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Abstract This paper presents a new class of geometries and groups satisfying
algebraic and combinatorial rules. These were initially produced in the context of
Kac-Moody theory to obtain infinite-dimensional analogues of semisimple algebraic
groups. Adopting the point of view of discrete groups, we obtain in this way lattices
for buildings which are both negatively curved and have dimension at least two,
properties which are incompatible for Euclidean buildings. The problem then is
to know to what extent the groups are new and whether classical properties of
lattices of Lie groups are relevant. The first question leads to discussing linearity
properties. The second one is partially answered by positive results concerning
Kazhdan property (T) and cohomological finiteness properties, proved by several
authors. Our guideline is the analogy with semisimple groups over local fields of
positive characteristic.

1 Introduction

Kac—Moody groups were defined over arbitrary fields by J. Tits about fifteen
years ago. The article [42] provides at the same time an abstract functo-
rial approach, a new combinatorial structure and a concrete definition of
the groups. It can be seen as the result of efforts made by several people
including V. Kac and D. Peterson [25]. The concrete definition consists in
generalizing a theorem due to R. Steinberg, giving an explicit presentation of
split semisimple groups [39]. The main difference is that the generalized root
system and Weyl group are now infinite. J. Tits [44] later refined the group
combinatorics of [42], but the underlying idea is still the same, and if we want
to keep available the crucial notion of opposite parabolic subgroups, we need
to make the group act on a pair of buildings (instead of a single one in the
algebraic theory). This is the starting point of the theory of twin buildings.

The group SL,, (F,[t,t7']) is a very special case of a Kac-Moody group
over the finite field F, and is also an arithmetic group. This paper reports
on work based on the analogy between Kac—Moody groups over finite fields
and arithmetic groups over function fields. The first convincing argument is
that such a group is often a lattice of its geometry (a product of Euclidean
buildings in the arithmetic group case). In the general case, we get products
of buildings which range through a wide new class allowing strictly negative
curvature and dimension at least two for the same space. Then comes the
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problem of knowing whether classical properties for lattices in Lie groups
are relevant or true. Some groups are known to enjoy Kazhdan’s property
(T) or other cohomology vanishing, as well as some cohomological finiteness
properties. These are arguments supporting the above analogy, but since the
buildings are new, it is natural to ask whether the groups themselves are
original. The new results in this paper concern non-linearity of Kac—-Moody
lattices as one way to answer this question.

Theorem 1.1. An infinite Kac-Moody lattice over the field ¥ (of charac-
teristic p, with q elements) cannot be linear over any field of characteristic

7 -

The first part of this article presents some basic facts from Bruhat—Tits
theory to define a geometric framework for a fundamental existence result of
lattices in positive characteristic, due to H. Behr and G. Harder. The second
part introduces Kac—-Moody groups, adopting as soon as possible the point of
view of discrete groups. Group combinatorics is used to stick to the previously
defined geometric framework, where Kac—-Moody groups appear as lattices.
The last part lists some known facts about Kac-Moody lattices and classical
properties, and settles strong restrictions on linearity possibilities.

By a local field we mean a locally compact non-Archimedean local field.
Unless explicitly stated (e.g., in Sect. 3.1), K denotes the local field F4((t)),
the Laurent power series with poles at 0. It is a completion of the ring of
Laurent polynomials F,[t,¢t~!]. Its ring of integers F,[[t]] is denoted by O.

2 A Classical Arithmetic Situation and its Geometric
Formulation

A classical theorem by H. Behr and G. Harder proves the existence of lattices
in reductive groups over local fields of positive characteristic [4], [21]. This
section starts from a special case of this situation and makes use of Bruhat—
Tits theory to get a geometric interpretation of the group-theoretic result.
This provides the framework which enables generalization in the context of
Kac—Moody groups.

2.1 A Special Case of the Behr—-Harder Theorem

Let us assume that we are given a connected semisimple group G defined
over the finite field F,. We can thus define the countable groups

A= G(F[t,t7Y) and T = G(F,t"]).

In the classical terminology, A (resp. I') is a {0; co}- (resp. {0; }-)arithmetic
subgroup of G (F(t)). We also introduce Lie groups over local fields, namely
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G:=G(F, (1)) and G_:=G(F,(t7")).

