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Théoreme de Fubini classique

Rappel : soient Q1 ¢ RM et Q, c RM deux ouverts non vides, et soit f € Cc(1 x Qo).
Alors, la fonction

X1 f(x1, x2) dxo,

Q

est bien définie sur Q; et appartient a €.(Q1). De plus

// f(Xl,XQ) dX1dX2 = / < f(Xl,Xz)dX2> Xm = / < f(X]_,X2) dX1> dX2.
leQz Ql QQ QZ Q1
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Enoncé du théoreme de Fubini

Voici I'énoncé du théoreme de Fubini dans le cadre de la théorie de I'intégration de Lebesgue.

Théoreme (théoreme de Fubini)

Soient Q1 € RM et Q, € RM2 deux ouverts non vides et f € LY(Q x Q). Alors :
(i) pour presque tout x; € Qp, la fonction x — f(x1,x2) appartient & £1(Q1) ;

(ii) la fonction xa f(x1,x2) dxy est définie p.p. sur Qy et appartient & L1(Qy);
1931

(iii) on a la double égalité

// f(Xl,Xz) dX]_dX2 = / </ f(X]_7X2) dX2> Xm
leﬂz Q1 QZ

= / < f(Xl,XQ) dX1> dXQ.
[92) Q
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Théoreme de Fubini pour les limites de suites de Levi

On va commencer par I'énoncé analogue pour les fonctions limites de suites de Levi.

Lemme

Soit f € £+(Ql X Qz). Alors :
(i) pour presque tout x; € Qa, la fonction x; — f(x1, x2) appartient 3 L1(Q1);

(ii) la fonction définie p.p. sur Qy par xp — / f(x1,x2) dx; est p.p. égale & une fonction
93]

qui appartient 3 LT(Q2) ;

(iii) on a la double égalité

// f(Xl,Xz)dxldXQ = / </ f(Xl,XQ) dX2> dX1
leﬂz Q1 Q2
/ (/ f(Xl,Xz) dX1> dXQ.
(92 (921
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Preuve du théoreme de Fubini — suites de Levi

Preuve. Soit (f,)s>0 une suite de Levi convergeant simplement vers f sur Q; x Q. Posons

F,,(xz):/Q fo(x1, x2) dxq.
1

La suite (Fn)n>0 est croissante sur {2, et on a :

/ Fr(x2) dxo :// fo(x1, x2) dxadxy < // f(x1,x2) dxpdxp < +oo.
Q Q1 xQ QxS

Donc, par convergence monotone (Fp),>0 est une suite de Levi sur Q5. On note F la limite
simple p.p. de la suite (Fj,)n>0. Par définition on a F € £1(£,), et & nouveau par convergence
monotone on peut intervertir :

/F(xz)dx2: lim / Fn(x2) dxo.
QQ Q2

n—-+o00
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Preuve du théoréme de Fubini — suites de Levi (suite)

Soit maintenant Z = {xp € Q, : F(x2) = +o00}. Puisque F € LT(Qy), la partie Z est
négligeable. Pour tout x, € 2 — Z, la suite de fonctions (f,,(',xz)) s S5 croissante et

/ fn(Xl,X2)dX1 = F,,(Xg) < F(Xz) < 00,
9}]

donc c'est une suite de Levi sur ;. La suite (,),>0 converge simplement vers f sur Q; x Qy,
on en déduit que (-, x2) € LT(Q1), pour xo € Q> — Z, ce qui établit le point (i).

Par convergence monotone, on a :

f d = | fn o d = | Fn =F )

pour xp € Qp — Z. Or, F € L1(£3), de sorte que xo — / f(x1,x2)dxq, définie sur Qp — Z,
9}]

est p.p. égale a une fonction qui appartient 2 £1(£;), ce qui établit le point (ii).

