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Théorème de Fubini classique

Rappel : soient Ω1 ⊂ RN1 et Ω2 ⊂ RN2 deux ouverts non vides, et soit f ∈ Cc(Ω1 × Ω2).
Alors, la fonction

x1 7→
∫

Ω2

f (x1, x2) dx2,

est bien définie sur Ω1 et appartient à Cc(Ω1). De plus

∫∫
Ω1×Ω2

f (x1, x2) dx1dx2 =

∫
Ω1

(∫
Ω2

f (x1, x2) dx2

)
dx1 =

∫
Ω2

(∫
Ω1

f (x1, x2) dx1

)
dx2.
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Énoncé du théorème de Fubini

Voici l’énoncé du théorème de Fubini dans le cadre de la théorie de l’intégration de Lebesgue.

Théorème (théorème de Fubini)

Soient Ω1 ⊂ RN1 et Ω2 ⊂ RN2 deux ouverts non vides et f ∈ L1(Ω1 × Ω2). Alors :

(i) pour presque tout x2 ∈ Ω2, la fonction x1 7→ f (x1, x2) appartient à L1(Ω1) ;

(ii) la fonction x2 7→
∫

Ω1

f (x1, x2) dx1 est définie p.p. sur Ω2 et appartient à L1(Ω2) ;

(iii) on a la double égalité∫∫
Ω1×Ω2

f (x1, x2) dx1dx2 =

∫
Ω1

(∫
Ω2

f (x1, x2) dx2

)
dx1

=

∫
Ω2

(∫
Ω1

f (x1, x2) dx1

)
dx2.
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Théorème de Fubini pour les limites de suites de Levi

On va commencer par l’énoncé analogue pour les fonctions limites de suites de Levi.

Lemme

Soit f ∈ L+(Ω1 × Ω2). Alors :

(i) pour presque tout x2 ∈ Ω2, la fonction x1 7→ f (x1, x2) appartient à L+(Ω1) ;

(ii) la fonction définie p.p. sur Ω2 par x2 7→
∫

Ω1

f (x1, x2) dx1 est p.p. égale à une fonction

qui appartient à L+(Ω2) ;

(iii) on a la double égalité∫∫
Ω1×Ω2

f (x1, x2) dx1dx2 =

∫
Ω1

(∫
Ω2

f (x1, x2) dx2

)
dx1

=

∫
Ω2

(∫
Ω1

f (x1, x2) dx1

)
dx2.
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Preuve du théorème de Fubini – suites de Levi

Preuve. Soit (fn)n>0 une suite de Levi convergeant simplement vers f sur Ω1 × Ω2. Posons

Fn(x2) =

∫
Ω1

fn(x1, x2) dx1.

La suite (Fn)n>0 est croissante sur Ω2 et on a :∫
Ω2

Fn(x2) dx2 =

∫∫
Ω1×Ω2

fn(x1, x2) dx1dx2 6
∫∫

Ω1×Ω2

f (x1, x2) dx1dx2 < +∞.

Donc, par convergence monotone (Fn)n>0 est une suite de Levi sur Ω2. On note F la limite
simple p.p. de la suite (Fn)n>0. Par définition on a F ∈ L+(Ω2), et à nouveau par convergence
monotone on peut intervertir :∫

Ω2

F (x2) dx2 = lim
n→+∞

∫
Ω2

Fn(x2) dx2.
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Preuve du théorème de Fubini – suites de Levi (suite)

Soit maintenant Z = {x2 ∈ Ω2 : F (x2) = +∞}. Puisque F ∈ L+(Ω2), la partie Z est
négligeable. Pour tout x2 ∈ Ω2 −Z, la suite de fonctions

(
fn(·, x2)

)
n>0

est croissante et∫
Ω1

fn(x1, x2) dx1 = Fn(x2) 6 F (x2) <∞,

donc c’est une suite de Levi sur Ω1. La suite (fn)n>0 converge simplement vers f sur Ω1 × Ω2,
on en déduit que f (·, x2) ∈ L+(Ω1), pour x2 ∈ Ω2 −Z, ce qui établit le point (i).

