the introduction,
combining Theorem 20 with the theorem of W. Boone and G. Higman [8],
one deduces that large classes of finitely generated Kac–Moody groups
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have solvable word problem. It is however a delicate problem to determine
exactly which Kac–Moody groups can be embedded in a finitely presented
simple Kac–Moody group. Here, we limit ourselves to recording the fol-
lowing statement:

Corollary 22. Let Λ be a split or almost split Kac–Moody group over an
arbitrary finite field Fq of order q. Let us denote by (W, S) the natural
Coxeter system of the Weyl group W. If (W, S) is 2-spherical, then Λ has
solvable word problem.

Proof. In view of Theorem 20, [8] and [3], if a group Γ can be embedded
in a split adjoint Kac–Moody group of irreducible 2-spherical non-affine
type over a sufficiently large finite field, then Γ has solvable word problem.
Therefore, the desired result follows from the following three observations:

Observation 1: Any finitely generated almost split Kac–Moody group of
2-spherical type embeds in a finitely generated split Kac–Moody group
of 2-spherical type.
By definition, an almost split Kac–Moody group Λ embeds in a split
group Λ. If Λ is finitely generated, then we may assume that Λ is defined
over a finitely generated field and, hence, is itself finitely generated.
Let W̄ be the Weyl group of Λ; thus the Weyl group W of Λ embeds in W̄ .
If now W is 2-spherical, then it has Serre’s property (FA) and it is easy to
deduce that its parabolic closure in W̄ is itself 2-spherical. This implies
that Λ is conjugate to a Levi subgroup of Λ which is of 2-spherical type.

Observation 2: Any finitely generated split Kac–Moody group of 2-spher-
ical type embeds (possibly modulo a finite normal subgroup) in a finitely
generated split adjoint Kac–Moody group of irreducible 2-spherical
non-affine type.
Clearly, any generalized Cartan matrix of 2-spherical type can be embed-
ded as a top-left submatrix of a generalized Cartan matrix of irreducible
2-spherical non-affine type. The claim follows since an embedding of
Cartan matrices induces an embedding of Kac–Moody groups (possibly
modulo a finite normal subgroup), the smaller one as a Levi subgroup
of the bigger one.

Observation 3: A split Kac–Moody group over a given finite field embeds
in the group of rational points over any extension of that field.
Immediate by functoriality. �

5. Non-linearity of Kac–Moody groups

A result of Mal’cev’s asserts that any finitely generated linear group is
residually finite. In particular, the groups covered by Corollary 16 are not
linear over any field. Note that with the notation and assumptions of this
corollary, the group G† is finitely generated. In this section, we show that
the latter corollary actually implies a strong non-linearity statement for
Kac–Moody groups over arbitrary fields of positive characteristic.
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5.1. Normal subgroups (arbitrary ground field). The proof of the non-
linearity theorem below (Theorem 25) requires the following statement,
which is a complement to Theorem 15. The reader familiar with infinite-
dimensional Lie algebras will recognize some similarity with [39, Prop-
osition 1.7].

Proposition 23. Let A be a generalized Cartan matrix which is indecom-
posable and non-affine, let GA be a Tits functor of type A and let K be an
infinite field. We set G = GA(K) and G† = 〈Uα : α ∈ Φ〉, where {Uα}α∈Φ

is the twin root datum given by the root groups. Then given any normal
subgroup H of G, either H contains G† or H ∩UΨ = {1} for each nilpotent
set of roots Ψ.

Proof. Let H � G be such that H ∩ UΨ �= {1} for some nilpotent set of
roots Ψ. We must prove that H ⊃ G†. The set Ψ is finite [62, Cor. 2.2.6];
we assume that it is of minimal cardinality with respect to the property that
H ∩ UΨ �= {1} and we set n = |Ψ|.

Suppose that n > 1. The elements of Ψ can be ordered in a nibbling
sequence α1, α2, . . . , αn [loc. cit., 1.4.1]. Now let g ∈ H ∩ UΨ − {1}. The
group UΨ decomposes as a product UΨ = Uα1Uα2 . . . Uαn [loc. cit., 1.5.2],
so we have g = u1u2 . . . un with ui ∈ Uαi for each i = 1, . . . , n. By the
minimality assumption on Ψ, the elements u1 and un must be nontrivial.
We set j = min{i > 1 : ui �= 1}. By Lemma 24 below, we can pick some
h ∈ ZT (Uα1) not centralizing Uαj . By the defining relations of GA, we see
in a suitable parametrization of Uαj by the additive group (K,+) that the
action of h on Uαj by conjugation is merely a multiplication by an element
of K×. Therefore h centralizes no nontrivial element of Uαj and we obtain
successively:

g−1h−1gh = u−1
n . . . u−1

j u−1
1 uh

1uh
j . . . uh

n

= u−1
n . . . u−1

j u−1
1 u1uh

j . . . uh
n

= u−1
n . . . u−1

j uh
j . . . uh

n

= u−1
j uh

j u′
j+1 . . . u′

n

for some u′
i ∈ Uαi (i = j+1, . . . , n) and where the last equality follows from

the commutation relations satisfied by the Uα’s in view of (TRD 1). Since
T normalizes H , we have g−1h−1gh ∈ H . Moreover the definition of j and
the choice of h imply that u−1

j uh
j �= 1 so in particular g−1h−1gh �= 1. This

shows that H ∩ UΨ−{α1} �= {1}, which contradicts the minimality of |Ψ|.
Thus n = 1.

The group Xα = 〈Uα ∪U−α〉 is quasi-simple. More precisely, any proper
normal subgroup is contained in the center, which intersects Uα trivially.
Therefore, since H ∩ Uα is non-trivial, we deduce that H ∩ Xα coincides
with Xα. Let Π be a basis of Φ containing α and let β ∈ Π − {α} be such
that the associated reflections rα and rβ do not commute. Since K is infinite,
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it follows that T ∩ Xα �⊂ ZT (Uβ). In particular, there exists h ′ ∈ T ∩ H and
u ∈ Uβ such that h ′u(h ′)−1u−1 �= 1. Thus H ∩Uβ is nontrivial and, as above,
this implies that H contains Uβ ∪ U−β. Finally, since A is indecomposable
we obtain Uγ < H for any γ ∈ Φ, that is to say H ⊃ G†. �

Let us now immediately prove the lemma we used in the previous proof.

Lemma 24. Maintain the notation and assumptions of Proposition 23 and
set T = ⋂

α∈Φ NG (Uα). Then, for any positive roots α, β ∈ Φ+, the inclu-
sion ZT (Uα) ⊂ ZT (Uβ) implies α = β.

Proof. Let X∗ (resp. X∗) be the lattice of algebraic characters (resp. cochar-
acters) of the maximal split torus T [62, §8.4.3]. We may – and shall –
identify the abstract root system Φ with a subset of X∗ and use the identifi-
cation T � Homgroups(X∗, K×). For α ∈ Φ, x ∈ K and t ∈ T , we have:

t.uα(x).t
−1 = uα(t(α).x),(∗∗)

where uα : (K,+) → Uα is a standard isomorphism (see [71, §3]).
Assume now that α �= β. We claim that there exists γ ∈ X∗ such that

〈α | γ 〉 = 0 and 〈β | γ 〉 �= 0. Let us set k(α, β) = 〈α |β∨〉〈β |α∨〉. If k �= 4,
then it is easy to see that there exists such a γ in the group Zα∨ + Zβ∨. If
k = 4, then the order of sαsβ is infinite and we are in the position to apply
Theorem 14. This yields a non-degenerate infinite rank 3 root subsystem
of Φ containing α and β. Then it is again easy to check the existence of γ
inside this subsystem. In both cases, the claim above holds. Given t ∈ K×,
let tγ denote the element of T defined by tγ : λ �→ t〈λ | γ 〉. Since K is infinite,
there exists some z ∈ K× such that z〈β | γ 〉 �= 1. In view of (∗∗), it is now
straightforward to check that zγ is an element of T which centralizes Uα but
not Uβ. �

5.2. Non-linearity. We can now state the main non-linearity theorem of
this section. Note that it is known that Kac–Moody groups of indefinite
type over infinite fields of arbitrary characteristic do not admit any faithful
finite-dimensional linear representation over any field [20, Theorem 7.1],
but the simplicity for Kac–Moody groups over infinite fields is still an open
question.

