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Abstract. The flat rank of a totally disconnected locally compact group G, denoted flat-rk(G),
is an invariant of the topological group structure of G. It is defined thanks to a natural distance
on the space of compact open subgroups of G. For a topological Kac–Moody group G with
Weyl group W , we derive the inequalities alg-rk(W ) 6 flat-rk(G) 6 rk(|W |0). Here, alg-rk(W )
is the maximal Z-rank of abelian subgroups of W , and rk(|W |0) is the maximal dimension of
isometrically embedded flats in the CAT(0)-realization |W |0. We can prove these inequalities
under weaker assumptions. We also show that for any integer n > 1 there is a simple, compactly
generated, locally compact, totally disconnected group G, with flat-rk(G) = n and which is
not linear.

Introduction

The general structure theory of locally compact groups is a well-established topic in
mathematics. One of its main achievements is the solution to Hilbert’s 5th Problem
on characterizing Lie groups. The general structure results [MZ66] are still used in
recent works. For instance, the No Small Subgroup Theorem [MZ66, 4.2] is used in
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Gromov’s characterization of finitely generated groups of polynomial growth [Gro81].
More recently, the theory was used in rigidity problems for discrete groups, in order to
attach suitable boundaries to quite general topological groups [BM02].

Simultaneous with these applications, recent years have seen substantial progress in
extending known results about connected, locally compact groups to arbitrary locally
compact groups. For example, in the theory of random walks on groups, it was shown
in [JRW96] that the concentration functions for an irreducible probability measure on
a noncompact group converge to 0, while [DSW06] contains the classification of ergodic
Zd-actions on a locally compact group by automorphisms.

This progress has been due to structure theorems for totally disconnected, locally
compact groups established in [Wil94], and further advanced in [Wil01] and [Wil04].

The study of particular classes of examples has played an important role in informing
further developments of the structure theory of totally disconnected, locally compact
groups, beginning with the study of the classes of p-adic Lie groups [Glö98], [GW01]
and automorphism groups of graphs [Möl02]. This paper starts the examination of the
topological invariants of totally disconnected groups which are closed automorphism
groups of buildings with sufficiently transitive actions.

Topological Kac–Moody groups form a subclass of the latter class of groups, which
is of particular interest to us. From a combinatorial viewpoint [RR06, 1.C] topological
Kac–Moody groups generalize semisimple algebraic groups and therefore should be ex-
pected to inherit some of the properties of linear groups. For instance, their Tits system
structure and the virtual pro-p-ness of their maximal compact subgroups are used to
prove their topological simplicity [Rém04, 2.A.1]; these properties are well known in the
algebraic case. On the other hand, it is known that some of these groups are nonlinear
[Rém04, 4.C.1] (in fact, it follows from the not yet published work [CR] that most of
these groups are nonlinear). This may imply that the topological invariants of topo-
logical Kac–Moody groups differ substantially from those of algebraic groups over local
fields in some important aspects. In this context we mention a challenging question,
which also motivates our interest in topological Kac–Moody groups, namely, whether a
classification of topologically simple, compactly generated, totally disconnected, locally
compact groups is a reasonable goal.

In this paper we focus on the most basic topological invariant of topological Kac–
Moody groups G, the flat rank of G, denoted flat-rk(G). This rank is defined using
the space B(G) of compact open subgroups of G. This space is endowed with a natural
distance: for V,W ∈ B(G), the numbers d(V,W ) = log

(
|V : V ∩W | · |W : V ∩W |

)
define

a discrete metric, for which conjugations in G are isometries. A subgroup O 6 G is
called tidy for an element g∈G if it minimizes the displacement function of g on B(G);
a subgroup H is called flat if all its elements have a common tidy subgroup. A flat
subgroup H has a natural abelian quotient, whose rank is called its flat rank. Finally,
the flat rank of G is the supremum of the flat ranks of the flat subgroups of G. For
details, we refer to Subsection 1.3. The two main results of the paper provide an upper
and lower bound for the flat rank of a sufficiently transitive automorphism group G of
a building of finite thickness.

A summary of the main results about the upper bound for flat-rk(G) is given by the
following statement. The assumptions made in this theorem are satisfied by topological
Kac–Moody groups (Subsection 1.2).
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Let us recall that the rank rk(X) of a CAT(0)-space X is the maximal dimension of
isometrically embedded flats in X .

Theorem A. Let (C, S) be a building of finite thickness with Weyl group W . Denote

by δ and by X the W -distance and the CAT(0)-realization of (C, S), respectively. Let G
be a closed subgroup of the group of automorphisms of (C, S). Assume that the G-action

is transitive on ordered pairs of chambers at a given δ-distance. Then the following

statements hold:

(i) The map ϕ : X → B(G), mapping a point to its stabilizer, is a quasi-isometric

embedding.

(ii) For any point x ∈X, the image of the orbit map g 7→ g.x, restricted to a flat

subgroup of flat rank n in G, is an n-dimensional quasi-flat of X.

(iii) We have flat-rk(G) 6 rk(X).

(iv) If X contains an n-dimensional flat, so does any of its apartments: in other

words, rk(X) = rk(|W |0).

As a consequence, we obtain flat-rk(G) 6 rk(|W |0), where rk(|W |0) is the maximal

dimension of flats in the CAT(0)-realization |W |0.

The strategy for the proof of Theorem A is as follows. The inequality flat-rk(G) 6

rk(|W |0) is obtained from the statements (i)–(iv), which are proven in the listed order
under weaker hypotheses. Statement (i) is part of Theorem 7 —usually called the
Comparison Theorem in this paper, (ii) is proved in Proposition 9 under (i) as an
assumption. Finally, (iii) is a formal consequence of (ii) using some results of Kleiner,
and (iv) is Proposition 14.

The main result about the lower bound for flat-rk(G) is the second half of Theorem 18,
which we reproduce here as Theorem B. The class of groups satisfying the assumptions of
Theorem B is contained in the class of groups satisfying the assumptions of Theorem A
and contains all topological Kac–Moody groups (Subsection 1.2).

Theorem B. Let G be a group with a locally finite twin root datum of associated Weyl

group W . We denote by G the geometric completion of G, i.e. the closure of the G-

action in the full automorphism group of the positive building of G. Let A be an abelian

subgroup of W . Then A lifts to a flat subgroup Ã of G such that flat-rk(Ã) = rankZ(A).
As a consequence, we obtain alg-rk(W ) 6 flat-rk(G), where alg-rk(W ) is the maximal

Z-rank of abelian subgroups of W .

The first half of Theorem 18 (not stated here) asserts that the flat rank of the rational
points of a semisimple group over a local field k coincides with the algebraic k-rank of
this group. This is enough to exhibit simple, compactly generated, locally compact,
totally disconnected groups of arbitrary flat rank d > 1, e.g. by taking the sequence(
PSLd+1(Qp)

)
d>1

. Theorem C (Theorem 26 in the text) enables us to exhibit a sequence

of nonlinear groups with the same properties.

Theorem C. For every integer n > 1 there is a nonlinear, topologically simple, com-

pactly generated, locally compact, totally disconnected group of flat rank n.

These examples are provided by Kac–Moody groups. The combinatorial data defining
them are obtained by gluing a hyperbolic Coxeter diagram arising from a nonlinear
Kac–Moody group, together with an affine diagram which ensures the existence of a
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sufficiently large abelian group in the resulting Weyl group. The proof relies on the
nonlinearity results of [Rém04]. In fact, up to using the not yet published papers
[CER] and [CR], we prove in the last section the following stronger statement: for

every integer n > 1 there is a nonlinear, abstractly simple, compactly generated, locally

compact, totally disconnected group of flat rank n.
Let us finish this introduction with a conjecture1. In Theorems A and B, the upper

and lower bound on flat-rk(G) depend only on the associated Weyl group W . We think
that the bounds are equal. If this is indeed so, then for every geometric completion G
of a finitely generated Kac–Moody group we have flat-rk(G) = alg-rk(W ) (where W
is the associated Weyl group), hence, thanks of Krammer [Kra94, Theorem 6.8.3], the
present paper computes flat-rk(G) (see also the paragraph following Definition 28).