Cours 6 : Techniques de calcul intégral Bertrand Rémy 7/ 42



Preuve du théoreme de Fubini — suites de Levi (fin)

Enfin :

// f(x1,x2) dxidxo = lim // fo(x1,x2) dxidxe = lim / (/ fn(X]_,X2)dX]_> dxo
Q1 x n—+o0 [ /O, xQ, n—+oo Jo, \Jo,
= lim / F,,(Xg)ngz/ F(x2)dx2:/ </ f(xl,xz)dx1> dxo. O
n—+oo Jo, Q0 o \Jo,

Lemme (fibres des ensembles négligeables)

Soit Z C Q1 x Qy un ensemble négligeable. Pour x; € 1, on note

le e {X2 e : (X1,X2) € Z} c

la fibre de Z au-dessus de xj. Alors, pour presque tout x; € 1, la fibre Z,, est négligeable
dans Q.

En général, les fibres Z,, d'un ensemble négligeable Z ne sont donc négligeables dans €2 que
pour presque tout x; € €21 et pas pour tout x; € Q.
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Preuve de la négligeabilité p.p. des fibres et du point (i)

Preuve. Soit f € LT(; x Q) telle que f(x1,x2) = 00 pour tout (x1,x) € Z. Il existe
Z1 C Q; négligeable tel que, pour x3 € Q1 — Z1, la fonction f(xq,-) € LT(€2). Soit
x1 € Q — Z;. Par définition :

Z C{x € Qy : f(x1,x) = +00},
et f(x1,-) € LT(2). Donc I'ensemble Z,, est négligeable dans Q5. O
Preuve de (i). Il existe g,h € LT(Q1 x Q) et un ensemble Z C Q; x Qy négligeable tel que
f=g—hsur (21 x Q) — Z. |l existe Z5 C Q, négligeable tel que les fonctions g(-, x2) et
h(-, x2) appartiennent a L7 (1) pour tout xo € Q2 — ZJ. Il existe Z5 C Qo négligeable tel que

la fibre Z,, soit négligeable dans £2; pour tout xo € Q2 — 2. Alors, pour tout
x2 € Q2 — (25U 2),0na

F(-x2) = g(x2) — h(-,xe) € L1(),
ce qui établit le point (i).
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Preuve du théoréme de Fubini — cas général, point (ii)

La fonction définie sur Q — (25 U 2Z5) par

Xp > g(x1, x2) dxq,
9}]

et la fonction définie sur Qo — (2% U 25) par

Xo h(x1, x2) dxi,
9}]
sont presque partout égales a des fonctions qui appartiennent 3 £7(Q5), de sorte que la
fonction définie sur Qp — (24 U 25) par

X > g(xl,xz)dxl —/

h(xl,xz)dxlz/ f(x1,x2) dxq,
Ql Ql

Q
appartient & £1(Q2), ce qui établit le point (ii).
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Preuve du théoréme de Fubini — cas général, point (iii)

Enfin, on a :

// f(x1,x2) dxidxe = // g(x1,x2) dxydxa — // h(x1, x2) dxidxz
1} Q1 xQp Q1 xQ
:/ </ g(Xl,XQ)dX1> dx —/ </ h(xl,x2)dx1> dxo
Q, 93] Q (o}
:/ ( f(Xl,XQ) dX1> dX2,
Q) Q

I'égalité restant a prouver étant obtenue en échangeant les variables x; et x». O
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Enoncé du théoreme de Tonelli

Dans le cas des fonctions mesurables positives on a :

Théoreme (théoreme de Tonelli)

Soient Q1 € RM et Q, ¢ RM deux ouverts non vides et soit f une fonction mesurable
Q1 x Qo — [0, +00]. Alors :
(i) pour presque tout xp € Sy, la fonction x; — f(x1,x2) € [0, +oc| définie p.p. sur 5 est
mesurable;

(ii) la fonction xp — / f(x1,x2)dxy € [0, +00], définie p.p. sur Qy, est mesurable;
191

(iii) dans [0, +o0], on a :

// f(x1, x2) dxydxp :/ </ f(Xl,XQ)dXQ) dxq
Ql><92 1 Q2

Q
= (/ f(x1,x2) dx1> dxo.
Qo Q
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Application du théoreme de Tonelli pour Fubini

Ce résultat permet de répondre a la question suivante : comment vérifier qu'une fonction
mesurable est intégrable sur Q1 x Q5 7?

