On some recent developments in the
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Abstract. Buildings are cell complexes with so remarkable symmetry properties that
many groups from important families act on them. We present some examples of results
in Lie theory and geometric group theory obtained thanks to these highly transitive
actions. The chosen examples are related to classical and less classical (often non-linear)
group-theoretic situations.
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Introduction

Buildings are cell complexes with distinguished subcomplexes, called apartments,
requested to satisfy strong incidence properties. The notion was invented by J. Tits
about 50 years ago and quickly became useful in many group-theoretic situations
[75]. By their very definition, buildings are expected to have many symmetries,
and this is indeed the case quite often. Buildings are relevant to Lie theory since
the geometry of apartments is described by means of Coxeter groups: apartments
are so to speak generalized tilings, where a usual (spherical, Euclidean or hyper-
bolic) reflection group may be replaced by a more general Coxeter group. One
consequence of the existence of sufficiently large automorphism groups is the fact
that many buildings admit group actions with very strong transitivity properties,
leading to a better understanding of the groups under consideration.

The beginning of the development of the theory is closely related to the theory
of algebraic groups, more precisely to Borel-Tits’ theory of isotropic reductive
groups over arbitrary fields and to Bruhat-Tits’ theory of reductive groups over
non-archimedean valued fields. In the former theory the involved buildings are
spherical (i.e., the apartments are spherical tilings) and the group action reflects the
existence, on the rational points of the algebraic group, of a strong combinatorial
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structure called Tits system (or BN-pair). Roughly speaking, such a structure
formalizes the existence of a Bruhat decomposition indexed by a Coxeter group
(called the Weyl group of the Tits system) and, among other things, leads to a
uniform way of proving projective simplicity of rational points of classical groups.
In the latter theory, the involved buildings are Euclidean (i.e., the apartments
are Euclidean tilings) and the Weyl group of the Tits system is an affine Coxeter
group. The group action on the building is a crucial tool to understand the subtle
structure of the rational points of the algebraic group. For instance, by passing
to cell stabilizers, Bruhat-Tits buildings parametrize remarkable compact open
subgroups obtained from forms of the group over the valuation ring of the local
ground field.

These two situations (spherical and Euclidean buildings), which are related to
algebraic groups (via Borel-Tits and Bruhat-Tits’ theory), will be called classical
in the sequel of the report.

What is probably less well known is the fact that some buildings in which
apartments are modeled on neither spherical nor affine tilings have recently led
to interesting group-theoretic situations. One strong connection with geometric
group theory is given by the existence, for any building, of a distance such that
the resulting metric space is complete, contractible and non-positively curved in
some suitable sense due to M. Gromov. In this case, the general theme is to study
isometry groups of non-classical buildings by analogy with classical Lie-theoretic
situations. In this analogy, buildings are seen as analogues of non-compact Rieman-
nian symmetric spaces and their automorphism groups are seen as generalizations
of semisimple Lie groups.

From that viewpoint, Kac-Moody theory is very useful even though it may
not be so clear at first glance. This theory is usually presented as an infinite-
dimensional generalization of semisimple Lie algebras, with applications in rep-
resentation theory. It turns out that there exist some constructions of groups
integrating (possibly in a loose sense) Kac-Moody Lie algebras. For these groups,
nice structures from algebraic geometry are usually lost, but the combinatorial
structures such as Tits systems stay available and can be translated in terms of
strongly transitive group actions on (usually exotic) buildings. The notion of a
ground field still makes sense and the possibility to work over a finite ground
field leads to intriguing finitely generated groups or non-discrete locally profinite
groups, according to the version of Kac-Moody groups chosen to begin with. These
groups shall be compared to arithmetic groups and to non-archimedean Lie groups
in positive characteristic, respectively.

Of course, not all exotic buildings with interesting isometry groups come from
Kac-Moody theory. In dimension 2 for instance, products of arbitrary semi-
homogeneous trees provide a much wider class; among groups actings properly
discontinuously and cocompactly on these spaces, M. Burger and Sh. Mozes could
exhibit the first simple torsion-free finitely presented groups. Still, one of the
mains ideas of this report is that Kac-Moody groups shall be investigated thor-
oughly since they are at good distance from the classical situation of Lie groups
and their discrete subgroups. In some sense, it is a class of (discrete and profinite)
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groups which are new in the sense that striking new phenomena occur but on which
we still have a very useful Lie-theoretic control (e.g. via infinite root systems).

The structure of this report is as follows. In the first section we recall some
basic facts in building theory; we give some examples of results for both classical
and non-classical buildings. The second section is dedicated to Euclidean build-
ings via two themes: compactifications of buildings (joint works with Y. Guivarc’h,
and with A. Thuillier and A. Werner) and cohomology of arithmetic groups; we
present two techniques of compactification, one of them using a promising rela-
tionship with non-archimedean analytic geometry. The third section deals with
applications of Kac-Moody theory to the construction of interesting discrete, or
non-discrete locally compact, groups (joint work with P.-E. Caprace); we explain
for instance that these groups provide infinitely many quasi-isometry classes of
finitely presented simple groups. It also mentions pro-p groups arising from Kac-
Moody theory (joint work with I. Capdeboscq).

Acknowledgements. The author expresses his deep gratitude to all the co-
authors mentioned in this report.

1. Building theory

In this section, we introduce the main subject matter of this report, namely the
notion of a building. We briefly present two well-known families of buildings, that
of spherical and of Euclidean buildings, and explain quickly how they are related
to the theory of algebraic groups. We also mention other examples of buildings
providing interesting spaces for geometric group theory.

1.1. Definition of a building. A general reference for buildings is [1]. In
order to provide a definition, we first have to introduce the notion of a Coxeter
complex.

o A Cozeter group, say W, is a group admitting a presentation: W = (s € S |
(st)Mst = 1) where M = [M]s,t € S is a Cozeter matriz (i.e., symmetric
with 1’s on the diagonal and other entries in N5 o U {o0}).

e For any Coxeter system (W, S) there is a natural simplicial complex ¥ on
the maximal simplices of which W acts simply transitively: X is called the
Cozeter complex of (W, S).

