MAT 451 – Analyse Fonctionnelle (2016-17)

Feuille d'exercices n° 2

Exercice 1. Soit U un ouvert de \mathbb{C} . Soit \mathcal{H} un ensemble de fonctions holomorphes dans U tel que, pour tout disque D fermé de rayon > 0 et contenu dans U, il existe une constante M_D telle que pour toute $f \in \mathcal{H}$ et tout $z \in D$ on ait $|f(z)| \leq M_D$.

- 1. Montrer que pour tout disque D comme ci-dessus, il existe une constante M'_D telle que pour toute $f \in \mathcal{H}$ on ait $|f'(z)| \leq M'_D$.
- 2. En déduire que l'ensemble \mathcal{H} est équicontinu sur U.

Exercice 2. Soit (f_n) une suite de fonctions sur positives sur un intervalle $I \subset \mathbb{R}$ (borné ou non). On suppose que $x \mapsto f_n(x)$ est croissante pour tout $n \geqslant 1$ et que $0 \leqslant f_n(x) \leqslant M$, c'est-à-dire que (f_n) est uniformément bornée. Montrer que f_n admet une sous-suite qui converge simplement sur I. Si les f_n sont toutes continues, la limite est-elle nécessairement continue? En supposant la limite continue, montrer que la convergence est uniforme sur les compacts.

Exercice 3. Si k est un nombre réel > 0, on note \mathcal{H}_k l'ensemble des fonctions définies sur [0;1], à valeurs réelles, telles que f(0)=0 et qui sont k-Lipschitz, c'est-à-dire telles que

$$|f(x) - f(y)| \le k|x - y|$$
, pour tous $x, y \in [0; 1]$.

On pose alors $\mathcal{E} = \bigcup_{k>0} \mathcal{H}_k$ et, pour $f \in \mathcal{E}$, on note $N(f) = \inf\{k > 0 : f \in \mathcal{H}_k\}$.

- 1. Justifier que \mathcal{E} est un \mathbb{R} -espace vectoriel et que N est une norme sur \mathcal{E} .
- 2. Prouver que l'on a $||f||_{\infty} \leq N(f)$ pour toute $f \in \mathcal{E}$ mais que $||\cdot||_{\infty}$ et N ne sont pas des normes équivalentes sur \mathcal{H}_k .
- 3. On fixe k > 0. Discuter la compacité de \mathcal{H}_k dans $(\mathcal{E}, \|\cdot\|_{\infty})$ et dans $(\mathcal{E}, N(\cdot))$.

Exercice 4. On pose, pour tout $z \in \mathbb{C}$:

$$\exp(z) = 1 + z + \frac{z}{2} + \dots + \frac{z^n}{n!} + \dots$$

Montrer que $\exp(z) = \lim_{n \to \infty} \left(1 + \frac{z}{n}\right)^n$ en procédant comme suit.

- 1. Vérifier que c'est vrai pour tous les z réels > 0 en passant au logarithme.
- 2. Montrer que la suite $(f_n)_{n\geqslant 0}$, où $f_n(z)=(1+\frac{z}{n})^n$, est bornée dans $\mathcal{O}(\mathbb{C})$.
- 3. En déduire, par le théorème de Vitali, que $(f_n)_{n\geqslant 0}$ converge dans $\mathcal{O}(\mathbb{C})$, disons vers g.
- 4. Constater que $g(z) = \exp(z)$ car c'est vrai pour z réel > 0.

Exercice 5. Soit $C = C^0([-\frac{1}{2}; \frac{1}{2}], \mathbb{R})$, et soit \mathcal{H} le sous-ensemble de C formé des fonctions polynomiales dont les coefficients sont réels et tous dans [-1,1]. Soit $\overline{\mathcal{H}}$ l'adhérence de \mathcal{H} dans C.

- 1. Montrer que, pour toute $f \in \mathcal{H}$, la dérivé $\frac{\mathrm{d}f}{\mathrm{d}x}$ est bornée en valeur absolue par 4 sur $\left[-\frac{1}{2};\frac{1}{2}\right]$.
- 2. En déduire que \mathcal{H} est équicontinu dans $\left[-\frac{1}{2}; \frac{1}{2}\right]$.
- 3. Montrer que $\overline{\mathcal{H}}$ est un sous-ensemble convexe et compact dans \mathcal{C} .
- 4. En appliquant le théorème de Vitali, montrer que toute $f \in \overline{\mathcal{H}}$ est la restriction au segment $[-\frac{1}{2}; \frac{1}{2}]$ d'une fonction holomorphe dans le disque unité ouvert de \mathbb{C} , notée \tilde{f} .
- 5. Caractériser les fonctions \tilde{f} où $f \in \overline{\mathcal{H}}$, par une propriété de leurs coefficients de Taylor à l'origine.

Indication : on pourra utiliser la formule, pour $n \ge 0$ et $0 \le r < 1$, donnant ces coefficients a_n , à savoir : $a_n r^n = \frac{1}{2\pi} \int_0^{2\pi} \widetilde{re^{i\theta}} e^{-in\theta} d\theta$.

6. Déterminer l'ensemble des points extrémaux de $\overline{\mathcal{H}}$.

Exercice 6. Soit X un sous-ensemble compact de \mathbb{C} .

- 1. Montrer que toute fonction $f \in \mathcal{C}(X,\mathbb{C})$ peut être approchée uniformément sur X par des fonctions polynomiales en les variables z et \bar{z} , à coefficients complexes.
- 2. Soit X le disque unité $\{z \in \mathbb{C} : |z| \leq 1\}$. Soit $\overline{\mathcal{H}}$ l'adhérence dans $\mathcal{C}(X,\mathbb{C})$ de l'ensemble des polynômes à coefficients complexes en la seule variable z. Montrer que pour toute $f \in \overline{\mathcal{H}}$ on a la formule :

$$f(0) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) d\theta,$$

et que, en revanche, la fonction continue f(z) = |z| ne possède pas cette propriété.

3. En déduire que $\overline{\mathcal{H}}$ est différent de $\mathcal{C}(X,\mathbb{C})$.

Exercice 7 (Théorème de Müntz). Soit $0 = \lambda_0 < \lambda_1 < \cdots$ une suite croissante de nombres positifs. On appelle \mathcal{H} l'espace engendré par les x^{λ_n} dans $C^0([0,1],\mathbb{C})$. Montrer que \mathcal{H} est dense dans $C^0([0,1],\mathbb{C})$ pour la norme sup si et seulement si

$$\sum \frac{1}{\lambda_n} = +\infty.$$

Montrer le même résultat pour les fonctions sous la forme $e^{-\lambda_n r}$ dans $C_0^0(\mathbb{R}^+,\mathbb{C})$ (l'espace des fonctions continues qui tendent vers 0 à l'infini).

Exercice 8 (Partitions de l'unité). Soit X un espace topologique compact, K un compact de X et U_1, \ldots, U_n est un recouvrement ouvert de K dans X. Montrer qu'il existe une famille d'applications continues $\varphi_i: X \to [0,1], i=1,\ldots,n$ telles que (i) $\varphi_i|_{X\setminus U_i}=0, i=1,\ldots,n$ et (ii) $\sum_{1\leqslant i\leqslant n}\varphi_i|_K=1$.