Conjecture. Let W be a finitely generated Coxeter group. Then we have rk(|W |0) =
alg-rk(W ), where rk(|W |0) is the maximal dimension of flats in the CAT(0)-realization
of the Coxeter complex of W and alg-rk(W ) is the maximal rank of free abelian subgroups

of W .

The following, more general, conjecture seems to be the natural framework for ques-
tions of this kind: if a group G acts cocompactly on a proper CAT(0)-space X, then the

rank of X equals the maximal rank of an abelian subgroup of G. Some singular cases
[BB94], [BB96] of this generalization as well as the smooth analytic case [BBS85], [BS91],
have been proved. More recent contributions to this problem are due to Kapovich and
Kleiner [KK07] and to Wise [Wis05].

Organization of the paper. Section 1 is devoted to recalling basic facts on buildings
(chamber systems), on the combinatorial approach to Kac–Moody groups (twin root
data), and on the structure theory of totally disconnected locally compact groups (flat
rank). We prove the upper bound inequality in Section 2, and the lower bound inequality
in Section 3. In Section 4 we exhibit a family of nonlinear groups of any desired positive
flat rank.

Acknowledgements. We thank Pierre-Emmanuel Caprace for making us aware of
Daan Krammer’s work, as well as Werner Ballmann, Michael Davis, and Frédéric Hag-
lund for useful conversations about the above conjecture. We thank a referee for very
useful comments on a previous version of this paper.

1. Buildings and totally disconnected groups

1.1. Buildings and their automorphism groups

Buildings as chamber systems. In this paper a building is a chamber system, denoted
C throughout, together with a distance function with values in a Coxeter group. A
chamber system is a set C, called the set of chambers, together with a family S of
partitions of C, called the adjacency relations. Each element s of S defines an equivalence
relation which we will not distinguish from s; members of the same s-equivalence class
will be called s-adjacent. For each s in S the equivalence classes of s should be thought
of as the set of chambers sharing a fixed ‘face’ of ‘colour’ s.

1Which has been verified by Caprace and Haglund in [CH] while this paper was being
refereed.
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A finite sequence of chambers such that consecutive members are adjacent (that is,
contained in some adjacency relation) is called a gallery. A gallery is said to join its first
and last terms. A gallery is called nonstuttering if consecutive members are different.
For every nonstuttering gallery (c0, . . . , cn), any word s1 · · · sn in the free monoid S∗ on
S such that cj−1 and cj are sj-adjacent for all 1 6 j 6 n, is called a type of the gallery
(c0, . . . , cn) (a gallery does not necessarily have a unique type). A gallery having a type
contained in the submonoid of S∗ generated by a subset T of S is called a T -gallery. A
maximal subset of chambers which can be joined by a T -gallery is called a T -residue.
We say that a chamber system (C, S) has finite thickness if S and all {s}-residues for
s∈S are finite.

A morphism between two chamber systems over the same index set, S say, is a
map between the underlying sets of chambers that preserves s-adjacency for all s in
S. A permutation of the underlying set C of a chamber system (C, S) is said to be an
automorphism of (C, S) if it induces a permutation of S. The group of all automorphisms
of (C, S) will be denoted Aut(C, S). An automorphism of (C, S) is said to be type-

preserving if it induces the identity permutation of S. The group of all type-preserving
automorphisms of (C, S) will be denoted Aut0(C, S).

Each Coxeter system (W,S) gives rise to a chamber system: its set of chambers is W ,
and for s∈S, we say that w and w′ are s-adjacent if and only if w′ ∈ {w,ws}. A word f
in the free monoid on S is called reduced if it has minimal length among all such words
representing their product sf as an element of W . If (W,S) is a Coxeter system and
T is a subset of S, then the subgroup of W generated by T is called a special subgroup

and is denoted WT . A subset T of S is called spherical if WT is finite.
Let (W,S) be a Coxeter system. A building of type (W,S) is a chamber system C

with adjacency relations indexed by the elements of S, each consisting of sets containing
at least two elements. We also require the existence of a W -distance δ : C×C →W such
that whenever f is a reduced word on S, then for chambers x and y we have δ(x, y) = sf

if and only if there is a (nonstuttering) gallery of type f joining x to y. In a building,
a nonstuttering gallery has a unique type. Other basic properties of W -distances can
be found in [Ron89, 3.1]. Every Coxeter system (W,S) is a building with W -distance
δ defined by δ(x, y) := x−1y. The image of a map which preserves the corresponding
W -distances form the Coxeter system (W,S) into a building of type (W,S) is called an
apartment of the building.

Nonpositively curved realization of a building. A chamber system can be realized as
a topological space so that each chamber is homeomorphic to a model space X , and
adjacency of chambers is represented by them sharing a preassigned subspace of X as
a common ‘face’. We now explain a very flexible way to do this for chamber systems
which are buildings. The general method is due to Vinberg [Vin71]. It was later applied
by Davis to associate to each Coxeter group a locally finite metric realization of the
Coxeter system and Moussong then checked that the piecewise Euclidean metric on it
is CAT(0). We follow Davis’ exposition [Dav98].

Let (C, S) be a building of type (W,S). We start out with a topological space X ,
which will be our model for a chamber, and a family of closed subspaces (Xs)s∈S , which
will be our supply of ‘faces’. The pair (X, (Xs)s∈S) will be called a model space. For
each point x in X we define a subset S(x) of S by setting S(x) := {s ∈ S : x ∈ Xs}.
Furthermore, we define an equivalence relation ∼ on the set C ×X by (c, x) ∼ (c′, x′) if
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and only if x = x′ and δ(c, c′) ∈ WS(x). The X-realization of (C, S), written X(C), is
the quotient space (C ×X)/∼, where C carries the discrete topology.

If (C, S) is a building, and (X, (Xs)s∈S) is a model space, then any type-preserving
automorphism of (C, S) induces a homeomorphism of X(C) via the induced permuta-
tion action on C × X . Furthermore, this assignment defines a homomorphism from
Aut0(C, S) into the group of homeomorphisms of X(C). This homomorphism is injec-
tive if X\

⋃
s∈S Xs is nonempty. Automorphisms of (C, S) which are not type-preserving

will not induce homeomorphisms of X(C) unless the model space (X, (Xs)s∈S) admits
symmetries realizing the possible type permutations. We will spell out appropriate
conditions below for specific choices of model spaces.

We now introduce the model spaces (X, (Xs)s∈S) which define the Davis realization
of a building (C, S) leading to a CAT(0)-structure on X(C). A variant of it, available
for a subclass of buildings, is used by Moussong to define a CAT(−1)-structure on X(C)
[Mou88]. We assume from now on that (C, S) is a building of finite rank, i.e. S is

finite. The model spaces X in both cases are metric simplicial complexes (with a family
of subcomplexes (Xs)s∈S) with the same underlying abstract simplicial complex (and
the same subcomplexes Xs), namely, the flag complex of the poset of spherical subsets
of S ordered by inclusion. For s ∈ S, the subcomplex Xs is the union of all chains
starting with the set {s} (and all their subchains). This model space always supports a
natural piecewise Euclidean structure [Dav98] as well as a piecewise hyperbolic structure
[Mou88, Section 13].

Our assumption that S is finite implies that X is a finite complex. In particular,
X(C) has only finitely many cells up to isometry, so Bridson’s theorem [BH99, I.7.50]
implies that X(C) with the path metric is a complete geodesic space. Moreover, X
has finite diameter since only compact simplices are used for the hyperbolic structure.
Suppose that all s-residues of (C, S) are finite for s ∈ S. Then, because of the way
we defined the family of subspaces (Xs)s∈S encoding the faces, X(C) is locally finite.
The geometric realization of a Coxeter complex based on model spaces for the Davis
realization is CAT(0) (and the Moussong realization of a Coxeter complex is CAT(−1)
if and only if the Coxeter group is Gromov-hyperbolic) [Mou88]. Using retractions onto
apartments one shows that analogous results hold for buildings whose Coxeter group is
of the appropriate type [Dav98, Section 11].