Theorem 25. Let A be a generalized Cartan matrix, let GA be a Tits functor
of type A and let K be a field of characteristic p > 0. Assume that A is
indecomposable, of indefinite type, i.e. neither spherical nor affine, that
each rank one subgroup of GA(K) is perfect and that GA(K) is generated
by its root subgroups. Then any finite-dimensional linear representation
of GA(K) is trivial.

Proof. We set G = GA(K) and we let ϕ : G → GLn(F) be any represen-
tation. If K is finite, then ϕ(G) is residually finite by Mal’cev’s theorem.
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On the other hand G does not have any finite quotient by Corollary 16.
Hence ϕ(G) is trivial in this case.

We henceforth assume that K is infinite. Let us denote by Gp the
group GA(Fp) (where Fp is the prime field of K). We view Gp as a subgroup
of G. By Mal’cev’s theorem, ϕ(Gp) is residually finite, so by Corollary 16 it
is finite. Since the root system Φ contains nilpotent subsets of arbitrary large
cardinality, the kernel H of ϕ meets non-trivially the Fp-points of UΨ for
some nilpotent set of roots Ψ. In particular, we have H ∩ UΨ �= {1}, which
implies by Proposition 23 that H contains G†. Since the field K is infinite,
we have G† = [G, G] because the rank one subgroups Xα = 〈Uα ∪ U−α〉
are perfect. The conclusion follows since [G, G] = G by hypothesis. �

6. Homomorphisms to topological groups

In this section we study homomorphisms from Kac–Moody groups to lo-
cally compact groups. In the first result, we collect some basic facts which
show that the only interesting group homomorphisms from finitely gener-
ated Kac–Moody groups are those with totally disconnected targets. How-
ever, the main part of this section is devoted to proving that any nontrivial
continuous homomorphism whose domain is the topological completion of
a twin building lattice is a proper map. This is a useful result to be combined
with superrigidity.

6.1. Homomorphisms from simple discrete groups. We collect here
some basic (and probably well-known) facts about abstract group homo-
morphisms from simple discrete to locally compact groups.

Proposition 26. Let Λ be an infinite finitely generated group endowed with
the discrete topology.

(i) The group Λ is residually finite if, and only if, there exists an injective
homomorphism from Λ to a compact group.

(ii) If Λ is simple (resp. simple and Kazhdan), any group homomorphism
from Λ to a compact (resp. amenable) group is trivial.

We henceforth assume that Λ is simple.

(iii) There exists no nontrivial group homomorphism from Λ to a Lie group
with finitely many connected components.

(iv) Let ϕ : Λ → G be a nontrivial group homomorphism to a locally
compact group G and let π : G → G/G◦ be the projection onto the
group of connected components. Then π ◦ ϕ is a continuous, injective,
unbounded homomorphism.

(v) Let X be a CAT(0) or hyperbolic proper metric space. Then if Λ
fixes a point, say ξ , in the visual boundary ∂∞X, it stabilizes each
horosphere centered at ξ .
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Point (i) was pointed out to us as a folklore result by N. Monod. A proof
appears in [35, Proposition 4(i) and (ii)]; since it is short and elegant, we
reproduce it here. The key is to use Peter–Weyl’s theorem.

Proof. (i). By definition, a residually finite group injects in its profinite
completion, so one direction is clear. Now let Λ admit an injective homo-
morphism ϕ : Λ → K into a compact group K and let λ ∈ Λ − {1}.
The regular representation ρK of K in L2(K ) is injective; we will use its
Peter–Weyl decomposition [38, Theorem 27.40]. The image λ̄ of λ in some
suitable finite-dimensional irreducible submodule, say V , is nontrivial. The
projection ΛV of (ρK ◦ ϕ)(Λ) to GL(V ) is a finitely generated linear group
containing λ̄. By Mal’cev’s theorem [44, Window 7 §4 Proposition 8], the
group ΛV is residually finite, so it admits a finite quotient in which λ̄ is
nontrivial: this is a finite quotient of Λ in which the image of the arbitrary
nontrivial element λ is nontrivial.

(ii). The case when Λ is simple follows immediately from (i). We assume
that Λ is both simple and Kazhdan. Let ϕ : Λ → P be a homomorphism
to an amenable group P. The closure ϕ(Λ) is a Kazhdan group because so
is Λ [77, Proposition 7.1.6] and it is amenable as a closed subgroup of P
[32, Th. 2.3.2]. Therefore it is compact [45, Th. III.2.5] and it remains to
apply the first case of this point.

(iii). Let ϕ : Λ → G be a homomorphism to a Lie group with finitely
many connected components. By simplicity, the group Λ has no finite index
subgroup, so we are reduced to the case when G is connected. We com-
pose this map with the adjoint representation of G, whose kernel is the
center Z(G) [10, Cor. 4 of Sect. II.6.4 ], in order to obtain a continuous
homomorphism Ad ◦ ϕ to the general linear group of the Lie algebra of G.
This map is not injective since the group Λ is simple and finitely gener-
ated, hence non-linear. Therefore (Ad ◦ ϕ)(Λ) is trivial. Finally, again by
simplicity, we successively obtain ϕ(Λ) < Z(G) and ϕ(Λ) = {1}.

(iv). By simplicity of Λ, the map ϕ is injective since it is not trivial.
Moreover the kernel of π ◦ ϕ is equal to {1} or Λ. We have to exclude the
case when Ker(π ◦ ϕ) = Λ. Let us assume the contrary, i.e. ϕ(Λ) < G◦,
in order to obtain a contradiction. It follows from [52, Th. 4.6] that there
exists a compact normal subgroup K � G◦ such that G◦/K is a connected
Lie group. Let us consider the composed map Λ

ϕ−→ G◦ p−→ G◦/K
where p : G◦ → G◦/K denotes the canonical projection. By (iii) we have
(p◦ϕ)(Λ) = {1} so ϕ(Λ) < K . It remains to apply (ii) to obtain the desired
contradiction. The unboundedness of π ◦ ϕ follows from (ii) as well.

(v). For each y ∈ X, we denote by βξ,y the Busemann function βξ,y :
X → R centered at ξ and such that βξ,y(y) = 0 [13, Def. II.8.17]. We pick
x ∈ X and define the function ϕξ,x : Λ → R by setting ϕξ,x(g) = βξ,x(g.x).
Then for g, h ∈ Λ, we compute ϕξ,x(gh)−ϕξ,x(h), i.e. βξ,x(gh.x)−βξ,x(h.x)
by definition. By equivariance, this is βξ,x(gh.x)−βg.ξ,g.x(gh.x), that is also
βξ,x(gh.x)−βξ,g.x(gh.x) because ξ is fixed under the Λ-action. But the latter
quantity is also βξ,x(g.x), i.e. ϕξ,x(g), by the cocycle property of Busemann
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functions. In other words, the function ϕξ,x is a group homomorphism from
Λ to (R,+). By simplicity of Λ, it is trivial, from which we deduce that x
and g.x are on the same horosphere centered at ξ for any g ∈ Λ and any
x ∈ X. �

Note that if in (v) we replace Λ by a topologically simple group acting
continuously on X, the same conclusion holds (the argument is the same:
the above map ϕξ,x is a continuous group homomorphism).