Par convergence monotone, on a :∫
Ω1

f (x1, x2) dx1 = lim
n→+∞

∫
Ω1

fn(x1, x2) dx1 = lim
n→+∞

Fn(x2) = F (x2),

pour x2 ∈ Ω2 −Z. Or, F ∈ L+(Ω2), de sorte que x2 7→
∫

Ω1

f (x1, x2)dx1, définie sur Ω2 −Z,

est p.p. égale à une fonction qui appartient à L+(Ω2), ce qui établit le point (ii).
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Preuve du théorème de Fubini – suites de Levi (fin)

Enfin :∫∫
Ω1×Ω2

f (x1, x2) dx1dx2 = lim
n→+∞

∫∫
Ω1×Ω2

fn(x1, x2) dx1dx2 = lim
n→+∞

∫
Ω2

(∫
Ω1

fn(x1, x2) dx1

)
dx2

= lim
n→+∞

∫
Ω2

Fn(x2)dx2 =

∫
Ω2

F (x2) dx2 =

∫
Ω2

(∫
Ω1

f (x1, x2)dx1

)
dx2. �

Lemme (fibres des ensembles négligeables)

Soit Z ⊂ Ω1 × Ω2 un ensemble négligeable. Pour x1 ∈ Ω1, on note

Zx1 = {x2 ∈ Ω2 : (x1, x2) ∈ Z} ⊂ Ω2

la fibre de Z au-dessus de x1. Alors, pour presque tout x1 ∈ Ω1, la fibre Zx1 est négligeable
dans Ω2.

En général, les fibres Zx1 d’un ensemble négligeable Z ne sont donc négligeables dans Ω2 que
pour presque tout x1 ∈ Ω1 et pas pour tout x1 ∈ Ω1.
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Preuve de la négligeabilité p.p. des fibres et du point (i)

Preuve. Soit f ∈ L+(Ω1 × Ω2) telle que f (x1, x2) = +∞ pour tout (x1, x2) ∈ Z. Il existe
Z1 ⊂ Ω1 négligeable tel que, pour x1 ∈ Ω1 −Z1, la fonction f (x1, ·) ∈ L+(Ω2). Soit
x1 ∈ Ω−Z1. Par définition :

Zx1 ⊂ {x2 ∈ Ω2 : f (x1, x2) = +∞},

et f (x1, ·) ∈ L+(Ω2). Donc l’ensemble Zx1 est négligeable dans Ω2. �

Preuve de (i). Il existe g , h ∈ L+(Ω1 × Ω2) et un ensemble Z ⊂ Ω1 × Ω2 négligeable tel que
f = g − h sur (Ω1 × Ω2)−Z. Il existe Z ′2 ⊂ Ω2 négligeable tel que les fonctions g(·, x2) et
h(·, x2) appartiennent à L+(Ω1) pour tout x2 ∈ Ω2 −Z ′2. Il existe Z2 ⊂ Ω2 négligeable tel que
la fibre Zx2 soit négligeable dans Ω1 pour tout x2 ∈ Ω2 −Z2. Alors, pour tout
x2 ∈ Ω2 − (Z ′2 ∪ Z2), on a

f (·, x2) = g(·, x2)− h(·, x2) ∈ L1(Ω1) ,

ce qui établit le point (i).
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Preuve du théorème de Fubini – cas général, point (ii)

La fonction définie sur Ω2 − (Z ′2 ∪ Z2) par

x2 7→
∫

Ω1

g(x1, x2) dx1,

et la fonction définie sur Ω2 − (Z ′2 ∪ Z2) par

x2 7→
∫

Ω1

h(x1, x2) dx1,

sont presque partout égales à des fonctions qui appartiennent à L+(Ω2), de sorte que la
fonction définie sur Ω2 − (Z ′2 ∪ Z2) par

x2 7→
∫

Ω1

g(x1, x2) dx1 −
∫

Ω1

h(x1, x2) dx1 =

∫
Ω1

f (x1, x2) dx1,

appartient à L1(Ω2), ce qui établit le point (ii).
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Preuve du théorème de Fubini – cas général, point (iii)

Enfin, on a :∫∫
Ω1×Ω2

f (x1, x2) dx1dx2 =

∫∫
Ω1×Ω2

g(x1, x2) dx1dx2 −
∫∫

Ω1×Ω2

h(x1, x2) dx1dx2

=

∫
Ω2

(∫
Ω1

g(x1, x2)dx1

)
dx2 −

∫
Ω2

(∫
Ω1

h(x1, x2) dx1

)
dx2

=

∫
Ω2

(∫
Ω1

f (x1, x2) dx1

)
dx2,

l’égalité restant à prouver étant obtenue en échangeant les variables x1 et x2. �
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Énoncé du théorème de Tonelli

