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Abstract. We prove a simplicity criterion for certain twin tree lattices. It applies
to all rank two Kac–Moody groups over finite fields with non-trivial commutation
relations, thereby yielding examples of simple non-uniform lattices in the product
of two trees.

This paper deals with the construction of finitely generated (but not finitely pre-
sented) simple groups acting as non-uniform lattices on products of two twinned
trees. These seem to be the first examples of non-uniform simple lattices in the prod-
uct of two trees. They contrast with the simple groups obtained by M. Burger and
Sh. Mozes [BM00] in a similar geometric context: the latter groups are (torsion-free)
uniform lattices, in the product of two trees; in particular they are finitely presented.
That a non-uniform lattice in a 2-dimensional CAT(0) cell complex cannot be finitely
presented is a general fact recently proved by G. Gandini [Gan12, Cor. 3.6].
The lattices concerned by our criterion belong to the class of twin building lat-

tices. By definition, a twin building lattice is a special instance of a group endowed
with a Root Group Datum (also sometimes called twin group datum), i.e. a
group Λ equipped with a family of subgroups (Uα)α∈Φ, called root subgroups, in-
dexed by the (real) roots of some root system Φ with Weyl group W , and satisfying
a few conditions called the RGD-axioms, see [Tit92] and [CR09]. Such a group Λ
acts by automorphism on a product of two buildings X+ ×X−, preserving a twin-
ning between X+ and X−. The main examples arise from Kac–Moody theory, see
[Tit87,Tit92]. When the root groups are finite, the group Λ is finitely generated,
the buildings X+ and X− are locally finite and the Λ-action on X+ × X− is prop-
erly discontinuous. In particular (modulo the finite kernel) Λ can be viewed as a
discrete subgroup of the locally compact group Aut(X+)× Aut(X−). The quotient
Λ\Aut(X+)×Aut(X−) is never compact. However, if in addition the order of each
root group is at least as large as the rank of the root system Φ, then Λ has finite co-
volume; in particular Λ is a non-uniform lattice in Aut(X+)×Aut(X−), see [Rém99]
and [CR09]. When Λ has finite covolume in Aut(X+)×Aut(X−), it is called a twin
building lattice.
It was proved in [CR09] that a twin building lattice is infinite and virtually simple

provided the associated Weyl group W is irreducible and not virtually abelian. A
(small) precise bound on the order of the maximal finite quotient was moreover given;
in most cases the twin building lattice Λ itself happens to be simple. The condition
that W is not virtually abelian was essential in loc. cit., which relied on some weak
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2 P-E. CAPRACE AND B. RÉMY

hyperbolicity property of non-affine Coxeter groups. Rank two root systems were
thus excluded since their Weyl group is infinite dihedral, hence virtually abelian
(even though many rank two root systems are termed hyperbolic within Kac–Moody
theory).
The goal of this note is to provide a simplicity criterion applying to that rank

two case. Notice that when Φ has rank two, the twin building associated with Λ
is a twin tree T+ × T−. Moreover Λ is a lattice (then called a twin tree lattice)
in Aut(T+) × Aut(T−) if and only if the root groups are finite; in other words, the
condition on the order of the root groups ensuring that the covolume of Λ is finite
is automatically satisfied in this case.

Theorem 1. Let Λ be a group with a root group datum (Uα)α∈Φ with finite root
groups, indexed by a root system of rank 2. Suppose that Λ is center-free and gen-
erated by the root groups. Assume moreover that the following conditions hold:

(i) There exist root groups Uφ, Uψ associated with a prenilpotent pair of roots {φ, ψ}
(possibly φ = ψ) such that the commutator [Uφ, Uψ] is non-trivial. (Equivalently
the maximal horospherical subgroups of Λ are non-abelian.)

(ii) There is a constant C > 0 such that for any prenilpotent pair of distinct roots
whose corresponding walls are at distance > C, the associated root groups
commute.

Then the finitely generated group Λ contains a simple subgroup Λ0 of finite index.

