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Abstract. We prove that whenever a Kac-Moody group over a finite field is a lattice of its
buildings, it has a fundamental domain with respect to which the induction cocycle is Lp for
any p ∈ [1; +∞). The proof uses elementary counting arguments for root group actions on
buildings. The applications are the possibility to apply some lattice superrigidity, and the nor-
mal subgroup property for Kac-Moody lattices.
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Introduction

Let � be an infinite (possibly twisted) Kac-Moody group over a finite field. It acts
diagonally on the product X− × X+ of its twinned buildings. We may, and shall,
assume that the action is faithful (the kernel of the action lies in the finite center
of �). The �-action on a simple factor is not discrete, and we call geometric com-
pletion of positive (resp. negative) sign the closure �+ (resp. �−) of the image
of � in the action on the positive (resp. negative) building [RR03, 1.B].

If we set G := �− × �+, then � can be seen as a discrete subgroup of G via
the diagonal embedding. If we denote by W(t) the growth series of the common
Weyl group W of X− and X+, then the finiteness of W( 1

q
) implies that � is a

lattice of G [CG99], [Rem99]. By construction the lattice � is irreducible, i.e.
its projections on the factors �± are dense. Moreover the group � is generated
by finitely many finite subgroups, which provides a length function ��. To any
fundamental domain X for G/� is attached a cocycle αX : G × X → � by:
αX(g, x) = λ ⇔ gxλ ∈ X. This cocycle is useful to induce representations of
lattices in Lie groups, and Y. Shalom’s work shows that it is a powerful tool to
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Prépublication de l’Institut Fourier n0 637 (2004);
e-mail: http://www-fourier.ujf-grenoble.fr/prepublicatons.html

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL ----------------------------------------File Options:     Compatibility: PDF 1.2     Optimize For Fast Web View: Yes     Embed Thumbnails: Yes     Auto-Rotate Pages: No     Distill From Page: 1     Distill To Page: All Pages     Binding: Left     Resolution: [ 600 600 ] dpi     Paper Size: [ 595 842 ] PointCOMPRESSION ----------------------------------------Color Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 150 dpi     Downsampling For Images Above: 225 dpi     Compression: Yes     Automatic Selection of Compression Type: Yes     JPEG Quality: Medium     Bits Per Pixel: As Original BitGrayscale Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 150 dpi     Downsampling For Images Above: 225 dpi     Compression: Yes     Automatic Selection of Compression Type: Yes     JPEG Quality: Medium     Bits Per Pixel: As Original BitMonochrome Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 600 dpi     Downsampling For Images Above: 900 dpi     Compression: Yes     Compression Type: CCITT     CCITT Group: 4     Anti-Alias To Gray: No     Compress Text and Line Art: YesFONTS ----------------------------------------     Embed All Fonts: Yes     Subset Embedded Fonts: No     When Embedding Fails: Warn and ContinueEmbedding:     Always Embed: [ ]     Never Embed: [ ]COLOR ----------------------------------------Color Management Policies:     Color Conversion Strategy: Convert All Colors to sRGB     Intent: DefaultWorking Spaces:     Grayscale ICC Profile:      RGB ICC Profile: sRGB IEC61966-2.1     CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data:     Preserve Overprint Settings: Yes     Preserve Under Color Removal and Black Generation: Yes     Transfer Functions: Apply     Preserve Halftone Information: YesADVANCED ----------------------------------------Options:     Use Prologue.ps and Epilogue.ps: No     Allow PostScript File To Override Job Options: Yes     Preserve Level 2 copypage Semantics: Yes     Save Portable Job Ticket Inside PDF File: No     Illustrator Overprint Mode: Yes     Convert Gradients To Smooth Shades: No     ASCII Format: NoDocument Structuring Conventions (DSC):     Process DSC Comments: NoOTHERS ----------------------------------------     Distiller Core Version: 5000     Use ZIP Compression: Yes     Deactivate Optimization: No     Image Memory: 524288 Byte     Anti-Alias Color Images: No     Anti-Alias Grayscale Images: No     Convert Images (< 257 Colors) To Indexed Color Space: Yes     sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments false     /DoThumbnails true     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize true     /ParseDSCCommentsForDocInfo false     /EmitDSCWarnings false     /CalGrayProfile ()     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue false     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.2     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends false     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo false     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /sRGB     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 150     /EndPage -1     /AutoPositionEPSFiles false     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 600     /AutoFilterGrayImages true     /AlwaysEmbed [ ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 150     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 576.0 792.0 ]     /HWResolution [ 600 600 ]>> setpagedevice



30 B. Rémy

prove deep rigidity results (where the ambient topological groups needn’t be Lie
groups) [Sha00a], [Sha00b]. Our main purpose is to prove the following.