6.2. Diverging sequences in Coxeter groups. In the present subsection,
we consider a Coxeter system (W, S) and the associated Davis complex A.

We say that a sequence (wn)n�0 of elements of W diverges if
limn→+∞ �(wn) = +∞.

Lemma 27. Let (wn)n�0 be a diverging sequence in W. Given any x ∈ A,
there exists a root half-space α ∈ Φ(A) and a subsequence (wnk)k�0 such
that limk→+∞ d(x, wnk .α) = +∞.

Proof. The sequence (wn)n�0 diverges if and only if so does (w−1
n )n�0.

Therefore, it suffices to find a root α ∈ Φ and a subsequence (wnk)k�0
such that limk→+∞ d(wnk .x, α) = +∞. We set xn = wn.x. Since (wn)n�0
diverges, we have limn→+∞ d(x, xn) = +∞. Therefore (xn)n�0 possesses
a subsequence (xnk )k�0 which converges to a point ξ of the visual bound-
ary ∂∞A.

Let ρ : [0,+∞) → A be the geodesic ray such that ρ(0) = x and
ρ(+∞) = ξ . Since ρ is unbounded and since chambers are compact, it
follows that ρ meets infinitely many walls of the Davis complex A. On
the other hand, the ray ρ is contained in finitely many walls, otherwise its
pointwise stabilizer would be infinite, contradicting the fact that W acts
properly discontinuously on A. Therefore, there exists a wall ∂α which
meets ρ and such that ρ is not contained in it. This wall determines two
roots, one of which containing no subray of ρ. We let α be that root: α ∩ ρ
is a bounded (nonempty) segment.

Since α is a closed convex subset of A, the map d(·, α) : A → R+
is convex [13, Cor. II.2.5] and so is f : R+ → R+ : t �→ d(ρ(t), α).
Therefore, if f is bounded, it is constant and since ρ meets α we have
f(t) = 0 for all t. This is excluded because by construction the ray ρ is not
contained in α. Thus f is an unbounded convex function and we deduce that
limt→+∞ d(ρ(t), α) = +∞. Finally, since limt→∞ ρ(t) = limk→∞ xnk = ξ ,
it follows that {xnk : k � 0} is at finite Hausdorff distance from ρ([0,+∞)).
Therefore, we obtain limk→+∞ d(xnk , α) = +∞ as desired. �
6.3. Properness of continuous homomorphisms. We now settle our main
properness result for continuous group homomorphisms from topological
completions of twin building lattices.

Theorem 28. Let Λ be a group endowed with a twin root datum {Uα}α∈Φ

of type (W, S) with finite root groups, and such that Λ = 〈Uα | α ∈ Φ〉
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and Z(Λ) is finite. Assume that W is infinite, that (W, S) is irreducible, that
all root groups are solvable and that property (FPRS) of Sect. 2.1 holds.
Let Λ+ be the positive topological completion of Λ and let ϕ : Λ+ → G
be a continuous nontrivial homomorphism to a locally compact second
countable group G. Then ϕ is proper.

Remark. In view of the proof below, we can consider Proposition 4 and
Lemma 27 as substitutes for results such as the contracting or expanding
properties of torus actions on root groups in the classical algebraic group
case [16, Lemma 5.3].

Proof. Let us assume that ϕ is not proper in order to obtain a contradic-
tion. There exists a sequence (γj) j�0 eventually leaving every compact
subset of Λ+ and such that lim j→+∞ ϕ(γj) exists in G. Let us recall that
we can view the Weyl group W as the quotient N̂A/ΩA where N̂A =
StabΛ+(A+) and ΩA = FixΛ+(A+). We also have a Bruhat decomposition:
Λ = ⊔

w∈W B+wB+, where B+ is the Iwahori subgroup B+ = FixΛ+(c+).
We use it to write γj = kj .nj .k′

j with kj , k′
j ∈ B+ and nj ∈ N̂A. Up to passing

to a subsequence, we may assume that (kj) j�0 and (k′
j) j�0 are both con-

verging in the compact open subgroup B+. We set wj = njΩA. The hypoth-
esis on (γj) j�0 implies that (wj) j�0 is a diverging sequence in W and that
lim j→+∞ ϕ(nj) exists in G. We denote this limit by g. In view of Lemma 27,
up to passing to a subsequence, there exists a root α ∈ Φ(A+) such that
lim j→+∞ d(c+, wj .α) = +∞. Let u ∈ U−α − {1}. Recall that nj.u.n−1

j ∈
Uwj .(−α) for all j. Therefore by (FPRS) we have: lim j→+∞ nj.u.n−1

j = 1.
Applying ϕ we obtain: 1 = lim j→+∞ ϕ(nj.u.n−1

j ) = g.ϕ(u).g−1. Thus we

have u ∈ Ker(ϕ). By Proposition 11(i), this implies that Λ
†
+ < Ker(ϕ).

Since Λ = Λ† by assumption, it follows that ϕ is trivial, providing the
desired contradiction: ϕ is proper. �

7. Superrigidity

In this section, we show that recent superrigidity theorems can be applied
to twin building lattices. They concern actions on CAT(0)-spaces. We also
derive some consequences: non-linearity of irreducible cocompact lattices
in some Kac–Moody groups, homomorphisms of twin building lattices with
Kac–Moody targets, restrictions for actions on negatively curved complete
metric spaces.

7.1. Actions on CAT(0)-spaces. The possibility to apply [50] to irredu-
cible cocompact lattices enables us to prove the following. Note that the ex-
istence of irreducible cocompact lattices in this context is an open problem.

Proposition 29. Let Λ be a twin building lattice generated by its root
groups {Uα}α∈Φ, with associated twinned buildings B±. We assume that the
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Weyl group W is infinite, irreducible and non-affine, that root groups are
nilpotent and that Z(Λ) = 1. Let Γ be an irreducible cocompact lattice in
Λ+ × Λ−. Then any linear image of Γ is finite.

Remark. The important assumption here is irreducibility. Indeed, the twin
buildings associated to some Kac–Moody groups are right-angled Fuchsian.
For each of the two buildings B±, the completion Λ± contains a cocompact
lattice isomorphic to a convex cocompact subgroup of the isometry group
of a well-chosen real hyperbolic space [65, Prop. 4B]. Taking the product
of two such lattices, we obtain a cocompact lattice in Λ− × Λ+ which is
linear over the real numbers.

The arguments are classical, so we only sketch the proof. Note that one
could appeal here to Monod’s alternative [49, Theorem 2.4] which yields
the above proposition when combined with the nonlinearity of twin building
lattices. However, the alternative in [loc. cit.] does not apply to linear images
over fields of characteristic 2 and 3 (although this restriction is probably not
necessary, see [49, Remark 2.4(c)]). The arguments below, relying on [50],
avoid any consideration of characteristics.

