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Topological groups of Kac–Moody type, right-angled twinnings
and their lattices
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Abstract. We construct new groups satisfying the combinatorial axioms of twin root data, by
amalgamating spherical parabolic subgroups. The corresponding buildings have right-angled
Coxeter groups as Weyl groups. The possibility of mixing several ground fields, not available
for Kac–Moody groups, leads to strong non-linearity properties for the groups and some of their
subgroups. We also discuss a completion procedure for groups with twin root data which is the
starting point for defining a large family of topologically simple groups.
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Introduction

In this paper we construct groups acting on right-angled buildings. Our groups are
generated by root groups in a way that places a Moufang structure on the building.
This yields a twin building which in turn leads to lattices acting on the original
building. As a special case we obtain non-uniform lattices acting on right-angled
hyperbolic buildings.

A building is called right-angled if its Coxeter system (W, S) is right-angled,
where W denotes the Coxeter group, and S a canonical set of generators. This means
that the order of the product of any two generators si and sj in S is either 2 or infinity.
For such buildings each rank 2 residue is either a complete bipartite graph or a tree.
There is no loss of generality in assuming that the Coxeter system is irreducible, and
the rank is at least 2, which implies that the building contains tree residues.

The property of being right-angled implies, in a suitable geometric realization,
that the panels of each chamber are either at right angles or are disjoint. For example
the hyperbolic plane tiled by right-angled n-gons is an apartment of such a type; the
chambers are the n-gons, the panels are their edges, and buildings of this type have
rank n and are 2-dimensional hyperbolic.
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In order to state a theorem, let the valency of a panel denote the cardinality of the
set of chambers on that panel. If all panels of type s have the same valency v(s) then
we say the building has parameters {v(s)}s∈S . Our construction in Section 3.E, based
on our construction of Moufang trees in Section 2, yields the following theorem.

Theorem. Any right-angled building having a parameter system whose parameters
are the cardinalities of projective lines admits a Moufang structure.

A Moufang structure is defined in terms of root group actions (see [Ro1] and
[T5]). For the purposes of the present paper we lay out the axioms in terms of a
“twin root datum” in Section 1.A. Such data immediately yield twin buildings having
a Moufang structure. A twin building is a pair of buildings having the same Coxeter
system (W, S), along with a “codistance”, taking values in W , between chambers of
one building and chambers of the other. In a twin building the stabilizer of a face
in one building acts on the other building. If � is a building that is Moufang and
locally finite, a stabilizer in the building twinned with it acts as a lattice on � (if
the parameters are sufficiently large). We should mention here that the geometric
realization of our buildings uses only the spherical residues. When the parameters
are finite this implies that the link of each vertex is finite.

Our construction uses an action of the group SL2(Ks) on the set of chambers
having a common panel of type s. The action is the same as the action on the
projective line over Ks (see the theorem above). We allow the possibility of mixing
fields of different characteristics (for different s in S), and this gives groups containing
infinite subgroups of finite exponent, prime to one another. This provides our second
result, given more precisely in Section 4.A.

Theorem. There exist groups having right-angled twin root data such that any Borel
subgroup for one building is a non-uniform lattice for the other building of the twin.
Moreover any group homomorphism from such a lattice to a product of algebraic
groups has infinite kernel.

These exotic groups share some combinatorial properties with algebraic and arith-
metic groups, but provide non-classical applications of recent results generalizing
properties of lattices in Lie groups [BS]. We can construct interesting non-linear
topological groups for which well-known properties of harmonic analysis or unitary
representations are relevant (and sometimes false, see the examples of the existence of
a Gelfand pair or the Howe–Moore property considered in [BS, pp. 31–32]). This is
done via a geometric completion procedure described in Section 1.B. This procedure
is applied to groups having twin root data. For example, Kac–Moody groups admit
twin root data (see [T2]), and when the group is over a finite field of characteristic p

our completion procedure leads to a topological Kac–Moody group having a refined
Tits system in the sense of [KP] (see Section 1.A). In such cases the topological group
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is closer to an algebraic group over a local field than the non-linear topological groups
mentioned above. More precisely we have the following pro-p-ness result (1.C).

Theorem. A topological Kac–Moody group admits a refined Tits system. The Tits
system gives rise to a building in which any facet-fixator is, up to finite index, a pro-p
group.

This paper is organized as follows. In the first section, we introduce twin root data
(1.A), define topological groups of root datum type (1.B), and show that they gener-
alize algebraic groups over local fields (1.C). In Section 2 we sketch a construction of
twin root data and apply it to trees; it is a special case of the construction of Moufang
twin trees due to J. Tits, but given in a very down-to-earth way. The generators and
relations that we provide in Section 2 are then used in Section 3 for our construction
of right-angled buildings admitting root groups. Finally, in Section 4 we discuss
linearity properties for lattices of topological groups of root datum type.

Let us state a convention we use for group actions. If a group G acts on a set
X, the pointwise stabilizer of a subset Y ⊂ X is called its fixator and is denoted
by FixG(Y ). The global stabilizer is denoted by StabG(Y ). When Y is a facet of a
building X and G is type-preserving, the two notions coincide. Finally the notation
G|X means the group obtained from G by factoring out the kernel of the action on X.

The first author thanks University College, London where this work was initiated
and the Hebrew University, Jerusalem for its warm hospitality (2000/2001). He was
supported by grants from the British EPSRC and the Hebrew University. He thanks
M. Bourdon for helpful discussions, Sh. Mozes for suggesting a stronger version of
the non-linearity property, and J. Dymara and G. Rousseau for suggesting many im-
provements and pointing out mistakes. The second author was partially supported by
the National Security Agency. We would also like to thank the referees for suggesting
that the scope of the paper be widened from right-angled Fuchsian buildings to all
right-angled buildings.

1. Closures of groups with twin root data

We introduce a family of totally disconnected topological groups, called topological
groups of root datum type (1.B). This requires some basic properties of group com-
binatorics introduced by J. Tits and by V. Kac and D. Peterson (1.A). In the case of
topological Kac–Moody groups, some precise structure results are available, leading
to analogies with algebraic groups over local fields of characteristic p (1.C).