Soit f : Q3 x Qp — C une fonction mesurable. On suppose que |'on sait calculer

/ :/ </ ’f(X]_,X2)’dX2) dX1,
Q1 Q)

J= </ |f(X1,X2)|dX1> dX2 .
Q) Q

D'apres le théoreme de Tonelli appliqué a |f|, deux cas se présentent

loud<+oo = f&LYQ x Q) et alors on peut appliquer Fubini,
louJ=40c0 = f%ﬁl(leQz).
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Dérivabilité et intégration

Soit £ € £1([0,1]). Pour tout x € [0, 1], on note F(x) —/ F(t)dt.
0

1. Peut-on affirmer que F est dérivable (ou au moins dérivable p.p.)?
2. Peut-on dire que F' = f (ou au moins que F' = f p.p.) sur [0,1] ?

3. Bien entendu, si f est continue, alors F est dérivable et F/ = f en tout point de [0, 1].
Réciproquement, soit F : [0,1] — R.

1. Quand peut-on affirmer que F’, la dérivée de F, existe (au moins p.p.) sur [0,1] ?
2. Quand I'égalité

F(1)— F(0) = /[0 . F'(t)dt,

est-elle vérifiée ?

3. Bien entendu, le résultat est vrai si F est de classe C* sur [0, 1].
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Intégration des fonctions a dérivée bornée

Théoréme

On suppose que F est dérivable sur [a, b] et que |F'(t)] < M pour tout t € [a, b], alors
F' € L£Y([a, b]) et

/ F(t)dt = F(b) — F(a).
(o5

Preuve. On note G,(x) = n- (F(x+ 1) — F(x)). Par convergence dominée, on voit que F’
est intégrable, et par passage a la limite dans

on trouve que
/ F/(t)dt = F(b) — F(a),
[a,b]

ce qui termine la démonstration.
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Monotonie, dérivabilité et intégration

Théoreme

On suppose que F est croissante sur [a, b], alors F est dérivable en presque tout point de [a, b]
et

/ F()dt < F(b)— F(a)
(o5

Preuve du second point. Appliquer le lemme de Fatou a la suite de fonctions définie par
Gh(x)=n (F(X + %) — F(X))

pour obtenir I'inégalité cherchée.
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Fonctions absolument continues

Définition

On dit qu'une fonction f : [a, b] — R est absolument continue si

Ve>0 35>0 tel que <Z|b,-—a,-|<5:>Z|f(b,-)—f(a,-)|<e>.

ou les (a;, b;) sont disjoints et en nombre fini.

Exemple : si f est k-lipschitzienne sur [a, b] alors f est absolument continue sur [a, b].
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Intégration et dérivabilité

Théoreme

(i) Sif e L£Y([a,b]) alors

F(x) = /[ | f(t)dt,

est absolument continue et est dérivable p.p. sur [a, b]. De plus F' = f p.p. sur [a, b].

(ii) Si F est absolument continue sur [a, b], alors F est dérivable presque partout,
F' € LY([a, b]) et

F(x)—F(a):/ F'(t)dt.

[a.x]

Cours 6 : Techniques de calcul intégral Bertrand Rémy 19 / 42



Intégrales dépendant d'un paramétre : le cadre

Dans ce qui suit, on se donne :

1. un intervalle ouvert non vide | de R;;

2. un ouvert non vide Q de RV.

On se donne aussi

f:IxQ—C
telle que, pour tout t € /, la fonction partielle f(t,-) soit intégrable, i.e. f(t,-) € £1(Q; C).

On définit alors F : | — C par

F(t) = /Q £(t,x) dx.

On veut étudier la continuité et la dérivabilité en t de la fonction F.
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Intégrales paramétriques : continuité

Le premier énoncé se démontre en combinant le théoreme de convergence dominée et le critere
séquentiel de continuité.

Théoreme (continuité des intégrales paramétriques)
On conserve les notations précédentes et on fait les hypothéses suivantes.
(i) Pour presque tout x € 0, la fonction t — f(t,x) est continue en ty € I.
(ii) 1l existe d € L1(Q) telle que, pour presque tout x € Q et pour tout t € I, on a

If(t,x)] < &(x).