Theorem. Let �, G and W be as above. Then, there is a fundamental domain D

for G/�, which is a countable union of compact open subsets {Dw}w∈W and such
that for any p∈ [1; +∞) and any g∈G, we have:∫

D

��

(
αD(g, d)

)p
dµ(d) < +∞,

whenever the minimal order q of the root groups satisfies W( 1
q
) < +∞.

In other words, for the cocycle αD to be Lp, there is no further assumption
on a Kac-Moody group � over a finite field than being a lattice of its buildings.
Note that for p = 2, the above integrability is nothing else than condition (1.5)
of [Sha00a, 1.II p.14]. This enables us to deduce:

Corollary. All the results valid under the hypothesis (0.1) in the above cited
paper by Y. Shalom, are still valid when the uniform lattice is replaced by a Kac-
Moody group over a finite field, provided the latter group is a lattice of its twinned
buildings, e.g. when W( 1

q
) < +∞.

We note that the idea to replace the cocompactness of a closed subgroup by
representation-theoretic conditions (and in particular by integrability conditions)
appears in [Mar91, III.1]. The results alluded to in the Corollary contain a superri-
gidity theorem for irreducible lattices, an arithmeticity theorem, a superrigidity
theorem for actions on trees... The square integrability is also one ingredient
needed in a recent paper by N. Monod, providing a very general superrigidity
theorem for actions of irreducible lattices on arbitrary complete CAT(0)-spaces
[Mon04], see Subsect. 3.1 for further details. We note that the only so far available
superrigidity theorem for Kac-Moody lattices was a commensurator superrigidity
[Bon03], which is easier to obtain than a lattice superrigidity. Conversely, we can
see Kac-Moody lattices as a substantial enrichment of the list of examples for
which one really needs the new rigidity results (with respect to those previously
proved in [Mar91]).

Still, the main application of the square-integrability we have in mind is the
normal subgroup property for Kac-Moody lattices, a well-known property for
irreducible lattices of higher-rank Lie groups over local fields [Mar91, VIII.2].
In our case, this is a joint work with U. Bader and Y. Shalom which uses a gen-
eral result due to them about amenability of factor groups of irreducible lattices
[BS03], and a result due to Y. Shalom about property (T) for the same quotients
[Sha00a]. This provides the following (see [BS03, Theorem 1.5] and Theorem 21
of the present paper):

Theorem (with U. Bader and Y. Shalom). Let � be a Kac-Moody group over a
finite field, with irreducible Weyl group. Assume it is a lattice of the product of its
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twinned buildings. Then any normal subgroup of � either has finite index or lies
in the finite center Z(�).

Using a result on just infinite groups due to J.S. Wilson, we can then prove
(Corollary 22):

Corollary. If � is center-free, e.g. because it is adjoint, and if it is not residually
finite, then � is virtually simple.

Note that many Kac-Moody groups over finite fields are not linear over any
field [Rem03b], therefore are potentially non-residually finite, but no example of
a non-residually finite Kac-Moody group has been given yet.

This paper is organized as follows. In the first section, we recall the basic com-
binatorial notions for groups with twin root data and their geometric completions,
and we describe the fundamental domain D in these terms. In the second section,
we prove the above Lp-integrability. The proof uses a quantitative version of the
fact that a fundamental domain for the diagonal action of a group with twin root
datum on the product of its twinned buildings, is the product of a negative cham-
ber by a suitable positive apartment. In the third section, we provide applications
of the integrability. We first show that this enables us to apply the superrigidity
results proved byY. Shalom [Sha00a], and leads to ask whether N. Monod’s more
recent work [Mon04] can be applied. The second application is group-theoretic,
it proves that Kac-Moody lattices enjoy the normal subgroup property.

It is a great pleasure to thank Uri Bader, Nicolas Monod and Yehuda Shalom.
Their comments and encouragements were extremely useful in writing this paper.

1. Twin building, automorphism groups, fundamental domain and cocycle

We introduce some automorphism groups of twin buildings, and we show that
their combinatorial properties enable to construct nice fundamental domains.