Dans le cas des fonctions mesurables positives on a :

Théorème (théorème de Tonelli)

Soient Ω1 ⊂ RN1 et Ω2 ⊂ RN2 deux ouverts non vides et soit f une fonction mesurable
Ω1 × Ω2 → [0,+∞]. Alors :

(i) pour presque tout x2 ∈ Ω2, la fonction x1 7→ f (x1, x2) ∈ [0,+∞] définie p.p. sur Ω1 est
mesurable ;

(ii) la fonction x2 7→
∫

Ω1

f (x1, x2) dx1 ∈ [0,+∞], définie p.p. sur Ω2, est mesurable ;

(iii) dans [0,+∞], on a :∫∫
Ω1×Ω2

f (x1, x2) dx1dx2 =

∫
Ω1

(∫
Ω2

f (x1, x2) dx2

)
dx1

=

∫
Ω2

(∫
Ω1

f (x1, x2) dx1

)
dx2.
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Application du théorème de Tonelli pour Fubini

Ce résultat permet de répondre à la question suivante : comment vérifier qu’une fonction
mesurable est intégrable sur Ω1 × Ω2 ?

Soit f : Ω1 × Ω2 → C une fonction mesurable. On suppose que l’on sait calculer

I =

∫
Ω1

(∫
Ω2

|f (x1, x2)|dx2

)
dx1,

ou

J =

∫
Ω2

(∫
Ω1

|f (x1, x2)|dx1

)
dx2 .

D’après le théorème de Tonelli appliqué à |f |, deux cas se présentent

I ou J < +∞ ⇒ f ∈ L1(Ω1 × Ω2) et alors on peut appliquer Fubini,
I ou J = +∞ ⇒ f /∈ L1(Ω1 × Ω2).
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ÉCOLE POLYTECHNIQUE –  

2. Intégration et dérivation
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Dérivabilité et intégration

Soit f ∈ L1([0, 1]). Pour tout x ∈ [0, 1], on note F (x) =

∫
[0,x]

f (t) dt.

1. Peut-on affirmer que F est dérivable (ou au moins dérivable p.p.) ?

2. Peut-on dire que F ′ = f (ou au moins que F ′ = f p.p.) sur [0, 1] ?

3. Bien entendu, si f est continue, alors F est dérivable et F ′ = f en tout point de [0, 1].

Réciproquement, soit F : [0, 1]→ R.

1. Quand peut-on affirmer que F ′, la dérivée de F , existe (au moins p.p.) sur [0, 1] ?

2. Quand l’égalité

F (1)− F (0) =

∫
[0,1]

F ′(t) dt,

est-elle vérifiée ?

3. Bien entendu, le résultat est vrai si F est de classe C1 sur [0, 1].
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Intégration des fonctions à dérivée bornée

Théorème

On suppose que F est dérivable sur [a, b] et que |F ′(t)| 6 M pour tout t ∈ [a, b], alors
F ′ ∈ L1([a, b]) et ∫

[a,b]
F ′(t) dt = F (b)− F (a).

Preuve. On note Gn(x) = n ·
(
F
(
x + 1

n

)
− F (x)

)
. Par convergence dominée, on voit que F ′

est intégrable, et par passage à la limite dans∫
[a,b− 1

n
]
Gn(x) dx = n

(∫
[b− 1

n
,b]

F (x) dx −
∫

[a,a+ 1
n

]
F (x) dx

)
,

on trouve que ∫
[a,b]

F ′(t) dt = F (b)− F (a),

ce qui termine la démonstration. �
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Monotonie, dérivabilité et intégration

Théorème

On suppose que F est croissante sur [a, b], alors F est dérivable en presque tout point de [a, b]
et ∫

[a,b]
F ′(t) dt 6 F (b)− F (a).

Preuve du second point. Appliquer le lemme de Fatou à la suite de fonctions définie par

Gn(x) = n
(
F
(
x + 1

n

)
− F (x)

)
pour obtenir l’inégalité cherchée. �
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Fonctions absolument continues

Définition

On dit qu’une fonction f : [a, b]→ R est absolument continue si

∀ε > 0 ∃δ > 0 tel que

(∑
i

|bi − ai | 6 δ ⇒
∑
i

|f (bi )− f (ai )| 6 ε

)
.

où les (ai , bi ) sont disjoints et en nombre fini.