Example 1.1. Let us go the other way round and start with a Euclidean or
hyperbolic polytope whose dihedral angles are integral submultiples of 7. Then,
by a theorem of Poincaré’s [53, IV.H.11], the group W generated by the reflections
in the codimension 1 faces of the fundamental tile, is a discrete subgroup of the
full isometry group of the ambient space. In fact, W is a Coxeter group and the
tiling is a useful geometric realization of its Coxeter complex 3.
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The reason why we introduced Coxeter complexes is that they are so to speak
generalized tilings on which the distinguished slices of a building are modeled. We
freely use the previous notation W and 3.

Definition 1.2. A building of type (W, S) is a cellular complex, covered by sub-
complexes all isomorphic to 3, called the apartments, such that:

(i) any two cells, called the facets, are contained in a suitable apartment;

(ii) given any two apartments A and A’, there is a cellular isomorphism A ~ A’
fixing AN A’.

The group W is called the Weyl group of the building. When W is a Euclidean
reflection group [13, V §3], one says that the building is affine or, equivalently
here, Fuclidean.

Example 1.3. A tree all of whose vertices have valency > 2 (resp. a product of
such trees) is a building with W equal to the infinite dihedral group D, (resp.
with W equal to0 Dy X Do)

The above examples of trees are elementary, but they are the only ones with
infinite Weyl group which can be reasonably drawn. They are elementary exam-
ples but it is enough to consider them in order to see one difficulty in producing
interesting group-theoretic situations from buildings. Indeed, take a tree T in
which any two distinct vertices have distinct valencies. Then Aut(7) = {1}, which
shows that one has to make further assumptions on a building in order to obtain
sufficiently transitive group actions.

Let us finish with some motivation of metric nature for the axioms. Assume that
the Coxeter complex ¥ of the Weyl group W admits an interesting W-invariant
distance. This implies that each apartment carries a good metric structure, and one
would like to show that this metric can be seen as being induced from a metric on
the building itself. The first axiom precisely says that for any two arbitrary points
in the building a distance can be computed (by choosing an apartment containing
them) and the second axiom (up to some work to define suitable retractions onto
apartments) can be used to show that the distance computed this way doesn’t
actually depend on the choice of the apartment containing the points. We will
see in 1.3 that this fits very well with nice non-positive curvature properties for
Coxeter complexes associated with infinite Weyl groups.

1.2. Spherical and Euclidean buildings. A building with a finite Weyl
group is called spherical: this is because in that case the apartments are spherical
tilings. The two families of affine and spherical buildings are very classical because
they are closely related to the theory of algebraic groups.

First of all, it is well-known that if one starts with a reductive algebraic group,
say G, over an arbitrary ground field, say k, then up to some isotropy condition
on G with respect to k (namely, the existence of a non-central k-split torus) the
group of rational points G(k) admits a remarkable combinatorial structure called
a Tits system (or also a BN-pair) [13, IV §2]. This is the main result of Borel-Tits’
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theory [10] and it can be reformulated as the fact that there exists a well-defined
spherical building on which G(k) acts strongly transitively, i.e. transitively on the
inclusions of a chamber (i.e. a maximal facet) in an apartment.

Now, if the field k£ is endowed with a non-archimedean absolute value, under
the above isotropy assumption (and further hypotheses on &k when it is not lo-
cally compact), a similar statement says that there exists a well-defined Euclidean
building on which G(k) acts strongly transitively. This is one of the main results
of Bruhat-Tits’ theory but it doesn’t exhaust the whole theory of reductive groups
over valued fields [76] since one of the main tools (and objects of study at the same
time) is given by forms of the group G over the valuation ring k° of k: see [19] for
the building-theoretic part and [20] for the group scheme part of this deep theory.

In the spherical case, the theory of buildings may appear as a reformulation of
some results proved by algebraic group-theoretic means. This is true for the state-
ment formulated before, but quite not completely in the sense that the possibility
to see the spherical building of a semisimple Lie group as the boundary at infinity
of the associated symmetric space is a key step to prove Mostow’s strong rigidity
in differential geometry [55].

Moreover the structure of a Tits system with a finite Weyl group provides
a uniform way to prove the projective simplicity of rational points of (suitable)
simple isotropic algebraic groups, and reappeared recently in the theory of pseudo-
reductive groups. The latter groups are algebraic groups whose study was initiated
by J. Tits [81] and thoroughly made by B. Conrad, O. Gabber and G. Prasad [34]; a
better understanding of these groups led to great progress in the theory of arbitrary
algebraic groups in positive characteristic, with applications in number theory.

The theory of Euclidean buildings has a non-simplicial generalization which
was already considered in Bruhat-Tits’ work (it corresponds to the case when the
valuation of the ground field k is not discrete). For geometric purposes, it was
extended by B. Kleiner and B. Leeb in order to prove a strengthening of strong
rigidity [48] stated by M. Gromov and called the rigidity of quasi-isometries. The
non-simplicial buildings here are higher-dimensional analogues of real trees. In
Thurston’s approach to Teichmiiller theory, the latter trees appear as degenerations
(technically speaking: asymptotic cones) of hyperbolic spaces; therefore it is quite
natural to see group actions on these (so to speak, branching everywhere) Euclidean
buildings appear at the boundary of some compactifications of representations
spaces [57]. We will see in 2.2 that these buildings also appear naturally when
combining Bruhat-Tits’ theory and V. Berkovich’s approach to non-archimedean
analytic geometry.

The classification of spherical buildings, initially formulated in J. Tits’ lecture
notes [74], has been simplified and extended by J. Tits and R. Weiss in the book
[82]. The classification of Euclidean buildings was done by J. Tits too [77]; as for
Mostow rigidity, the proof is based on the fact that the boundary at infinity of an
affine building is a spherical building. This classification was then completed by
R. Weiss in the book [83]. Loosely speaking, in higher rank a spherical or a Eu-
clidean building is related to some (possibly twisted, or even suitably generalized)
algebraic group.
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1.3. Some more buildings. During the last decades, some buildings of
non-classical type (i.e. neither of spherical nor of Euclidean type) have become
more and more interesting to study from various perspectives. For instance, the
possibility to construct buildings in which the apartments are isomorphic to tilings
in real hyperbolic spaces was the opportunity to obtain interesting contractible
spaces of negative curvature for geometric group theory. These spaces led to im-
portant instances of Mostow rigidity [14] and quasi-isometric rigidity [15] in the
setting of singular spaces.