Alors, la fonction F est continue en to et on a :

Iim/f(t,x)dxz/ lim f(t,x)dx.
t—tp Q Qt—>t0
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Intégrales paramétriques : dérivabilité

Théoreme (dérivation sous le signe somme)

On conserve les notations précédentes et on fait les hypothéses suivantes.

(i)

Pour presque tout x € , la fonction t — f(t, x) est dérivable sur .
(ii) 1/ existe d € L1(Q) telle que, pour presque tout x € Q et pour tout t € I, on a

E(tvx)

Pf < o).

Alors, F est dérivable sur | et sa dérivée est donnée par

szégmnw

De plus, si f(-,x) € €*(I; C) pour presque tout x € §, alors F € €(I;C).
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Dérivation sous le signe somme, preuve

Preuve. Soit (t,),>0 une suite qui converge vers t € | (avec t, # t pour tout n > 0). Par les
hypotheses (i) et (ii), il existe Z C 2 négligeable tel que

. f(tn, x) — f(t,x) _07‘
nll>Too th — & - a(t’X)’

et en outre par le théoréeme des accroissements finis, on a :

‘f(tn,x)—f(t,x) < o),

t,—t

pour tout x € Q — Z. Par convergence dominée, on a donc :

lim F(ta) = F(1) — lim / F(tn, x) — £(t,x) dx g(
n—-+o0 t, — t n—+o0o [o t,—t o Ot
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Dérivées partielles et matrice jacobienne

Soient Q1,5 des ouverts non vides de RN et & : Q7 — Q.

Pour x € Q7 et v € RN, la dérivée directionnelle de f en x suivant v est la dérivée (si elle
existe) de la fonction partielle t — f(x + tv) ou t est un paramétre réel suffisamment petit. Si
on dispose d'une base (e, e, ... ey), qui permet d'écrire x = (x1,x2, ..., Xxn), une telle dérivée

. . , L, . . of
directionnelle suivant e; est appelée une dérivée partielle; quand elle existe, on la note a—(x)
i

Définition

On dit que ® : Q1 — Qo est de classe C sur Q1, si ® admet des dérivées partielles en tout
point de 1 et si ces dérivées partielles sont des fonctions continues sur ;.

P
On note Jo(x) = <
9%

Ici la base intervient pour les directions des dérivées partielles, mais aussi pour la décomposition
de la fonction ® suivant ses fonctions coordonnées @' : Jy(x) est donc une matrice carrée.

(x)) la matrice jacobienne de ® = (®!,..., ®N) au point x.
1<ij<N
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Difféomorphisme et changement de variables

On a en vue de procéder a des changements de variables pour des intégrales définies sur des
ouverts d’evn de dimension finie. Mathématiquement parlant, un changement de variables est
une application bijective suffisamment différentiable (par exemple de classe C!) entre deux tels
ouverts. En topologie, on a vu qu'il n'est déja pas vrai que I'application réciproque d'une
application bijective continue est continue; cette remarque explique le point (iii) ci-dessous.

Définition

On dit que ® est un C'-difféomorphisme de Q1 sur Q0 si les conditions ci-dessous sont
satisfaites.

(i) L'application ® est une bijection de Q1 sur Q5.
(i) L'application ® est de classe C* sur ;.
(iii) L'application ®~1 est de classe C' sur Q.