Exemple : si f est k-lipschitzienne sur [a, b] alors f est absolument continue sur [a, b].
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Intégration et dérivabilité

Théorème

(i) Si f ∈ L1([a, b]) alors

F (x) =

∫
[a,x]

f (t) dt,

est absolument continue et est dérivable p.p. sur [a, b]. De plus F ′ = f p.p. sur [a, b].

(ii) Si F est absolument continue sur [a, b], alors F est dérivable presque partout,
F ′ ∈ L1([a, b]) et

F (x)− F (a) =

∫
[a,x]

F ′(t) dt.
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Intégrales dépendant d’un paramètre : le cadre

Dans ce qui suit, on se donne :

1. un intervalle ouvert non vide I de R ;

2. un ouvert non vide Ω de RN .

On se donne aussi

f : I × Ω→ C

telle que, pour tout t ∈ I , la fonction partielle f (t, ·) soit intégrable, i.e. f (t, ·) ∈ L1(Ω; C).

On définit alors F : I → C par

F (t) :=

∫
Ω
f (t, x) dx .

On veut étudier la continuité et la dérivabilité en t de la fonction F .
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Intégrales paramétriques : continuité

Le premier énoncé se démontre en combinant le théorème de convergence dominée et le critère
séquentiel de continuité.

Théorème (continuité des intégrales paramétriques)

On conserve les notations précédentes et on fait les hypothèses suivantes.

(i) Pour presque tout x ∈ Ω, la fonction t 7→ f (t, x) est continue en t0 ∈ I .

(ii) Il existe Φ ∈ L1(Ω) telle que, pour presque tout x ∈ Ω et pour tout t ∈ I , on a

|f (t, x)| 6 Φ(x).

Alors, la fonction F est continue en t0 et on a :

lim
t→t0

∫
Ω
f (t, x) dx =

∫
Ω

lim
t→t0

f (t, x) dx .
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Intégrales paramétriques : dérivabilité

Théorème (dérivation sous le signe somme)

On conserve les notations précédentes et on fait les hypothèses suivantes.

(i) Pour presque tout x ∈ Ω, la fonction t 7→ f (t, x) est dérivable sur I .

(ii) Il existe Φ ∈ L1(Ω) telle que, pour presque tout x ∈ Ω et pour tout t ∈ I , on a∣∣∣∣∂f∂t (t, x)

∣∣∣∣ 6 Φ(x).

Alors, F est dérivable sur I et sa dérivée est donnée par

F ′(t) =

∫
Ω

∂f

∂t
(t, x) dx .

De plus, si f (·, x) ∈ C 1(I ; C) pour presque tout x ∈ Ω, alors F ∈ C 1(I ; C).
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Dérivation sous le signe somme, preuve

Preuve. Soit (tn)n>0 une suite qui converge vers t ∈ I (avec tn 6= t pour tout n > 0). Par les
hypothèses (i) et (ii), il existe Z ⊂ Ω négligeable tel que

lim
n→+∞

f (tn, x)− f (t, x)

tn − t
=
∂f

∂t
(t, x),

et en outre par le théorème des accroissements finis, on a :∣∣∣∣ f (tn, x)− f (t, x)

tn − t

∣∣∣∣ 6 Φ(x),

pour tout x ∈ Ω−Z. Par convergence dominée, on a donc :

lim
n→+∞

F (tn)− F (t)

tn − t
= lim

n→+∞

∫
Ω

f (tn, x)− f (t, x)

tn − t
dx =

∫
Ω

∂f

∂t
(t, x) dx . �
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Dérivées partielles et matrice jacobienne

Soient Ω1,Ω2 des ouverts non vides de RN et Φ : Ω1 → Ω2.

Pour x ∈ Ω1 et v ∈ RN , la dérivée directionnelle de f en x suivant v est la dérivée (si elle
existe) de la fonction partielle t 7→ f (x + tv) où t est un paramètre réel suffisamment petit. Si
on dispose d’une base (e1, e2, . . . eN), qui permet d’écrire x = (x1, x2, . . . , xN), une telle dérivée

directionnelle suivant ei est appelée une dérivée partielle ; quand elle existe, on la note
∂f

∂xi
(x).