1.A. Group combinatorics ([A], [Cho], [Hée], [KP], [Ro1], [Ro2], [T2], [T3], [T4],
[T5]). Let (W, S) be the Coxeter system W = 〈s ∈ S | (st)Mst = 1 whenever
Mst < ∞〉, where M is a Coxeter matrix. The Coxeter complex � = �(W, S) is
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the union of the translates wWJ = w〈J 〉 for J ⊂ S and w ∈ W , partially ordered by
reverse inclusion [Ro1, §2]. It is an abstract simplicial complex acted upon by W on
which are modelled apartments in buildings of type (W, S). The elements w = w〈∅〉
have maximum dimension and are called chambers. The root system of (W, S) is
defined using the length function � : W → N with respect to S [T2, §5]: the simple
root of index s ∈ S is the subset as = {w ∈ W | �(sw) > �(w)}, and a root of W

is a translate was , w ∈ W, s ∈ S. The set of all roots is denoted by �; it admits an
obvious W -action by left multiplication. A root is positive if it contains 1; otherwise,
it is negative. We denote by �+ (resp. �−) the set of positive (resp. negative) roots.
The complement of a root a, denoted−a, is also a root, called the opposite of a. The
wall ∂a of a root a is the union of the closed panels having exactly one chamber in
a; it is also the intersection of the closures of a and −a. A pair of roots {a; b} is
called prenilpotent if both intersections a ∩ b and (−a)∩ (−b) are nonempty. Given
a prenilpotent pair of roots {a; b}, the interval [a; b] is by definition the set of roots
c with c ⊃ a ∩ b and (−c) ⊃ (−a) ∩ (−b).

Definition. Let � be an abstract group containing a subgroup H . Suppose � is
endowed with a family {Ua}a∈� of subgroups, called root groups, indexed by the set
of roots �, and define the subgroups U+ = 〈Ua | a ∈ �+〉 and U− = 〈Ua | a ∈ �−〉.
We say that the triple

(
�, {Ua}a∈�, H

)
is a twin root datum for � (or satisfies the

(TRD) axioms) if the following conditions are fulfilled.

(TRD0) Each Ua is nontrivial and normalized by H .

(TRD1) For each prenilpotent pair of roots {a; b}, the commutator subgroup
[Ua, Ub] is contained in the subgroup 〈Uc : c ∈ [a; b] \ {a; b}〉.

(TRD2) For each s ∈ S and u ∈ Uas \ {1}, there exist uniquely defined elements
u′, u′′ ∈ U−as \ {1} such that m(u) = u′uu′′ conjugates Ub onto Us.b for
every root b. Moreover, m(u)H = m(v)H for all u, v ∈ Uas \ {1}.

(TRD3) For each s ∈ S, we have Uas �⊂ U− and U−as �⊂ U+.

(TRD4) The group � is generated by H and the Ua’s.

Examples. 1) The simplest example of a group with a twin root datum is SL2 over
a field k. In the computational parts of Sections 2 and 3, we are led to handle
several copies of it, so we use an index i in describing certain elements and sub-
groups. The corresponding Coxeter group is Z/2Z = 〈si〉, so � = {±ai} and
(TRD1) is an empty condition. We set ui(r) =

(
1 r
0 1

)
, u−i (r) =

(
1 0−r 1

)
, mi(λ) =

u−i (λ
−1)ui(λ)u−i (λ

−1), mi = mi(1) and ti(λ) = mi(λ)m−1
i . The twin root datum

is given by U±ai
= u±i (k) and H = ti(k

×). In matrix notation: mi(λ) =
(

0 λ
−λ−1 0

)
and ti(λ) = (

λ 0
0 λ−1

)
. Axiom (TRD3) is obvious and (TRD4) is well-known. Ax-

iom (TRD0) follows from ti(λ)u±i (r)ti(λ)−1 = u±i (λ
±2r), and finally (TRD2) fol-

lows from mi(λ)ui(r)mi(λ)−1 = u−i (λ
−2r), mi(λ)u−i (r)mi(λ)−1 = ui(λ

2r) and
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mi(λ)mi(μ) = ti(−λμ−1). Note that we also have mi(λ)ti(μ)mi(λ)−1 = ti(μ
−1),

mi(λ)−1 = mi(−λ) and m2
i = −id. Note that the uniqueness in (TRD2) follows

from the rest of the axioms [T5, 3.3].
2) The special linear groups SLn(k[t, t−1]) over Laurent polynomials satisfy these

axioms for W affine of type Ãn−1. More generally, the groups G(k[t, t−1]) where
G is a simply connected Chevalley group, satisfy these axioms for a suitable affine
Coxeter group W ([A, §1]). In these cases, the root groups are naturally defined
as subgroups of the spherical root groups by using polynomials of the form atr for
fixed r as the off-diagonal entries. The commutator condition (TRD1) is carefully
examined in [A, Examples 2 and 3].

The procedure to attach a building to a BN -pair (G, B, N, S) is standard, see
e.g. [Ro1, §5]: the simplices are in equivariant bijection with the translates gPJ of
the standard parabolic subgroups PJ = B〈J 〉B, J ⊂ S. The (TRD) axioms imply
the existence of two BN-pairs in G ([A, Proposition 1]), hence of two buildings.
Moreover there is a natural opposition relation on chambers of opposite signs such
that two chambers are opposite if the intersection of their stabilizers is minimal. This
is the generic position for two chambers, and the set of opposites for a given chamber
is sometimes called a big cell, referring to a well-known terminology for algebraic
groups. The root groups Ua act as root groups on each building of the twinning.
The buildings are therefore Moufang in the sense of Tits [T5, §4.3]. Geometrically
this property implies that given a codimension one simplex 	 and a chamber c

containing it, there is a group Ua of building automorphisms fixing c and acting
simple-transitively on the chambers containing 	 and different from c ([Ro1, 6.4]).

Finally, we will also need group combinatorics defined by V. Kac and D. Peterson
[KP, §3].

Definition. A refined Tits system for a group G is a sixtuple (G, N, U+, U−, H, S),
where N , U+, U−, H are subgroups satisfying the following:

(RT1) We have G = 〈N, U+〉, H �N , H < NG(U+)∩NG(U−), W = N/H and
(W, S) is a Coxeter system.

(RT2) For each s ∈ S, we set Us = U+ ∩ s−1U−s; and for any w ∈ W and s ∈ S

we require:

(RT2a) Us �= {1} and s−1(Us \ {1})s ⊂ UssHUs ,

(RT2b) either w−1Usw ⊂ U+ or w−1Usw ⊂ U−,

(RT2c) U+ = Us(U+ ∩ s−1U+s).