Let us consider now the natural question of classifying buildings. As men-
tioned in 1.2, the classification of classical buildings is achieved in higher rank.
Up to using the notion of a boundary at infinity [16, §IL.8], it eventually amounts
to classifying the spherical ones. In the classification of the latter buildings there
are two key ingredients, namely the longest element in the (finite) Weyl group
and a property, called the Moufang property, ensuring that the building has suffi-
ciently many automorphisms [1, §7]. One important step consists in proving that
a spherical building of rank > 3 automatically enjoys the Moufang property.

When dealing with buildings with infinite Weyl group, say W, the Moufang
property often has to be taken as a hypothesis, and of course the existence of
a longest element in W completely fails. In the attempt to classify non-affine
buildings with infinite Weyl group, J. Tits had the idea to propose the hypothesis,
as a substitute for the longest element in W, that the buildings under consideration
admit a second twin building related to the previous one by a suitable opposition
relation between the chambers [80]. The most important examples of Moufang
twin buildings are provided by Kac-Moody groups as presented in 3.1, but there
are other examples [2].

From the point of view of geometric group theory, an important reason why
buildings sometimes play an interesting role as test spaces is probably the following
result, due to G. Moussong and M. Davis [35].

Theorem 1.4. Any building X admits a distance for which X is a complete,
geodesic, CAT(0)-space.

The CAT(0)-property is an important non-positive curvature property: roughly
speaking, assuming that the space is geodesic (i.e. that any two points are always
connected by a geodesic segment), it says that geodesic triangles are at least as
thin as in the Euclidean plane; a CAT(0)-space is automatically contractible. This
property is fundamental in the sense that it is formulated in an elementary way
but it has very deep consequences [16, Part II]. For instance, it implies that an
isometric group action with a bounded orbit (e.g. because the group is compact)
has a fixed point: it is a generalization of the so-called Bruhat-Tits fixed point
lemma. This result was initially used for Galois actions in a context of descent of
the ground field for algebraic groups, but it has today a much broader spectrum
of applications.

In view of 1.2, it is natural to see buildings with infinite Weyl groups as gener-
alizations of Riemannian symmetric spaces. More generally, this can be done for
all CAT(0)-spaces, but it follows from remarkable papers by P.-E. Caprace and
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N. Monod that buildings (together with symmetric spaces) often play a prominent
role in a metric space situation that might seem more general at first glance (see
[27] for structure theory and [26] for discrete group actions). The main properties
of semisimple Lie groups and of their discrete subgroups become therefore challeng-
ing questions for more general, sufficiently large, isometry groups of non-classical
buildings with infinite Weyl groups. Among these questions, we have of course
the problem of simplicity of isometry groups and the problem of rigidity of their
natural actions (loosely speaking, a group action on a metric space is said to be
rigid if there is no non-degenerate action of the group on reasonably different metric
spaces). An additional question is, in some sense, a more basic one which detects
to what extent the situation under consideration is new: it consists in deciding
whether the isometry group of a metric space (or some subgroup of it) is linear
or not, i.e. is a matrix group for some suitable dimension and field. There exist
very useful sufficient conditions for linearity concerning groups acting on CAT(0)
cell complexes [44], and some simplicity results for automorphism groups of exotic
buildings [43]. In Section 3, the three questions of linearity, rigidity and simplicity
are discussed for groups acting on Kac-Moody buildings.

2. Classical buildings

Let us go back to classical buildings for a while, and more precisely to Euclidean
ones. The latter spaces are often presented as non-archimedean analogues of Rie-
mannian symmetric spaces of the non-compact type associated to real semisimple
Lie groups (of positive rank). This leads to natural questions, usually more precise
than the questions mentioned in 1.3 (where the analogy is looser since it compares
symmetric spaces and arbitrary buildings with infinite Weyl groups). This section
discusses compactifications of Bruhat-Tits buildings and cohomology of arithmetic
groups in positive characteristic. The first point will be the opportunity to men-
tion a new approach to Bruhat-Tits’ theory that uses non-archimedean analytic
geometry in the sense of V. Berkovich.

2.1. Group-theoretic compactifications. There are many reasons to
wish to compactify equivariantly symmetric spaces and Bruhat-Tits buildings as-
sociated to semisimple groups. Some of them are related to the computation of
the cohomology of discrete subgroups of Lie groups, some other reasons are related
to random walks on Lie groups and related geometries. We refer to the books [41]
and [8] for more details and discuss here a partial compactification procedure that
has the advantage to be generalized to arbitrary buildings.

The starting point of this procedure is the (maybe surprising at first glance)
fact that for any locally group H, the set .#p of closed subgroups in H has a
natural topology which is compact [12, §5]: it is called the Chabauty topology
(hint: identify closed subgroups with homothety classes of measures on the ambient
group satisfying suitable invariance properties for the action of their support). The
idea to use this fact in order to compactify Riemannian symmetric spaces (with
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underlying real Lie groups) is due to Y. Guivarc’h. It was generalized to the case
of Bruhat-Tits buildings (with underlying non-archimedean Lie groups) in [42].

Let k be a locally compact local field, archimedean or not to begin with, and
let G be a (simply connected) semisimple algebraic group over k. We let X be
the symmetric space associated to G(k) in the case when k is archimedean, or the
Bruhat-Tits building of G(k) if k is totally disconnected (1.2). In the first case,
we have X = G(k)/K where K is a maximal compact subgroup; in the second
case, the G(k)-action on X admits any chamber as fundamental domain and the
vertices in the closure of a given chamber parametrize the conjugacy classes of
maximal compact subgroups (this follows from the Bruhat-Tits fixed point lemma
of 1.3). It is a classical fact that the root system of a semisimple Lie group can be
seen as a finite set of half-spaces in any maximal flat subspace A of X: see [4] in
the real case; it is so by construction in the non-archimedean case, where A turns
out to be an apartment [76]. Up to making a better choice in the second case, a
maximal compact subgroup K in G(k) always admits a fundamental domain given
by a closed Weyl chamber in A, whose codimension 1 faces are called here sector
panels; this is the geometric version of the Cartan decomposition of G(k).