Définition

On dit que Φ : Ω1 → Ω2 est de classe C 1 sur Ω1, si Φ admet des dérivées partielles en tout
point de Ω1 et si ces dérivées partielles sont des fonctions continues sur Ω1.

On note JΦ(x) =

(
∂Φi

∂xj
(x)

)
16i ,j6N

la matrice jacobienne de Φ = (Φ1, . . . ,ΦN) au point x .

Ici la base intervient pour les directions des dérivées partielles, mais aussi pour la décomposition
de la fonction Φ suivant ses fonctions coordonnées Φi : JΦ(x) est donc une matrice carrée.
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Difféomorphisme et changement de variables

On a en vue de procéder à des changements de variables pour des intégrales définies sur des
ouverts d’evn de dimension finie. Mathématiquement parlant, un changement de variables est
une application bijective suffisamment différentiable (par exemple de classe C 1) entre deux tels
ouverts. En topologie, on a vu qu’il n’est déjà pas vrai que l’application réciproque d’une
application bijective continue est continue ; cette remarque explique le point (iii) ci-dessous.

Définition

On dit que Φ est un C 1-difféomorphisme de Ω1 sur Ω2 si les conditions ci-dessous sont
satisfaites.

(i) L’application Φ est une bijection de Ω1 sur Ω2.

(ii) L’application Φ est de classe C 1 sur Ω1.

(iii) L’application Φ−1 est de classe C 1 sur Ω2.

Dans ce qui suit, on se donne Φ : Ω1 → Ω2 un C 1-difféomorphisme.
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Théorème de changement de variables

Théorème

Soit f ∈ L1(Ω2). Alors : (f ◦ Φ) |détJΦ| ∈ L1(Ω1), et on a :∫
Ω2

f (y) dy =

∫
Ω1

f (Φ(x)) |détJΦ(x)| dx.

Preuve. On part du fait que, pour toute f ∈ Cc(Ω2), on a f ◦ Φ ∈ Cc(Ω1) et∫
Ω2

f (y) dy =

∫
Ω1

f (Φ(x)) |dét JΦ(x)| dx .

Soit f ∈ L+(Ω2) et (fn)n>0 une suite de Levi convergeant simplement vers f sur Ω2. Alors,
(fn ◦ Φ |dét JΦ|)n>0 est une suite croissante de fonctions de Cc(Ω1) et∫

Ω1

fn(Φ(x)) |dét JΦ(x)| dx =

∫
Ω2

fn(y) dy 6
∫

Ω2

f (x) dx < +∞.
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Preuve du théorème de changement de variables, suite

Par conséquent, la suite (fn ◦ Φ |dét JΦ|)n>0 est une suite de Levi sur Ω1, et elle converge
simplement sur Ω1 vers f ◦ Φ |dét JΦ| qui appartient donc L+(Ω1). Enfin, par définition de
l’intégrale sur L+(Ω2), on trouve que∫

Ω2

f (y) dy = lim
n→+∞

∫
Ω2

fn(y) dy = lim
n→+∞

∫
Ω1

fn(Φ(x)) |dét JΦ(x)| dx

=

∫
Ω1

f (Φ(x)) |dét JΦ(x)|dx .

Pour conclure, on va utiliser le fait que les C 1-difféomorphismes transforment les ensembles
négligeables en ensembles négligeables.

Lemme

Si Z ⊂ Ω2 est négligeable, alors Φ−1(Z) ⊂ Ω1 est négligeable.
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Preuve du théorème de changement de variables, fin

Preuve du lemme. Si Z ⊂ Ω2 est négligeable, il existe f ∈ L+(Ω2) telle que f (y) = +∞
pour tout y ∈ Z. Comme dét JΦ(x) 6= 0 pour tout x ∈ Ω1, on en déduit que
f ◦ Φ(x) |dét JΦ(x)| = +∞ pour tout x ∈ Φ−1(Z). La fonction f ◦ Φ |dét JΦ| ∈ L+(Ω1), donc
Φ−1(Z) est négligeable. �

Preuve du théorème (fin). Soit f ∈ L1(Ω2) : il existe donc Z ⊂ Ω2 un ensemble négligeable
et g , h ∈ L+(Ω2) tels que f = g − h sur Ω2 −Z.
Les fonctions g ◦ Φ|détJΦ| et h ◦ Φ|détJΦ| appartiennent L+(Ω1) et

f ◦ Φ|détJΦ| = g ◦ Φ|détJΦ| − h ◦ Φ|détJΦ|,

sur Ω1 − Φ−1(Z). L’ensemble Φ−1(Z) est négligeable donc f ◦ Φ|détJΦ| ∈ L1(Ω1). �
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Changements de variables affines

Soit A ∈ GLN(R) et b ∈ RN . On pose Φ(x) = Ax + b. Si f ∈ L1(RN), on a∫
RN

f (Ax + b) dx =
1

|détA|

∫
RN

f (y) dy .