For both the Davis and Moussong realizations the map which assigns to a type-
preserving automorphism of the building (C, S) the self-map of X(C) induced by the
permutation of C defines a homomorphism from Aut0(C, S) into the group of simplicial
isometries of X(C), which we will denote by Isom(X(C)). The metric structures on the
corresponding model spaces are in addition invariant under all diagram automorphisms
of the Coxeter diagram of the building. Hence automorphisms of (C, S) also induce
simplicial isometries of X(C) in both cases. Since the vertex ∅ of X is not contained in
any of the subcomplexes Xs for s∈S, these homomorphisms are injective. We denote
the Davis and Moussong realizations of a building (C, S) by |C|0 and |C|−1, respectively.

Whenever we make a claim involving the Moussong realization |C|−1 of a building,
we implicitly assume that the Coxeter group associated to the building is Gromov-
hyperbolic. In fact, we do not use the Moussong realization for any of our results
on topological automorphism groups of buildings, so that the reader may ignore all
occurrences of |C|−1.
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The natural topology on the group of automorphisms of a chamber system is the
permutation topology.

Definition 1. Let a group G act on a set M . For any subset F of M we denote by
FixG(F ) the pointwise stabilizer {g ∈G : g.x = x for every x ∈ F}. The permutation

topology on G is the topology with the family {FixG(F ) | F finite subset of M} as a
neighbourhood base of the identity in G.

The automorphism group of a chamber system is a subgroup of the permutation
group on the set of chambers. For ε ∈ {0,−1}, the permutation topology maps to
another natural topology under the monomorphism Aut(C, S) → Isom(|C|ε).

Lemma 2. Let (C, S) be a building of finite thickness. Then the permutation topology

on Aut(C, S) maps to the compact-open topology under the map Aut(C, S) → Isom(|C|ε)
for ε ∈ {0,−1}. �

1.2. Topological automorphism groups of buildings

The examples of topological automorphism groups of buildings we are most interested
in are Kac–Moody groups over finite fields. We will not define them and refer the reader
instead to [Tit87, Subsection 3.6] and [Rém02b, Section 9] for details. A Kac–Moody
group over a finite field is an example of a group G with twin root datum

(
(Ua)a∈Φ, H

)

(of type (W,S); compare [Rém02b, 1.5.1] for the definition) such that all the root groups
are finite. We will call a group which admits a twin root datum consisting of finite groups
a group with a locally finite twin root datum.

Any group G with a locally finite twin root datum of type (W,S) admits an action
on a twin building (compare [Rém02b, 2.5.1] for the definition) of type (W,S) having
finite s-residues for all s∈S. Let (C, S) be the positive twin (which is isomorphic to the
negative twin). Its geometric realizations |C|0 and |C|−1 (if defined) are locally finite.
The group H is the fixator of an apartment A of (C, S) with respect to this action of G.
Hence we have a short exact sequence 1 → H → N →W → 1, where N is the stabilizer
of A (note that both BN-pairs are saturated).

In fact, the action of G on (C, S) is strongly transitive in the following sense [Ron89,
p. 56].

Definition 3. Suppose a group G acts on a building (C, S) with Weyl group W and
W -distance function δ:

(i) The action of G on (C, S) is said to be δ-2-transitive if whenever (c1, c2), and
(c′1, c

′
2) are ordered pairs of chambers of (C, S) with δ(c1, c2) = δ(c′1, c

′
2), then

the diagonal action of some element of G maps (c1, c2) to (c′1, c
′
2).

(ii) If, moreover, the stabilizer N of some apartment A is transitive on the chambers
of A, we say that the action is strongly transitive.

Some of our result are valid for δ-2-transitive group actions which are not necessarily
strongly transitive. Note that if the action of G on a building is δ-2-transitive, then
so is its restriction to the finite index subgroup of type-preserving automorphisms in
G. Upon taking c1 = c2 and c′1 = c′2 in the definition of a δ-2-transitive action, it
is seen that a δ-2-transitive action is transitive on the set of chambers. Hence, in a
building (C, S) that admits a δ-2-transitive action, all residues of the same type have
the same cardinality. We have learned that our notion of δ-2-transitivity has been
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called Weyl-transitivity by Abramenko and Brown in their preprint [AB], where they
construct examples of δ-2-transitive actions which are not strongly transitive following
a suggestion by Tits.

Finally, if G is a group with a locally finite twin root datum
(
(Ua)a∈Φ, H

)
, then the

G-actions on each building have a common kernel K. Moreover, the root groups embed
in G/K and

(
(Ua)a∈Φ, H/K

)
is a twin root datum for G/K with the same associated

Coxeter system and twin buildings [RR06, Lemma 1]. When G is a Kac–Moody group
over a finite field, we have K = Z(G). The topological group associated to G, denoted G,
is the closure of G/K with respect to the topology on Aut(C, S) defined in the previous
subsection.

1.3. Structure of totally disconnected, locally compact groups

The structure theory of totally disconnected, locally compact groups is based on the
notions of a tidy subgroup for an automorphism and the scale function. These notions
were defined in [Wil94] in terms of the topological dynamics of automorphisms and
the definitions were reformulated in [Wil01]. We take the geometric approach to the
theory as outlined in [BW06] and further elaborated on in [BMW04]. An overview of
the geometric approach can be found in [Bau07].

Let G be a totally disconnected, locally compact group and let Aut(G) be the group
of bicontinuous automorphisms of G. We want to analyze the action of subgroups of
Aut(G) on G; we will be interested primarily in groups of inner automorphisms of G.
To that end we consider the induced action of Aut(G) on the set

B(G) := {V | V is a compact, open subgroup of G}.

The function
d(V,W ) := log(|V : V ∩W | · |W : W ∩ V |)

defines a metric on B(G) and Aut(G) acts by isometries on the discrete metric space
(B(G), d). Let α be an automorphism of G. An element O of B(G) is called tidy

for α if the displacement function of α, denoted by dα : B(G) → R and defined by
dα(V ) = d(α(V ), V ), attains its minimum at O. Since the set of values of the metric d
on B(G) is a well-ordered discrete subset of R, every α ∈ Aut(G) has a subgroup tidy
for α. Suppose that O is tidy for α. The integer

sG(α) := |α(O) : α(O) ∩ O|,

which is also equal to min
{
|α(V ) : α(V ) ∩ V | | V ∈ B(G)

}
, is called the scale of α. An

element of B(G) is called tidy for a subset M of Aut(G) if and only if it is tidy for every
element of M. A subgroup H of Aut(G) is called flat if and only if there is an element
of B(G) which is tidy for H. We will call a subgroup H of G flat if and only if the group
of inner automorphisms induced by H is flat.

Later we will uncover implications of the flatness condition for groups acting in a
nice way on CAT(0)-spaces. They are based on the following properties of flat groups
which hold for automorphism groups of general totally disconnected, locally compact
groups. Suppose that H is a flat group of automorphisms. The set

H(1) := {α ∈ H | sG(α) = 1 = sG(α−1)}
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is a normal subgroup of H and H/H(1) is free abelian. The flat rank of H, denoted
flat-rk(H), is the Z-rank of H/H(1). If A is a group of automorphisms of the totally
disconnected, locally compact group G, then its flat rank is defined to be the supremum
of the flat ranks of all flat subgroups of A. The flat rank of the group G itself is the flat
rank of the group of inner automorphisms of G.

If H is a flat group of automorphisms with O tidy forH, then by setting ‖αH(1)‖H :=
d(α(O), O) one defines a norm on H/H(1). That is, ‖ · ‖H satisfies the axioms of
a norm on a vector space with the exception that we restrict scalar multiplication to
integers. This norm can be given explicitly in terms of a set of epimorphisms Φ(H, G) ⊆
Hom(H,Z) of root functions and a set of scaling factors sρ; ρ ∈ Φ(H, G) associated to
H. In terms of these invariants of H the norm may be expressed as ‖αH(1)‖H =∑

ρ∈Φ log(sρ)|ρ(α)| [Bau07, Proposition 6]. In particular, the function ‖ · ‖H extends to
a norm in the ordinary sense on the vector space R⊗H/H(1). For further information
on flat groups, see [Wil04].