Given a topological group G, a lattice of G is a discrete subgroup H in G
such that the homogeneous space G/H carries a finite G-invariant measure.
When G/H is compact, the lattice H is called uniform. Here is the funda-
mental existence result of lattices in our case — see [28, Theorem 1.3.2.4] for
the statement in its full generality.

Theorem 2.1 (H. Behr—G. Harder, a simple case). The group A, diag-
onally embedded in the product G x G_, is a non-uniform lattice. The group
I itself is a non-uniform lattice of G.

In the general case, the algebraic group need not be defined over a finite
field. The ground field may be a global field of positive characteristic, i.e., the
field of rational functions on a curve C' defined over F,. The proof involves
reduction theory, for which the language of vector bundles over C' is useful.

2.2 Geometry via Bruhat—Tits Theory

Now we adopt a geometric point of view on the above situation. This is made
possible by the fundamental work of F. Bruhat and J. Tits [41].

Generalities. The group G (resp. G_) acts on a FEuclidean building A
(resp. A_), that is a labelled simplicial complex covered by Euclidean tilings,
the apartments, satisfying certain incidence axioms [12]. Simplices are called
facets, and the maximal ones, which all have the same dimension, are the
chambers. A codimension one simplex is a panel; the thickness at a panel IT
is the number of chambers containing I in their closure. Two chambers are
adjacent if their closures intersect along a panel; a sequence of consecutively
adjacent chambers is a gallery.

Given the inclusion of a chamber ¢ in an apartment A, the stabilizer of
A in G acts on A via the Coxeter group W generated by the inversions with
respect to the panels of the chamber c. The definition of W does not depend
on the choice of an apartment, and is an affine reflection group called the
Weyl group of A (resp. A_). Denoting by S the generating set of W for its
Coxeter presentation, the labelling set of A is the power set of S. Panels are
labelled by singletons {s}, hence a gallery gives rise to a word in W, just
by writing the types of the panels successively crossed. If ¢ and d are two
chambers, the word associated to any minimal gallery from c to d gives the
same element of W: the W -distance from c to d.

The G-action on A(_ is strongly transitive, [36, Sect. 5]: the Weyl group
W is transitive on chambers in an apartment, and G is transitive on pairs of
chambers at fixed W-distance w. A facet fixator is called a parahoric subgroup
of G, an Iwahori subgroup if the facet is a chamber. These are compact open
subgroups of G.
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As metric spaces, the buildings A and A_ are complete and non-positively
curved: roughly speaking, geodesic triangles are at least as thin as Euclidean
triangles. This is formalized by the notion of a CAT(0)-space, [11]. The latter
property implies contractibility of A. By the Bruhat—Tits fixed point theorem
[12, Chap. VI|, a compact group of isometries of A(_) must fix a point.

The SL,, case. We assume we are given a further arbitrary local field F of
any characteristic, with ring of integers V, uniformizer w and finite residue
field % of characteristic . The building B of SL,(F) is known to be the set
of ultrametric norms of F” up to homothety, [13, Sect. 10]. Vertices of B are
in one-to-one correspondence with F-homothetic classes of V-lattices in F™.
The model of an apartment is the Euclidean tessellation of R"~! by regular
simplices.

By the Bruhat—Tits fixed point theorem, the maximal compact subgroups
of SL,,(F) are the vertex stabilizers; consequently, by type-preservation and
chamber-transitivity of SL,,(F) on B, there are n conjugacy classes of max-
imal compact subgroups, parametrized by the vertices in the closure of a
given chamber. All these subgroups are isomorphic to SL, (V). Let us intro-
duce K := ker(SL, (V) — SLy(x)), the first congruence subgroup of SLy (V).
Denoting by M,, the n X n matrices, we see that K is a pro-l group since
K = (h_mj>1{M €id + wM,,(V/w’) : det M = 1}. Hence, SL,(V) admits a
finite index subgroup K where the only possible torsion is [-torsion. A simple
matrix computation shows that when char(F) = 0, K is torsion-free.

Ezample 2.2. 1. For G = SL3(K), the building A is two-dimensional. The
apartments are tessellations of the Euclidean plane R? by regular tri-
angles, and small spheres centered at vertices — which may be seen as
incidence graphs — are isomorphic to the projective plane P?(F,).