Proof. By Proposition 11(i), the groups Λ± are topologically simple.
By [5, Corollary 1.4], it follows that Γ is just infinite, i.e. all its proper
quotients are finite. Hence any group homomorphism from Γ with infinite
image is injective; the same holds for any finite index subgroup of Γ. Let F
be a field with algebraic closure F and let n � 2 be an integer such that
there is an injective group homomorphism η : Γ → GLn(F). We must
obtain a contradiction. Let H be the Zariski closure of η(Γ) in GLn(F). We
denote by Γ◦ the preimage by η of the identity component H◦. It is a finite
index normal subgroup of Γ, so as a lattice in Λ− ×Λ+ it is still irreducible
because Λ± is topologically simple. We denote by R(H◦) the radical of H◦
and by π : H◦ → H◦/R(H◦) the natural projection. Then π ◦η is still injec-
tive since otherwise, by the normal subgroup property for Γ◦, the group Γ

would be virtually solvable, hence amenable, while Λ− × Λ+ is not. We
thus obtain a semisimple group G over F and an injective group homo-
morphism ϕ : Γ◦ → G with Zariski dense image. We choose an algebraic
group embedding in some general linear group: G < GLr . Being cocom-
pact, the lattice Γ◦ is finitely generated. Taking the matrix coefficients of
the elements of some finite symmetric generating system implies that ϕ(Γ◦)
lies in GLr(E) for some finitely generated field E. The group Γ◦ is finitely
generated, linear and non-amenable so by Tits’ alternative it contains a non-
abelian free group [69]. We can find an element with one eigenvalue, say λ,
of infinite multiplicative order, so there is a local field K̂ with absolute
value | · | and a field extension σ : E → K̂ such that |σ(λ)| �= 1. In particu-
lar, the subgroup ϕ(Γ◦) is unbounded in G(K̂). The map ϕ : Γ◦ → G(K̂)
satisfies the two conditions required to apply Monod’s superrigidity [50,
Corollary 4 and Lemma 59]: the homomorphism ϕ extends to a continuous
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homomorphism ϕ̃ : Λ− × Λ+ → G(K̂). By topological simplicity of Λ±,
we obtain an injective homomorphism Λ → G(K̂), which is impossible
since Λ is infinite, virtually simple and finitely generated, hence non-linear.

�
7.2. Uniform p-integrability. We now check an integrability condition
which is a partial substitute for cocompactness of lattices. Let us recall the
general context: G is a locally compact group, Γ is a lattice in G. We assume
that Γ contains a finite generating subset Σ and denote by | · |Σ the length
function on Γ with respect to it. Following [31, Sect. 7], each time we have
a right fundamental domain Ω for Γ, we define the function χ

Ω
: G → Γ by

g ∈ χ
Ω
(g)Ω. For each real number p > 1, we say that Γ is p-integrable if

there is a right fundamental domain Ω such that for any c ∈ G, we have:∫
Ω
(|χ

Ω
(gc)|Σ)p dg < +∞. The main result of [64] is that Kac–Moody

lattices are p-integrable for any p > 1. This amounts to saying that the
function g �→ |χ

Ω
(gc)|Σ belongs to L p(Ω) for any c ∈ G. We are interested

in a stronger property. We denote by ‖ · ‖Ω,p the L p-norm of measurable
functions on Ω.

Definition 30. Given p ∈ [1;∞), the lattice Γ in G is called uniformly
p-integrable if there is a right fundamental domain Ω as above such that
for any compact subset C in G we have:

sup
c∈C

∫

Ω

(|χ
Ω
(gc)|Σ)pdg < +∞,

i.e. the real valued function ϕ
Ω,p : c �→ ‖|χ

Ω
(· c)|Σ‖Ω,p is bounded on

compact subsets of G.

The relation with Y. Shalom’s condition [67] is the following. Given
a left fundamental domain D for the inclusion Γ < G, we can define a map
αD : G × D → Γ by setting αD(g, d) = γ if, and only if, we have gdγ ∈ D.
Up to translating it, we may – and shall – assume that 1G belongs to D. The
set Ω = D−1 is a right fundamental domain and the following equivalences
hold:

αD(g, 1G ) = γ ⇐⇒ gγ ∈ D ⇐⇒ γ−1g−1 ∈ Ω ⇐⇒ g−1 ∈ γΩ

⇐⇒ γ = χ
Ω
(g−1).

In other words, we have: χ
Ω
(g) = αD(g−1, 1G ) and 2-integrability amounts

to Y. Shalom’s condition (1.5) in [67, 1.II p. 14].
Let us now turn to the specific case of twin building lattices. For the rest

of the section, we let Γ = Λ be a twin building lattice with twin root datum
{Uα}α∈Φ. We also let G = Λ− × Λ+. In [64, Prop. 5] a left fundamental
domain D is defined by means of refined Tits systems arguments. It is
a union D = ⊔

w∈W Dw, indexed by the Weyl group W , of compact open
subsets Dw in G and we have 1G ∈ D1W . For the rest of the subsection,
Σ denotes the finite symmetric generating subset used in [65, Definition 1],
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i.e. the union of the rank one subgroups Xα · T = 〈Uα, U−α〉 · T indexed by
the simple roots α ∈ Π.

Theorem 31. There exists a right fundamental domain Ω such that for any
p ∈ [1;+∞) the function ϕ

Ω,p : c �→ ‖|χ
Ω
(· c)|Σ‖Ω,p is bounded from

above by a function which is constant on each product of double cosets
modulo the standard Iwahori subgroups in Λ− and Λ+. In particular, twin
building lattices are uniformly p-integrable for any p ∈ [1;+∞).

Remark. The second assertion implies the first one because the standard
Iwahori subgroups B± are open and compact, so products of double cosets
modulo Iwahori subgroups B+w+B+ × B−w−B− are open and compact
(and disjoint when distinct).

Proof. We first note that as for the normal subgroup property (Theorem 18),
though the results in [64] are stated for Kac–Moody groups, we can use
them in the more general context of the above statement thanks to Propos-
ition 1(vi). Moreover since the groups Λ± have BN-pairs, they are unimodu-
lar [11, IV.2.7, Lemme 2]. Hence so is G. We denote by dg a Haar measure
on G and compute ϕ

Ω,p(c)
p for c ∈ G. It is:

∫

Ω

(|χ
Ω
(gc)|Σ)pdg =

∫

D−1

(∣
∣αD

(
c−1g−1, 1G

)∣
∣
Σ

)p
dg

=
∫

D

(∣
∣αD

(
c−1g, 1G

)∣
∣
Σ

)p
dg.

The first equality follows from the remarks before the statement and the last
equality from the unimodularity of G. Therefore it is enough to check that
the map h �→ ∫

D(|αD(hg, 1G )|Σ)p dg is bounded from above by a func-
tion which is constant on products of double cosets modulo the standard
Iwahori subgroups B− and B+, in Λ− and Λ+ respectively. We are now
back to objects studied in [64]. An element h ∈ G is a couple (h−, h+) with
h± ∈ Λ± and we denote by L±(h) the combinatorial distance (i.e. the length
of a minimal gallery) in the building B± from the standard chamber c± to
the chamber h−1

± .c±. The function h �→ L±(h) is constant on each double
coset of Λ± modulo the standard Iwahori subgroup of sign ± since L±(h) is
nothing but the length in W of the Weyl group element indexing the double
class B±h±B±. We set L(h) = L−(h) + L+(h) and introduce the poly-
nomial Qh defined in [64, Lemma 17] by Qh(X) = 3X2 + (6L(h)+3)X +
(3L(h)2 + 3L(h) + 1). Then by the proof of the main theorem of [loc.
cit., p. 39] there exists a constant |T | such that we have: ϕ

Ω,p(h)p �
|T | · ∑

n∈N
Qh(n)p

qn . We are done since h �→ Qh is constant on the prod-
ucts of double cosets B+w+B+ × B−w−B−. �

Recall that weak cocompactness of a lattice Γ in a topological group G is
the fact that the space of functions of zero mean in L2(G/Γ) doesn’t almost
have invariant vectors [45, Sect. III.1.8]. It is possible that all Kac–Moody
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lattices enjoy this property, which is implied by Kazhdan’s property (T). As
already mentioned in the introduction (where a specific statement is pro-
vided), using the above p-integrability for weakly cocompact Kac–Moody
groups enables us to derive several superrigidity results.