1.1. Twin building and automorphism groups

Let (W, S) be a Coxeter system [Bou81, IV.1]. Our starting point is a group �

admitting a twin root datum
(
�, {Ua}a∈�, T

)
whose root groups Ua are indexed

by the root system � of (W, S) [Tit87], [Rem02, 5.4.1]. We assume that all the
root groups Ua , as well as the subgroup T , are finite and that the Weyl group
W is infinite. This is the context chosen in [RR03, Sect. 1] to define topological
groups generalizing semisimple groups over local fields of positive characteristic.
We will recall briefly the main notions, properties and references; further details
and motivations are given in [Rem03a, §3].

The notion of a twin root datum was given in a paper by J. Tits [Tit92]. In the
axioms, the Weyl group W appears as the image of a quotient map ν : N → W
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with kernel T , where N is a subgroup of �. The group T normalizes each root
group Ua and we have: nUan

−1 = Uν(n).a for any root a ∈ � and any n ∈ N .
It is also required that any element in N lifting a reflection s in the canonical
generating set S of W , lies in the finite subgroup 〈Uas

, U−as
, T 〉, where as is the

simple root attached to s. Each group Ms := 〈Uas
, U−as

, T 〉 may be seen as a
generalized rank one finite group of Lie type (it is, strictly speaking, a finite group
of Lie type when � is a Kac-Moody group over a finite field). The root groups
{Ua}a∈� and T are required to satisfy other additional properties for which we
refer to [Rem02, 1.6]. At last, � is generated by T and the Ua’s, so in view of the
previous remarks, the group � is finitely generated.

Definition 1. (i) We denote by �W the length function on W associated to the
canonical generating set S.

(ii) We denote by �� the length function on � associated to the finite set of gener-
ators given by the union of the groups Ms , when s ranges over S.

In what follows, we are mainly interested in the geometric counterpart to this,
which involves the structure of a building for which we adopt the viewpoint of
chamber systems [Ron89, §2]. To � is associated a twin building (X+, X−, w∗)
together with a twin apartment of reference � = �− � �+ and a pair of oppo-
site chambers {c−; c+} in � [Tit92], [Abr97], [Rem02, §2]. By non-triviality and
finiteness of the root groups, the buildings X± are thick and locally finite. 〈〈Thick-
ness 〉〉 means that for any panel (i.e. any codimension one simplex) �, the set of
chambers whose closure contains � has at least three elements. We denote by B+
(resp. B−) the fixator of the positive (resp. negative) chamber c+ (resp. c−) in �;
it contains as a finite index subgroup the group U+ (resp. U−) generated by the
root groups indexed by the positive (resp. negative) roots.

The codistance w∗ is a map (X− ×X+)� (X+ ×X−) → W defined thanks to
the Birkhoff decomposition of � [Abr97, §2]. The group of twin building auto-
morphisms of (X+, X−, w∗) is the subgroup A of couples (g−, g+)∈Aut(X−) ×
Aut(X+) which satisfy w∗(g−.c−, g+.c+) = w∗(c−, c+) for any couple of cham-
bers (c−, c+)∈X− × X+. We have: � < A.

The twin building (X+, X−, w∗) has the Moufang property [Ron89, §6]: if we
identify � with the set of twin roots in �, this roughly means that for any twin
root a ⊂ � and any chamber c having a panel � in the wall ∂a, the root group Ua

fixes the half twin apartment a ⊂ � and acts simply transitively on the chambers
different from c and containing �. This explains why the local finiteness of the
buildings X± amounts to the finiteness of the root groups.

We can now turn to topology. We denote by Aut(X±) the group of all type-
preserving building automorphisms of X±. For the compact open topology, in
which a fundamental system of neighborhoods of the identity is given by fixators
of finite subsets of chambers, the group Aut(X±) is locally compact.
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Definition 2. We denote by �± the closure in Aut(X±) of the image of the �-
action on X± and we call it the geometric completion of � of sign ±. The fixator
of the chamber c± in �± is called the standard Iwahori subgroup of �± and is
denoted by B±. We denote by Û± the closure of U± in �±, and for any w∈W we
introduce the group Ûw

− := Û− ∩ w−1Û−w.

These groups were introduced in [RR03, 1.B], where it was checked that
(�+, N, Û+, U−, T , S) and (�−, N, Û−, U+, T , S) both satisfy the axioms of a
refined Tits system whenever � is an infinite Kac-Moody group over a finite field.
This notion is due to V. Kac and D. Peterson [KP85] and its basic properties will
be used in the sequel with appropriate references.

Assumption 3. Until the end of the paper, the group � is assumed to be an infinite
Kac-Moody group over a finite field.

All the results of the paper remain valid for groups with twin root data with
infinite Weyl groups and finite root groups and whose geometric completions are
refined Tits systems. This is the case when T = {1}, which is possible for some
exotic Moufang twin buildings [AR03, Example 69].