2. Geometric rank as an upper bound

In this section we show that the flat rank of a locally compact, strongly transitive
group G of automorphisms of a building of finite thickness is bounded above by the
geometric rank of the Weyl group. This inequality actually holds under the weaker as-
sumption that the G-action is δ-2-transitive (a notion which we introduced in Definition
3 of Subsection 1.2).

2.1. Consequences of δ-2-transitivity

In this subsection our main result is Theorem 7, which compares the Davis-realization
of a building of finite thickness with the space of compact open subgroups of a closed
subgroup of its automorphism group acting δ-2-transitively.

The following proposition allows us to compute the distance between stabilizers of
chambers for such groups.

Proposition 4. Suppose that the action of a group G on a building of finite thickness

(C, S) with W -distance δ is δ-2-transitive and type-preserving. For each type s let qs +1
be the common cardinality of s-residues in (C, S). Let (c, c′) be a pair of chambers of

(C, S) and let s1 · · · sl be the type of some minimal gallery connecting c to c′. Then

|Gc : Gc ∩Gc′ | =
∏l

j=1 qsj
.

Proof. Set w = δ(c, c′). The index |Gc : Gc ∩ Gc′ | is the cardinality of the orbit of the
chamber c′ under the action of Gc. Since the action of G is type-preserving, this orbit is
contained in the set cw = {d | δ(c, d) = δ(c, c′)}. Since the action of G is δ-2-transitive
as well, the orbit is equal to this set. It remains to show that the cardinality of cw is
equal to

∏l

j=1 qsj
.

Pick d ∈ cw. By definition of buildings in terms of W -distance and by [Ron89, (3.1)v],
the chamber c is connected to d by a unique minimal gallery of type s1 · · · sl. On the
other hand, any endpoint of a gallery of type s1 · · · sl starting at c will belong to cw.
Therefore the cardinality of cw, hence the index |Gc : Gc ∩ Gc′ |, equals the number

of galleries of type s1 · · · sl starting at c. That latter number is equal to
∏l

j=1 qsj
,

establishing the claim. �
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Let α be a (bicontinuous) automorphism of a locally compact group G. Recall that
the module of α is the positive real number ∆G(α) such that α∗dg = ∆G(α) · dg, where
dg is any left Haar measure on G and α∗dg is its push-forward by α. The number ∆G(α)
doesn’t depend on the choice of dg and we say that G is unimodular if the module of
any inner automorphism is equal to 1 [Bou63, Chapitre 7]. Before we continue with the
preparation of Theorem 7, we derive the following corollary (which is used only in the
proof of Remark 8).

Corollary 5. A closed subgroup G of the automorphism group of a building of finite

thickness, satisfying the conditions of Proposition 4, is unimodular. In particular, the

scale function of G assumes the same value at a group element and its inverse.

Proof. Let α be a bicontinuous automorphism of a totally disconnected, locally compact
group G. Then the module of α equals |α(V ) : α(V ) ∩ V | · |V : α(V ) ∩ V |−1, where V
is an arbitrary compact, open subgroup of G.

If we apply this observation in the situation of Proposition 4 with V = Gc and α
being inner conjugation by x ∈ G, we conclude that the modular function of G takes
the value |Gx.c : Gx.c ∩Gc| · |Gc : Gx.c ∩Gc|

−1 at x. Since traversing a minimal gallery
joining x.c to c in the opposite order gives a minimal gallery joining c to x.c, the formula
for the index derived in Proposition 4 shows that x has module 1. Since x was arbitrary,
G is unimodular.

Our second claim follows from the first one, because the value of the modular function
of G at an automorphism α is sG(α)/sG(α−1). We recall the proof. Choose V to be
tidy for the automorphism α of G. Then |α(V ) : α(V ) ∩ V | equals the scale of α while
|V : α(V ) ∩ V | equals the scale of α−1. By the definition of the modular function ∆G

of G, we have ∆G(α) = sG(α)/sG(α−1) as claimed. �

The following concept will be used to make the comparison in Theorem 7.

Definition 6 (Adjacency Graph of a Chamber System). Let (C, S) be a chamber sys-
tem and let d : s 7→ ds be a map from S to the positive real numbers. The adjacency

graph of (C, S) with respect to (ds)s∈S is defined as follows. It is the labelled graph
Γ(C, S, (ds)s∈S) having C as a set of vertices; two vertices c, c′∈C are connected by an
edge of label s if and only if c and c′ are s-adjacent for some s∈S; each edge of label s
is defined to have length ds.

We are ready to state and prove our comparison theorem.

Theorem 7 (Comparison Theorem). Suppose that (C, S) is a building of finite thick-

ness with W -distance function δ and let ε ∈ {0,−1}.

(1) Suppose that (ds)s∈S is a set of positive real numbers indexed by S. Then any

map ψ : |C|ε → Γ(C, S, (ds)s∈S) which sends a point x to some chamber c ∈ C
such that x ∈ |c| is a quasi-isometry.

(2) Let G be a closed subgroup of the group of automorphisms of (C, S) such that the

action of G is δ-2-transitive. Assume that all the cardinalities of the s-residues

for s in S are bigger than 2. Then the map ϕ : |C|ε → B(G) mapping a point to

its stabilizer is a quasi-isometric embedding.

Remark 8. The range of the map ϕ considered in part (2) above cannot be quasi-dense
unless the Weyl group of (C, S) (and hence the building itself) is finite.



FLAT RANK OF AUTOMORPHISM GROUPS OF BUILDINGS 423

Proof of Remark 8. As will be seen in the proof of Theorem 7 below, we may assume
that the G-action is type-preserving, so that we may apply Proposition 4.

As argued at the end of the forthcoming proof of Theorem 7, there is a constant M
such that the stabilizer of any point is at a distance of at most M to the stabilizer of
the centre of a chamber in |C|ε.

We will show however, under the condition that the Weyl group of (C, S) is infinite,
that for each positive K there is a compact, open subgroup VK of G whose distance to
each chamber stabilizer exceeds K, which proves Remark 8.

Since the group G is unimodular by Corollary 5, me may take for VK any com-
pact open subgroup of G such that the Haar measure of some (hence, every) chamber
stabilizer is exp(K) times the Haar measure of VK .

In order to construct VK , fix a chamber c in (C, S) and choose a chamber c′ whose
gallery-distance to c is at least log2(exp(K)), where log2 denotes the logarithm to base 2.

Proposition 4 shows that the index of the group VK := Gc ∩ Gc′ in Gc is at least
exp(K), which implies that its Haar measure is smaller than the Haar measure of Gc

(hence that of every other chamber stabilizer) by a factor of at least K, which finishes
the proof. �

Proof of Theorem 7. We begin by proving the first claim.
Both m := min{ds | s ∈ S} and M := max{ds | s ∈ S} are finite and positive,

because S is a finite set and {ds | s ∈ S} is a set of positive numbers. The image of
ψ is obviously M/2-quasi-dense in Γ(C, S, (ds)s∈S) and we need to prove that ψ is a
quasi-isometric embedding as well.

To see this, we compare distances between points in the space |C|ε and the graph
Γ(C, S, (ds)s∈S) to the gallery-distance between chambers corresponding to these points.
To that end, denote by dC , dΓ and dε the gallery-distance on the set of chambers, the
distance in the graph Γ(C, S, (ds)s∈S) and the distance on |C|ε, respectively. Factor ψ
as the composite of a map ψ′ : (|C|ε, dε) → (C, dC), sending each point to some chamber
containing it and the map ι :

(
C, dC

)
→

(
Γ(C, S, (ds)s∈S), dΓ

)
induced by the identity

on C.
For any pair of chambers c and c′ we have

mdC(c, c
′) 6 dΓ(c, c′) 6 MdC(c, c

′),

which shows that ι is a quasi-isometric embedding.
Furthermore, given two points, x and y say, in |C|ε, there is a minimal gallery such

that the geometric realizations of the chambers in that gallery do cover the geodesic
joining x to y. (This can be seen as follows. By convexity of apartments, it suffices
to prove this statement in the case where (C, S) is a Coxeter complex. The geodesic
segment [x, y] intersects precisely those walls, for which there are some chambers, cx say,
containing x and, cy say, containing y which are separated by those same walls. The
existence of a minimal gallery covering the segment [x, y] is then proved by induction
on the number of these walls.)