Proposition 32. Let Λ be a twin building lattice, which we assume to
be weakly cocompact in Λ− × Λ+. Then the results in [50], as well as
Theorems 1.1, 1.3, 1.4 and 2.7 of [31] can be applied to Λ < Λ− × Λ+.

Proof. This is a straightforward consequence of [50, Theorem 7] and
of [31, §7]. �
Remark. In this subsection, no assumption was made on the type of the
Coxeter diagram of the Weyl group.

7.3. Homomorphisms of twin building lattices with Kac–Moody targets.
The purpose of this subsection is to present a concrete application of super-
rigidity of twin building lattices, and more specifically of Proposition 32.
Recall that the main application of superrigidity of lattices in Lie groups is
arithmeticity, see e.g. [45] and [50]. In the context of twin building lattices,
and in view of the simplicity Theorem 19 and its corollaries, it is rather
natural to apply superrigidity to homomorphisms with non-linear targets.
The main result of this section is an example of such an application.

Let (G, {Uα}α∈Φ) be a twin root datum of type (W, S), with finite root
groups, such that the centralizer ZG(G†) is trivial, and let G+ be its positive
topological completion. Since ZG(G†) is the kernel of G+-action on the
associated building B+, we may – and shall – view G+ as a subgroup of
Aut(B+) (see Proposition 1(iii)).

Theorem 33. Let Λ be a weakly cocompact (e.g. Kazhdan) twin building
lattice of irreducible type, whose root groups are solvable, and such that Λ
is generated by the root groups and that property (FPRS) of Sect. 2.1 holds.
Let ϕ : Λ → G+ be a homomorphism with dense image. Assume that
(W, S) is irreducible, non-spherical and 2-spherical (i.e. any 2-subset of S
generates a finite group). Assume also that qmin = min{|Uα| : α ∈ Φ} > 3.
Then ϕ(Λ) is conjugate to G† in Aut(B+). In particular G† is isomorphic
to Λ/Z(Λ).

Proof. Details of the arguments involve some rather delicate considerations
pertaining to the theory of twin buildings. Since a detailed proof would
therefore require somewhat lengthy preparations which are too far away
from the main topics of this paper, we only give a sketch.

Since the G+-action on the associated building B+ is strongly transi-
tive and since ϕ(Λ) is dense in G+, it follows that the Λ-action on B+
induced by ϕ is reduced (in the sense of [50]). By Proposition 32, we may
therefore apply [31, Theorem 1.1], which ensures that the homomorph-
ism ϕ extends uniquely to a continuous homomorphism Λ+ × Λ− → G+,
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factoring through Λ+ or Λ−. Up to exchanging + and −, we assume
that ϕ extends to a continuous homomorphism Λ+ → G+, also denoted ϕ.
Since ϕ is proper by Theorem 28, it follows that ϕ is surjective. Further-
more, by Proposition 11(i) the kernel of ϕ is contained in the discrete center
Z(Λ+) = Z(Λ).

For both Λ+ and G+, the maximal compact subgroups are precisely
the maximal (spherical) parahoric subgroups. Moreover, since (W, S) is
irreducible and 2-spherical, a maximal parahoric subgroup of G+ has a Levi
decomposition as semi-direct product L � U , where L is a finite group of
Lie type and U is a pro-p group for some prime p depending only on G
(see [63, Theorem 1.B.1(ii)] and Proposition 3(i)). Furthermore, in the
decomposition L � U , the “congruence subgroup” U is characterized as
the maximal normal pro-p subgroup. Using the fact that maximal parahoric
subgroups of Λ+ also admit Levi decompositions, it is not difficult to deduce
that the Levi factors in Λ+ are also finite groups of Lie type and, then, that ϕ

induces isomorphisms between the Levi factors in Λ+ and in G+. In view
of the description of the respective buildings of the latter groups as coset
geometries modulo parahoric subgroups, this in turn implies that ϕ induces
an isomorphism between the building X+ of Λ+ and the building B+
of G+; moreover this isomorphism is ϕ-equivariant. In particular X+ is
of 2-spherical irreducible type with infinite Weyl group. By assumption,
the building X+ (resp. B+) admits a twin X− (resp. B−) such that the
diagonal action of Λ (resp. G) on the product X+ × X− (resp. B+ × B−)
preserves the twinning. By the main result of [57], these twinnings must
be isomorphic since X+ and B+ are. More precisely, these twinnings are
conjugate under some element of Aut(B+). Up to conjugating ϕ(Λ) by this
element of Aut(B+), we may – and shall – assume that ϕ(Λ) preserves the
twinning between B+ and B−.

Since the isomorphism between X+ and B+ is ϕ-equivariant, it follows
from standard description of root group actions in Moufang twin buildings
(see e.g. [74]) that ϕ maps each root group of Λ to a root group of G, and
that every root group of G is reached in this manner. Since Λ is generated by
its root groups, we deduce that ϕ(Λ) = G†. Finally, since G† is center-free,
so is ϕ(Λ), from which it follows that Ker(ϕ) ∩ Λ = Z(Λ). �

7.4. Actions on CAT(−1)-spaces. Another consequence is the existence
of strong restrictions on actions of “higher-rank” Kac–Moody lattices on
CAT(−1)-spaces. Of course, in this case we must discuss the notion of rank
which is relevant to the situation; this is done just after the statement. Since
we are dealing with hyperbolic target spaces, it is most convenient to use
a superrigidity theorem due to N. Monod and Y. Shalom [51].

Theorem 34. Let Λ be a split or almost split adjoint Kac–Moody group
over Fq which is a lattice in the product of the associated buildings B±.
We assume that the Weyl group W is infinite, irreducible and non-affine and
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that q � 4. Let Y be a proper CAT(−1)-space with cocompact isometry
group. We assume that Λ acts on Y by isometries and we denote by ϕ :
Λ → Isom(Y ) the corresponding homomorphism.

(i) If the Λ-action is nontrivial but has a global fixed point in the com-
pactification Y = Y � ∂∞Y, then the fixed point is unique and lies in
the visual boundary ∂∞Y.

(ii) We assume that the Λ-action has no global fixed point at all. Then there
exists a nonempty, closed, convex, Λ-stable subset Z ⊆ Y on which
it extends to a continuous homomorphism ϕ̃ : Λ− × Λ+ → Isom(Z)
which factors through Λ− or Λ+.

(iii) We assume that the buildings B± contain flat subspaces of dimension
� 2. Then the Λ-action, if not trivial, has a unique global fixed point
in Y , which lies in the visual boundary ∂∞Y.

(iv) Assume that Isom(Y ) is non-elementary, or else that Λ is Kazhdan.
If the buildings B± contain flat subspaces of dimension � 2, then the
Λ-action is trivial.

Remarks. 1. The assumption that Y has cocompact isometry group in the
theorem is necessary. Consider indeed the minimal adjoint Kac–Moody
group Λ = GA(Fq) over Fq, where A is the generalized Cartan matrix
of size 4 defined by Aii = 2 for i = 1, . . . , 4 and Aij = −1 for 1 �
i �= j � 4. Thus the group Λ satisfies all hypotheses of the theorem if
q � 4; furthermore Λ has property (T) provided q > 17644

25 [30]. The
specificity is here that the Weyl group W is a Coxeter group which is
a non-uniform lattice of SO(3, 1). In fact W acts on the real hyperbolic
3-space H3 with a non-compact simplex as a fundamental domain. It turns
out that the whole building B+ has a geometric realization X in which
apartments are isomorphic to the tiling of H3 by the above simplex as
fundamental tile. This geometric realization is a locally finite simplicial
complex which admits a global CAT(−1)-metric induced by the metric of
the apartments [2, Proposition 11.31]. Hence, although the building B+ has
2-dimensional flats in its usual geometric realization, the CAT(−1)-space X
is endowed with a natural Λ-action which has no global fixed point in the
visual compactification X. The point is of course that chambers are not
compact in X (while they are of course compact in B+), which implies that
Isom(X) is not cocompact.