2. The building of the rank one group G = SU3(K) is a tree. Trees are
the only hyperbolic metric spaces in the class of Euclidean buildings. A
geometric consequence of the non-splitness of G is that it is not regular
but only biregular, of valencies (=thicknesses) 1 4 ¢ and 1 4 ¢>.

2.3 The Framework for Generalization

Given a locally finite cell complex X, its full automorphism group Aut(X)
carries a natural structure of totally disconnected locally compact group.
Hence, the problem of existence of lattices in Aut(X) makes sense. In view
of the geometric definition of Aut(X) we will speak of lattices of X instead
of lattices in Aut(X). Recall also that given an inclusion of groups I' < H,
the commensurator of I' in H is the subgroup of H:

Commpy (I") := {g€H : 'N gl g™ " is of finite index in I" and gI'g~'}.
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The geometric setting we keep in mind for generalization consists of the
following data. First, the geometries and the groups:

(Bui) Two isomorphic (locally finite) buildings A ~ A_;
(Top) Cocompact subgroups G < Aut(A) and G_ < Aut(A_);
(Dis) A countable group A acting diagonally on A x A_.

These objects satisfy the following requirements.

(Lat) The group A is a lattice of A x A_;
(Den) The closure of the projection of A in Aut(A_)) is G(_y;
(Com) For any point z(_)€ A(_), we have A < Comme (A(z(_))).

Everything is defined in such a way that the groups in Sect. 2.1 satisfy
the above axioms. Theorem 2.1 proves (Lat).

3 Kac—Moody Theory and the Generalization

The initial purpose of Kac—Moody theory was to define infinite-dimensional
analogues of split semisimple Lie algebras and split semisimple algebraic
groups. The case of Lie algebras was the starting point; for groups, the goal is
now reached over arbitrary fields, according to J. Tits [42]. We explain in this
section that we can see Kac—-Moody groups over finite fields as generalizations
of the above special cases of arithmetic groups.

3.1 Kac—Moody Groups

This section is an introduction to Kac-Moody theory with a view toward dis-
crete group theory. We show that the analogy with algebraic groups provides
precise decompositions of a Kac—-Moody group and some of its subgroups.
This first leads to see them as discrete groups and then gives the tools needed
to prove properties supporting the analogy (e.g., the axioms Sect. 2.3). In this
subsection, K denotes an arbitrary field.

Presentations. Split semisimple Lie algebras and algebraic groups have
been so intensively studied that they can now be defined by generators and
relations: for Lie algebras, this is the Serre presentation. This presentation is
completely determined by a characteristic 0 field K and a so-called Cartan
matrix A = [As 4]s,1es, where S is a finite index set. Relaxing some conditions
on A, we get the definition of a generalized Cartan matriz. It is an integral
matrix A = [As]ses such that A; s = 2 for any s, A, < 0 for s # ¢
and A;; =0 < Ay s = 0. A Kac-Moody algebra is defined by a Serre-type
presentation, where the Cartan matrix is replaced by a generalized one, [24,
Sect. 1]. According to Steinberg, a split semisimple algebraic group admits a
presentation, too. The needed data are the same as for Lie algebras, but the
field K here may be of arbitrary characteristic.



396 Bertrand Rémy

From spherical to twin combinatorics. J. Tits showed that such a def-
inition for a generalized Cartan matrix leads to a non-trivial group, which
besides admits nice group combinatorics [42]. A BN -pair is a combinatorial
structure for groups which formalizes properties of isotropic reductive groups
over arbitrary fields [6, 14.15 and 21.15]. For instance, a group endowed with
a BN-pair admits a Bruhat decomposition by a general abstract argument,
[8, Chap. IV.2]. The structure of BN-pair should be seen as a starting point,
to be refined according to the group-theoretic situation under consideration.
The refinement adjusted to semisimple groups over local fields is powerful
enough to imply the Cartan and the Iwasawa decompositions, [41, Sect. 3].
In the Kac—Moody case, the structure involved is that of twin root datum,
[44].

Let us consider the group A = A(A,K) defined by the generalized Car-
tan matrix A and the field K, [42]. The dictionary between BN-pairs and
buildings is well known, [36, Sect. 5]: a group acting strongly transitively
(Sect. 2.2) on a building admits a BN-pair and there is a standard way to
construct a building from a BN-pair. In the Kac—Moody case, A admits two
(twin) BN-pairs which cannot be deduced from one another by conjugation.
Geometrically, this provides two buildings A and A_. The presentation of A
distinguishes the inclusion ¢ C A (resp. c— C A_) of a chamber in an apart-
ment of A (resp. A_). The chamber fixators A(c) and A(c_) are the Borel
subgroups of the BN-pairs.