Now we restrict our attention to the case when k is non-archimedean and
let {vy,}n>1 be a sequence of vertices in some closed Weyl chamber, say 2. By
passing to stabilizers in G(k) we obtain a sequence of maximal compact subgroups
{K,, }n>1. If we further assume that for each sector panel II of 2, the distance
dx (vn,II) has a (possibly infinite) limit as n — 400, then {K,, },>1 converges in
ZG(k)- The limit group D is Zariski dense in some parabolic k-subgroup @ fixing
a face of the chamber 0,,2 in the spherical building at infinity of X. Moreover
D can be written as a semi-direct product K x %, (Q)(k), where K is an explicit
maximal compact subgroup of some reductive Levi factor of @ and Z,(Q) is the
unipotent radical of ). This convergence, proved by measure-theoretic means in
the vein of ideas due to H. Furstenberg, is true in the archimedean case with
vertices replaced by arbitrary points. It is the key fact to define a compact space
V% with a natural G(k)-action in any of the two cases.

Definition 2.1. The group-theoretic compactification of X is the closure of the
set of maximal compact subgroups in #(x). In other words, it is the closure of
the image of the G(k)-equivariant map = — Stabg(y)(7) from X to #5(x), which
has to be restricted to the set Vx of vertices in X when X is a building (i.e., when
k is ultrametric).

The next step then is to understand the geometry of Vip in Lie-theoretic terms.
It turns out that, as in [72] for symmetric spaces, the group-theoretic compacti-
fication of the Bruhat-Tits building of the maximal semisimple quotient of each
parabolic k-subgroup of G appears in the boundary [42, Theorem 16].

Theorem 2.2. For any proper parabolic k-subgroup @ with radical Z(Q), the
group-theoretic compactification of the Bruhat-Tits building of Q/%(Q) lies in the
boundary of V%f. We let P be a minimal parabolic k-subgroup of G and we set
Dg = K X %, (P)r, where K is the mazimal compact subgroup of some reductive
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Levi factor of P. Then the conjugacy class of Dy is G(k)-equivariantly homeo-
morphic to the maximal Furstenberg boundary .7 of G(k), and it is the only closed
G(k)-orbit in V%f. In fact, for any closed subgroup D eV%f there is a sequence
{gn}tnz1 in G(k) such that nBIEoo gnDg, ! exists and belongs to .F .

We have thus a description of a compactification of the set vertices of a Bruhat-
Tits building which looks like the description of the compactification of a moduli
space, together with some basic statements on the dynamics of the group action
on the boundary (the theory of Furstenberg boundaries is presented for instance
in [51]).

Before explaining in 2.2 what can be done to compactify the full building X
instead of Vx, let us finish by saying that V%f can be used to give a geometric
classification (up to finite index) of remarkable closed subgroups in G(k): the
boundary of V%& seen as a subset of S (1, as well as the family of the normalizers
of the groups in this boundary, can be characterized by means of dynamical notions
(distality and amenability).

Remark 2.3. The results mentioned here are contained in [42] but many of them
were generalized since then to arbitrary locally finite buildings by P.-E. Caprace
and J. Lécureux [25]. Moreover J. Lécureux proved that the group action on the
boundary is amenable, leading to positive answers to the Baum-Connes conjecture
for interesting classes of groups [50].

2.2. Compactifications using analytic geometry. This subsection
presents joint work with A. Thuillier and A. Werner.

There are two main problems with the compactification procedure described in
2.1. The first one is that V%f is only a compactification of the set of vertices in
X. The second one is the fact that, if one has in mind the compactifications of
symmetric spaces as defined by I. Satake [72] or by H. Furstenberg [40], the outcome
should be a finite family of compact spaces. The group-theoretic compactification
corresponds to the maximal Satake-Furstenberg one. The main idea in the papers
[69] and [70], which allows one to overcome these two difficulties, is to combine
Bruhat-Tits’ theory of semisimple groups over valued fields and Berkovich’s theory
of analytic spaces over complete non-archimedean fields.

Berkovich geometry [6] is a version of analytic geometry over complete non-
archimedean valued fields in which the spaces have nice local connectivity proper-
ties. This is surprising because local fields have a totally disconnected topology, but
this good local behaviour is due to the fact that many points (of analytic nature)
are added to the points given by algebraic considerations. In algebraic geometry
the building blocks are algebraic spectra Spec(A) consisting of prime ideals of com-
mutative rings A endowed with the Zariski topology, while in Berkovich geometry
they are analytic spectra .#(A) of Banach k-algebras, consisting of multiplica-
tive bounded seminorms A — R. More precisely, let A be a Banach ring i.e.,
a commutative unit ring endowed with a Banach norm || - || 4 that is submulti-
plicative. The analytic spectrum of A is the set .#(A) of multiplicative seminorms
A — R whose restrictions to A are bounded with respect to || - || 4; this space is
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endowed with the coarsest topology making the evaluation maps x — z(f) contin-
uous (f € A) and we henceforth use the notation | f(x)| for z(f). At last, to each
variety V over k is attached a Berkovich analytic space over k, which is denoted
by V2. Loosely speaking, the good local connectivity properties of Berkovich an-
alytic spaces come from the fact that the class of maps = — f(x) is replaced by
the wider class of maps = | f(x)|. Recall that Spec(A) is in one-to-one corre-
spondence with the set of equivalence classes of ring homomorphisms from A to an
arbitrary field, where two maps are identified if they factorize through a common
third map, and note that an algebraic map x — f(z) can be composed with many
absolute values coming from huge extensions of k.

If we go back to the compactification problem, we shall merely say that a crucial
property is the fact that the attachment V — V?" is functorial and satisfies:

(i) if V is affine with coordinate ring k[V], then V2" consists of all the multi-
plicative seminorms k[V] — R extending the absolute value of k;

(ii) if V is projective, then V?" is compact.