Note that in the above example, the rank 2 Levi factors of Λ are (virtually)
nothing but arithmetic groups SL3(Fq[t, t−1]). The action of these subgroups
on X induced by the Λ-action has no global fixed points in X, which shows
in particular that the assumption that Isom(Y ) has finite critical exponent is
necessary in [16, Corollary 0.5] as well.

2. The prototype of “higher-rank versus CAT(−1)” result we have in
mind is [16, Corollary 0.5]. In the latter case the target space is also
a CAT(−1)-space without any required connection with Lie groups, but
the irreducible lattice lies in a product of algebraic groups. Then the fact
that each factor in the associated product of symmetric spaces and Bruhat–
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Tits buildings contains higher-dimensional flats implies property (T) for the
lattice. In the Kac–Moody case, the existence of higher-dimensional flats
no longer implies property (T); this explains the distinction between (iii)
and (iv).

3. Another interesting rigidity result for actions of “higher-rank” groups
on CAT(−1)-spaces is obtained in [12, Theorem 2]. More precisely, it
is shown in [loc. cit.] that a finitely generated group whose first L p-co-
homology vanishes for all p > 1 cannot act properly on a CAT(−1)-space
with cocompact isometry group. Note that these cohomological conditions
are satisfied by 2-spherical Kac–Moody groups over sufficiently large finite
fields by the results of [30].

4. The notion of flat rank considered in [6] for groups of building auto-
morphisms is relevant here. According to [21] and [6, Theorem A], know-
ing whether the buildings B± contain higher-dimensional flat subspaces is
equivalent to the fact that the groups Λ± are of flat rank� 2 or, still equiva-
lently, that the Weyl group contains a free abelian subgroup of rank � 2. In
particular, the flat rank can be explicitly computed from the Dynkin diagram
of the twin building lattice group Λ.

Proof of Theorem 34. (i). We first note that the hypotheses (S0)–(S3) of
Theorem 19 are fulfilled. Moreover Λ = Λ† and Z(Λ) = 1 since Λ is
adjoint. Hence the group Λ is simple. In particular, the non-triviality of ϕ
implies that it is injective. Moreover for any y ∈ Y the stabilizer StabIso(Y )(y)
is a compact group, so by Proposition 26 a nontrivial Λ-action on Y cannot
have any fixed point in Y . Now let ξ and η be two distinct Λ-fixed points
in the visual boundary ∂∞Y . Then the unique geodesic (ηξ) is stable and by
simplicity of Λ the restriction of the Λ-action on (ηξ) has to be trivial: this
implies the existence of a global fixed point in Y , which again is excluded
when ϕ is nontrivial.

(ii). Let us first show that the closure group ϕ(Λ) is non-amenable.
Assume the contrary. Then there is a probability measure µ which is fixed by
this group. Since the Λ-action has no global fixed point in Y , the group ϕ(Λ)
is not compact so by the CAT(−1) Furstenberg’s lemma [16, Lemma 2.3]
the support of µ contains at most two points. This support is Λ-stable, so by
simplicity it is pointwise fixed by Λ; this is excluded because the Λ-action
has no global fixed point in ∂∞Y .

We henceforth know that ϕ(Λ) is non-amenable. We apply [51, The-
orem 1.3]: there exists a compact normal subgroup M � ϕ(Λ) such that
the induced homomorphism Λ → ϕ(Λ)/M extends to a continuous homo-
morphism Λ− × Λ+ → ϕ(Λ)/M factoring through Λ− or Λ+. Therefore,
choosing a suitable sign we obtain an injective continuous group homo-
morphism

ϕ̄ : Λ± → ϕ(Λ)/M.

Let us denote by Z the fixed-point set of M in Y . The subset Z is nonempty
because M is compact, it is closed and convex by uniqueness of geodesic



Simplicity and superrigidity of twin building lattices 217

segments. Since M is normal in ϕ(Λ), the subset Z is stable under the
ϕ(Λ)-action. The restriction map rZ : ϕ(Λ) → Isom(Z) factors through
the canonical projection πM : ϕ(Λ) → ϕ(Λ)/M and provides a natural
homomorphism r̄Z : ϕ(Λ)/M → Isom(Z) which we can compose with ϕ̄
to obtain the desired homomorphism ϕ̃ = r̄Z ◦ ϕ̄.

(iii). Let us assume that the Λ-action has no fixed point in Y in order
to obtain a contradiction. By applying (ii), we have an injective continuous
homomorphism ϕ̃ : Λ± → Isom(Z) as above. Moreover Proposition 4 and
Theorem 28 imply that ϕ̃ is proper.

Root system preliminaries. By the remarks before the proof, the existence
of flats of dimension � 2 implies the existence of an abelian subgroup
isomorphic to Z × Z in the Weyl group W . Moreover it follows from [42,
Theorem 6.8.3] that if W has a subgroup isomorphic to Z×Z, then it has two
reflection subgroups, both isomorphic to D∞, whose translations commute,
where D∞ is the infinite dihedral group. Let α, α′, β, β′ ∈ Φ be roots such
that τ = rαrβ and τ ′ = rα′rβ′ are mutually commuting and both of infinite
order. Let V+ (resp. V−) the group generated by the root groups indexed by
roots in

⋃
n∈Z τn.{α;−β} (resp. by the opposite roots). Note that each of

these two groups is normalized by any element lifting τ in N.

Reduction to hyperbolic isometries. Recall that the torus T is finite, hence
the fixed-point-set Y T of T in Y is nonempty. Thus Y T is a closed convex
subset of Y on which the group N acts since N normalizes T . Recall that the
quotient N/T is nothing but the Weyl group W . Obviously T acts trivially
on Y T and, hence, the action of N on Y T factors through W . Therefore, we
may – and shall – consider that W acts on Y T .

Let us now pick nτ such an element, i.e. such that nτT = τ in W = N/T .
By properness of ϕ̃, the group generated by ϕ̃(nτ ) is unbounded, therefore
the isometries ϕ̃(nτ )

±1 are either both hyperbolic or both parabolic be-
cause nτ and n−1

τ are mutually conjugate by rα. We claim that we obtain the
desired contradiction if we manage to prove that these isometries (as well
as nτ ′) are hyperbolic. Indeed, τ together with τ ′ generate a free abelian
group of rank 2 which acts on Y T . Since the group N is a discrete sub-
group of Λ+ (because it acts properly discontinuously on B+) and since ϕ̃
is proper, it follows that 〈τ, τ ′〉 acts freely on Y T . By the flat torus the-
orem [13, Corollary II.7.2], we deduce that Y T contains a 2-flat. This is
absurd because Y is CAT(−1).

Fixed points of “unipotent” subgroups. On the one hand, we claim that
ϕ̃(V±) cannot stabilize any geodesic line in Z. Indeed, any element g ∈ V±
is torsion so it fixes a point in Z. If L were a ϕ̃(V±)-stable geodesic line
then, using orthogonal projection, ϕ̃(g) would fix a point of L . This would
imply that the subgroup of index at most 2 in ϕ̃(V±) fixing the extremi-
ties of L would in fact fix the whole line L: this is excluded because, by
properness of ϕ̃, the groups ϕ̃(V±) are not compact. On the other hand, the
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groups V± are metabelian [61, 3.2 Example 2] so the closures ϕ̃(V±) are
amenable groups [77, Lemma 4.1.13], hence fix a probability measure on
∂∞Z. By [16, Lemma 2.3] the support of such a measure contains at most
two points. By the previous point, the support must consist of one single
point at infinity and the same argument shows that this point is the unique
ϕ̃(V±)-fixed point in ∂∞Z: we call it η±.