We shall moreover see in Lemma 6 below that, with a little more information on
the commutator [Uφ, Uψ] in Condition (i), the maximal finite quotient Λ/Λ0 can be
shown to be abelian of very small order.
As mentioned above, the main examples of twin building lattices arise from Kac–

Moody theory. Specializing Theorem 1 to that case, we obtain the following.

Theorem 2. Let Λ be an adjoint split Kac–Moody group over the finite field Fq and

associated with the generalized Cartan matrix A =

(

2 −m
−1 2

)

, with m > 4.

Then the commutator subgroup of Λ is simple, has index 6 q in Λ, and acts as a
non-uniform lattice on the product T+ × T− of the twin trees associated with Λ.

The following consequence is immediate, since split Kac–Moody groups over fields
of order > 3 are known to be perfect.

Corollary 3. Let Λ be an adjoint split Kac–Moody group over the finite field Fq

and associated with the generalized Cartan matrix A =

(

2 −m
−1 2

)

.

If m > 4 and q > 3, then Λ is simple.

Other examples of twin tree lattices satisfying the conditions from Theorem 1 can
be constructed in the realm of Kac–Moody theory, as almost split groups. Indeed,
it is possible to construct non-split Kac–Moody groups of rank two, using Galois
descent, so that the root groups are nilpotent of class two, while all commutation
relations involving distinct roots are trivial.
Here is an example among many other possibilities. Pick an integer m > 2 and

consider the generalized Cartan matrix A =





2 −1 −m
−1 2 −m
−m −m 2



. This defines

a split Kac-Moody group (over any field) whose Weyl group is the Coxeter group
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SIMPLICITY OF SOME TWIN TREE LATTICES 3

obtained, via Poincaré’s theorem, from the tesselation of the hyperbolic plane by the
(almost ideal) triangle with two vertices at infinity and one vertex of angle π

3
. The

associated twinned buildings have apartments isomorphic to the latter hyperbolic
tesselation. This Weyl group is generated by the reflections in the faces of the
hyperbolic triangle, and the Dynkin diagram has a (unique, involutive) symmetry
exchanging the vertices corresponding to the reflections in the two edges of the
hyperbolic triangle meeting at the vertex of angle π

3
. Using [Mor87, Th. 2] and

[BP95, Th. 1], one sees that any prenilpotent pair of two roots leading to a non-
trivial commutation relation between root groups is contained, up to conjugation by
the Weyl group, in the standard residue of type A2.
Suppose now that GA(Fq2) is the split Kac–Moody group of that type, defined

over a finite ground field of order q2. According to [Rém02, Proposition 13.2.3], the
non-trivial element of the Galois group of the extension Fq2/Fq, composed with the
symmetry of the Dynkin diagram, yields an involutory automorphism of GA(Fq2)
whose centraliser is a quasi-split Kac-Moody group over the finite field Fq. This
quasi-split group acts on a twin tree obtained as the fixed point set of the involution
acting on the twin building of the split group; the valencies are equal to 1 + q and
1+q3, corresponding to root groups isomorphic to (Fq,+) and to a p-Sylow subgroup
of SU3(q), respectively. In particular, the root groups of order q3 are nilpotent of
step 2. Moreover for any prenilpotent pair of two distinct roots, the corresponding
root groups commute to one another: this follows from the last statement in the
previous paragraph.
Further examples of twin tree lattices satisfying the simplicity criterion from The-

orem 1, of a more exotic nature, can be constructed as in [RR06]. In particular it is
possible that the two conjugacy classes of root groups have coprime order.
Finitely generated Kac–Moody groups associated with the generalized Cartan

matrix

(

2 −4
−1 2

)

or

(

2 −2
−2 2

)