(RT3) If u− ∈ U−, u+ ∈ U+ and n ∈ N are such that u−nu+ = 1, then u− =
u+ = n = 1.
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1.B. Topological groups. Let � be a group with twin root datum
(
�, {Ua}a∈�, H

)
.

Until the end of Section 1, we assume that the Weyl group W (hence �) is infinite
and that all root groups Ua are finite. We denote by � the simply connected non-
positively curved metric realization, due to M. Davis [D] and G. Moussong [Mou],
of the positive building of � [A, Proposition 1 and Example 6]. We set qmin =
mina∈� |Ua|(= mins∈S |Uas |) and qmin = maxa∈� |Ua|(= maxs∈S |Uas |). Since
only spherical facets appear in the Moussong–Davis realization, � is locally finite.
Our main motivation in defining topological groups of root datum type is geometric
group theory, in which groups are studied via their actions on suitable spaces. The
following lemma shows that taking the quotient by the kernel of the �-action on �

is harmless; it follows easily from [Ré1, 1.5.4] and refined Tits system arguments.

Lemma 1. The kernel K of the �-action on � consists of the elements in H central-
izing all root groups. The groups U± embed in �/K , hence so do the root groups, and(
�/K, {Ua}a∈�, H/K

)
is again a twin root datum with the same associated Coxeter

system and twin buildings. �

When � is a Kac–Moody group, the kernel K is the center Z(�) [Ré1, 9.6.2],
which is finite when the ground field is. For SLn(K[t, t−1]), the buildings of � are
Euclidean Ãn−1-buildings, and the kernel K is the group μn(Fq) of n-th roots of
unity in Fq .

Convention. Until the end of 1.B, � denotes a group with twin root datum as above
factored out by the kernel of its action on the building �. This group has a twin root
datum with finite root groups and infinite Weyl group.

Given an automorphism g ∈ Aut(�) and a finite union C of facets, OC(g) =
{h ∈ Aut(�) : h |C= g |C} is by definition an open neighborhood of g in Aut(�).
The group � is not discrete on the single building � because each facet fixator is
transitive on opposite facets in �−, of which there are infinitely many.

Definition. (i) We call the closure G = �Aut(�) a topological group of root datum
type. When � is a Kac–Moody group over a finite field, we call G a topological
Kac–Moody group.

(ii)We call the fixator FixG(F)of a facetF the parahoric subgroup ofG associated
to F , and we denote it by GF . We call a chamber fixator an Iwahori subgroup.

Remark. An automorphism of � lies in G if and only if it coincides with an element
of � on any finite set of facets.

Example. Consider the image of SLn(Fq [t, t−1]) acting on the Euclidean building
corresponding to the discrete valuation ring with uniformizer t . The kernel of the
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action is μn(Fq) and the “completion” G is SLn

(
Fq((t))

)
/μn(Fq). When n > 2, G is

close to Aut(�), but when n = 2, � is a tree and G is far from being all of Aut(�).

We now consider discrete subgroups of G, which by the above example are anal-
ogous to some arithmetic groups over function fields. Fix a chamber c− in �−, and
let 
 denote its stabilizer. Recall that for qmin  1, the parabolic subgroups of a
given sign ε are lattices of the locally finite CAT(0)-building �−ε (see [CG], [Ré2]).
Since the group � acts by type-preserving isometries on �, the stabilizer of a facet
F in � is also its fixator. We denote it by �(F). Recall also that two subgroups 


and 
′ of a given group G are commensurable if they share a finite index subgroup.
The commensurator of 
 in G is the group CommG(
) = {g ∈ G : 
 and g
g−1

are commensurable}.
Lemma 2. (i) For any two negative facets F and F ′, �(F) and �(F ′) are commen-
surable.

(ii) For any negative facet F , � lies in the commensurator CommAut(�)

(
�(F)

)
.

Proof. Let F and F ′ be two negative facets. Since �− is locally finite, the �(F)-
transforms of F ′ are in finite number; we denote them by γ1.F

′, . . . γm.F ′ for some
γi ∈ �(F). Therefore, given any γ ∈ �(F) one has γ.F ′ = γj .F

′ for some j , and
hence �(F) = ⊔m

j=1 γj

(
�(F) ∩ �(F ′)

)
. Switching F and F ′ proves (i), and (ii)

follows from (i) since g�(F)g−1 = �(gF). �

Example. The negative vertex fixators in SLn

(
Fq((t−1))

)
/μn(Fq) are conjugates of

the subgroup SLn

(
Fq [[t−1]])/μn(Fq). In � they are {0}-arithmetic groups

commensurable with SLn(Fq [t−1])/μn(Fq), and the commensurator contains
SLn

(
Fq(t)

)
/μn(Fq).

1.C. Kac–Moody groups. Let � be the image in Aut(�) of the rational points of
an almost split Kac–Moody group over Fq [Ré1, 12.6.3] whose Weyl group is infinite.

We denote its twin root datum by
(
�, {Ua}a∈�, T

)
, and let G = �Aut(�) denote the

corresponding topological Kac–Moody group (1.B). By [Ré1, 12.5.4], for each root
a the group Ua is isomorphic to the Fq -points of the unipotent radical of a Borel
subgroup in a rank one finite group of Lie type, so the finiteness of the root groups
follows from that of Fq , and |Ua | ≥ q for every a ∈ �.

Example. The group SU3
(
Fq [t, t−1]) is an almost split Kac–Moody group over Fq

with infinite dihedral Weyl group. The associated buildings are semihomogeneous
trees of valencies 1+ q and 1+ q3 [Ré4, 3.5].

The group G admits a BN-pair, since its subgroup � is strongly transitive (in the
sense of W -distance) on � [Ro1, §5]. We now prove a stronger result stressing the
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analogy between G and semisimple groups over local fields of positive characteristic.
Let F be a facet in � and let A be a twin apartment containing it [A, Lemma 2]. We
have a Levi decomposition

�(F) = M(A, F ) � U(F),

where M(A, F ) is abstractly isomorphic to the Kac–Moody group associated to a
submatrix of the generalized Cartan matrix defining � [Ré1, 6.2.2]. Since F is
spherical, M(A, F ) is a finite reductive group of Lie type over Fq . We denote by UF

the closure U(F)
Aut(�)

of the unipotent radical U(F).

Theorem. (i) The sixtuple (G, N, Uc, U−, T , S) defines a structure of refined Tits
system for the topological Kac–Moody group G.

(ii) The group UF is pro-p and the parahoric subgroup GF is virtually pro-p
since we have GF = M(A, F ) � UF .