Now we can wonder what makes the groups A(A,K) usually infinite-
dimensional. The answer is that the Coxeter systems (W, S) attached to the
BN-pairs are isomorphic but the so-obtained Coxeter group W is generally
infinite. We thus get two Bruhat decompositions indexed by the same Coxeter
group but not carrying the same information. Since W acts simply transitively
on the chambers of A (resp. A_), the apartments are infinite, too. And so
is the (real) root system. To define this set, we introduce the free Z-module
over the symbols ag, indexed by S. This module admits a W-action by a rule
involving the matrix A, namely: s.a; = a; — Astas. The roots are the elements
wags for w €W and s € S, a simple root just being one of the as’s. The set
of roots @ keeps the nice properties of a finite root systems, [8, Chap. 5].
In particular, a root a has either all positive or all negative coordinates in
the basis {as}scs, the height of a still being the sum of them. Geometrically,
we define the walls as the codimension one subcomplexes of A(_) fixed by a
given reflection in W. A root can be seen as a half apartment defined by a
wall.

Though the root system involved is infinite, there is a strong analogy with
the finite-dimensional case. Indeed, to each root a is attached a root group
U,. In the split case we are considering now, U, is isomorphic to the additive
group of K. The positive (resp. negative) Borel subgroup i.e., the chamber
fixator A(c) (resp. A(c_)), is the semi-direct product of a group abstractly
isomorphic to a split torus with the normal subgroup U (resp. U_) generated
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by all the positive (resp. negative) root groups. Let us choose w an element
of the Weyl group W, of length ¢(w) with respect to the generating system
S. Then the fixator in U of the pair of chambers {c;w.c_} is U NwU_w™1.
Set-theoretically, it is in bijection with the product in any order of the root
groups indexed by the ¢(w) roots containing ¢ but not containing w.c, [42,
4.8]. This result is the abstract analogue of [6, 21.9].

Relative theory. What we described so far is split Kac-Moody theory. A
natural question then is to define non-split groups. Once again, the model for
this is the case of semisimple algebraic groups, that is Borel-Tits theory, [7],
[6, Chap. V]. The main difficulty is that the algebro-geometric structure is
lost while passing from algebraic to Kac—-Moody groups. The substitutes for
this are an infinite-dimensional adjoint representation, [32, 9], and the action
of the group on its twin building. A typical argument consists in combining
the Bruhat—Tits fixed point theorem to get a relevant algebraic subgroup and
then to use classical arguments. This is how conjugation of Cartan subgroups
is proved [32, 10.4]. These arguments apply to Galois group actions, to define
a new class of Kac—-Moody groups, the almost split Kac—Moody groups. The
main result is a descent theorem asserting that the K-rational points of an
almost split Kac—Moody group still admit the structure of twin root datum,
the buildings so-obtained appearing as Galois-fixed points in the original
split ones [32, Sect. 12]. Hence, the above combinatorial properties stay true
for almost split Kac—-Moody groups up to minor changes. Root groups are
K-points of root groups in algebraic groups.

We specialize now our situation to the case where K is the finite field F.
We get then root groups of cardinality g or ¢>. In view of the above description
of the groups U, we also get the following lemma, useful to study linearity
properties in Sect. 4.2

Lemma 3.1. An almost split Kac—Moody group over F contains arbitrarily
large p-groups.

Being generated by its standard Cartan subgroup and the simple positive
and negative root groups, a Kac—-Moody group over a finite field is always
finitely generated. Since we use the non-positively curved realizations for the
buildings [16], only spherical facets appear and their links are buildings of
finite groups of Lie type, [32, 6.2.3]. In particular, the buildings are then
locally finite.