Si de plus AAt = AtA = I (i.e. si Φ est une isométrie affine), alors∫
RN

f (Ax + b) dx =

∫
RN

f (y) dy .

Si A = λ I pour λ 6= 0 (i.e. si Φ est une homothétie), alors∫
RN

f (λx) dx =
1

|λ|N

∫
RN

f (y) dy .
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Coordonnées polaires : formule d’intégration

On note

P := {(x1, x2) ∈ R2 : x1 6 0, x2 = 0},

et
Φ : R∗+× ]− π, π[ → R2 − P,

l’application définie par

Φ(r , θ) := (r cos θ, r sin θ).

Pour tout f ∈ L1(R2), on a∫
R2

f (x) dx =

∫ +∞

0

∫ π

−π
f (r cos θ, r sin θ) r dr dθ.
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Coordonnées polaires : calcul de l’intégrale gaussienne

On veut calculer I =

∫
R
e−x

2
dx .

En utilisant le théorème de Fubini, on a :∫
R2

e−(x2+y2) dx dy =

∫
R
e−x

2
dx

∫
R
e−y

2
dy =

(∫
R
e−x

2
dx

)2

= I 2.

En utilisant les coordonnées polaires et le théorème de Fubini, on trouve∫
R2

e−(x2+y2) dx dy =

∫ π

−π

(∫ ∞
0

e−r
2
r dr

)
dθ = π.

Finalement : I =
√
π.
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Coordonnées sphériques : difféomorphisme

On note P := {(x1, x2, x3) ∈ R3 : x1 6 0, x2 = 0} et

Φ : R∗+× ]− π, π[× ]− π
2 ,

π
2 [ −→ R3 − P,

définie par
Φ(r , φ, θ) := (r cosφ cos θ, r sinφ cos θ, r sin θ).

x!

"

r
M

O

x

3

1

x

2

Cours 6 : Techniques de calcul intégral Bertrand Rémy 32 / 42



Coordonnées sphériques : formule d’intégration

On a

dét(JΦ) = r2 cos θ.

Donc pour toute f ∈ L1(R3), on a la formule d’intégration :∫
R3

f (x) dx =

∫ +∞

0

∫ π

−π

∫ π/2

−π/2
f (Φ(r , φ, θ)) r2 cos θ dr dφ dθ.

Exemple : volume de � la � boule de rayon R de R3 :

V =

∫
R3

1{|x |<R} dx =

∫ R

0

∫ π

−π

∫ π/2

−π/2
r2 cos θ dr dφ dθ =

4πR3

3
.
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ÉCOLE POLYTECHNIQUE –  

3. Transformation de Fourier, version L1
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Transformation de Fourier sur L1

Définition

Si f ∈ L1(RN ; C), la transformée de Fourier de f est la fonction f̂ définie par

f̂ (ξ) :=

∫
RN

e−iξ·x f (x) dx ,

la formule étant valide en tout point de RN puisque e−iξ·x est de module 1.

Théorème (théorème de Riemann-Lebesgue)

Soit f ∈ L1(RN ; C) et soit f̂ la transformée de Fourier de f . Alors :

(i) La fonction f̂ est continue sur RN .

(ii) Pour tout ξ ∈ RN , on a :
|f̂ (ξ)| 6 ‖f ‖L1 .

(iii) On a : lim
|ξ|→+∞

f̂ (ξ) = 0.
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Preuve du théorème de Riemann-Lebesgue

Preuve. Les deux premières assertions sont faciles.

Montrons que f̂ tend vers 0 à l’infini. Pour ξ 6= 0, on considère le changement de variables

y = x + π
|ξ|2 ξ.