Another key ingredient is a partially functorial behavior of the Bruhat-Tits
building with respect to field extensions [66] combined with the possibility to work
with any complete extension of k. In some sense, this implies the possibility to
see any point (possibly in the relative interior of a cell) in X as a good vertex
in the huger Bruhat-Tits building of G over some non-archimedean extension of
k. By adapting faithfully flat descent in this context, one obtains the possibility
to attach to each point x € X a Berkovich analytic subgroup G, (defined over
k as an analytic space), and the assignment x — G, is injective (in particular it
takes distinct values for any two distinct points, even if they lie in the same cell).
Finally, the following result [69, 2.1] is the main step to obtain an analytic filling
of the group-theoretic compactification V%? of 2.1.

Theorem 2.4. Let X be the building associated to a simply connected semisimple
algebraic group G over a local field k.

(i) For any x € X, there is an analytic subgroup G, of G* defined over k such
that for any non-archimedean extension K /k, we have: G, (K) = Stabg k(7).

(ii) For any x € X, there is a unique point 9(x) € G** such that:
Gy ={9 € G :|f(g)| <[ f(I(2))| for any f € k[G]}.

(iii) The resulting map x — 9(x) is a G(k)-equivariant embedding of X into G*
with closed image.

This result gives a map X — G®" and then, in order to obtain equivariant
compactifications of X, it suffices to compose it with analytifications of algebraic
maps from G to proper varieties (e.g., the maps to flag varieties G — G/P where
P is a parabolic k-subgroup of G). The desired compactifications are the closures
of X under these maps. When P varies over all the conjugacy classes of parabolic
k-subgroups of GG, one obtains all the expected analogues of the Satake-Furstenberg
compactifications.
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Remark 2.5. Together with the asymptotic cones [16, 1.5] of symmetric spaces
and Euclidean buildings alluded to in 1.3, the Bruhat-Tits buildings of G over
non-archimedean extensions of & with dense valuations are other examples of non-
simplicial Euclidean buildings that appear naturally.

The paper [69] also contains a Lie-theoretic description of the boundary struc-
ture of these compactifications and some extensions, from Bruhat-Tits’ theory,
of useful decompositions of the rational points G(k). The paper [70] describes a
variant of this compactification procedure which uses highest-weight theory and is
closer in spirit to I. Satake’s original ideas.

Remark 2.6. When G is split over k, the idea to combine Bruhat-Tits’ theory
and Berkovich geometry can be found already in [5, §5].

2.3. Cohomological and related questions. Non-compact Rieman-
nian symmetric spaces and Bruhat-Tits buildings are contractible spaces acted
upon properly by the Lie groups they are associated with. These actions are
therefore very useful to compute or estimate the cohomology of discrete subgroups
of reductive Lie groups. Using this action and suitable compactifications, A. Borel
and J.-P. Serre proved, among other things, that arithmetic and even S-arithmetic
groups in characteristic 0 are of type Fi, [9]. Recall that a group T is said to be of
type F,, if it admits a free action on a contractible CW-complex whose m-skeleton
has finitely many I'-orbits; it is said to be of type F if it is of type F,, for any n.
These conditions are related to other more algebraic finiteness properties stated
in terms of resolutions [18, VIII]. The finiteness length of T is the largest m such
that I is of type Fi,, i.e. admits a classifying space with finite m-skeleton.

In the case when the global ground field leading to the arithmetic groups under
consideration is not of characteristic 0, things get much more complicated for coho-
mology. For instance in characteristic p > 0, finite generation is not always true for
arithmetic groups, and finitely generated lattices needn’t be virtually torsion-free
either. Still, combined efforts by K.-U. Bux, R. Kohl, S. Witzel and K. Wortman
led to the following result.

Theorem 2.7. Let K be a global function field, let S be a finite set of places of
K and let Og be the ring of S-integers in K. Let G be a connected, absolutely
almost simple, K-isotropic K-group. For each v € S let r, be the rank of G
over the completion K, of K with respect to v. Then the finiteness length of the
S-arithmetic group G(Os) is equal to (3, cq7v) — 1.

It was proved in [24] that (), g7») — 1 is an upper bound for the finiteness
length of G(€s) and equality was proved in [23]. The nice feature of many results in
this vein is the mixture of classical techniques such as reduction theory in positive
characteristic [45], K. Brown’s criterion from algebraic topology [17] and the use
of recent tools from geometric group theory such as singular Morse theory [7].

Note that, so far in this report, the fact that for a simple group G, the Bruhat-
Tits building is a simplicial complex, has not been exploited yet (in general a
Bruhat-Tits building is a polysimplicial complex). Examples of works where this
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geometric fact is used are given by the papers [59] and [60] which provide a key step
towards an almost complete answer to the congruence subgroup problem. We will
see in 3.3 that this can also be used to develop a singular version of Hodge theory
in order to obtain some vanishing results for the cohomology of automorphism
groups of exotic buildings.

Remark 2.8. In this section, most applications of Bruhat-Tits’ theory that are
presented (except [59] and [60]) mainly deal with the building-theoretic aspect of
it and not with the delicate theory of forms of reductive algebraic groups over the
valuation ring of the valued ground field. The volume formula proved by G. Prasad
[58], which eventually leads to the classification of fake projective planes [61], is
an example of a result that needs, among other things, Bruhat-Tits’ theory at the
latter level of subtlety.

3. Kac-Moody theory and exotic buildings

In this section, we are interested in families of non-classical buildings admitting
sufficiently large groups of automorphisms, and being therefore good candidates
for the comparison with symmetric spaces and Bruhat-Tits buildings associated to
semisimple Lie groups. The main source of such buildings comes from an algebraic
machinery which was not a priori designed for these purposes, namely Kac-Moody
theory. We explain here why the analogy is indeed fruitful. In fact, Kac-Moody
groups provide a good balance between persistence of classical results from the
theory of arithmetic groups and appearance of new phenomena. This is true in
the framework of discrete groups, as well as in that of non-discrete locally compact
groups. Moreover it is likely that this theory is also the source of many interesting
profinite groups. As mentioned before, the three main questions organizing the
study of Kac-Moody groups are those about linearity, rigidity and simplicity (but
they are not the only ones).