, are known to be residually finite (and can

in fact be identified with some S-arithmetic groups of positive characteristic). In
particular it cannot be expected that the conclusions of Theorem 2 hold without
any condition on the Cartan matrix A. The remaining open case is that of a matrix

of the form Am,n =

(

2 −m
−n 2

)

with m,n > 1. In that case Condition (ii)

from Theorem 1 holds, but Condition (i) is violated. On the other hand, if the
matrix Am,n is congruent to the matrix Am′,n′ modulo q−1, then the corresponding
Kac–Moody groups over Fq are isomorphic (see [Cap09, Lem. 4.3]). In particular if
(m′, n′) = (2, 2) or (m′, n′) = (4, 1), then all these Kac–Moody groups are residually
finite. It follows that over F2, a rank two Kac–Moody group is either residually
finite (because it is isomorphic to a Kac–Moody group of affine type), or virtually
simple, by virtue of Theorem 2. The problem whether this alternative holds for rank
two Kac–Moody groups over larger fields remains open; its resolution will require
to deal with Cartan matrices of the form Am,n with m,n > 1.

Acknowledgements. The second author warmly thanks the organizers of the Spe-
cial Quarter Topology and Geometric Group Theory held at the Ohio State University
(Spring 2011).
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4 P-E. CAPRACE AND B. RÉMY

1. Proof of the simplicity criterion

Virtual simplicity will be established following the Burger–Mozes strategy from
[BM00] by combining the Normal Subgroup Property, abbreviated (NSP),
with the property of non-residual finiteness. This strategy was also implemented
in [CR09]. The part of the work concerning (NSP) obtained in that earlier refer-
ence already included the rank two case, and thus applies to our current setting; its
essential ingredient is the work of Bader–Shalom [BS06]:

Proposition 4. Let Λ be a twin building lattice with associated root group datum
(Uα)α∈Φ. Assume that Λ is generated by the root groups.
If Φ is irreducible, then every normal subgroup of Λ is either finite central, or of

finite index. In particular, if Λ is center-free (equivalently if it acts faithfully on its
twin building), then Λ is just-infinite.

Proof. See [CR09, Th. 18]. �

The novelty in the present setting relies in the proof of non-residual finiteness.
In the former paper [CR09], we exploited some hyperbolic behaviour of non-affine
Coxeter groups, appropriately combined with the commutation relations of Λ. This
argument cannot be applied to infinite dihedral Weyl groups. Instead, we shall
use the following non-residual finiteness result for wreath products, due to Meskin
[Mes72]:

Proposition 5. Let F, Z be two groups, and let Γ = F ≀Z ∼= (
⊕

i∈Z F )⋊Z be their
wreath products. Assume that Z is infinite.
Then any finite index subgroup of Γ contains the subgroup

⊕

i∈Z [F, F ]. In partic-
ular, if F is not abelian, then Γ is not residually finite.

Proof. For each i ∈ Z, let Fi be a copy of F , so that F ≀ Z = (
⊕

i∈Z Fi)⋊ Z.
Let ϕ : Γ → Q be a homomorphism to a finite group Q. Since Z is infinite, there

is some t ∈ Z \ {1} such that ϕ(t) = 1. Notice that, for all i ∈ Z and all x ∈ Fi, we
have txt−1 ∈ Fti 6= Fi, whence txt

−1 commutes with every element of Fi. Therefore,
for all y ∈ Fi, we have

ϕ
(

[x, y]
)

= [ϕ(x), ϕ(y)]
= [ϕ(txt−1), ϕ(y)]
= ϕ

(

[txt−1, y]
)

= 1.

This proves that [Fi, Fi] is contained in Ker(ϕ), and so is thus
⊕

i∈Z [Fi, Fi]. This
proves that every finite index normal subgroup Γ contains

⊕

i∈Z [Fi, Fi]. The de-
sired result follows, since every finite index subgroup contains a finite index normal
subgroup. �

Proof of Theorem 1. Recall that in the case of twin trees, a pair of roots {φ;ψ} is
prenilpotent if and only if φ ⊇ ψ or ψ ⊇ φ (where the roots φ and ψ are viewed
as half-apartments). By (i) there exists such a pair with [Uφ, Uψ] 6= {1} (possibly
φ = ψ). In particular the group F = 〈Uφ, Uψ〉 is non-abelian.
In view of (ii), the distance between the roots φ and ψ in the trees on which Λ acts

is smaller than C. Pick an element in Λ stabilising the standard twin apartment and
acting on it as a translation of length > 2C. It follows from (ii) and from the axioms
of Root Group Data that the subgroup of Λ generated by F and t is isomorphic to
the wreath product F ≀ Z, where the cyclic factor is generated by t.
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SIMPLICITY OF SOME TWIN TREE LATTICES 5

Since F is not abelian, we deduce from Proposition 5 that Λ contains a non-
residually finite subgroup, and can therefore not be residually finite. On the other
hand Λ is just-infinite by Proposition 4. Therefore, we deduce from [Wil71, Prop. 1]
that the unique smallest finite index subgroup Λ0 of Λ is a finite direct product of
m > 1 pairwise isomorphic simple groups. It remains to show that m = 1. This
follows from the fact that Λ acts minimally (in fact: edge-transitively) on each half
of its twin tree, and so does Λ0. But a group acting minimally on a tree cannot split
non-trivially as a direct product. Hence m = 1 and Λ0 is a simple subgroup of finite
index in Λ. �

Lemma 6. Retain the hypotheses of Theorem 1 and assume in addition that one of
the following conditions is satisfied:

(i′) The commutator [Uφ, Uψ] contains some root group Uγ.
(i′′) φ = ψ, and if the rank one group 〈Uφ, U−φ〉 is a sharply transitive group,

then the commutator [Uφ, Uφ] is of even order.

Then the maximal finite quotient Λ/Λ0 afforded by Theorem 1 is abelian. Moreover
we have |Λ/Λ0| 6 maxα∈Φ |Uα| if (i

′) holds, and |Λ/Λ0| 6 (maxα∈Φ |Uα/[Uα, Uα]|)
2

if (i′′) holds.

Proof. Retain the notation from the proof of Theorem 1. Proposition 5 ensures
that every finite index normal subgroup of F ≀Z contains the commutator subgroup
[F, F ]. In particular, so does N = Λ0.
If [Uφ, Uψ] contains some root group Uγ , then Uγ is contained in N . Since Xγ =

〈Uγ, U−γ〉 is a finite group acting 2-transitively on the conjugacy class of Uγ , it
follows that Xγ is entirely contained in N . In particular, so is the element rγ ∈ Xγ

acting as the reflection associated with γ on the standard twin apartment.
Let now α ∈ Φ be any root such that α ⊂ γ and that the wall ∂α is at distance

> C/2 away from ∂γ. Then α ⊂ rγ(−α), and the walls associated with the latter
two roots have distance > C. By condition (ii), the corresponding root groups
commute. Denoting by ϕ : Λ → Λ/N the quotient map, we deduce

[ϕ(Uα), ϕ(U−α)] = [ϕ(Uα), ϕ(Urγ(−α))]
= ϕ

(

[Uα, Urγ(−α)]
)

= 1.

Thus the image of the rank one group Xα = 〈Uα ∪ U−α〉 under ϕ is abelian, and
identifies with a quotient of Uα.
Remark finally that there are only two conjugacy classes of root groups, the union

of which generates the whole group Λ. One of these conjugacy classes has trivial
image under ϕ, since N contains the root group Uγ . The other conjugacy class
contains roots α whose wall is far away from ∂γ. This implies that ϕ(Λ) = ϕ(Uα),
which has been proved to be abelian. We are done in this case.
Assume now that condition (i′′) holds. Again, by Proposition 5, the commutator