Denoting by D the diameter of the geometric realization |c| of a chamber in |C|ε, and
by r the maximal gallery-distance between chambers in the same spherical residue we
conclude, using the description of minimal galleries in terms of reduced words in the
Coxeter group, that

dε(x, y)−D 6 DdC(ψ
′(x), ψ′(y)) 6 r dε(x, y) + 2rD.
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It follows that ψ′ is a quasi-isometric embedding, and so ψ is as well, finishing the proof
of the first claim.

The second claim will be derived from the first and Proposition 4, once we have shown
that we can reduce to the case where G acts by type-preserving automorphisms. Let G◦

be the subgroup of type-preserving automorphisms in G. It is a closed subgroup of finite
index, say n, in G. Therefore it is open in G, and d(O,G◦ ∩ O) 6 log(|G : G◦|) = logn
for each open subgroup O of G. It follows that the map B(G◦) → B(G) induced by the
inclusion G◦ ↪→ G is a quasi-isometry. Since G◦ is δ-2-transitive as well, we may— and
shall— assume that G = G◦.

Choose some map ψ satisfying the conditions on the map with the same name in
part (1). As before denote the flag consisting of the single vertex ∅ in X by (∅). It
defines a vertex of the simplicial complex underlying the model spaceX of the Davis and
Moussong realizations. Denote by [c, x] the equivalence class with respect to the relation
∼ containing the pair (c, x) ∈ C×X . To avoid heavy notation, we set ĉ := [c, |∅|] for each
c ∈ C. We also set C∅ := {ĉ | c ∈ C}, a set of vertices of the simplicial complex underlying
|C|ε. Let qs be the common cardinality of s-residues in (C, S). Proposition 4 implies
that for the choice ds = 2 log qs for each s∈S the map ν : im(ϕ |C∅) → Γ(C, S, (ds)s∈S)
defined by ν(Gĉ) := ψ(ĉ) (= c) is an isometric embedding (note that by our assumption
on the cardinalities of s-residues for s in S, the stabilizers in G of different chambers are
at a positive distance by Proposition 4, hence ν is well defined). Since the composite
of the restriction of ϕ to C∅ with ν equals the restriction of ψ to C∅ it follows that the
restriction of ϕ to C∅ is a quasi-isometric embedding, because ψ is by part (1), which
we already proved.

It follows that ϕ is a quasi-isometric embedding as well, because C∅ is quasi-dense in
|C|ε and the distance between the stabilizer of a point in the geometric realization |c| of
a chamber c and the stabilizer of the point ĉ ∈ C∅ ∩ |c| is bounded above by a constant
M independent of c since |c| is a finite complex and G acts transitively on chambers.
�

2.2. Consequences of the Comparison Theorem

The most important consequence of the Comparison Theorem (Theorem 7) is the in-
equality between the flat rank of a δ-2-transitive automorphism group and the rank of
the building the group acts on. This result follows from the following proposition.

Proposition 9. Let G be a totally disconnected, locally compact group. Suppose that G
acts on a metric space X in such a way that the G-stabilizers of points are compact, open

subgroups of G. Assume that the map X → B(G), which assigns a point its stabilizer, is

a quasi-isometric embedding. Let H be a flat subgroup of G of finite flat rank n. Then,

for any point x in X, the inclusion of the H-orbit of x defines an n-quasi-flat in X.

Proof. Let x be any point in X . Since the map x 7→ Gx is an equivariant quasi-isometric
embedding, the orbit of x under H is quasi-isometric to the orbit of its stabilizer Gx

under H acting by conjugation. The latter orbit is quasi-isometric to the H-orbit of a
tidy subgroup, say O, for H . But H.O is isometric to the subset Zn of Rn with the norm
‖ · ‖H introduced in Subsection 1.3. The subset Zn is quasi-dense in Rn equipped with
that norm and, therefore, we obtain a quasi-isometric embedding of Rn equipped with
‖ · ‖H into X . But the identity map between Rn equipped with ‖ · ‖H and Rn with the
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Euclidean norm is bi-Lipschitz. Composing with this map, we obtain an n-quasi-flat in
X as claimed. �

Before deriving the rank inequality, we prove the following characterization for the
existence of fixed points.

Corollary 10. Let G be a totally disconnected, locally compact group. Suppose that G
acts isometrically on a complete CAT(0)-space X with compact, open point stabilizers.

Assume that the map X → B(G), which assigns a point its stabilizer, is a quasi-isometric

embedding. Then an element g of G has a fixed point in X if, and only if, sG(g) = 1 =
sG(g−1).

Proof. Let g be an element of G and let x be a point of X . The subgroup 〈g〉 is
a flat subgroup of G of flat rank 0 or 1 and we have flat-rk(〈g〉) = 0 if and only if
sG(g) = 1 = sG(g−1). Hence to prove our claim, we need to show that g has a fixed
point in X if and only if flat-rk(〈g〉) = 0.

Proposition 9 is applicable with H equal to 〈g〉. Therefore the set 〈g〉.x is quasi-
isometric to a point or the real line in the cases flat-rk(〈g〉) = 0 and flat-rk(〈g〉) = 1,
respectively. We conclude that the set 〈g〉.x is bounded if and only if flat-rk(〈g〉) = 0.

Since 〈g〉 acts by isometries on the complete CAT(0)-space X , if it has a bounded
orbit, it admits a fixed point by [BH99, II.2, Corollary 2.8(1)]. The converse of the
latter statement is trivial. We conclude that g has a fixed point in X if and only if
flat-rk(〈g〉) = 0 as had to be shown. �

We adopt the following definition for the rank of a complete CAT(0)-space. For
alternative definitions see [Gro93, pp. 127–133].

Definition 11. The rank of a complete CAT(0)-spaceX , denoted rk(X), is the maximal
dimension of an isometrically embedded Euclidean space in X .

Recall that a metric space X is called cocompact if and only if the isometry group of
X acts cocompactly on X [BH99, p. 202].

Theorem 12. Let G be a totally disconnected, locally compact group. Suppose that

G acts isometrically on a complete, locally compact, cocompact CAT(0)-space X with

compact, open point stabilizers. Assume that the map X → B(G), which assigns to

a point its stabilizer, is a quasi-isometric embedding. Then flat-rk(G) 6 rk(X); in

particular, the flat rank of G is finite. We have flat-rk(G) = 0 if, and only if, every

element of G fixes a point in X.

Proof. The hypotheses on X guarantee that the rank of X is finite and equals the
maximal dimension of quasi-flats in X by [Kle99, Theorem C]. The hypotheses on the
action of G on X enable us to apply Proposition 9, which, together with the first
observation of this proof, implies that flat-rk(G) 6 rk(X) < +∞. The last statement
follows from Corollary 10. �

The rank of a Gromov-hyperbolic CAT(0)-space is 1. This leads to the following
special case of Theorem 12.

Corollary 13. Let G, X and X → B(G) be as above. Assume further that X is

Gromov-hyperbolic. Then flat-rk(G) = 1, unless every element of G has a fixed point in

X, in which case flat-rk(G) = 0. �
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2.3. Equality of the rank of a building and the rank of an apartment

The purpose of this subsection is to prove that the Davis-realization of a building has
the same rank as any of its apartments. We do not claim that any flat of the building is
contained in an apartment, though this is probably true as well2. This stronger state-
ment is known to be true for Euclidean buildings by Theorem 1 in [Bro89, Chapter VI,
Section 7]. We believe we can show this to be true also if the building is Moufang and
of finite thickness.

Proposition 14. Let (C, S) be a building with S finite and Weyl group W . If |C|0
contains a d-flat, then so does |W |0. Hence rk(|C|0) = rk(|W |0).

Proof. Let F be a d-flat in |C|0. Applying Lemma 9.34 in Chapter II of [BH99] with Y
equal to Rd andX equal to |W |0, and using the isomorphism of the geometric realization
of any apartment with |W |0, we see that it suffices to show that for each n in N there
is an apartment An of (C, S) which contains an isometric copy of the ball of radius n
around 0 in Rd.