Dans ce qui suit, on se donne ® : Q; — Q5 un Cl-difféomorphisme.
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Théoreme de changement de variables

Théoreme
Soit f € LY(Q). Alors : (f o ®) |détds| € L1(Q), et on a :

/ fly)dy = / fF(D(x)) |dét e (x)| dx.
Q Q

Preuve. On part du fait que, pour toute f € C.(€22), ona fo® € C () et

/f(y)dy:/ f(D(x)) |dét Jo(x)| dx.
Q (93]

Soit f € LT(Q2) et (fn)n=0 une suite de Levi convergeant simplement vers f sur Q5. Alors,
(foo ®|dét Jp|)n=0 est une suite croissante de fonctions de C(£21) et

/ ()4t Jo(x)] dx = /

fa(y)dy < / f(x)dx < +o0.
Q

Q)
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Preuve du théoreme de changement de variables, suite

Par conséquent, la suite (f, o ® |dét Jo|)n>0 est une suite de Levi sur i, et elle converge
simplement sur Q1 vers f o ® |dét Jo| qui appartient donc L£7(Q1). Enfin, par définition de
I'intégrale sur £L1(£,), on trouve que

n—-+o00o

/92 f(y)dy = nirroo /Q2 fa(y)dy = lim /Ql fa(P(x)) |dét Jo(x)| dx

:/Q F(O(x)) |dét o (x)] dx.

Pour conclure, on va utiliser le fait que les C!-difféomorphismes transforment les ensembles
négligeables en ensembles négligeables.

Si Z C Qy est négligeable, alors ®~(Z) C Q; est négligeable.
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Preuve du théoréeme de changement de variables, fin

Preuve du lemme. Si Z C Q, est négligeable, il existe f € LT(€,) telle que f(y) = +o0
pour tout y € Z. Comme dét Jo(x) # 0 pour tout x € Q1, on en déduit que

f o ®(x) |dét Jo(x)| = 400 pour tout x € ®~1(Z). La fonction f o & |dét Jo| € L1 (Q1), donc
®~1(Z) est négligeable. O

Preuve du théoréme (fin). Soit f € £1(Q2) : il existe donc Z C Q un ensemble négligeable
et g,he LT(Q) tels que f = g — hsur Q — Z.
Les fonctions g o ®|détJ| et ho ®|détJy| appartiennent L1(Q;) et
f o ®|détdy| = g o P|détJp| — ho ®|dét Sy,
sur Q1 — ®71(Z). L'ensemble ®~1(Z) est négligeable donc f o ®|détJs| € L1(Q1). O
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Changements de variables affines

Soit A € GLy(R) et b € RY. On pose ®(x) = Ax + b. Si f € L}(RV), on a

1
f(A b)dx = ——— f(y)dy.
/RN (AxH D)= G2 Al Jen VY
Si de plus AA" = A'A =] (i.e. si ® est une isométrie affine), alors

f(Ax + b)dx = f(y)dy.
RN RN

Si A= X1l pour XA # 0 (i.e. si ® est une homothétie), alors

1

FOX)dx = —= | f(y)dy.
Jo 0= 35 [,
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Coordonnées polaires : formule d’'intégration

On note

P :={(x1,x2) € R? : x; <0, xo =0},
et
¢: Rix]—ma[ — R>— P,

I'application définie par

®(r,0) :=(r cosO,r sinf).
Pour tout f € £L}(R?), on a

+oo ™
/ f(x)dx—/ / f(r cos@,rsin@)rdrdb.
R? 0 —
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Coordonnées polaires : calcul de I'intégrale gaussienne

_ 2
On veut calculer | = / e~ dx.
R

En utilisant le théoréme de Fubini, on a :

2
/ e ) dx dy = / e dx / eV dy = < / e < dx> =2,
R2 R R R

En utilisant les coordonnées polaires et le théoreme de Fubini, on trouve

/ e~ 0 HY?) dx dy :/ (/ e rdr) df = .
R2 -7 0

Finalement : | = /7.
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Coordonnées sphériques : difféomorphisme

On note P := {(x1,x,x3) € R® : x1 <0, xp = 0} et

¢: Rix]-m7[x]-%2% — R -P,

définie par
®(r,¢,0) := (rcos¢cosb, rsinpcosb,rsinb).
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Coordonnées sphériques : formule d'intégration

On a

dét(Jo) = r? cosh.

Donc pour toute f € £1(R3), on a la formule d'intégration :

/R3 Flo) dx = /;oo /_7; /_7;//22 F(P(r, ¢,0)) r* cosfdrdgdd.