Images of translations are not parabolic. Since nτ normalizes V± and
since (∂∞Z)ϕ̃(V±) = {η±}, the isometry ϕ̃(nτ ) fixes η− and η+. In order to
see that ϕ̃(nτ) is hyperbolic, it suffices to show that η− �= η+. Let us assume
that η− and η+ are the same boundary point, which we call η. We need to
obtain a very last contradiction. Let us consider the group H = 〈V−, V+〉,
by definition topologically generated by V− and V+. It is non-amenable
because, as a completion of a group with twin root datum of type Ã1, it
admits a proper strongly transitive action on a semi-homogeneous locally
finite tree. Theorem 28 implies that the maps ϕ̃ and ϕ̄ are proper. On the
one hand, properness of ϕ̄ implies that the group ϕ̄(H) is non-amenable and
neither is πM

−1(ϕ̄(H)) since πM is proper and surjective. On the other hand,
properness of ϕ̃ implies that ϕ̃(H) is a closed subgroup of Isom(Z), which
implies that r−1

Z (ϕ̃(H)) is a closed subgroup of Stabϕ(Λ)(η). Moreover we
have: πM

−1(ϕ̄(H)) < r−1
Z (ϕ̃(H)), so the non-amenable group πM

−1(ϕ̄(H))
is a closed subgroup of Stabϕ(Λ)(η). The contradiction comes from the fact
that StabIsom(Y )(η) is amenable, since Isom(Y ) acts co-compactly on Y [16,
Propositions 1.6 and 1.7].

(iv). The stabilizer StabIsom(Y )(ξ) of every point at infinity of Y is
amenable [16, Propositions 1.6 and 1.7]. Therefore, it cannot contain a Kazh-
dan subgroup. If one assumes moreover that Isom(Y ) is non-elementary,
then by [48, Theorem 21] Isom(Y ) is either virtually connected or totally
disconnected. In the first case, Isom(Y ) does not contain any finitely gener-
ated infinite simple group by the solution to Hilbert 5th problem [52] (see
also Proposition 26). In the second case, no amenable subgroup of Isom(Y )
contains a finitely generated infinite simple group by [19, Corollary 1.2].
Thus the desired conclusion follows from (iii). �

In view of recent results from [22], it is known that if X is a proper
CAT(0) space such that X/ Isom(X) is compact, then the closure of any
finitely generated infinite simple subgroup Γ < Isom(X) is non-amenable.
This implies that the conclusion of (iv) holds even without assuming that Λ
is Kazhdan or that Isom(Y ) is non-elementary.

References

1. Abramenko, P.: Twin Buildings and Applications to S-Arithmetic Groups. Lect. Notes
Math., vol. 1641. Springer, Berlin (1996)

2. Abramenko, P., Brown, K.S.: Buildings: Theory and Applications. Grad. Texts Math.,
vol. 248. Springer, New York (2008)



Simplicity and superrigidity of twin building lattices 219

3. Abramenko, P., Mühlherr, B.: Présentations de certaines BN-paires jumelées comme
sommes amalgamées. C. R. Acad. Sci., Paris 325, 701–706 (1997)

4. Adams, S., Ballmann, W.: Amenable isometry groups of Hadamard spaces. Math. Ann.
312, 183–195 (1998)

5. Bader, U., Shalom, Y.: Factor and normal subgroup theorems for lattices in products of
groups. Invent. Math. 163, 415–454 (2006)

6. Baumgartner, U., Rémy, B., Willis, G.: Flat rank of automorphism groups of buildings.
Transform. Groups 12, 413–436 (2007)

7. Billig, Y., Pianzola, A.: Root strings with two consecutive real roots. Tohoku Math. J.,
II. Ser. 47, 391–403 (1995)

8. Boone, W.W., Higman, G.: An algebraic characterization of groups with soluble word
problem. J. Aust. Math. Soc. 18, 41–53 (1974) (Collection of articles dedicated to the
memory of Hanna Neumann, IX)

9. Bourbaki, N.: Topologie générale I–IV. Hermann, Paris (1971)
10. Bourbaki, N.: Groupes et algèbres de Lie II et III. Hermann, Paris (1972)
11. Bourbaki, N.: Groupes et algèbres de Lie IV–VI. Masson, Paris (1981)
12. Bourdon, M., Martin, F., Valette, A.: Vanishing and non-vanishing for the first L p-

cohomology of groups. Comment. Math. Helv. 80(2), 377–389 (2005)
13. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-Positive Curvature. Grundlehren

Math. Wiss., vol. 319. Springer, Berlin (1999)
14. Brink, B.B., Howlett, R.B.: A finiteness property and an automatic structure for Coxeter

groups. Math. Ann. 296, 179–190 (1993)
15. Bruhat, F., Tits, J.: Groupes réductifs sur un corps local. I. Donnée radicielles valuées.

Publ. Math., Inst. Hautes Étud. Sci. 41, 5–252 (1972)
16. Burger, M., Mozes, S.: CAT(-1)-spaces, divergence groups and their commensurators.

J. Am. Math. Soc. 9, 57–93 (1996)
17. Burger, M., Mozes, S.: Groups acting on trees: from local to global structure. Publ.

Math., Inst. Hautes Étud. Sci. 92, 113–150 (2001)
18. Burger, M., Mozes, S.: Lattices in product of trees. Publ. Math., Inst. Hautes Étud. Sci.

92, 151–194 (2001)
19. Caprace, P.-E.: Amenable groups and Hadamard spaces with a totally disconnected

isometry group. Comment. Math. Helv. (to appear)
20. Caprace, P.-E.: “Abstract” homomorphisms of split Kac–Moody groups. Ph.D. thesis,

Université Libre de Bruxelles (December 2005)
21. Caprace, P.-E., Haglund, F.: On geometric flats in the CAT(0) realization of Coxeter

groups and Tits buildings. Can. J. Math. (to appear)
22. Caprace, P.-E., Monod, N.: Isometry groups and lattices of non-positively curved spaces.

Preprint, available at arXiv:0809.0457
23. Caprace, P.-E., Mühlherr, B.: Isomorphisms of Kac–Moody groups which preserve

bounded subgroups. Adv. Math. 206(1), 250–278 (2006)
24. Caprace, P.-E., Rémy, B.: Simplicité abstraite des groupes de Kac–Moody non affines.

C. R. Acad. Sci., Paris 342, 539–544 (2006)
25. Caprace, P.-E., Rémy, B.: Groups with a root group datum. Survey (2008), submitted
26. Carbone, L., Ershov, M., Ritter, G.: Abstract simplicity of complete Kac–Moody groups

over finite fields. J. Pure Appl. Algebra 212(10), 2147–2162 (2008)
27. Carbone, L.J., Garland, H.: Lattices in Kac–Moody groups. Math. Res. Lett. 6, 439–448

(1999)
28. Davis, M.W.: Buildings are CAT(0). In: Geometry and Cohomology in Group Theory,

Lond. Math. Soc. Lect. Note Ser., pp. 108–123. Cambridge Univ. Press, Cambridge
(1998)

29. Delzant, T.: Sous-groupes distingués et quotients des groupes hyperboliques. Duke
Math. J. 83, 661–682 (1996)

30. Dymara, J., Januszkiewicz, T.: Cohomology of buildings and their automorphism
groups. Invent. Math. 150, 579–627 (2002)

31. Gelander, T., Karlsson, A., Margulis, G.A.: Superrigidity, generalized harmonic maps
and uniformly convex spaces. Geom. Funct. Anal. 17(5), 1524–1550 (2008)