[Uφ, Uφ] is contained in N .
If the rank one group Xφ = 〈Uφ, U−φ〉 is not a sharply 2-transitive group, then

it is a rank one simple group of Lie type and we may conclude that it is entirely
contained in N . Hence the same argument as in the case (i′) with φ playing the role
of γ yields the conclusion.
If the rank one group Xφ = 〈Uφ, U−φ〉 is a sharply 2-transitive group, then we

dispose of the additional hypothesis that the commutator [Uφ, Uφ] contains an in-
volution. Since Xφ is a sharply 2-transitive, all its involutions are conjugate. They
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6 P-E. CAPRACE AND B. RÉMY

must thus all be contained in N . In particular N contains some involution rφ swap-
ping Uφ and U−φ. Again, this is enough to apply the same computation as above
and conclude that for each root α whose wall is far away from ∂φ, the image of
〈Uα, U−α〉 under ϕ is abelian and isomorphic to a quotient of Uα. We take two dis-
tinct such roots α ⊂ β so that there is no root γ strictly between α and β. Thus
Uα and Uβ commute by the axioms of Root Group Data. Moreover Λ is generated
by Uα ∪ U−α ∪ Uβ ∪ U−β, and we have just seen that, modulo N , the root groups
Uα and U−α (resp. Uβ and U−β) become equal, and abelian. It follows that Λ/N
is isomorphic to a quotient of the direct product Uα/[Uα, Uα] × Uβ/[Uβ, Uβ]. The
desired result follows. �

Remark 7. Finite sharply 2-transitive groups are all known; they correspond to
finite near-fields, which were classified by Zassenhaus. All of them are either Dickson
near-fields, or belong to a list of seven exceptional examples. An inspection of that
list shows that, in all of these seven exceptions, the root group contains a copy of
SL2(F3) or SL2(F5) (see [Cam99, §1.12]); in particular the commutator subgroup
of a root group is always of even order in those cases. Thus condition (i′′) from
Lemma 6 only excludes certain sharply 2-transitive groups associated with Dickson
near-fields.

2. Kac–Moody groups of rank two

Let Λ be a Kac–Moody group over the finite field Fq of order q, associated with

the generalized Cartan matrix Am,n =

(

2 −m
−n 2

)

. The Weyl group of Λ is the

infinite dihedral group and Λ is a twin tree lattice; the corresponding trees are both
regular of degree q + 1.
When mn < 4, the matrix A is of finite type and Λ is then a finite Chevalley

group over Fq. When mn = 4, the matrix A is of affine type and Λ is linear, and
even S-arithmetic; in particular it is residually finite.
In order to check that the conditions from Theorem 1 are satisfied when m > 4

and n = 1, we need a sharp control on the commutation relations satisfied by the
root groups. The key technical result is the following lemma, which follows from the
work of Morita [Mor87] and Billig–Pianzola [BP95].

Lemma 8. Let Π = {α, β} be the standard basis of the root system ∆ for Λ and set
t = rαrβ. For all i ∈ Z, let αi = tiα and βi = tiβ and set

Φ(+∞) = {−αi, βj | i, j ∈ Z} and Φ(−∞) = {αi,−βj | i, j ∈ Z}.

Assume that m > 4 and n = 1. Then for all φ, ψ ∈ Φ(+∞), either Uφ and Uψ
commute, or we have

{φ, ψ} = {−αi,−αi+1} for some i ∈ Z and [Uφ, Uψ] = Uβi.

Similarly, for all φ, ψ ∈ Φ(−∞), either Uφ and Uψ commute, or we have

{φ, ψ} = {αi, αi+1} for some i ∈ Z and [Uφ, Uψ] = U−βi.

Proof. Follows from Theorem 2 in [Mor87] and Theorem 1 in [BP95]. �

Proof of Theorem 2. Lemma 8 readily implies that Conditions (i) and (ii) from The-
orem 1 are satisfied (we can take C = 2 in this case), so that Λ is virtually simple.
In fact, Lemma 8 shows that some root group is equal to the commutator of a pair
of prenilpotent root groups, so that condition (i′) from Lemma 6 is satisfied. The
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SIMPLICITY OF SOME TWIN TREE LATTICES 7

latter ensures that Λ0 is the commutator subgroup of Λ, and that the quotient Λ/Λ0

is bounded above by the maximal order of a root group. Thus the theorem holds,
since all the root groups have order q in this case. �
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