This isometric copy, say Bn, of the ball of radius n around 0 in Rd will be taken to
lie inside F . Let n be a natural number, o some point in F and Bn the ball of radius
n around o in F . To show that there is an apartment An containing Bn, we will prove
that there are two chambers cn and c′n such that the minimal galleries connecting cn
and c′n cover Bn. Then, by combinatorial convexity, any apartment An containing cn
and c′n contains Bn and by our introductory remark the proposition follows, because n
was arbitrary.

To determine how we should choose the chambers cn and c′n, we first take a look at
the way walls in |C|0 intersect the flat F . Since any geodesic joining two points of a wall
lies entirely inside that wall, the intersection of a wall with F is an affine subspace of F .
(It can be shown that the affine subspaces of F arising in this way are either empty or
of codimension at most 1 in F , but we will not make use of this additional information.)
Note further that the family of affine subspaces arising as intersections of walls in |C|0
with F is locally finite.

If M is a wall in |C|0 and two points p and p′ in F are separated by M ∩F in F , then
p and p′ are separated by M in |C|0. Therefore, if we demonstrate that it is possible to
choose chambers cn and c′n to contain points pn and p′n in F , such that no intersection
of a wall with F separates any point in Bn from both pn and p′n, then the minimal
galleries connecting cn and c′n cover Bn. The following lemma demonstrates that such
a choice of pn and p′n is always possible. This concludes the proof modulo Lemma 15.
�

The following lemma completes the proof of Proposition 14. We follow the suggestion
of the referee, who provided a simpler proof for (a slightly more general version of) this
result.

Lemma 15. Let B be a nonempty, bounded subset of Rd and let M be a locally finite

collection of hyperplanes in Rd. Then there exist two points p and p′ in the complement

of
⋃
M such that no element of M separates any point in B from both p and p′.

2This has been confirmed by Caprace and Haglund in [CH] while the present paper was
being refereed.
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Proof. LetM∩ be the subfamily ofM consisting of those members ofM which intersect
B. Since M is locally finite and B is bounded, M∩ is finite.

We will choose the points p and p′ from the complement of
⋃
M to have the following

two properties:

(1) The line segment [p, p′] intersects B.
(2) Each element of M∩ separates p from p′.

The first property ensures that for every element M of M\M∩ at least one of the
points p and p′ lies on the same side of M as B, while the second property ensures
that for every element M of M∩ any point of B lies in the same closed half-space with
respect to M as either p or p′. Therefore the two conditions ensure that no element
of M separates any point in B from both p and p′, and it will suffice to conform with
conditions (1) and (2) to conclude the proof.

In what follows we may assume that d is at least 1, because the statement to be
proved is obvious if d = 0.

In order to find p and p′, choose a point, b say, in the nonempty set B and a line, say
l, through b that is transverse to all the finitely many hyperplanes in M∩.

We will choose our points p and p′ to lie on l with b on the segment [p, p′]. Any such
choice of p and p′ will satisfy condition (1) above so that, in what follows, we only have
to worry about condition (2).

The set l∩
⋃
M∩ is a finite subset of l while the set l∩

⋃
M is a locally finite subset

of l.

We may therefore choose points p and p′ on l which do not belong to
⋃
M and such

that all points of the set l ∩
⋃
M∩ lie on the segment [p, p′].

By construction, the pair (p, p′) satisfies property (2) and we have already noted
that it satisfies property (1) as well. As seen above, this proves that p and p′ have the
property sought in the statement of the lemma. �

3. Algebraic rank as a lower bound

In this section we show that when G is either a semisimple algebraic group over a
local field or a topological Kac–Moody group over a finite field, the algebraic rank of
the Weyl group W (Definition 17 below) is a lower bound for the flat rank of G.

One strategy to get a lower bound of flat-rk(G) of geometric nature, i.e. coming
from the building X , is to use the stabilizer map ϕ : x 7→ Gx. Indeed, according to
Theorem 7, ϕ maps an n-quasi-flat in |C|ε to an n-quasi-flat in B(G), which can even
be assumed to consist of vertex stabilizers. Still, in order to make this strategy work,
one needs to establish a connection between flats in the space B(G) and flat subgroups
in G itself. A connection which should be useful for the task described above is stated
by the following conjecture.

Conjecture 16. Let H be a group of automorphisms of a totally disconnected, locally

compact group G. Suppose that some (equivalently, every ) orbit of H in B(G) is quasi-

isometric to Rn. Then H is flat, of flat rank n.

This conjecture has been verified for n = 0 [BW06, Proposition 5]. Going back to
the announced algebraic lower bound, we now introduce the algebraic rank of a group.
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Definition 17. Let H be a group. The algebraic rank of H , denoted alg-rk(H), is the
supremum of the ranks of the free abelian subgroups of H .

In order to achieve the aim of this section, we will show that given a free abelian
subgroup A of the Weyl group W of the building X , we can lift A to a flat subgroup of
the isometry group G. This holds in both classes of the groups considered.

Theorem 18.

(1) Let G be an algebraic semisimple group G over a local field k, and let G = G(k)
be its rational points. Let S be a maximal k-split torus in G, and let W =
Waff (S,G) be the affine Weyl group of G with respect to S. Then S(k) is a

flat subgroup of G, of flat rank alg-rk(W ) = k-rk(G). In particular, we have

alg-rk(W ) 6 flat-rk(G).
(2) Let G be a group with a locally finite twin root datum of associated Weyl group W .

Let A be an abelian subgroup of W and let Ã be the inverse image of A under the

natural map N →W . Then Ã is a flat subgroup of G and flat-rk(Ã) = rankZ(A).
In particular, we have alg-rk(W ) 6 flat-rk(G).

Before beginning the proof of the above theorem, we note the following corollary,
which was obtained by different means in unpublished work of the first and third authors.

Corollary 19. Let G be an algebraic semisimple group over a local field k, with affine

Weyl group W . Then flat-rk(G(k)) = k-rk(G) = alg-rk(W ).

This result and its proof are valid for any closed subgroup lying between G(k) and its
closed subgroup G(k)+ generated by unipotent radicals of parabolic k-subgroups—see,
e.g., [Mar89, I.2.3] for a summary about G(k)+. It suffices to replace S(k) by S∩G(k)+.

Proof of Corollary 19. Let S be a maximal k-split torus of G and let W be the affine
Weyl group of G with respect to S. Part (1) of Theorem 18 shows that k-rk(G) =
alg-rk(W ) 6 flat-rk(G(k)).

To show the inequality alg-rk(W ) > flat-rk(G(k)), note that the action of G(k) on
its affine building X is given by a BN-pair in G(k), which implies that this action is
strongly transitive. In particular, the action of G(k) on X is δ-2-transitive for the
canonical W -metric δ.

Part (2) of Theorem 7 shows that the map assigning a point of X its stabilizer
in G(k) is a quasi-isometric embedding. Hence Theorem 12 is applicable and yields
flat-rk(G(k)) 6 rk(X). In the case at hand, we have rk(X) = alg-rk(W ) because
maximal flats in X are apartments in X [Bro89, VI.7], and W is virtually free abelian.

We finally conclude that k-rk(G) = alg-rk(W ) = flat-rk(G(k)). �

Proof of Theorem 18. We treat cases (1) and (2) separately.
In case (1), the group S(k) is flat by Theorem 5.9 of [Wil04], being topologically

isomorphic to a power of the multiplicative group of k, which itself is generated by the
group of units and a uniformizer of k.

It remains to show that flat-rk(S(k)) = rankZ (S(k)/(S(k))(1)) equals alg-rk(W ) = k-
rk(G).

As seen in the proof of Corollary 19, the map assigning to a point of the affine
building X its stabilizer in G(k) is a quasi-isometric embedding. Hence Corollary 10
can be applied to the action of G = G(k) on X . Therefore (S(k))(1) is the subgroup of
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S(k) of elements admitting fixed points in X . Denote by AS the affine apartment of X
associated to S. The group S(k) leaves AS invariant. Since AS is a convex subspace of
the CAT(0)-space X , every element of S(k) admitting a fixed point in X fixes a point of
AS (the projection of the fixed point onto AS). Therefore S(k)/(S(k))(1) identifies with
the group of translations of AS induced by S(k), which is a subgroup of finite index
in the translation lattice of W , which is itself an abelian subgroup of W of maximal
rank. Therefore flat-rk(S(k)) = alg-rk(W ), which coincides with k-rk(G). This settles
case (1).