Exemple : volume de < la > boule de rayon R de R3 :

R pm  pm/2 47 R3
v_/ 1{|X|<R}dx—/ / / r’ cosfdrdpdd = ——.
R3 0 - J—m/2
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Transformation de Fourier sur L!

Si f € LY(RN; C), la transformée de Fourier de f est la fonction f définie par

~

F(€) = /R e dx,

la formule étant valide en tout point de RN puisque e='¢* est de module 1.

Théoreme (théoreme de Riemann-Lebesgue)

Soit f € L1(RN; C) et soit f la transformée de Fourier de f. Alors :
(i) La fonction f est continue sur RN.

(ii) Pour tout ¢ € RN, on a : R
1 < [flle.

(i) Ona: lim f(¢)=0.
€]+
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Preuve du théoreme de Riemann-Lebesgue

Preuve. Les deux premieres assertions sont faciles.

Montrons que f tend vers 0 a I'infini. Pour & # 0, on considere le changement de variables
y=x+ @{.

Comme e_lﬁg'g

=—1,ona:

fle) = -
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Preuve du théoreme de Riemann-Lebesgue, fin

Donc, en prenant la moyenne des deux facons de calculer £(£), il vient :

e =3 [, (£ - flx— 756) ) ax

7ol < 1/ 00— F (= 1) | o=
< 3lr-e (- 125>

qui tend vers 0 lorsque |£| — 400 par continuité L' des translations.

Donc

)
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Décroissance a l'infini des coefficients de Fourier

Soit u € C°(R; C) une fonction 2m-périodique. Les coefficients de Fourier de u sont donnés par

) o= = /7r = () dx.

pr— % .
On vérifie que, si u € C™(R; C) alors
[a(k)| < C(1+ [k[)~™.
Inversement, supposons que, pour tout k € Z,

C

alors u € C"(R; C).
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Décroissance a l'infini et dérivée d'une transformée de Fourier

Théoreme
Si(1+ |x]) f € LY(RN;C), alors
fecl(RN; ),
et
(€)= i [ e ) e = —imeF(E),
Ok RN

pour tout k=1,..., N.

Plus une fonction décroit vite a I'infini, plus sa transformée de Fourier est réguliere. Pour tout
k>1,si(1+|x]K)f e £YRN;C), alors

f e CckRY; Q).
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Décroissance a l'infini et transformée de Fourier d'une dérivée

Théoreme

f'
Sif e CYRN;C)n LYRN;C) et si (987 e LYRN; C), alors
k
af e OF -
_— = _’&-.Xi —
an(f) /RN e an(x) dx = i &kf(&).

Plus une fonction est réguliere, plus sa transformée de Fourier décroit vite a I'infini. Pour tout
k>1,si feCK(RN;C) et si les dérivées partielles de f jusqu'a I'ordre k appartiennent a
L}(RV; C) alors

lim  |¢]*|F(€)| = 0.

€] =00
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Théoreme d'inversion de Fourier dans L1

Théoreme

Soit f € LY(RN; C) telle que f € LY(RN; C). Alors, pour presque tout x € RN, on a :

f(x) = (271),\, /R ) e XEF () de.

Remarques.
1. L'inversion de Fourier n'a de sens que pour presque tout x € RV, puisque f est définie 3
partir de [f] et pas d'un représentant de [f].
2. Le membre de droite est une fonction définie et continue sur RV, qui tend vers 0 lorsque
|x| = +00. Donc ce théoreme ne s'applique qu'aux fonctions f qui sont p.p. égales a une
fonction continue qui tend vers 0 a I'infini.
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Analyse de Fourier

D'un point de vue calculatoire, la transformation de Fourier échange multiplication par une

variable et dérivation. Ceci a des applications fondamentales a la résolution (formelle)
d’équations aux dérivées partielles sur RV :

° Equation de Laplace-Poisson

Au=f — €% a(¢) = 1(¢).

° Equation de la chaleur
ou B i 2 A B
E—AU—O E(t7§)+|£| u(t7€)_0‘

° Equation de Schrodinger libre

.Bu . aﬁ 2 A _
/E—FAU—O la(t,f)_m a(t,§) = 0.
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