1.2. Fundamental domain and cocycle

We keep the twin apartment of reference � = �− � �+, the standard pair of
opposite chambers {c−; c+}, and we now introduce a remarkable subset of G.

Definition 4. For each w∈W , we denote by Dw the subset Ûw
− × B+w of G. We

denote by D the disjoint union
⊔

w∈W Dw.

Here is the main property of D.

Proposition 5. For any g = (g−, g+)∈G, there is a unique λ∈� and a unique
w ∈W such that g−λ∈ Ûw

− and g+λ∈B+w, i.e. D is a fundamental domain for
G/�.

Proof. We use the right action on X− × X+ defined by: (d−, d+).(h−, h+) =
(h−1

− .d−, h−1
+ .d+) for any (h−, h+)∈Aut(X−) × Aut(X+) and any pair of cham-

bers of opposite signs {d−; d+}. We argue on the G-transforms of the standard
couple of chambers (c−, c+). Since any pair of chambers is contained in a twin
apartment [Abr97, Lemma 2 p.24] and since the diagonal �-action is transitive
on the set of twin apartments [Abr97, Lemma 4 p.29], there exist δ ∈ � and
w ∈W such that (c−, c+).(g−, g+).δ = (c−, w−1.c+), so we have g−δ ∈B− and
g+δ∈B+w.

By standard properties of refined Tits systems [Rem02, 1.2.3], we have B− =
Û− � T = Ûw

− .U−w.T , with U−w = Û− ∩ w−1U+w = U− ∩ w−1U+w and
Ûw

− = Û− ∩ w−1Û−w. We can thus write: g−δ = ûw
−u−wt , with ûw

− ∈ Ûw
− ,
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u−w ∈ U−w and t ∈ T . If we set λ := δt−1(u−w)−1 ∈ �, we have that g−λ =
g−δt−1(u−w)−1 lies in Ûw

− . Moreover writing g+δ = b+w with b+ ∈ B+, we
get: g+λ = b+(wt−1w−1)(wu−ww−1)w. Since T is normalized by W , we finally
obtain: g+λ∈B+w by definition of U−w.

This proves that D contains a representative for each class of G/�. It remains
to check that λ ∈ � and w ∈ W are uniquely determined by (g−, g+) and the
conditions g−λ∈ Ûw

− and g+λ∈B+w. Assume there exist δ ∈� and z∈W such
that g−δ∈ Û z

− and g+δ∈B+z. We have λ−1g−1
− c− = c− and λ−1g−1

+ c+ = w−1c+;
and since the diagonal �-action preserves the codistance w∗ between chambers of
opposite signs, this gives w∗(g−1

− .c−, g−1
+ .c+) = w∗(λ−1g−1

− .c−, λ−1g−1
+ .c+) =

w∗(c−, w−1.c+) = w−1. We can do the same computation with λ replaced by δ

and w replaced by z, to get w = z.
It remains to compute: g−δ = (g−λ)(λ−1δ), which implies λ−1δ∈ Ûw

− . More-
over we have: λ−1g−1

+ .c+ = w−1.c+, but also: λ−1g−1
+ .c+ = (λ−1δ).(δ−1g−1

+ .c+)

= (λ−1δ).(w−1.c+). This shows that λ−1δ fixes the chamber w−1.c+, hence be-
longs to w−1B+w. We have: λ−1δ∈ Ûw

− ∩w−1B+w, which provides: w(λ−1δ)w−1

∈ B+ ∩wÛw
− w−1 ∩� < B+ ∩ Û− ∩� = B+ ∩U− = {1} [KP85, Axiom (RT3)].

We finally obtain: λ = δ. ��
This enables to recover a basic result on the existence of lattices for Kac-

Moody buildings [Rem99]. We normalize the right Haar measure µ± on Aut(X±)

so that µ±(Û±) = 1, and set µ := µ− ⊗ µ+.

Corollary 6. The µ-volume of Dw is
|T |

|U−w | ; the group � is a lattice of G when-

ever
∑
w∈W

1

|U−w | converges. The latter condition is fulfilled when the ground field

Fq satisfies W( 1
q
) < +∞.

Proof. We have: Vol(Dw, µ) = µ−(Ûw
− ) · µ+(B+w) = 1

|U−w | · µ−(Û−) ·
µ+(B+). The second equality follows from Û− = Ûw

− · U−w [Rem02, 1.2.3],
and the first assertion follows from B+ = T � Û+ [loc. cit.]. The second asser-
tion is then obvious, and the third one follows from the existence of a bijection
between U−w and the product of �W(w) suitable root groups, all having at least q

elements (see also the proof of Lemma 16 for details). ��
We can now introduce the cocycle we are interested in.