Remark. The theorem implies that SLn

(
Fq((t))

)
satisfies the axioms of a refined Tits

system, and that its parahoric subgroups admit semidirect product decompositions.
This splitting of facet fixators is not true for algebraic groups over local fields of
characteristic 0. Other arguments, involving torsion, explain why the analogy with
the characteristic 0 case is not relevant [Ré3].

To prove the theorem we need two lemmas which will be proved using a filtration
{En}n≥1 of �. The first term E1 is (the closure of) st(F ), the star of F in � and
further terms are defined inductively. Write An = En ∩ A and choose a chamber cn

of A sharing a panel with the boundary of An and at minimal distance from An. We
define An+1 to be the convex hull of cn and An, and En+1 to be �(F).An+1, that is the
set of all �(F)-transforms of An+1. By the Bruhat decomposition, for any chamber
c ∈ st(F ), A is a complete set of representatives for the action of U(c) < �(F)

on �. Hence {En}n≥1 exhausts �. For each n ≥ 1, the set En is �(F)-stable. We
can write the groups GF and UF as projective limits: GF = lim←−n≥1

�(F) |En and
UF = lim←−n≥1

U(F) |En .

Lemma 1. The group UF is pro-p.

Remark. This lemma is true for an arbitrary twin root datum as in 1.B, provided its
root groups are p-groups.

Proof. For each n ≥ 1, we have an exact sequence

1 −−→ Kn −−→ U(F) |En+1 −−→ U(F) |En −−→ 1,

where Kn is the fixator FixU(F)|En+1
(En) of En in the restricted group U(F) |En+1 .
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SinceU(F)fixes st(F ), we haveU(F) |E1= {1}. By definitionUF = lim←−n≥1
U(F) |En ,

so in order to show that UF is pro-p, it is enough by induction to show that Kn is a
p-group for each n ≥ 1.

Let us fix n ≥ 1 and u ∈ Kn. Let 	n be the panel of cn in the boundary of An, and
let dn be the other chamber of A having 	n as a panel. Then dn ∈ An, so u fixes dn,
and by the Moufang property [Ro1, 6.4] there exists v ∈ Ua such that v−1u.cn = cn.
The element v−1u is in the “unipotent radical” of the Borel subgroup Fix�(dn) and
fixes cn ∪ dn; hence it must fix the whole star of 	n. Consequently, u and v coincide
on st(	n) and thus uqmax acts trivially on it. In particular, uqmax fixes An ∪ {cn} hence
An+1 by convexity. Every chamber of En+1 \ En is of the form v.d for some d in
the convex hull of An and cn, and v ∈ �(F). Then uqmax(vd) = v(v−1uqmaxv.d) =
v
(
(v−1uv)qmax .d

)
. Recall that U(F) is normalized by �(F), so that applying the

result of the above paragraph to v−1uv instead of u, we get (v−1uv)qmax .d = d, and
thus uqmax(vd) = vd. This shows that the order of each element u ∈ Kn divides
qmax; hence Kn is a p-group, as required. �

Lemma 2. (i) We have �∩UF = U(F), hence M(A, F )∩UF = {1} for any facet F .
(ii) We have GF = M(A, F ) � UF .

Remark. In the proof below, the assumption that � is Kac–Moody is used in asserting
that the center of M(A, F ) is an Fq -torus, hence must intersect UF trivially.

Proof. (i) Let g ∈ � ∩ UF < Fix�(F) = �(F). The Levi decomposition of �(F)

gives g = mu, with m ∈ M(A, F ) and u ∈ U(F). Since UF fixes st(F ), the set of
chambers containing F , we see that both g and u, hence also m, fix st(F ). Therefore
m is central in the finite reductive group M(A, F ) of Lie type; this implies that m

lies in a torus, so its order is not divisible by p. But m is also a torsion element in the
pro-p group UF , and is hence trivial.

(ii) For each n ≥ 1, En is �(F)-stable by definition, hence M(A, F )-stable.
Since M(A, F ) normalizes U(F), it normalizes U(F) |En in �(F) |En for each
n ≥ 1. Hence UF is normalized by M(A, F ). Let g ∈ �(F). It can be written as
g = lim←−n≥1

gn, with gn ∈ �(F) |En . According to the Levi decomposition of �(F),
we havegn = mnun withmn ∈ M(A, F ) |En andun ∈ U(F) |En . The groupM(A, F )

is finite, so up to extracting a subsequence, we shall assume that mn is a constant
element m in M(A, F ). This enables us to write g = m · (lim←−n≥1

un), and proves

GF = M(A, F )·UF . Finally (i) implies the trivial intersection M(A, F )∩UF = {1},
hence the semidirect product decomposition GF = M(A, F ) � UF . �

Proof of the theorem. By [Ré1, 1.5.4], (�, N, U+, U−, T , S) is a refined Tits system
with Weyl group W , and U+∩s−1U−s = Uas for any s ∈ S. Axiom (RT1): the group
T normalizes U(c), and passing to the projective limit it normalizes Uc. The other
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statements in axiom (RT1) are either clear or true from the refined Tits system axioms
for �. Axiom (RT3): suppose we have γ nuc = 1, with γ ∈ 
, n ∈ N and uc ∈ Uc.
Then γ n = u−1

c belongs to Uc ∩�, which is U(c) by Lemma 2: all the factors are in
� and we apply axiom (RT3) from the refined Tits system structure of � to get (RT3)
for G. Axioms (RT2): define U(s) = Uc∩ s−1
s. The first part of Lemma 2 implies
U(s) < U(c) ∩ s−1
s, hence U(s) is the root group Uas according to the relation
of a refined Tits system and the twin root datum of a Kac–Moody group [Ré1, 1.6].
Axioms (RT2a) and (RT2b) are then clear because they just involve subgroups of �.
For axiom (RT2c), we need Uc = Uas · (Uc ∩ s−1Ucs). An element u ∈ Uc fixes c,
hence permutes the chambers sharing their panel of type s with c. Since Uas fixes c

and is (simply) transitive on the set of chambers �= c of the latter type, there exists an
element v ∈ Uas such that v−1u fixes both c and sc. This proves (RT2c). �

The theorem gives an analogy between topological Kac–Moody groups and semi-
simple algebraic groups over local fields of positive characteristic. In the next two
sections, we construct groups exotic enough to show that the analogy is strictly weaker
for arbitrary twin root data.