We now reduce case (2) to Proposition 20, which we will prove later. Let (H, (Ua)a∈Φ)
be the locally finite root datum in G, (C, S) the positive building of (H, (Ua)a∈Φ) and A
the standard apartment in (C, S). Let δ be the W -distance on (C, S) and let ε ∈ {0,−1}.

Since the groupH is finite, Ã is finitely generated. Since A is abelian, the commutator
of two elements of Ã is contained in H , hence is of finite order. It follows that Ã is a
flat subgroup of G by Proposition 20.

The G-action on (C, S) is δ-2-transitive, hence so is the G-action. Hence the map
sending a point in |C|ε to its stabilizer in G is a quasi-isometric embedding by Theorem 7.

Corollary 10 then implies that the subgroup Ã(1) is the set of elements in Ã which fix
some point in |C|ε.

The group N leaves A invariant and the induced action of N on |A|ε is equivariant
to the action of W when A is identified with the Coxeter complex of W . Since the
kernel of the action of N on |A|ε is the finite group H , the action of N on |A|ε is proper.
Hence an element of infinite order in N does not have a fixed point in |A|ε and therefore
has no fixed point in |C|ε either, because |A|ε is an N -invariant convex subspace of

the CAT(0)-space |C|ε. Therefore Ã(1) is the set of elements of Ã of finite order. This

implies that rankZ(Ã/Ã(1)) = rankZ(A), as claimed. �

The remainder of this section is devoted to the proof of the following.

Proposition 20. Let G be a totally disconnected locally compact group and let A be a

subgroup of G which is a finite extension of a finitely generated abelian group. Then A
is a flat subgroup of G.

We split the proof into several subclaims.

Lemma 21. If C is a compact subgroup of G, then there is a base of neighbourhoods

of e consisting of C-invariant, compact, open subgroups. In particular, any compact

subgroup is flat.

Proof. If V is a compact, open subgroup of G, then O =
⋂

c∈C cV c
−1 is a compact, open

subgroup of G which is contained in V and is normalized by C. Since G has a base of
neighbourhoods consisting of compact, open subgroups, this proves the first claim. The
second claim follows from it. �

We remind the reader on the tidying procedure defined in [Wil04] which for any
automorphism α of G outputs a subgroup tidy for α. It will be used in the proofs of
Lemmas 23 to 25.

Algorithm 22 (α-Tidying Procedure).
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[0] Choose a compact open subgroup O 6 G.

[1] Let kO :=
⋂k

i=0 α
i(O). For some n ∈ N (hence for all n′ > n ) we have

nO =
(⋂

i>0

αi(nO)
)
·
(⋂

i>0

α−i(nO)
)
.

Set O′ = nO.

[2] For each compact, open subgroup V , let

Kα,V :=
{
k ∈ G | {αi(k)}i∈Z is bounded and αn(k) ∈ V for n� 0

}
.

Put Kα,V = Kα,V and Kα =
⋂
{Kα,V | V is a compact, open subgroup}.

[3] Form O∗ := {x ∈ O′ | kxk−1 ∈ O′Kα ∀k ∈ Kα} and define O′′ := O∗Kα. The

group O′′ is tidy for α and we output O′′.

Lemma 23. Let α be an automorphism of G and C an α-invariant compact subgroup

of G. Choose a C-invariant compact, open subgroup O of G as in Lemma 21. Then

α(O) and Kα are C-invariant. Hence the output derived from applying the α-tidying

procedure in Algorithm 22 to O is C-invariant.

Proof. To show that α(O) is C-invariant, let c be an element of C. Then

cα(O)c−1 = α
(
α−1(c)Oα−1(c)−1

)
= α(O),

which shows that α(O) is C-invariant.
Towards proving that Kα is C-invariant, we first prove that if C is α-invariant and

V is a C-invariant compact, open subgroup of G, then Kα,V is C-invariant. Let c be an
element of C and k an element of Kα,V . Then, for all n ∈ Z,

αn(ckc−1) = αn(c)αn(k)αn(c−1) ⊆ C{αn(k) | n ∈ Z}C,

and hence the set {αn(ckc−1) | n ∈ Z} is bounded. Furthermore, for all n such that
αn(k) ∈ V , we have

αn(ckc−1) ∈ αn(c)V αn(c)−1 = V,

proving that indeed Kα,V is C-invariant if C is α-invariant and V is C-invariant.
To derive that Kα is C-invariant, note that whenever V ′ 6 V are compact, open

subgroups of G, then Kα,V ′ 6 Kα,V . Hence, if O is a base of neighbourhoods of e,
consisting of compact, open subgroups of G, then Kα =

⋂
{Kα,V | V ∈ O}. Since C is

compact, there is a base of neighbourhoods O of e consisting of C-invariant, compact,
open subgroups by Lemma 21. We conclude that Kα is the intersection of a family of
C-invariant sets, hence is itself C-invariant.

Finally, we establish that the output of Algorithm 22 is C-invariant. The group
O′ is C-invariant since it is the intersection of C-invariant subgroups. Therefore O∗

is C-invariant as well. Since Kα is C-invariant, it follows that the output O′′ is also
C-invariant as claimed. �

Lemma 24. Let A be a set of automorphisms of G, C a compact subgroup of G in-

variant under each element of A and let γ be an automorphism of G stabilizing C such

that [γ, α] is an inner automorphism in C for each α in A. Suppose there is a common

tidy subgroup for A which is C-invariant. Then there is a common tidy subgroup for

A ∪ {γ} which is C-invariant.
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Proof. Let O be a common tidy subgroup for A which is C-invariant. We will show
that the output O′′ of the γ-tidying procedure, Algorithm 22, on the input O produces
a common tidy subgroup for A ∪ {γ} which is C-invariant. Lemma 23 shows that O′′

is C-invariant and we have to prove it is tidy for each element α in A.

Since [γ, α] ∈ C, for all C-invariant, compact, open subgroups V , we have

|αγ(V ) : αγ(V ) ∩ γ(V )| = |γ(α(V )) : γ(α(V ) ∩ V )| = |α(V ) : α(V ) ∩ V |.

Hence, if V is α-tidy and C-invariant, then γ(V ) is α-tidy and it is C-invariant by
Lemma 23 as well. Using this observation, induction on i shows that γ i(O) is α-tidy
for each i ∈ N. Since any finite intersection of α-tidy subgroups is α-tidy by Lemma 10
in [Wil94], the output O′ of step [1] of Algorithm 22 will be α-tidy.

We will show next that α(Kγ) = Kγ . Theorem 3.3 in [Wil04] then implies that O′′

is tidy for α, finishing the proof.

Towards proving our remaining claim α(Kγ) = Kγ , we now show that if V is a
C-invariant, compact, open subgroup of G, then α(Kγ,V ) = Kγ,α(V ). Using our as-
sumptions [γ, α] ⊆ C and γ(C) = C, the equation

[γn, α] = [γ, α]γ
n−1

· [γ, α]γ
n−2

· · · [γ, α]γ
n−1

· [γ, α]

shows that for all n in Z there are cn in C such that γnα = κ(cn)αγn, where κ(g)
denotes conjugation by g. Therefore, if k ∈ Kγ,V , then

γn(α(k)) = cn(αγn(k))c−1
n ⊆ Cα(γn(k))C

is bounded. Since α(C) = C we have γnα = κ(cn)αγn = ακ(α−1(cn)) γn for all n. Put
c′n = α−1(cn) for n ∈ Z. Since V is C-invariant, for sufficiently large n in N we have

γn(α(k)) = α(c′nγ
n(k)c′

−1
n ) ∈ α(c′nV c

′−1
n ) = α(V ).

This shows that α(Kγ,V ) = Kγ,α(V ), hence α(Kγ,V ) = Kγ,α(V ) for all C-invariant,
compact, open subgroups V of G.

Now, if V runs through a neighbourhood base of e consisting of C-invariant com-
pact, open subgroups (which exists by Lemma 21), then α(V ) does as well. Since Kγ

can be defined as the intersection of the family of all Kγ,W , where W runs through a
neighbourhood base of e consisting of compact, open subgroups as already observed in
the proof of Lemma 23, we obtain α(Kγ) = Kγ . �

As a corollary of Lemma 24 we obtain the following result.