Ezample 3.2. 1. Values of Chevalley groups on rings of Laurent polynomials
are Kac—Moody groups of affine type. For instance, A := SL,,(K[t,t7]) is
Kac—Moody and operates diagonally on the product of the Bruhat—Tits
buildings of SL,, (Fy((t))) and SLy, (F(t™")). A vertex fixator in A is the
intersection of a maximal compact subgroup with A, hence is isomorphic
to SL,, (Fg[t™']). This is a step toward the axioms in Sect. 2.3.
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2. Let us turn now to the case of an infinite rank 2 Kac—Moody group, de-
2 —m

-n 2

buildings involved are trees and an apartment is the real line tessellated
by the integers. We are interested in an abstract group-theoretic con-
sequence of commutator relations between root groups. These relations
were determined up to sign by J. Morita [30]. The set of real roots in an
infinite rank 2 Kac—Moody root system can roughly be seen as the half-
lines defined by the vertices in an apartment. The roots split naturally
into two halves, those in the same half being oriented the same way. Let
¢ be one of these halves, and consider the group U, generated by the root
groups indexed by them. A more detailed description of root systems [24,
Exercises p.75-76] and [26, Sect. 4], combined with the commutator rela-
tions, shows that basically two cases occur. Either m and n are both > 2
and then all root groups indexed by ¢ commute, in which case Uy is the
additive group of the direct sum of the root groups. Or one off-diagonal
coefficient is 1 and the group Uy is metabelian. In any case, if we are
working over the finite field F, the group Uy is p-torsion with a uniform
bound on the orders. This will be a useful fact in Sect. 4.2.

fined by the generalized Cartan matrix with mn > 4. The

Remark 3.3. The fact that there exist big abelian subgroups in rank 2 Kac—
Moody groups was first remarked by J. Morita [31, Sect. 3, Ex. 6].

3.2 Kac—Moody Lattices

We are now in position to check the axioms of the geometric framework in
Sect. 2.3. As suggested by the notation, we make an almost split Kac—Moody
group A(A, g) over Fy play the role of the group A. The isomorphism between
the associated buildings comes from opposition of the signs of the roots, via
the BN-pairs defining them. Recall that A is the Moussong—Davis realization
of an abstract building [16], hence only the spherical facets appear. The link
of such a facet is the building of a finite group of Lie type, [32, 6.2.3]. This
proves (Bui). According to the definition of A by the Steinberg presentation
[42], it follows from the finiteness of F, that A is finitely generated, which
proves (Dis). In this context, we have not defined G and G_ yet. In order to

satisfy (Den), the relevant topological groups are not the full automorphism
groups. Instead, we define G and G_ as the closures ZAut(A) and ZAut(Af)

respectively. Since A is transitive on chambers for its action on each building,
G and G_ are cocompact; hence (Top). The following lemma just says that
(Com) is satisfied. Its proof is very easy once a refined Bruhat decomposition
taking into account the existence of root groups has been introduced, [35].

Lemma 3.4. For any point x(_y€ A(_y we have: A < Commg (A(z(_))).

The remaining axiom is (Lat), for which we have to make an assumption
on ¢. More precisely, we have [15], [33]:
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Theorem 3.5. Let A be an almost split Kac—Moody group over the finite field
F,, with infinite Weyl group W . Denote by >, -, dnt"™ the growth series of
W, and assume Y, <, dn/q" < co. Then, A is a lattice of Ay x A_ for its
diagonal action, and for any point x(_y € Ay, A(xy) is a lattice of A,.
These lattices are not uniform.

Remark 3.6. 1. The proof of this theorem is another illustration of the fact
that combinatorial properties derived by analogy with the algebraic group
case are precise enough to prove results on the discrete group side. A Levi
type decomposition [33] implies that given a point in each building, the
fixator of the pair is finite: this is the discreteness part. The finiteness
of the covolume comes from another abstract decomposition where the
groups U,, come into play [33].

2. The condition ) -, d,/q" < oo is sharp in the split case.

3. The A(z_)-action on the building A admits a fundamental domain, ex-
plicitly described as an intersection of roots (seen as half-spaces) in an
apartment. This fact was noticed by J. Tits — see [1, Sect. 3].

From now on, we assume that ¢ is large enough to satisfy (Lat).

3.3 New Buildings and Automorphism Groups

Given an arbitrary building or a more general cell-complex, it is not clear that
its full automorphism group is big enough (to be seen as a generalized Lie
group, for instance). Since the Kac-Moody buildings are obtained via BN-
pairs, their automorphism groups are by definition strongly transitive. There
is another construction procedure, consisting in defining a complex of groups
[11] and taking its covering space and fundamental group. This provides in
one stroke a cell-complex and an automorphism group. Local criteria on a
complex of groups to decide whether its covering space is a building or not
were determined by D. Gaboriau and F. Paulin [18].