2. Twinning trees

The construction of this section applies to trees as well as to right-angled buildings.
Here are its main steps.

1. Define the “Borel subgroup” by means of a presentation described by an apart-
ment.

2. To each type of spherical facets associate a “unipotent radical” and a “Levi
factor”.

3. Show that the “Levi factor” admits an action on the “unipotent radical”.

4. Amalgamate these groups along the inclusions given by the closure of a chamber.

5. Check the twin root datum axioms for the amalgam �.

Step 4 amounts to taking the fundamental group of a suitable complex of groups.
The computations for Step 3 are done in detail in the present section. This enables
us to concentrate on more conceptual arguments in the case of right-angled buildings
(Section 3).

2.A. Root system. The Coxeter complex here is a tiling of R by segments with
vertices the integers. We denote by E the segment [0, 1], and by s0 (resp. s1) the
reflection with respect to 0 (resp. 1). This is the Coxeter complex of the infinite
dihedral group D∞ = 〈s0, s1〉. The roots of � are the half-lines defined by the
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integers, the positive roots (in �+) are those containing E. We denote by a0 (resp.
a1) the positive root having boundary 0 (resp. 1). Each vertex has type 0 or 1, with
the obvious notation, and the boundary of a root is called its vertex. The type of a root
a is the type of its vertex, and is denoted by ι(a). A positive root a is prenilpotent
with ai if and only if a ⊃ ai . Each positive root contains either a0 or a1, but not
both, so the positive roots fall into four disjoint subsets P (ai, j) for i, j ∈ {0; 1},
where P (ai, j) is the set of positive roots of type j which contain ai . Note that these
subsets of positive roots can also be defined as follows:

P (a0, 0) = {(s0s1)
ma0}m≥0, P (a0, 1) = {(s0s1)

ms0a1}m≥0,

P (a1, 0) = {(s1s0)
ms1a0}m≥0, P (a1, 1) = {(s1s0)

ma1}m≥0.

We shall use P (ai) to mean P (ai, 0) ∪ P (ai, 1), the set of positive roots pre-
nilpotent with ai .

s0s1a0 a0 s1a0 s1s0s1a0

E

s0s1s0a1 s0a1 a1 s1s0a1

2.B. Borel subgroup. Unipotent subgroups. We pick two fields K0 and K1. To
each positive root a of type i is attached a copy of the additive group (Ki ,+). We
denote it by Ua = {ua(k) : k ∈ Ki} (ua is the chosen isomorphism between the root
group and its field).

Definition. (i) Let the abelian group Ai be the direct sum of the root groups associated
to the roots in P (ai).

(ii) Let the group U+ be the free product of A0 and A1, that is U+ = A0 ∗ A1.
(iii) Let the group T be the product K

×
0 ×K

×
1 of the multiplicative groups of the

chosen fields.

For a (positive) root a of type i, we define εa ∈ {±1} to be (−1)m, where m is the
exponent appearing in 2.A. It is the parity of the number of vertices of type i in the
interior of the segment joining the middle of E and the vertex ∂a. Using the notation
of Example 1 in 1.A, T is the maximal torus

t0(K
×
0 )× t1(K

×
1 ) =

{(
λ 0
0 λ−1

)
,
(

μ 0
0 μ−1

)
: λ ∈ K

×
0 , μ ∈ K

×
1

}
of SL2(K0)× SL2(K1), and we define the action of T on U+ by

(2B1) tj (λ)ua(k)tj (λ)−1 = ua(λ
2εaδjι(a)k) for any j ∈ {0; 1}, λ ∈ K

×
j , a ∈ �+

and k ∈ Kι(a),
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and where the Kronecker symbol δjι(a) means that the element tj (λ) induces multi-
plication of k by λ2εa only if the type of the root a is j . In particular, tj (λ) centralizes
each root group of type �= j . The action of a single element tj (λ) obviously preserves
the relations in U+ and the actions of any two such elements commute. We therefore
obtain an action by T on U+.

Definition. (i) The Borel subgroup B is the semi-direct product T � U+.
(ii) We denote by V i the subgroup of U+ generated by all the positive root groups

except Ui .
(iii) We denote by Ui the normal closure of V i in U+, i.e. the subgroup generated

by ua(k) for a ∈ P (ai)\{ai} and uai
(r)ua(k)uai

(r)−1 for a ∈ P (a1−i ), with r ∈ Ki .
(iv) The (standard) Levi factor of type i is the direct product Li = SL2(Ki )×K

×
1−i .

2.C. Actions of Levi factors on unipotent radicals. In order to define a parabolic
subgroup as a semi-direct product Li�Ui , we must define an action of Li on the group
Ui . We define actions of SL2(Ki ) and K

×
1−i which are easily seen to commute with

one another, so we can deal with each factor separately. The action of the torus K
×
1−i

on Ui is that obtained as a subgroup of T . This makes sense because T obviously
stabilizes Ui . We turn now to the action of the factor SL2(Ki ). We define the actions
of the generators ui(r) and mi(λ) given in 1.A.

For the root groups, we set for k in K0 or K1, and r, s in Ki :

(2C1) ui(r)ua(k)ui(r)
−1 = ua(k) for a ∈ P (ai) \ {ai},

(2C2) ui(s)
(
uai

(r)ua(k)uai
(r)−1

)
ui(s)

−1 = uai
(r + s)ua(k)uai

(r + s)−1 for
a ∈ P (a1−i ).

The elements mi(λ) have a conjugation action on the positive root group ele-
ments ua(k):

(2C3) mi(λ)ua(k)mi(λ)−1 = usia(λ
−2εaδiι(a)k).

Note that sia is a non-positive root different from ai since �+ ∩ si�− = {ai}
[T2, 5.6, Proposition 3]. We must also define a conjugation action of mi(λ) on
elements uai

(r)ua(k)uai
(r)−1 in the free product Ua ∗ Uai

, whenever a is a positive
root containing a1−i , and uai

(r) �= 1. We set

(2C4) mi(λ)
(
uai

(r)ua(k)uai
(r)−1

)
mi(λ)−1

= uai

(−λ2

r

)
ua

(
(−λ

r
)2εaδiι(a)k

)
uai

(−λ2

r

)−1
.
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Remark. The Kronecker symbol δiι(a) in the exponents 2εaδiι(a) involves the types of
roots i and ι(a). It simply means that the element mi(λ) induces a multiplication of

the additive parameter k in ua(k) by a factor λ−2εa or
(−λ

r

)2εa only if the type of the
root a is i.