3.1. Kac-Moody theory. Roughly speaking, Kac-Moody Lie algebras are
infinite-dimensional generalizations of complex semisimple Lie algebras [47] and
Kac-Moody groups integrate these Lie algebras over Z, thus providing infinite-
dimensional generalizations of Chevalley schemes [36]. Our goal in this section is
to introduce the two versions of Kac-Moody groups, namely the minimal (possibly
twisted) Kac-Moody groups and the complete ones; they are both presented and
compared in J. Tits’ Bourbaki talk [79].

Combinatorial Kac-Moody objects. The starting point to define all these
objects is a generalized Cartan matriz; i.e. an integral matrix A = [As¢]stes
satisfying: Ass = 2, As+ < 0 when s # tand A;: = 0 & A, = 0. It is
more accurate to start with a Kac-Moody root datum, namely a 5-tuple D =
(S, A A, (¢cs)sess (hs)ses), where A is a generalized Cartan matrix indexed by a
finite set S and where A is a free Z-module (with Z-dual AY); the elements ¢, of A
and hg of AV are requested to satisfy cs(hy) = Ay, for all s,¢ € S. One defines then a
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complex Lie algebra gp by a presentation generalizing Serre’s presentation of finite-
dimensional semisimple Lie algebras, involving (hs)ses and the usual generators
(es)ses, (fs)ses so that in particular Ces @ Chy @ Cfs =~ sl (C).

Using the free abelian group Q = P, g Za,s on the symbols ay, one defines
a @-gradation on gp in which the degrees with non-trivial corresponding spaces
belong to QT U Q~, where QT = Y _¢Na, and Q= = —QT. The latter non-
zero degrees are called roots and if (cs)ses is free over Z, they have the usual
interpretation in terms of weight spaces. The height of a root a = ¢ nsas
is the integer ht(a) = > . ¢ns. There is a natural action on the lattice @ by a
Coxeter group W generated by involutions denoted again by s € S; it is defined
by setting s.a; = a; — Astas. A root is called real if it is in the W-orbit of a simple
root, i.e. some ag; otherwise, it is said to be imaginary. The set of roots (resp.
real roots, imaginary roots) is denoted by A (resp. Aye, Aip).

Minimal Kac-Moody groups. Using the divided powers %e? and % 2 of the
canonical generators e; and fs and of their Weyl group conjugates, J. Tits defined
a certain Z-form Up of the universal enveloping algebra Ugp. The ring Up has a
filtration indexed by @Q; some subrings as well as their completions with respect to
some subsemigroups of @) are used to construct Kac-Moody groups. For the adjoint
action on Ugp, the real root spaces have a locally nilpotent action which can be
exponentiated to produce 1-parameter unipotent subgroups in the automorphism
group of the Z-form Up for suitable restrictions of parameters and elements in gp.
By and large, the minimal Kac-Moody group functor &p is an amalgamation of a
split torus with character group A and of a quotient of the subgroup generated by
these 1-parameter subgroups [78]. To each real root v € A, is attached a subgroup
functor ., which is isomorphic to the 1-dimensional additive group functor, but
there is no subgroup associated to imaginary roots in minimal Kac-Moody groups.
Non-split versions of minimal Kac-Moody groups can also constructed [63].

Example 3.1. The functor which sends a field k to the group SL,,.1(k[t,t71]) is
a minimal Kac-Moody group functor of affine type A,.

Complete Kac-Moody groups. More generally, minimal Kac-Moody groups
generalize groups of the form G(k[t,t71]) where k is a field and G is a k-isotropic
semisimple group. Accordingly, complete Kac-Moody groups generalize groups
like G(k((t))). We present here a construction due to G. Rousseau [67] which
provides group functors defined over Z; the functors have a structure of ind-scheme
generalizing constructions due to O. Mathieu [54] or Sh. Kumar [49] over the
complex numbers.

For suitable affine group schemes over fields in characteristic 0, the algebra of
invariant distributions [37, IT §4 n°6] can be identified with the universal enveloping
algebra of the Lie algebra of the group. Moreover Z-forms of this algebra can be
used to define, by duality, Z-forms of the rings of regular functions: this eventually
leads to group schemes over Z extending the initial groups over C. For a Kac-
Moody root datum D, G. Rousseau associates to any closed set of roots V¥, a
pro-unipotent group scheme UJ* defined over Z [67, 3.1]. With this approach,
imaginary roots do lead to root groups (which seems to be a promising property
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for this version of Kac-Moody groups) and all the groups U3 have a filtration
described thanks to the root system. At last, if k is a finite field of characteristic
p, the groups Uy?(k) are pro-p.

Remark 3.2. L. Carbone and H. Garland also defined a representation theoretic
completion QﬁCDg)‘(k) of Bp(k) for each dominant weight A [33].

Connection with building theory. We can now go back to the main sub-
ject matter of this report, i.e. building theory. One crucial fact about minimal
Kac-Moody groups is that any such group &p(k) over some field k enjoys a com-
binatorial structure refining that of a Tits system [13, IV §2], and called a twin
BN-pair. As a consequence, there is a pair X4 of twin buildings as mentioned in
1.3 such that &p(k) acts strongly transitively on each of them. The apartments
are explicitly described thanks to the Weyl group W of D and the buildings X
are locally finite if and only if the ground field k is finite (if so, the full isometry
groups Iso(X 1) are then locally compact for the compact open topology). Sim-
ilarly, the complete group Qﬁg”(k) has a natural strongly transitive action on a
single building which is closely related to the twin buildings X4 [67, Corollaire
3.18]. In the latter case, a chamber stabilizer is isomorphic to the semi-direct
product of a finite-dimensional split torus and of the pro-unipotent group scheme
ma associated to ¥ = AT (where AT is the set of all positive roots).

Remark 3.3. When £ is finite, there is another more elementary completion
SE " (k) obtained by taking the closure of the image of &p(k) in the isometry
group Iso(X1) [68, 1.B].

3.2. Non-linearity, simplicity and rigidity. This subsection presents
joint work with P.-E. Caprace.

We can now consider our three main questions: non-linearity, simplicity and
rigidity, when dealing with minimal Kac-Moody groups over finite fields. The point
is that these groups are, by definition, finitely generated groups which generalize
arithmetic groups in positive characteristic like SLy,1(F,[t,¢!]). Therefore the
general theme is to try to answer the following question.