As already mentioned, no Euclidean building of dimension at least two
can be a hyperbolic metric space. Hence the new class of hyperbolic build-
ings — where apartments are hyperbolic tilings instead of Euclidean ones — is
interesting at least because it provides CAT(—1)-spaces with nice incidence
properties. These spaces, their full automorphism groups as well as their lat-
tices were studied by several authors [18], [20], [9]. The article by M. Bourdon
and H. Pajot in this book is dedicated to a nice two-dimensional case of these
buildings [10], where apartments are tilings of the hyperbolic plane by regu-
lar right-angled r-gons, and small spheres at vertices are complete bipartite
graphs.

Some CAT(—1) buildings do come from Kac-Moody groups over finite
fields [34]. The latter two-dimensional examples are Kac-Moody as soon as
the thickness is constant and equal to 1 + ¢, g a prime power. Still, another
striking result about hyperbolic buildings is the existence of an uncountable
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family of buildings with the same incidence structure at vertices and same
shape of apartments [20]. Hence, the Kac-Moody construction procedure is
far from being exhaustive. A definition of additional invariants by F. Haglund
is a step toward classification in suitable cases [19].

4 Questions Arising from the Generalization

The question we are considering now is whether classical properties of lat-
tices in Lie groups are relevant to this new class of discrete groups. We will
see that some positive answers have already been given. Then we discuss the
more basic problem of linearity over arbitrary fields, which says to what ex-
tent Kac—-Moody lattices are new. The last subsection deals with an abstract
combinatorial approach which allows to go further in the generalization.

4.1 Classical Properties of Lattices

In order to present positive results concerning classical properties, we proceed
from the widest class to more particular classes of buildings and groups.

Residual finiteness. As noted by M. Burger, a lattice A(x_)) is always
residually finite. This can be seen thanks to the geometric definition of
A(z(_y), as the fixator in A of a point z_) € A_. Taking fixators of balls
of increasing radius n € N around x(_y provides a family of normal sub-
groups Ay (z(_y) <A(x(_y) with trivial intersection. The groups A, (x(_)) are
analogues of congruence subgroups.

Commensurators. strictly speaking, the main property is axiom (Com) of
Sect. 2.3. Still, recall that in Sect. 3.2, axiom (Den) imposed to define the
topological groups G and G _ as closures of the countable group A. Forgetting
for a while discrete groups, this calls for arguments supporting the analogy
between G and a semisimple group over a positive characteristic local field.
Actually, G admits a refined Tits system structure (a notion defined in [25])
and for any spherical facet F, the subgroup Gr = Fixg(F') decomposes as
Grp = M(F) x Up, where M(F) is a finite group of Lie type and Ur is a
pro-p group [35]. The group Ur contains arbitrarily large p-groups.

For the next properties, we restrict our attention to special cases of Kac—
Moody groups. Namely, we consider the groups A whose associated buildings
A and A_ are hyperbolic in the sense of [18] (see Sect. 3.3; in particular,
they are CAT(—1)-spaces, [11]).

Amenability. According to M. Burger and S. Mozes [14], if a CAT(-1)-
space X admits a closed cocompact automorphism group G, then for any
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boundary point £ € 9, X the fixator Fixg(£) is amenable. This applies to

—Aut(A —Aut(A_ . . .
our groups /A ut(4) and A u(A-) as above. The comparison with symmetric

spaces and Bruhat—Tits buildings suggests considering the fixators of bound-
ary points as generalized parabolic subgroups of G.

Kazhdan’s property (T). The first investigation concerning property (T)
for groups acting on exotic geometries is due to A. Zuk [45]. The idea is to
extend the use of Garland’s combinatorial Laplace operator to this situation,
since what is mainly involved is the local structure of the buildings. The
results obtained are cohomology vanishing theorems which are stronger than
(T). Recall that property (T) amounts to vanishing of 1-cohomology with
arbitrary unitary representations as coefficients. The following stronger result
is independently due to J. Dymara—T. Januszkiewicz [17] and L. Carbone-H.
Garland [15]. A compact hyperbolic Coxeter group is one coming from the
tessellation of a hyperbolic space by a compact simplex.