Definition 7. We define α = αD : G×D → � by setting α
(
(g−, g+), (uw

−, b+w)
)

= λ if and only if g−uw
−λ ∈ Û z

− and g+b+wλ ∈ B+z for some z ∈ W . In other
words, denoting by d the element (uw

−, b+w) of Dw, we set α(g, d) = γ if and
only if gdγ ∈D.
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Remark 8. In terms of this cocycle, the first two paragraphs of the proof of Proposi-
tion 5 show that, given g = (g−, g+)∈G, an element δ∈� such that δ−1g−1

− .c− =
c− and δ−1g−1

+ .c+ = w−1.c+ for some w∈W , is an approximation modulo T U−w

of α(g, 1G). This is used to prove Lemma 16.

Remark 9. What we call 〈〈cocycle 〉〉 leads to the relation: α(gh, x) = α(h, x)α(g,

h.x); in order to have a true cocycle, i.e. α(gh, x) = α(g, h.x)α(h, x), we should
set α(g, d) = γ −1 if and only if gdγ ∈ D. Since we want to apply Y. Shalom’s
results, we adopted his 〈〈anticocycle 〉〉 convention.

2. Integrability

We can now proceed to the proof of the integrability of the length of the cocycle.
We first prove some geometric inequalities, basically following from counting
root group actions. Then we use these inequalities to show that the integrability
of the cocycle only depends on the convergence of a power series which is very
close to the one computing the covolume in Corollary 6.

We keep the infinite Kac-Moody group � over Fq with twin root datum(
�, {Ua}a∈�, H

)
. We will still use (X+, X−, w∗) its thick, locally finite, Moufang

twin building, as well as the twin apartment of reference � = �− � �+ and the
standard pair of opposite chambers {c−; c+} in �.

2.1. Geometric inequalities

The following result is a quantitative version of the fact that the diagonal �-action
on pairs of chambers of opposite signs admits {c−}��+ as fundamental domain.

Proposition 10. Let {d−, d+} be a pair of chambers of opposite signs. We intro-
duce the combinatorial distances L− := dist(c−, d−) and L+ := dist(c+, d+),
and their sumL := L−+L+. Then, there existλ∈�andw∈W with:λ−1.d− = c−
and λ−1.d+ = w−1.c+, whose lengths satisfy: ��(λ) ≤ 2L2+3L and �W(w) ≤ L.

Proof. The proof is divided into three steps.
Step 1: negative chambers (see Picture 11). Let c− = c1, c2, ... ci, ci+1, ... cn

= d− be a minimal gallery from c− to d−, such that {ci; ci+1} is a pair of si-adja-
cent chambers for some si ∈S. We have n = L− + 1. For each i, we denote by ai

the simple root attached to the reflection si . By minimality we have c1 �= c2, so the
Moufang property [Ron89, 6.4] implies that there is a unique u1 ∈U−a1 such that
s1u1.c2 = c1. Then s1u1.c2, ... s1u1.ci, s1u1.ci+1, ... s1u1.cn is a minimal gallery
from c−. Therefore, there is a unique u2 ∈U−a2 such that s2u2s1u1.c3 = c−. We
iterate the procedure. After the (j −1)-th step, we have: sj−1uj−1...s2u2s1u1.cj =
c−, and we are interested in the chamber sj−1uj−1...s2u2s1u1.cj+1. It is a chamber
sj -adjacent to c− and different from c− in X−, so by the Moufang property there
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is a unique uj ∈U−aj
such that uj sj−1uj−1...s2u2s1u1.cj+1 is the unique chamber

s−1
j .c− to be sj -adjacent to c− and different from c− in �−. We eventually obtain

an element δ = (sn−1un−1)...(s2u2)(s1u1) such that
δ.d− = c− and ��(δ) ≤ 2L− ≤ 2L.

Picture 11.

Step 2: signs of roots. We set z := sn−1...s2s1.

Claim 12. We have: δ∈U+z.

Proof of the claim. Let us write:

δ = (sn−1un−1s
−1
n−1).(sn−1sn−2un−2s

−1
n−2s

−1
n−1)...(sn−1...sjuj s

−1
j ...s−1

n−1)

...(sn−1...s1u1s
−1
1 ...s−1

n−1)z.