2.D. Checking the product relation. In this subsection, we make sure that the
individual actions above define an action of Li on Ui . We must show that given
any two elements g, h of SL2(Ki )× K1−i and a generator v ∈ Ui , we always have
g(hvh−1)g−1 = (gh)v(gh)−1. This equality involves the product g.h, and we will
have to describe the product of g and h in SL2 in terms of the Bruhat decomposition.
When g is in the big cell SL2

( ∗ ∗�=0 ∗
)
, we write it g = ui(r)mi(λ)ui(r

′); when it is
in the Borel subgroup SL2

( ∗ ∗
0 ∗
)
, we write it g = ui(r)ti(λ). Similarly, when h is in

the big cell, we write it h = ui(s)mi(μ)ui(s
′); when it is in the Borel subgroup, we

write it h = ui(s)ti(μ).

The form of the generator v of Ui will also play a role. A generator v =
uai

(t)ua(k)uai
(t)−1 with a a root containing a1−i (hence not prenilpotent with ai),

will be referred to as a generator of the first type. A generator v = ua(k), with a a
root containing ai (hence prenilpotent with ai), will be referred to as a generator of
the second type.

The computation is divided into five cases, according to whether each of the
elements g, h or gh belongs to the big cell or its complement the Borel subgroup.
Each case is divided into two subcases, according to whether the generator is of the
first or of the second type.

We introduce the notation R = r ′ + s and S = s′ + t for the remainder of
Section 2.D.

2.D.1. “big cell · big cell ∈ big cell”, with g = ui(r)mi(λ)ui(r
′) and h =

ui(s)mi(μ)ui(s
′), in which case R �= 0. A calculation in SL2 shows that gh =

ui

(
r − λ2

R

)
mi

(−λμ
R

)
ui

(
s′ − μ2

R

)
.

We deal with a generator v of the first type. By (2C2) we have hvh−1 =
[ui(s)mi(μ)]uai

(S)ua(k)uai
(S)−1[· · · ]−1, and assuming that S �= 0, we have by

(2C4) and (2C2) that

hvh−1 = uai
(s − μ2S−1)ua

(
(−μS−1)2εaδiι(a)k

)
uai

(· · · )−1,

g(hvh−1)g−1 = [ui(r)mi(λ)]uai
(R − μ2S−1)

· ua

(
(μ2S−1)2εaδiι(a)k

)
uai

(R − μ2S−1)−1[· · · ]−1.
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Under the further assumption that R − μ2S−1 �= 0, (2C4) and (2C2) give

g(hvh−1)g−1 = uai

(
r − λ2

R − μ2S−1

)
· ua

(( −λ

R − μ2S−1

)2εaδiι(a)

(−μS−1)2εaδiι(a)k

)
· uai

(· · · )−1

= uai

(
r − λ2S

RS − μ2

) · ua

(
(

λμ

RS − μ2 )2εaδiι(a)k
) · uai

(· · · )−1
.

Now assuming (R −μ2S−1) · S �= 0, we use (2C4) and (2C2) to conjugate v by gh:

(gh)v(gh)−1 = [ui(r − λ2R−1)mi(−λμR−1)]
· uai

(S − μ2R−1)ua(k)uai
(S − μ2R−1)−1[· · · ]−1

= uai

(
r − λ2

R
− λ2μ2

R2(S − μ2R−1)

)
· ua

((
− −λμ

R(S − μ2R−1)

)2εaδiι(a)

k

)
· uai

(· · · )−1

= uai

(
r − λ2S

RS − μ2

)
· ua

((
λμ

RS − μ2

)2εaδiι(a)

k

)
· uai

(· · · )−1
,

which proves g(hvh−1)g−1 = (gh)v(gh)−1 when S �= 0 and R − μ2S−1 �= 0.
Now, suppose S �= 0 but R − μ2S−1 = 0. Then the first equation above for

g(hvh−1)g−1 simplifies, and using (2C3) and (2C1) (which implies thatuai
commutes

with usia) we obtain

g(hvh−1)g−1 = uai
(r)usia

(( μ

λS

)2εaδiι(a)

k
)
uai

(r)−1

= usia

(( μ

λS

)2εaδiι(a)

k
)
,

and by (2C3) and (2C1) again

(gh)v(gh)−1 =[ui

(
r − λ2R−1)mi

(−λμR−1)]ua(k)[· · · ]−1

= usia

(( R

λμ

)2εaδiι(a)

k
)
.

Using R = μ2

S
, we obtain the desired equality g(hvh−1)g−1 = (gh)v(gh)−1 in this

case.
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Finally if S = 0, by (2C3) and (2C1) we have

hvh−1 = [ui(s)mi(μ)]ua(k)[· · · ]−1

= uai
(s)usia

( k

μ2εaδiι(a)

)
uai

(s)−1 = usia

( k

μ2εaδiι(a)

)
.

By (2C3), mi(λ)usia(k)mi(λ)−1 = ua(λ
2εaδiι(a) ). Using this and (2C2),

g(hvh−1)g−1 = [ui(r)mi(λ)]usia(μ
−2εaδiι(a)k)[· · · ]−1

= uai
(r) · ua

(( λ

μ

)2εaδiι(a)

k
)
· uai

(r)−1.

Again with S = 0, conjugation of v by gh gives by (2C4) and (2C2) that

(gh)v(gh)−1 = [ui

(
r − λ2R−1)mi

(−λμR−1) ui

(−μ2R−1)]ua(k)[· · · ]−1

= ui

(
r − λ2

R

)
uai

(−λ2μ2R−2

−μ2R−1

)
ua

((
λμR−1

−μ2R−1

)2εaδiι(a)

k

)
· uai

(· · · )−1ui(· · · )−1

= uai
(r) · ua

((
λ

μ

)2εaδiι(a)

k

)
· uai

(r)−1,

hence g(hvh−1)g−1 = (gh)v(gh)−1.
The case of a generator v = ua(k) of the second type is simpler, because a ∈

Pi \ {ai}, so uai
commutes with ua . Using (2C2), (2C3) and (2C4) we obtain

g(hvh−1)g−1 = (gh)v(gh)−1 = uai

(
r − λ2

R

)
· usia

((
R

λμ

)2εaδiι(a)
)
· uai

(· · · )−1.