220 P.-E. Caprace, B. Rémy

32. Greenleaf, F.: Invariant Means on Topological Groups and Their Applications. Van
Nostrand Mathematical Studies, vol. 16. Van Nostrand Reinhold Co., New York (1969)

33. Gromov, M.: Hyperbolic groups. In: Essays in Group Theory. Math. Sci. Res. Inst.
Publ., vol. 8, pp. 75–263. Springer, New York (1987)

34. Hall Jr., M.: The Theory of Groups. Chelsea Publishing Co., New York (1976) (Reprint-
ing of the 1968 edition)

35. De la Harpe, P., Robertson, A.G., Valette, A.: On exactness of group C∗-algebras. Q. J.
Math., Oxf. II. Ser. 45(180), 499–513 (1994)

36. De la Harpe, P., Valette, A.: La propriété (T) de Kazhdan pour les groupes localement
compacts. Astérisque, vol. 175 (1989) (With an appendix by M. Burger)

37. Hée, J.-Y.: Sur la torsion de Steinberg–Ree des groupes de Chevalley et des groupes de
Kac–Moody. Thèse d’État de l’Université Paris 11 Orsay (1993)

38. Hewitt, E., Ross, K.: Abstract Harmonic Analysis. Vol. II: Structure and Analysis
for compact groups. Analysis on locally compact Abelian groups. Grundlehren Math.
Wiss., vol. 152. Springer, New York (1970)

39. Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press,
Cambridge (1990)

40. Kac, V.G., Peterson, D.H.: Regular functions on certain infinite-dimensional groups.
In: Arithmetic and Geometry, Vol. II. Progr. Math., vol. 36, pp. 141–166. Birkhäuser,
Boston (1983)

41. Kac, V.G., Peterson, D.H.: Defining relations for certain infinite-dimensional groups. In:
Élie Cartan et les mathématiques d’aujourd’hui, Astérisque, pp. 165–208. Soc. Math.
France (1985)

42. Krammer, D.: The conjugacy problem for Coxeter groups. Ph.D. thesis, Univer-
siteit Utrecht (1994). Available at http://www.maths.warwick.ac.uk/∼daan/index_files/
Proefschrift12.dvi

43. Kumar, S.: Kac–Moody Groups, Their Flag Varieties and Representation Theory. Progr.
Math., vol. 204. Birkhäuser Boston Inc., Boston, MA (2002)

44. Lubotzky, A., Segal, D.: Subgroup Growth. Progr. Math., vol. 212. Birkhäuser, Basel
(2003)

45. Margulis, G.A.: Discrete Subgroups of Semisimple Lie Groups. Ergeb. Math. Grenz-
geb. (3), vol. 17. Springer, Berlin (1991)

46. Margulis, G.A., Vinberg, È.B.: Some linear groups virtually having a free quotient.
J. Lie Theory 10, 171–180 (2000)

47. Maskit, B.: Kleinian Groups. Grundlehren Math. Wiss., vol. 287. Springer, Berlin
(1988)

48. Mineyev, I., Monod, N., Shalom, Y.: Ideal bicombings for hyperbolic groups and
applications. Topology 43(6), 1319–1344 (2004)

49. Monod, N.: Arithmeticity vs. nonlinearity for irreducible lattices. Geom. Dedicata 112,
225–237 (2005)

50. Monod, N.: Superrigidity for irreducible lattices and geometric splitting. J. Am. Math.
Soc. 19, 781–814 (2006)

51. Monod, N., Shalom, Y.: Cocycle superrigidity and bounded cohomology for negatively
curved spaces. J. Differ. Geom. 67, 395–455 (2004)

52. Montgomery, D., Zippin, L.: Topological Transformation Groups. Robert E. Krieger
Publishing Co., Huntington (1974)

53. Moody, R.V., Pianzola, A.: Lie Algebras with Triangular Decompositions. Can. Math.
Soc. Ser. Monogr. Adv. Texts. Wiley Interscience, New York (1995)

54. Morita, J.: Commutator relations in Kac–Moody groups. Proc. Japan Acad., Ser. A
Math. Sci. 63, 21–22 (1987)

55. Mühlherr, B.: Locally split and locally finite twin buildings of 2-spherical type. J. Reine
Angew. Math. 511, 119–143 (1999)

56. Mühlherr, B.: Twin buildings. In: Tits Buildings and the Model Theory of Groups
(Würzburg, 2000). Lond. Math. Soc. Lect. Note Ser., vol. 291, pp. 103–117. Cambridge
Univ. Press, Cambridge (2002)



Simplicity and superrigidity of twin building lattices 221

57. Mühlherr, B., Ronan, M.: Local to global structure in twin buildings. Invent. Math. 122,
71–81 (1995)

58. Noskov, G.A., Vinberg, È.B.: Strong Tits alternative for subgroups of Coxeter groups.
J. Lie Theory 12, 259–264 (2002)

59. Olshanskii, A.Y.: SQ-universality of hyperbolic groups. Mat. Sb. 186, 119–132 (1995)
60. Rémy, B.: Construction de réseaux en théorie de Kac–Moody. C. R. Acad. Sci., Paris

329, 475–478 (1999)
61. Rémy, B.: Classical and non-linearity properties of Kac–Moody lattices. In: Burger, M.,

Iozzi, A. (eds.) Rigidity in Dynamics and Geometry (Cambridge, 2000), pp. 391–406.
Springer, Berlin (2002)

62. Rémy, B.: Groupes de Kac–Moody déployés et presque déployés. Astérisque, vol. 277
(2002)

63. Rémy, B.: Topological simplicity, commensurator superrigidity and non linearity of
Kac–Moody groups. Geom. Funct. Anal. 14, 810–852 (2004) (Appendix by Patrick
Bonvin: Strong boundaries and commensurator superrigidity)

64. Rémy, B.: Integrability of induction cocycles for Kac–Moody groups. Math. Ann. 333,
29–43 (2005)

65. Rémy, B., Ronan, M.: Topological groups of Kac–Moody type, right-angled twinnings
and their lattices. Comment. Math. Helv. 81, 191–219 (2006)

66. Ronan, M.: Lectures on Buildings. Perspect. Math., vol. 7. Academic Press, Boston
(1989)

67. Shalom, Y.: Rigidity of commensurators and irreducible lattices. Invent. Math. 141,
1–54 (2000)

68. Steinberg, R.: Lectures on Chevalley Groups. Yale University, New Haven (1968)
(Notes prepared by J. Faulkner and R. Wilson)

69. Tits, J.: Free subgroups in linear groups. J. Algebra 20, 250–270 (1972)
70. Tits, J.: Buildings of Spherical Type and Finite BN-Pairs. Lect. Notes Math., vol. 386.

Springer, Berlin (1974)
71. Tits, J.: Uniqueness and presentation of Kac–Moody groups over fields. J. Algebra 105,

542–573 (1987)
72. Tits, J.: Groupes associés aux algèbres de Kac–Moody. Astérisque (177–178), Exp. No.

700, 7–31 (1989). Séminaire Bourbaki, Vol. 1988/89
73. Tits, J.: Théorie des groupes. Résumés de cours (1988/89). Annuaire du Collège France

89, 81–96 (1990)
74. Tits, J.: Twin Buildings and Groups of Kac–Moody Type. Lond. Math. Soc. Lect. Notes

Ser. (Durham, 2000), pp. 249–286. London Mathematical Society, Cambridge (1992)
75. Tits, J., Weiss, R.: Moufang Polygons. Springer Monogr. Math. Springer, Berlin (2002)
76. Wilson, J.S.: Groups with every proper quotient finite. Proc. Camb. Philos. Soc. 69,

373–391 (1971)
77. Zimmer, R.J.: Ergodic Theory and Semisimple Groups. Monogr. Math., vol. 81.

Birkhäuser, Basel (1984)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