For each j , we set δj = sn−1...sjuj s
−1
j ...s−1

n−1 ∈ Usn−1...sj+1.aj
. It is enough to

show that each factor δj lies in a positive root group. Recall the combinatorial
definition of the root system � [Tit87, 5.1]: the simple root attached to the canon-
ical reflection sj ∈ S is aj = {w ∈ W | �W(sjw) > �W(w)}, and its opposite is
−aj = {w∈W | �W(sjw) < �W(w)}; an arbitrary root w.as is defined by transla-
tion of a simple root by a suitable element of the Weyl group W . In this description,
a root is positive if and only if it contains 1W . Now the fact that sn−1...s2s1 is a
reduced word implies that sn−1...sj+1.aj is a positive root for any j . ��

We can therefore write δ = u+z for some u+ ∈U+, and because u+ fixes c+
we have:

dist(c+, δ.d+) = dist(c+, z.d+)

≤ dist(c+, z.c+) + dist(z.c+, z.d+)

= �W(z) + L+ = L,

see also Picture 13.



Integrability of induction cocycles for Kac-Moody groups 37

Picture 13.

Step 3: negative root groups acting on the positive side.

Claim 14. There is an element u− ∈U− such that u−u+z.d+ ∈�+ and ��(u−) ≤
L(2L + 1).

Proof of the claim (see Picture 15). First, if u+z.d+ ∈�+, there is nothing to do
because u+z.d+ is a chamber at combinatorial distance ≤ L from c+, and as such
can be written w−1.c+ for w ∈ W with �W(w) ≤ L. If the combinatorial dis-
tance dist(�+, u+z.d+) from �+ to u+z.d+ is positive, then we choose a gallery
c1 = c+, c2, ... cn = u+z.d+ of length ≤ L, and we denote by j the smallest index
such that for any i > j we have ci �∈ �+.The chambers cj and cj+1 are sj -adjacent,
and there is a unique wj ∈W such that cj = wj .c+ and �W(wj ) = dist(c+, cj ) ≤
L. By the Moufang property, there is uj ∈ wjU−aj

wj
−1 such that uj .cj+1 =

cj . Note that ��(uj ) ≤ �W(wj ) + 1 + �W(wj ) ≤ 2L + 1. We obtain a new
gallery c1 = c+, c2, ... cj , uj .cj+2, ...uju+z.d+, with dist(�+, uju+z.d+) ≤
dist(�+, u+z.d+)−1. Iterating the use of a suitable element ui of length ≤ 2L+1
in a negative root group wiU−ai

wi
−1 (i > j ), we obtain a sequence of at most

L − j elements of U− of length ≤ 2L + 1 whose product, say u−, sends u+z.d+
to a chamber in �+, at distance ≤ L from c+. ��

Picture 15.
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Proof of Proposition, conclusion. The chamberu−u+z.d+ is at combinatorial dis-
tance ≤ L from c+, so it can be written w−1.c+ with �W(w) ≤ L. Therefore,
setting λ−1 := u−u+z, we have:

��(λ) ≤ 2L + L(2L + 1) = 2L2 + 3L and �W(w) ≤ L,

as well as:

λ−1.d− = (u−u+z).d− = u−.c− = c− and λ−1.d+ = w−1.c+.

��

2.2. Computation

We can now turn to the proof of the main result, i.e. the finiteness of the integral:∫
D

��

(
α(g, d)

)p
dµ(d),

for any p∈ [1; +∞) and any g∈G.
First, since 1G belongs to the fundamental domain D and since λ = α(g, d) ⇔

gdλ∈D, we have: α(g, d) = α(gd, 1G) for any g∈G and any d ∈D. Therefore
it is enough to show: ∫

D

��

(
α(gd, 1G)

)p
dµ(d) < +∞,

for any p∈ [1; +∞) and any g∈G. We start with two lemmas.

Lemma 16. Let h = (h−, h+) ∈ G. Let us set: L+(h) = dist(c+, h−1
+ .c+),

L−(h) = dist(c−, h−1
− .c−) and L(h) = L+(h) + L−(h). Then we have:

��

(
α(h, 1G)

) ≤ P
(
L(h)

)
, with P(X) = 3X2 + 3X + 1.

Proof. We take λ ∈ � and w ∈ W given by Proposition 10 and the choices
d− = h−1

− .c− and d+ = h−1
+ .c+. We have α(h, 1G)λ−1 ∈ T U−w by Remark 8.