2.D.2. “big cell · big cell ∈ Borel”, with g and h as above. We now have R = 0
and a calculation in SL2 shows that gh = ui

(
r + λ2

μ2 s′
)
ti
(−λ

μ

)
. Let v be a generator

of the first type. For g(hvh−1)g−1, we compute as in 2.D.1 (with R = 0), the case
S �= 0 but R − μ2S−1 = 0 being excluded. We obtain in any case g(hvh−1)g−1 =
uai

(
r+ Sλ2

μ2

) ·ua

((
λ
μ

)2εaδiι(a)k
) ·uai

(· · · )−1, which equals (gh)v(gh)−1 by (2C2) and

(2B1). For a generator of the second type, we have g(hvh−1)g−1 = (gh)v(gh)−1 =
ua

((
λ
μ

)2εaδiι(a)k
)
.

2.D.3. “Borel · big cell ∈ big cell”, with g = ui(r)ti(λ), h = ui(s)mi(μ)ui(s
′). A

calculation in SL2 shows that gh = ui(r + λ2s)mi(λμ)ui(s
′).
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For a generator of the first type, we have for S �= 0

g(hvh−1)g−1 = (gh)v(gh)−1

= uai

(
r + λ2s − λ2μ2

S

)
ua

((
λμ

S

)2εaδiι(a)

k

)
uai

(· · · )−1,

and for S = 0

g(hvh−1)g−1 = (gh)v(gh)−1 = usia

((
1

μλ

)2εaδiι(a)

k

)
.

For a generator of the second type, we have

g(hvh−1)g−1 = (gh)v(gh)−1 = uai
(r + λ2s)usia

((
1

μλ

)2εaδiι(a)

k

)
uai

(· · · )−1.

2.D.4. “big cell · Borel ∈ big cell”, with g = ui(r)mi(λ)ui(r
′), h = ui(s)ti(μ).

A calculation in SL2 shows that gh = ui(r)mi

(
λ
μ

)
ui

(
R
μ2

)
. Write T = R + μ2t ,

and note that R �= 0 in this case. Let us deal with a generator of the first type.
Using (2C) and (2B1) we have hvh−1 = uai

(s + μ2t) · ua(μ
2εaδiι(a)k) · uai

(· · · )−1.
Hence under the assumption that T �= 0, by (2C4) and (2C2) we get g(hvh−1)g−1 =
uai

(
r − λ2

T

) · ua

((
λμ
T

)2εaδiι(a)k
) · uai

(· · · )−1, which equals (gh)v(gh)−1, since by
(2C4) and (2C2) we obtain

(gh)v(gh)−1 =
[
ui(r)mi(λμ−1)ui

(
T

μ2

)]
ua(k)[· · · ]−1

=
[
ui(r)ui

(−λ2

T

)]
ua

((
λμ

T

)2εaδiι(a)

k

)
[· · · ]−1.

When T = 0, we simply have

g(hvh−1)g−1 = (gh)v(gh)−1 = usia

((
μ

λ

)2εaδiι(a)

k

)
.

For a generator of the second type, we have in any case

g(hvh−1)g−1 = (gh)v(gh)−1 = ui(r) · usia

((
μ

λ

)2εaδiι(a)

k

)
· ui(· · · )−1.

2.D.5. “Borel · Borel ∈ Borel”, with g = ui(r)ti(λ), h = ui(s)ti(μ) and gh =
ui(r + λ2s)ti(λμ). We have g(hvh−1)g−1 = (gh)v(gh)−1, equal to uai

(r + λ2s +
(λμ)2t)ua

(
(λμ)2εaδiι(a)k

)
uai

(· · · )−1 for a generator of the first type and to
ua

(
(λμ)2εaδiι(a)k

)
for a generator of the second type.
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2.E. Twin root datum. Let i ∈ {0; 1}. By definition of Ui as a normal closure, the
product map provides a surjective group homomorphism Uai

�Ui � U+. By the very
presentation of U+, we have another surjective group homomorphism U+ � Uai

�Ui

whose composition with the previous one gives the identity automorphism of U+.
Therefore we have U+ ∼= Uai

� Ui .

Definition. (i) We call Pi = Li � Ui the (standard) parabolic subgroup of type i.
(ii) Associated to the fields K0 and K1, we define the amalgam � = P0 ∗B P1.

Note that (i) makes sense precisely thanks to the computation made in 2.D. By the
remark before the definition we have B ∼= (T �Uai

)�Ui , and T �Uai
is isomorphic to

the upper triangular Borel subgroup T �Ui of the Levi factor Li = SL2(Ki )×K
×
1−i .

In view of the actions of the subgroups T = K
×
i × K

×
1−i and Ui of Li on Ui , the

subgroup T Ui � Ui of Pi is isomorphic to B, and the amalgam in (ii) above makes
sense. Moreover by the Bruhat decomposition of SL2, each parabolic subgroup
admits the decomposition

Pi = B � UimiB(�)

for each i ∈ {0; 1}. We call N the subgroup of � generated by the elements mi(λ)

for i ∈ {0; 1} and λ in K
×
i ; it is an extension of the Weyl group D∞ = 〈s0, s1〉 by T ,

which provides a natural isomorphism ϕ : W ∼= N/T under which si is sent to the
class mi(λ)T . Let now a = w.ai be a root in �. The conjugation of a simple root
group Uai

by n ∈ N only depends on the class nT (since T normalizes each root
group), and in fact ϕ(w)Uasϕ(w)−1 only depends on the root a (by uniqueness of the
writing a = w.ai). Moreover the action of the elements mi(λ) on Ui shows that in
the case of a positive root a, the group ϕ(w)Uasϕ(w)−1 corresponds to the group Ua

attached to a in the presentation defining U+ (2.B).

Theorem. The group � satisfies the axioms of a twin root datum for the family of
root groups {Ua = ua(Kι(a))}a∈� above. As a consequence, there exists a semi-
homogeneous Moufang twin tree of valencies 1+ |K0| and 1+ |K1| for any choice
of two fields K0 and K1.

Proof. The group � is defined as an amalgam, so by [S, I.4, Theorem 7] it acts edge-
transitively on the semihomogeneous tree � of valencies [P0 : B] and [P1 : B]. By
(�) above, these valencies are 1+ |K0| and 1+ |K1|. The stabilizer of an edge (or a
vertex of type 0, resp. of type 1) is conjugate to B (or to P0, resp. P1). We have the
following identification of �-sets:

� � �/B ��/P0 ��/P1.