(x) To what extent is a finitely generated Kac-Moody group close to a discrete
subgroup in a non-archimedean semisimple Lie group?

In what follows, A denotes a minimal Kac-Moody group &p(F,) over some finite
field of characteristic p.

Lattice property. The first result supporting the analogy of (x) was proved
independently in [32] and [62].

Theorem 3.4. Assume that the Weyl group W of A is infinite and denote by
W(t) =3 ew t'™) its growth series. If W(%) < 00, then the group A is a lattice
of X4 x X_; it is never cocompact.

The statement means that the homogeneous space (Isom(X;) x Isom(X_))/A
carries an invariant measure of finite total volume. The proof relies on a simple
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measure-theoretic formula and an explicit description of a fundamental domain
for the diagonal A-action of X x X_. The fundamental domain is given by the
product of a chamber and of a suitably chosen apartment of opposite sign. This
can be seen by combinatorial arguments relevant to Tits systems (it is an analogue
of the geometric interpretation of the Cartan decomposition mentioned in 2.1).

Normal subgroup property. The previous theorem suggests to try to prove the
main results of the theory of discrete subgroups of Lie groups in the case of finitely
generated Kac-Moody groups. A particularly well adapted part of this theory is
G. Margulis’ work on lattices in Lie groups [51] because many proofs there rely
on measure-theoretic techniques (which can be more easily adapted to non-linear
groups than arguments from pure algebraic group theory). One striking result in
this field is a strong dichotomy called the normal subgroup property for higher-
rank lattices. More precisely, one says that a group I' has the normal subgroup
property if for any N < T either N is finite and central in I', or N has finite index
in I'. Here is the result for Kac-Moody groups.

Theorem 3.5. If the finitely generated Kac-Moody group A is a lattice of Xy x X _,
then it has the normal subgroup property.

The proof is mainly a consequence of deep results due to Y. Shalom [73] and to
U. Bader and Y. Shalom [3]. The idea is to follow Margulis’ strategy: to sum up,
we can assume that we are in a situation where N <A < Isom(X_) x Isom(X ) for
a center-free A; hence we have to prove that A/N is finite, i.e. is compact for the
discrete topology! This apparently naive remark is a crucial trick because being
compact here is equivalent to being amenable and having Kazhdan’s property
(T). Then the idea is to use a criterion due to Y. Shalom (resp. U. Bader and
Y. Shalom) which says that in order to prove property (T) (resp. amenability)
for the discrete quotient group A/N, it is enough to check it on the topological
quotients pry (A)/pry (N), where pry is the natural projection from Isom(X_) x
Isom(X ;) to Isom(X4 ). Checking the latter points is easier because the involved
topological groups have more structure: indeed, pry (A) acts strongly transitively
on the building X since so does A. In fact, using Tits system arguments, one can
see that the each topological quotient pr (A)/pry(N) is compact. The paper [73]
considers cocompact irreducible lattices in direct products, but the cocompactness
assumption can relaxed to a weaker integrability condition involving an induction
cocycle, which is checked in [65] thanks to combinatorial arguments.

Simplicity. The general strategy to prove simplicity of suitable (i.e. non-affine,
irreducible) Kac-Moody lattices owes a lot to M. Burger and Sh. Mozes’ seminal
works [21] and [22]. Among other things, these papers prove the existence of finitely
presented torsion free simple groups; these groups are constructed as lattices acting
on products of two trees with a compact fundamental domain (in fact, the groups
can be chosen to act transitively on the vertices of the square complex). The
general idea is first to see the discrete groups under consideration as analogues of
lattices in Lie groups in order to rule out infinite quotients, and then to exploit
decisive differences with linear groups in order to rule out finite quotients too.
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The first step, exploiting the analogy with lattices in Lie groups, is of course
what was mentioned before in the Kac-Moody case. The point is to obtain the
normal subgroup property without relying on any algebraic group structure on the
ambient topological group. This structure is replaced by the fact that the latter
topological group is the direct product of isometry groups of trees or buildings.
The second step, where one has to stand by non-linear phenomena, is so far spe-
cific to each of the two situations: uniform lattices in products of trees in [22], or
non-uniform lattices for products of (usually higher-dimensional) buildings in the
Kac-Moody case. In the case of products of trees, this step relies on the possibility
of obtaining some non-residual finiteness criteria involving transitivity conditions
on the local actions (around each vertex) for the projection of the lattice on each
of the two trees; this part was eventually improved by the possibility to embed ex-
plicitly well-known non-residually finite groups into suitable cocompact lattices of
products of trees. In the Kac-Moody case, the arguments are relevant to Coxeter
groups. This is where non-affineness of the Weyl group has to be exploited cru-
cially: a strengthening of Tits’ alternative for Coxeter groups implies that Coxeter
complexes ¥ of non-affine Coxeter groups contain lots of hyperbolic triples of roots
(seen as half-spaces of ¥), i.e. with empty pairwise intersections. Combining this
with a trick on infinite root systems and some defining relations for Kac-Moody
groups leads to the following wide source of infinite finitely generated simple groups
29, §4).

Theorem 3.6. Let A be a Kac-Moody group defined over the finite field Fy. As-
sume that the Weyl group W is infinite and irreducible, and that W(%) < oo. Then
A is simple (modulo its finite center) whenever the buildings X+ are not Euclidean
and A is generated by its root subgroups.

Remark 3.7. The assumption on generation by root groups is mild since the initial
group A can be replaced by its finite index subgroup generated by the root groups,
but the assumption excluding affine Weyl groups is crucial: indeed, groups of the
form G(F,t, t~1]), where G is a semisimple group over F,, are affine Kac-Moody
groups and admit lots of (congruence) quotients.

Remark 3.8. Of course, the question of abstract simplicity for complete Kac-
Moody groups makes sense too. Topological simplicity can be proved easily in this
case by using Tits system arguments and the fact complete Kac-Moody groups
over F, are locally pro-p [64]. Using a beautiful mixture of dynamical and Lie-
theoretic arguments, T. Marquis proved the (much better) abstract simplicity of
the same groups [52].