From standard facts on twin root data [Rem02, Lemma 1.5.2], the group U−w

is in bijection with a product
∏

β Uβ , where β runs in a suitable order over the
�W(w) negative roots such that w.β > 0. If w = sn...s2s1 is a reduced word, i.e. if
n = �W(w), the roots β under consideration are −a1, −s1.a2, ... −s1s2...sn−1.an,
where ai is the simple root attached to the canonical reflection si . Therefore we
have:

��

(
α(h, 1G)λ−1) ≤ 1 +

�W (w)−1∑
j=0

(2j + 1) = 1 + �W(w)2 ≤ 1 + L2

(the first term comes from the factor in T ), and we finally obtain the required
inequality. ��
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Lemma 17. Let g = (g−, g+) ∈ G. Let d = (uw
−, b+w) be in the subset Dw of

D. Then we have: ��

(
α(gd, 1G)

) ≤ Q
(
�W(w)

)
, with Q(X) = 3X2 + (6L(g) +

3)X + (3L(g)2 + 3L(g) + 1).

Proof (see Picture 18). Since uw
− belongs to Ûw

− , hence to B−, it fixes c− so that we
have the equality: L−(gd) = dist(c−, (uw

−)−1g−1
− .c−) = dist(uw

−.c−, g−1
− .c−) =

L−(g). We have b+ ∈ B+, so L+(gd) = dist(c+, w−1b−1
+ g−1

+ .c+) ≤ L+(g) +
�W(w). This finally implies L(gd) ≤ L(g) + �W(w), and it remains to apply the
previous lemma. ��

Picture 18.

At last, we can go back to the integral.

Proof of the main theorem. We can now compute:
∫

D

��

(
α(gd, 1G)

)p
dµ(d) =

∑
w∈W

(∫
Dw

��

(
α(gd, 1G)

)p
dµ(d)

)

≤
∑
w∈W

(∫
Dw

Q
(
�W(w)

)p
dµ(d)

)

=
∑
w∈W

(
Q

(
�W(w)

)p · Vol(Dw, µ)
)

≤ |T | ·
∑
w∈W

(Q
(
�W(w)

)p

q�W (w)

)

= |T | ·
∑
n∈N

cn

Q(n)p

qn
.
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The first equality follows from D = ⊔
w∈W Dw. The first inequality follows from

Lemma 17. The second inequality follows from the equality µ(Dw) = |T |
|U−w | (Cor-

ollary 6) and the existence of a bijection between U−w and the product of �W(w)

root groups, all of order at least q. The last equality follows from rearranging the
elements of the Weyl group with respect their length, which makes appear the
growth series W(t) = ∑

n∈N cnt
n. ��

3. Applications and questions

We mention the two main applications of the square-integrability of the cocycle
with respect to the fundamental domain provided by our main result. The point is
that this property enables to use induction for 1-cohomology with unitary coeffi-
cients (in the spirit of [Sha00a]) and more generally in the context of actions
on CAT(0)-spaces (as introduced in [Mon04]). We first deal with applications to
rigidity theory, and then state a normal subgroup theorem for Kac-Moody lattices.

3.1. Lattice superrigidity

The square-integrability condition:
∫

D

��

(
αD(g, d)

)2
dµ(d) < +∞

is a sufficient condition to induce the first (reduced) cohomology of the unitary
representations of the irreducible lattice � to the first (reduced) continuous coho-
mology of the ambient topological group G = �− × �+ [Sha00a, Proposition
1.11]. Induction in cohomology is the starting point of Y. Shalom’s proof of the
series of results alluded to in the first corollary of the introduction, i.e. all the results
in [loc. cit.] for which the hypotheses are (0.1). The datum of a uniform irreducible
lattice  in a compactly generated product of topological groups G = G1×...×Gn

has to be replaced by the datum of a Kac-Moody lattice � in the product of its two
geometric completions �− ×�+. The fact that the groups �± are compactly gen-
erated follows easily from a suitable Bruhat decomposition [Rem03b, Corollary
1.B.1]. The so-obtained results are (see [Sha00a, Introduction]): property (T)
for proper quotients (Theorem 0.1), superrigidity of homomorphisms to groups
containing some rank one lattices (Theorem 0.3), arithmeticity of some images
(Theorem 0.5), some strong rigidity (Theorem 0.6), superrigidity of actions on
trees (Theorem 0.7) and of characters (Theorem 0.8).