Lemma 25. Let H be a group of automorphisms of G, and C a compact subgroup of G
such that [H,H] consists of inner automorphisms in C. Then H has local tidy subgroups,

that is, for every finite subset f of H there is a compact, open subgroup O of G such

that for any γ ∈ 〈f〉 the group γ(O) is tidy for each α ∈ f . Moreover, O can be chosen

C-invariant.
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Proof. First we use induction on the cardinality f > 0 of the finite set f to derive the
existence of a common tidy subgroup for f which is C-invariant. Lemma 21 proves the
induction hypothesis in the case f = 0 and provides a basis for the induction. Assume
the induction hypothesis is already proved for sets of cardinality f − 1 > 0, and assume
that f is a finite set of cardinality f . Choose an element γ in f and put A = f\{γ}. Then
the induction hypothesis implies that there is a common C-invariant tidy subgroup for
A and Lemma 24 implies that the same holds for f .

If O is a common C-invariant tidy subgroup for f , then the first step in the proof of
Lemma 24 shows that γ(O) is α-tidy for each α in f since γ ∈ H. �

Proof of Proposition 20. Finally, an application of Theorem 5.5 in [Wil04] enables us to
derive Proposition 20 from Lemma 25. �

4. Simple nonlinear groups of arbitrary flat rank

We think that the algebraic and geometric rank of a Coxeter group of finite rank are
equal. More generally, Corollary 7 in [GO], in conjunction with [Kle99, Theorem C]
leads us to believe that the rank of a proper CAT(0)-space, on which a group G acts
properly discontinuously and cocompactly, will turn out to be a quasi-isometry invariant
and will be equal to the algebraic rank of G.

Looking for examples with alg-rk(W ) = rk(|W |0) led us to the existence of nonlinear,
topologically simple groups of arbitrary flat rank.

Theorem 26. For every natural number n > 1 there is a nonlinear, topologically sim-

ple, compactly generated, locally compact, totally disconnected group of flat rank n.

Proof. The idea of the proof is to show the existence of a sequence of connected Coxeter
diagrams (Dn)n∈N such that, for each n ∈ N, we have:

(1) if Wn denotes the Coxeter group with diagramDn, then alg-rk(Wn) = rk(|Wn|0)
= dim(|Wn|0); and

(2) there is a Kac–Moody root datum of associated Coxeter diagramDn, and a finite
field k such that the corresponding Kac–Moody group Gn over k is centre-free
and not linear over any field.

The required nonlinear, topologically simple, compactly generated, locally compact,
totally disconnected group of flat rank n may then be taken to be the completion Gn.

We now specify a sequence of Coxeter diagrams satisfying the two conditions above.
Fix a field k of cardinality at least 5. Let D1 be a cycle of length r = 5 all of whose
edges are labelled ∞. Then W1 is Gromov-hyperbolic and therefore satisfies the first
condition above. There is a Kac–Moody root datum whose Coxeter diagram is D1 and
whose group of k-points satisfies the conditions of [Rém04, Theorem 4.C.1] (take the
remark following that theorem into account). This shows that the second condition
above is satisfied as well. This settles the case n = 1.

If n > 1, let Dn be the diagram obtained by joining every vertex of D1 to every
vertex of a diagram of type Ãn by an edge labelled ∞. The translation subgroup of the

special subgroup corresponding to the Ãn-subdiagram is an abelian subgroup of rank
n in Wn. Furthermore, the dimension of the CAT(0)-realization of Wn can be seen to
be n as well, since the size of the maximal spherical subsets of S does not grow. As
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the dimension of |Wn|0 is an upper bound for rk(|Wn|0), the first condition above is
satisfied for Dn for any n > 1. For every n > 1, the Kac–Moody data chosen in the
case n = 1 can be extended to a Kac–Moody datum such that the associated Coxeter
group has diagram Dn.

(This amounts to extending the combinatorial data — that is, the finite index set of
cardinality n, the generalized n× n Cartan matrix, the choice of n of vectors each in a
free Z-module of rank n and its dual, such that the matrix of the pairing between these
two sets of vectors is the given generalized Cartan matrix— defining the Kac–Moody
group functor.

The most restrictive of these tasks is to arrange for the coefficients of a general Cartan
matrix to yield the given Weyl group. This is possible as soon as the edge labels of the
Coxeter diagram of the Weyl group belong to the set {2, 3, 4, 6,∞}.)

By our choice, then Gn contains G1, and the second condition is also satisfied for
any n > 1. The group Gn is centre-free whenever the above described Kac–Moody root
datum is chosen to be the adjoint datum for the given generalized Cartan matrix. �

The above result is Theorem C of the Introduction. We mention there a stronger
version, in which we exhibit groups with exactly the same properties except that topo-
logical simplicity is replaced by abstract simplicity. This can be proved by using recent
(not yet published) results from [CER] and [CR]. The main idea of the proof is the
same (i.e. gluing hyperbolic and affine Dynkin diagrams) but the details are as follows.
Glue a (nonaffine but 2-spherical) triangle Dynkin diagram with edges all labelled by

2’s to an affine diagram of type, say, Ãn−1 along a vertex. Use [CR] applied to the
hyperbolic triangle Kac–Moody group to disprove the linearity of the corresponding
(hence of the ambient) Kac–Moody group. Use [CER, Theorem 1.2] with a sufficiently
large finite ground field to obtain abstract simplicity for the complete Kac–Moody group
corresponding to the full diagram.

Remark 27. The referee suggested the Haglund–Paulin simplicity criterion for isometry
groups of spaces with walls [HP] as a potentially rich source of abstractly simple groups
with the above properties. We agree that this criterion might lead to further examples.
The difficulty in this approach is to construct a space with walls which not only has
large rank, but whose automorphism group is rich enough to be seen to have the same
rank (or, lacking that, large rank) also.

We finally observe that thanks to a theorem of Krammer, the algebraic rank of a
Coxeter group of finite rank can be computed from its Coxeter diagram. In order to
state that theorem, we first introduce the notion of a standard abelian subgroup of a
Coxeter group.

Definition 28. Let (W,S) be a Coxeter system. Let I1, . . . , In ⊆ S be irreducible,
nonspherical and pairwise perpendicular (i.e., the order of the product of two elements
taken from different subsets is 2). For any i, let Hi be a subgroup of WIi

defined as
follows. If Ii is affine, Hi is the translation subgroup; otherwise, Hi is any infinite cyclic
subgroup of WIi

. The group
∏

iHi is called a standard free abelian subgroup.

The algebraic rank of a standard abelian subgroup
∏

iHi as defined above equals∑
Ii affine(#Ii − 1) +

∑
Ii not affine 1. Moreover, since all possible choices of the subsets

I1, . . . , In ⊆ S can be enumerated, the maximal algebraic rank of a Coxeter group
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is achieved by some standard free abelian subgroup because of the following theorem
[Kra94, 6.8.3].

Theorem 29. Let W be an arbitrary Coxeter group of finite rank. Then any free

abelian subgroup of W has a finite index subgroup which is conjugate to a subgroup of

some standard free abelian subgroup. �

In particular, the algebraic rank of a Coxeter group of finite rank can be computed
from its Coxeter diagram.
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[Rém04] B. Rémy, Topological simplicity, commensurator super-rigidity and non-linearities

of Kac–Moody groups, Geom. Funct. Anal. 14(4) (2004), 810–852, with an appendix
by P. Bonvin.
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[RR06] B. Rémy, M. Ronan, Topological groups of Kac–Moody type, right-angled twinnings

and their lattices, Comment. Math. Helv. 81(1) (2006) 191–219.

[Tit87] J. Tits, Uniqueness and presentation of Kac–Moody groups over fields, J. Algebra

105(2) (1987), 542–573.

[Vin71] �. B. Vinberg, Diskretnye line�nye gruppy, poro�dennye otra�eni�mi,
Izv. Akad. Nauk SSSR, ser. mat. 35 (1971), 1072–1112. English transl.: È. B.
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