Theorem 4.1. Let A be a Kac-Moody group over F, with compact hyper-
bolic Weyl group. Then for q large enough and 1 < k < n —1, the continuous
cohomology groups HE (Aut(A), p) with coefficients in any unitary represen-
tation p, vanish.

Cohomological finiteness. Finiteness properties of arithmetic groups in
positive characteristic is a difficult subject, [12, Chap. VII]. Results for Kac—
Moody groups were obtained by P. Abramenko, [1], [2]. They involve both
the size of the ground field F, and the coefficients of the generalized Cartan
matrix A. Definition of these properties — F;, or F P, — involves cohomology
or actions on complexes, but for the first two degrees they are closely related
to finite generation and finite presentability.

Theorem 4.2. Let A(A,q) be a split Kac—-Moody group, and I" be a chamber
fizxator.

(i) If A contains a rank two submatriz which is not Cartan, then I' is not
finitely generated (for arbitrary q);
(i) If ¢ > 3 and if all rank two, but not all rank three, submatrices are Cartan,
then I' is finitely generated but not finitely presentable;
(iii) If ¢ > 13 and if all rank three submatrices are Cartan, then I is finitely
presentable.

This theorem is due to P. Abramenko, who also determined generalized
Cartan matrices whose lattices (for one building) are not finitely generated
over tiny fields, while they have (T) for a larger ¢q. Hence, the condition on
thickness is necessary for property (T), while it is not in the classical case
of simple groups over local fields (the rank being then the only criterion [28,
I1L.5.6]).
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4.2 Non-Linearity

From Sect. 3.3, it is clear that Kac—Moody buildings form a wide new class of
geometries. Dealing with linearity is an attempt to decide to what extent the
groups themselves are new. The first result involves almost split Kac—-Moody
groups A(A, q), that is lattices of products of buildings.

Proposition 4.3. Let A be an almost split Kac-Moody group over F, with
infinite Weyl group. Then:

(i) A chamber fixator in A cannot be linear over any local field of character-
istic # p;
(i5) The group A cannot be linear over any field of characteristic # p.

Proof. Let us pick a chamber fixator I' := Fixs(c). We assume with no loss
of generality that the chamber c is the standard positive one. Hence, I" is the
Borel subgroup of the positive Tits system of A.

We first show that (i) implies (ii). Indeed, the group A inherits the non-
linearity properties of its subgroup I'. But since A is finitely generated, if it
were linear over F of characteristic [ # p, it would be contained in a group
GL,(Fy), where Fy is finitely generated as a field, and of characteristic I.
Such a field F can always be embedded in a local field of characteristic I:
contradiction with (i).

We suppose now we are given a local field F of characteristic [ # p. In
order to prove non-linearity of I" over F', it is enough to show that no abstract
homomorphism I" — SL,(F) can be injective. Let us fix such a homomor-
phism ¢ and consider the Bruhat—Tits building B of SL,,(F). We adopt all
the notations of Sect. 2.2. The first congruence subgroup K of SL, (V) is
a subgroup of finite index m. It is torsion-free or its only torsion elements
are [-torsion according to whether [ is 0 or a prime number. According to
Sect. 3.1, we can choose a p-subgroup U, < I' of cardinality > m: choose
w in the infinite Weyl group W such that ¢‘®) > m. By non-positive cur-
vature and type-preservation, +(V') must fix a vertex z in B. The maximal
parahoric subgroup SL, (V) breaks into m classes modulo K, so we get two
different elements v and v’ whose images under ¢ lie in the same class. Hence,

the p-torsion element v~1'v’ must be sent in the torsion-free or pro-I group
K. Consequently, ((v~"1v') = 1 and the homomorphism |y is already non-
injective. O

Remark 4.4. 1. The assumption on W is natural since when W is finite, the
matrix A must be a Cartan matrix, in which case A is a finite group of
Lie type.

2. The trick of embedding a finitely generated field into a local field appears
in [40]. The idea of applying it to the proof of a non-linearity result comes
from [27]. In the latter reference was also found the idea of using torsion
properties of congruence subgroups.
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3. The problem in equal characteristic p is more delicate, since for example
SL,,(F,[t,t71]) is a Kac-Moody group of affine type, and is obviously
linear. Hence, the problem is rather the following:

Question 4.5. Does there exist a generalized Cartan matrix A such that the
group A(A, q) is not linear in characteristic p either?