The idea to replace a cocompactness by an integrability assumption appears
in [Mar91, III.1] and in [Sha00a]. The proof of the square-integrability of induc-
tion cocycles for non-uniform irreducible lattices in products of algebraic groups
over local fields [Sha00a, §2] uses reduction theory for S-arithmetic groups (as
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summed up in [Mar91, VIII.1]), and the relation between word and Riemannian
metrics for lattices in higher-rank semisimple Lie groups [LMR01]. Thus, from
this point of view, Sect. 2 is a light substitute for the latter two deep results, in
the Kac-Moody case. (The intersection between Kac-Moody groups over finite
fields and S-arithmetic groups is non-empty; it contains the affine Kac-Moody
type, corresponding to the points over Fq[t, t−1] of simply connected Chevalley
groups, i.e. {0; ∞}-arithmetic groups.)

We conclude this subsection by a potential generalization of the previously
quoted results to superrigidity results for actions on CAT(0)-spaces. In [Mon04],
such actions of uniform irreducible lattices are induced to actions of the ambi-
ent product of topological groups on much bigger (non-proper) CAT(0)-spaces.
This, together with geometric splitting theorems in order to suitably generalize
the Zariski density assumption, leads to the rigidity theorems.

Question 19. To what extent can irreducible uniform lattices be replaced by Kac-
Moody non-uniform lattices in N. Monod’s work?

Under the square-integrability condition, there is no further obstruction to
induce actions in the context of metric spaces. Still, uniformness of the lattice is
used elsewhere in [Mon04], namely to control the behaviour under induction of
evanescence, a notion introduced to generalize the existence of a fixed point in
∂∞X for actions on non proper CAT(0)-spaces. The results of [loc. cit.] are valid
when the irreducible uniform lattices are replaced by irreducible square-integra-
ble and weakly cocompact lattices. Recall that a lattice  in G is called weakly
cocompact if the orthogonal complement L2

0(G/) of the constant functions
in L2(G/) doesn’t weakly contain the trivial one-dimensional representation
[Mar91, p.111]. Weak cocompactness is fulfilled when the lattice has property
(T), and the latter property is shown to often hold for Kac-Moody lattices [DJ02].
For instance, applying [Mon04, Theorem 6] gives:

Corollary 20. Let � < �− × �+ be a Kac-Moody lattice, which is assumed to
be Kazhdan. Let H < Isom(X) be a closed subgroup, where X is any complete
CAT(0)-space. Let τ : � → H be a homomorphism with reduced unbounded
image. Then τ extends to a continuous homomorphism τ̃ : �− × �+ → H .

We refer to [loc. cit., Appendix B] for a detailed proof of the fact that the main
results of this article can be applied to Kac-Moody lattices with property (T).

3.2. Normal subgroup theorem

The main application of our main theorem is group-theoretic; it is the following
statement, proved with U. Bader and Y. Shalom.

Theorem 21. Let � be a Kac-Moody group over a finite field, with irreducible
Weyl group. Assume it is a lattice of the product of its twinned buildings. Then any
normal subgroup of � either has finite index or lies in the finite center Z(�).
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Reference. The details of the proof are provided in [BS03, §4 p.27]. The strategy
at large scale is the same as Margulis’: in order to prove that a factor group is finite,
one proves that it is both amenable and Kazhdan. The amenability half follows
from [loc. cit., Theorem 1.3] and it doesn’t use any uniformness or square-inte-
grability assumption. The property (T) half is [Sha00a, Theorem 0.1], and it does
need the square-integrability property, referred to as S-I in [BS03]. ��

From our point view, the normal subgroup property has the following inter-
esting consequence, which reduces (virtual) simplicity to non-residual finiteness
for finitely generated Kac-Mody groups with irreducible Weyl groups.

Corollary 22. If � is center-free, e.g. because it is adjoint, and if it is not residually
finite, then � is virtually simple.

Proof. The group � is just infinite, i.e. all its proper quotients are finite. Set
N := ⋂

[�:�]<∞ �. Since � is not residually finite we have N �= {1}, and since
� is just infinite we have [� : N ] < ∞. By [Wil71, Proposition 1], the group N

is the direct product of finitely many pairwise isomorphic simple groups. There-
fore it is enough to show that there is only one factor in this product. Assume
there are two, say H and G. Topological simplicity of � [Rem03b, 2.A.1] first
implies N = � because N � �, and then G = H = �. Let us pick two non-
commuting elements g and h in � and write them g = lim

n→∞ gn and h = lim
n→∞ hn,

with gn ∈ G and hn ∈ H for each n ≥ 1. We get a contradiction when writing:
[g, h] = lim

n→∞[gn, hn] = 1. ��

It is not known whether non-residually finite finitely generated Kac-Moody
groups exist. On the other hand, partial non-linearity results are available [Rem03b]
and can probably be extended to wider classes of Kac-Moody groups.
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l’Académie des Sciences de Paris 329, 475–478 (1999)
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