Comme e
−i π|ξ|2 ξ.ξ = −1, on a :

f̂ (ξ) = −
∫

R
e
−iξ·

(
x+ π
|ξ|2

ξ
)
f (x) dx

= −
∫

RN

e−iξ·y f
(
y − π

|ξ|2 ξ
)

dy

= −
∫

RN

e−iξ·x f
(
x − π

|ξ|2 ξ
)

dx .
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Preuve du théorème de Riemann-Lebesgue, fin

Donc, en prenant la moyenne des deux façons de calculer f̂ (ξ), il vient :

f̂ (ξ) =
1

2

∫
RN

e−iξ·x
(
f (x)− f

(
x − π

|ξ|2
ξ
))

dx .

Donc

|f̂ (ξ)| 6 1

2

∫
RN

∣∣∣∣f (x)− f

(
x − π

|ξ|2
ξ

)∣∣∣∣ dx

6
1

2

∥∥∥∥f − f

(
· − π

|ξ|2
ξ

)∥∥∥∥
L1

,

qui tend vers 0 lorsque |ξ| → +∞ par continuité L1 des translations. �
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Décroissance à l’infini des coefficients de Fourier

Soit u ∈ C0(R; C) une fonction 2π-périodique. Les coefficients de Fourier de u sont donnés par

û(k) :=
1

2π

∫ π

−π
e−ikx u(x) dx .

On vérifie que, si u ∈ Cm(R; C) alors

|û(k)| 6 C (1 + |k |)−m.

Inversement, supposons que, pour tout k ∈ Z,

|û(k)| 6 C

(1 + |k |)m+2
,

alors u ∈ Cm(R; C).
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Décroissance à l’infini et dérivée d’une transformée de Fourier

Théorème

Si (1 + |x |) f ∈ L1(RN ; C), alors

f̂ ∈ C1(RN ; C),

et

∂ f̂

∂ξk
(ξ) = −i

∫
RN

e−iξ·x xk f (x) dx = −i x̂k f (ξ),

pour tout k = 1, . . . ,N.

Plus une fonction décrôıt vite à l’infini, plus sa transformée de Fourier est régulière. Pour tout
k > 1, si (1 + |x |k) f ∈ L1(RN ; C), alors

f̂ ∈ Ck(RN ; C).
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Décroissance à l’infini et transformée de Fourier d’une dérivée

Théorème

Si f ∈ C1(RN ; C) ∩ L1(RN ; C) et si
∂f

∂xk
∈ L1(RN ; C), alors

∂̂f

∂xk
(ξ) =

∫
RN

e−iξ·x
∂f

∂xk
(x) dx = i ξk f̂ (ξ).

Plus une fonction est régulière, plus sa transformée de Fourier décrôıt vite à l’infini. Pour tout
k > 1, si f ∈ Ck(RN ; C) et si les dérivées partielles de f jusqu’à l’ordre k appartiennent à
L1(RN ; C) alors

lim
|ξ|→+∞

|ξ|k |f̂ (ξ)| = 0.
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Théorème d’inversion de Fourier dans L1

Théorème

Soit f ∈ L1(RN ; C) telle que f̂ ∈ L1(RN ; C). Alors, pour presque tout x ∈ RN , on a :

f (x) =
1

(2π)N

∫
RN

e+ix ·ξ f̂ (ξ) dξ.

Remarques.

1. L’inversion de Fourier n’a de sens que pour presque tout x ∈ RN , puisque f̂ est définie à
partir de [f ] et pas d’un représentant de [f ].

2. Le membre de droite est une fonction définie et continue sur RN , qui tend vers 0 lorsque
|x | → +∞. Donc ce théorème ne s’applique qu’aux fonctions f qui sont p.p. égales à une
fonction continue qui tend vers 0 à l’infini.
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Analyse de Fourier

D’un point de vue calculatoire, la transformation de Fourier échange multiplication par une
variable et dérivation. Ceci a des applications fondamentales à la résolution (formelle)
d’équations aux dérivées partielles sur RN :

Équation de Laplace-Poisson

∆u = f − |ξ|2 û(ξ) = f̂ (ξ).

Équation de la chaleur

∂u

∂t
−∆ u = 0

∂û

∂t
(t, ξ) + |ξ|2 û(t, ξ) = 0.

Équation de Schrödinger libre

i
∂u

∂t
+ ∆ u = 0 i

∂û

∂t
(t, ξ)− |ξ|2 û(t, ξ) = 0.
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	Intégrales multiples
	Intégration et dérivation
	Transformation de Fourier, version L1