The argument for the implication (i) = (ii) in the above proof also shows
that a chamber fixator I" in A cannot be linear over any field of characteristic
# p, provided we know that I" is finitely generated. But this is not always
the case (consider the case of a non-uniform lattice of a tree arising from
an infinite rank 2 Kac-Moody group). In order to obtain a more general
statement, we need the technical points on split rank 2 Kac—Moody groups
presented in the second example of 2.1.

Theorem 4.6. Let A be a split Kac—-Moody group over F, with infinite Weyl
group W. Then a chamber fixator in A cannot be linear over any field of
characteristic # p.

Proof. We fix the inclusion of a chamber ¢ in an apartment A. Up to mod-
ifying the generalized Cartan matrix, we assume with no loss of generality
that the chamber is the standard positive one. Hence the group we are re-
garding is the positive Borel subgroup I'. Let us start with a simple root
as, whose associated reflection is denoted by s. Then, as W is infinite, there
exists a reflection 7 such that s and r generate an infinite dihedral group,
[23, Proposition 8.1, p. 309]. The reflection r fixes the wall 9b of a root b.
Let us consider the set of roots of the form b + kas, k € Z. We denote by a
the root of minimal height in this set, by r, the associated reflection and by
W’ the group (s, r,). Then, according to [29, Proposition 8.1], {as;a} is the
basis of an infinite rank 2 Kac-Moody root system, whose set of (real) roots
is @ :=W'a, UW'a.

Setting t := 145 and ¢ := |J,, oz t"{as; —a}, we know by Sect. 3.1 that
the group Uy generated by the root groups indexed by ¢ is infinite, p-torsion
with uniform bound on the orders. Since {as;a} is the basis of an infinite
root system, we must have a; C —a or —a C as, [32, 5.4] (in the technical
Kac—Moody terminology, the pair {as;a} is not prenilpotent). Hence, there
is an infinite number of positive roots in ¢, and V' := I'N Uy is also infinite
of finite exponent.

Let us now pick a field F. By an argument involving Zariski closure [28,
Lemma VIIL.3.7], the image of V' < I' by an abstract homomorphism ¢ to
GL,(F) contains a finite index unipotent subgroup. A unipotent group in
characteristic 0 is torsion-free, whereas in prime characteristic [, any unipo-
tent element is [-torsion. Indeed, if g € GL,,(F') is unipotent, then (g—id)lk =0

k

for some k, and glk = (id + (g — id))l = id. This shows that if ¢ is injective,
then the field F has to be of characteristic p, which proves the proposition.
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Remark 4.7. 1. The argument of the first paragraph of the proof (giving the
basis of a rank two system) is used in [5] in order to make an abstract
study of root strings.

2. A deeper knowledge of commutation relations between root groups in
almost split groups would probably lead to the same restriction for (even
non-finitely generated) chamber fixators in that case. This question is
relevant to the abstract theory of infinite root systems, [3], [22].

4.3 A Further Combinatorial Generalization

As explained in Sect. 3.1, the tools developed to study Kac—-Moody groups
are combinatorial. More precisely, J. Tits in [44] elaborated on the notion
of a (twin) BN-pair, and proposed a list of axioms sharply refining it: these
axioms define the structure of a twin root datum (see Sect. 3.1). Moreover
in [43] J. Tits sketched a theoretical construction of twin root data whose
associated geometries are twin trees, a special case of twin buildings whose
study is initiated in [37], [38]. The construction in [43] is so flexible that it
provides trees of valencies 1 4+ ¢ and 1 + ¢’ for ¢ and ¢’ powers of different
primes. These trees cannot arise from any Kac-Moody group. Hence, the
abstract framework of twin root data, though adjusted to the Kac—-Moody
situation, strictly contains it.

In [35] non Kac-Moody twin root data are concretely constructed, whose
buildings are two-dimensional hyperbolic. The rank of the buildings is arbi-
trarily large, and things can be done in such a way that two panels of distinct
types have thicknesses of distinct characteristics: this is thus a generalization
in arbitrary rank of J. Tits’ work on twin trees. If we turn back to linearity
properties, a corollary of [35] is the existence of lattices of Kac—-Moody type
which cannot be linear over any field.
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