Infinitely many quasi-isometry classes of simple groups. The wide choice
of buildings admitting simple lattices is a very useful fact in geometric group theory.
Recall that, after M. Gromov, it is natural to attach to each group I with finite
symmetric generating set S = S~! its Cayley graph, i.e. the graph in which the
vertices are the elements of I', which are declared to be adjacent if and only if they
differ from the right by an element of S. This is the starting point to see these
groups as metric spaces. One important notion in this context is that of quasi-
isometry between metric spaces, that is almost bi-Lipschitz equivalence except
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that additive constant are allowed. More precisely, two metric spaces (X, dx) and
(Y,dy) are said to be quasi-isometric to one another if there isamap f : X =Y
such that there exist C' > 1 and D > 0 satisfying for each z,z’ € X:

% “dx(z,2') = D <dy(f(z), f(2')) < C-dx(z,2") + D

and such that for any y € Y there exists x € X such that dy (y, f(z)) < D. The
first condition says that f is a quasi-isometric embedding and the second condition
is a coarse metric surjectivity assumption.

Now let G be a locally compact group admitting a finitely generated lattice I';
then G admits a compact generating subset, say ¥. We denote by ds the word
metric associated with 3 and we fix a finite generating set X for I, leading to an
associated word metric dy;. The lattice I is called undistorted in G if dx, is quasi-
isometric to the restriction of dg to I'. This amounts to saying that the inclusion of
I'in G is a quasi-isometric embedding from the metric space (T, dx) to the metric
space (G, dg).

It is proved in [30] that any Kac-Moody lattice A < Aut(Xy) x Aut(X_) is
undistorted, and the most important consequence of this statement in geometric
group theory is the following.

Theorem 3.9. There exist infinitely many pairwise non-quasi-isometric finitely
presented simple groups.

Note that since any two trees are bi-Lipschitz equivalent, all uniform lattices of
products of trees lie in the same quasi-isometry class.

3.3. Cohomological and related questions. It was mentioned in 2.3
that buildings, being simplicial complexes, are particularly well adapted to co-
homology computation. Techniques from Hodge theory can be pushed quite far
in this singular context [56]. Another approach, introduced by J. Dymara and
T. Januszkiewicz, uses representation theoretic techniques as stated in [11] in the

classical case, and leads to important results. The result below is a special case of
[38, Theorem EJ.

Theorem 3.10. Let A be a minimal Kac-Moody group over F,, defined by a
generalized Cartan matriz A of size n X n. Let m < n be an integer such that all
the principal submatrices of size m xm of A are Cartan matrices (i.e. are of finite
type). Then for 1 < k < m —1 and g >> 1, the continuous cohomology groups
HE, (Aut(Xi), p) vanish for any unitary representation p.

Degree 1 is of particular interest since HL (G, p) = {0} for any unitary represen-
tation p is equivalent to Kazhdan’s property (T) for G [46, Chap. 4]. When A is
2-spherical (i.e. when we have m > 2 above) Theorem 3.10 implies property (T)
for the full automorphism groups Aut(Xy) with ¢ >> 1, hence for their product,
and finally for any lattice in this product [51, III]. As a consequence, many Kac-
Moody lattices have property (T) and this can be used to prove a super-rigidity
result for isometric actions of higher-rank Kac-Moody groups on negatively curved
metric spaces [29, §7].
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Finite generation of maximal pro-p subgroups. Let us finish by mentioning
another potential source of original results in a new group-theoretic framework.
More precisely, if we now consider complete Kac-Moody groups as in 3.1 over finite
fields, then we obtain locally pro-p groups (whatever the completion procedure, in
fact). Moreover it follows from the Bruhat-Tits fixed point lemma that maximal
pro-p subgroups in a given complete Kac-Moody group over F, are all conjugate
to one another [64]; they are finite index subgroups of chamber stabilizers for their
natural action on the associated building.

Let &35**(F,) be the algebraic completion of the minimal Kac-Moody group
®p(F,). Let A be the generalized Cartan matrix of the Kac-Moody root da-
tum D defining the group functor &p. Let U™ be a pro-p Sylow subgroup of
&5 (F,). The following theorem [28, Theorem 2.2] shows that the maximal pro-p
subgroups in complete Kac-Moody groups over finite fields of characteristic p have
an interesting behavior, which still deserves deeper investigation.

Theorem 3.11. Assume that the characteristic p of ¥ is greater than the absolute
value of any off-diagonal coefficient of the generalized Cartan matriz A. Then
U™at s finitely generated as a pro-p group.

Remark 3.12. An argument initially due to L. Carbone, M. Ershov and G. Ritter
[31], combining a Frattini sugbroup argument and a Tits system argument, implies
the projective simplicity of complete Kac-Moody groups over finite fields for many
types A. It can be generalized to all types but still leads to a weaker result than
Marquis’s theorem [52] because of the assumption on the size of p with respect to
the coefficients of A.

The connection with cohomology is as follows: under the assumptions of the the-
orem, it can be proved that the following more precise statements hold.

(i) The Frattini subgroup ®(U™") of U™t is equal to the abstract derived
group [U™mat ymat]

ii) We have: ®(U™2%) = (U, : v non-simple positive real root).
v
(iii) We have also: Hy (Uma"", Z/pZ) ~ (Z/pZ)Size(A)'[Fqiz/PZ]_

The connection between the Frattini subgroup and homology is that we have
Hi(V,Z/pZ) = V/®(V) for any pro-p group V [71, Lemma 6.8.6]; moreover
dimg,,z Hi1(V,Z/pZ) is the minimal size of a topologically generating set for V.
The latter point suggests to compute higher homology groups for pro-p Sylow
subgroups of complete locally compact Kac-Moody groups. The next interesting
result would be to be able to decide under which conditions these groups are finitely
presentable as pro-p groups. This is related to Ho(U™", Z/pZ).

Of course the question of simplicity doesn’t make sense for pro-p groups, but
discussing linearity of these pro-p Sylow subgroups definitely makes sense. One
hope would be to disprove linearity for as many examples as possible. There are
only partial results in this direction so far [28, §4].
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Remark 3.13. By studying full pro-p completions of suitably chosen subgroups of
minimal Kac-Moody group over finite fields, M. Ershov could exhibit some exam-
ples of Golod-Shafarevich groups with property (T), which leads to the existence
of infinite torsion residually finite non-amenable groups [39].
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