We recover the simplicial structure of the tree � by the reversed inclusion relation
on stabilizers. Let us set t = m1m0. The set of edges {tnB}n∈Z�{tnm1B}n∈Z defines
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a geodesic in the tree: this is our standard apartment A, containing the standard
edge B. Let us check the (TRD) axioms. The positive root groups are t−nU0t

n,
tnm1U0m

−1
1 t−n, tnU1t

−n or t−nm0U1m
−1
0 tn for n ≥ 0, and the negative root groups

are defined similarly. A pair of roots {a; b} is prenilpotent if a ⊃ b or b ⊃ a.
Conjugating by a suitable power of t allows us to see prenilpotent pairs of roots
as pairs of positive roots. Since the group U+ is defined in such a way that the
commutation relations are trivial for all prenilpotent pairs, we get axiom (TRD1). By
definition, � is generated by P0 and P1, hence by the positive root groups, by T and
by the two root groups indexed by the opposite of the simple roots: this is (TRD4).
Axiom (TRD2) follows from the relations in SL2 defining the elements mi(λ), and
from the definition of the root groups. By the definition of B, T normalizes the
root groups, which is the second half of axiom (TRD0). By the definition of �, Ui

is simply transitive on the edges whose closure contains the vertex Pi and different
from the standard edge: this proves the first assertion of (TRD0) and the second one
in (TRD3). The first assertion in (TRD3) follows from what has already been proved
[A, §1, Remark 2]. �

3. Twinning right-angled buildings

The previous section provided Moufang twin trees defined by generators and relations.
A more general construction is stated in [T4], but for our purposes we need the specific
generators and relations of Section 2. In this section we fix a right-angled Coxeter
system (W, S), meaning that for all si and sj in S, either si and sj commute or generate
an infinite dihedral group (i.e. mij = 2 or∞, so this is a system in which all edges of
the diagram are labelled by∞). We assume a connected diagram. For the definition
of the root system � we refer again to 1.A.

3.A. Root system. For a right-angled Coxeter system (W, S), the Moussong–Davis
realization ([D] [Mou]) of the Coxeter complex is a cubical complex. The chamber,
which we denote by C, is constructed topologically as follows. Let ES be the standard
Euclidean vector space of finite dimension |S | with orthonormal basis {es}s∈S . Let
I ⊂ S be a spherical subset of S (in our case a subset such that WI = 〈s : s ∈ I 〉 �
(Z/2Z)|I |). Let us consider the subspace EI generated by the vectors es for s ∈ I .
We denote by CI the cube generated by the 2|I | vectors of EI with coordinates equal
to 0 or 1. Then the (closed) Moussong–Davis chamber C is the union in ES of all the
cubes CI when I runs over the spherical subsets of S. Its panel 	s of type {s} is the
intersection of C with the hyperplane of vectors of coordinate 1 along es .

Vertices in C correspond to maximal spherical subsets of S and the inclusion
of a canonical generator s in a maximal spherical subset I (with at least two
elements) corresponds to the inclusion of a vertex vI in the panel 	s . The sub-
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group 〈t : t ∈ I \ {s}〉 � (Z/2Z)|I |−1 acts simple transitively on the panels of
type s around vI in the Coxeter complex and preserves ∂as . This implies that all
panels in the boundary wall ∂as have the same type, and that the Coxeter subgroup
W {s} = 〈j : j ∈ S \ {s} and [j, s] = 1〉 acts transitively on the panels in ∂as . The
latter fact also implies that StabW(∂as) = W {s} × 〈s〉 and StabW(as) = W {s} (since
if w ∈ StabW(∂as) then there is w′ ∈ W {s} such that (w′)−1w.	s = 	s).

We have seen that given a root a the panels on its boundary wall all have the same
type. We shall refer to this as the type of the root a, and denote it by ι(a) ∈ S. Finally
for a root a, we define εa ∈ {±1} to be (−1)m, where m is the number of walls of
type ι(a) meeting the interior of any geodesic segment from a point x ∈ C \⋃s∈S 	s

to the wall ∂a.

Example. Let us consider a regular right-angled r-gon R of the hyperbolic plane H
2.

We number cyclically by Z/rZ the edges {Ei}i∈Z/rZ of R and for each i ∈ Z/rZ

we let si denote the reflection in the geodesic supporting Ei . Then the subgroup W

of PSL2(R) generated by the reflections si is a Coxeter group, and (W, {si}i∈Z/rZ)

is a right-angled Coxeter system. In the above construction, the chamber C is the
union in R

r of r squares C{i;i+1}, and each panel 	i is the union of two edges, one
in C{i−1;i} and one in C{i;i+1}. To recover the original tiling of H

2 by R, we can so
to speak “hyperbolize” each Euclidean square C{i;i+1} into a hyperbolic square, by
replacing the right angle of C{i;i+1} at the origin of R

r by an angle 2π
r

.

3.B. Borel subgroup. Unipotent radicals. For each s ∈ S, we pick a field Ks .
To each positive root a of type s is attached a copy of the additive group (Ks,+).
We denote it by Ua = {ua(k) : k ∈ Ks}, where ua is a chosen isomorphism from
(Ks,+) to Ua .

Definition. (i) We define the standard torus to be the direct product T = ∏s∈S K
×
s

of the multiplicative groups of the chosen fields.
(ii)We define the group U+ by generators and relations: it is the quotient of the free

product ∗a∈�+Ua by the relations [Ua, Ub] = {1} whenever {a; b} is prenilpotent.

We view T as the maximal torus
∏

s∈S ts(K
×
s ) of

∏
s∈S SL2(Ks) (the notation ts

refers to the same parametrization of the diagonal matrices of SL2 as in Example 1
of 1.A). As in (2B1), we make T act on U+ by

ts(λ)ua(k)ts(λ)−1 = ua(λ
2εaδsι(a)k)

for any s ∈ S, any a ∈ �+ and any λ ∈ K
×
s and k ∈ Kι(a). In particular, ts(λ)

centralizes any root group of type �= s.

Definition. We define the (standard) Borel subgroup B to be the semi-direct product
T � U+.
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We can now introduce unipotent radicals. Let I be a spherical subset of S, and let
R(I) denote the corresponding set of simple roots {ai}i∈I . Thus for any two i, j ∈ I ,
we have [Uai

, Uaj
] = {1}.

Definition. We denote by V I the subgroup of U+ generated by all the positive root
groups except the groups Uai

for i ∈ I , and we denote by UI the normal closure of
V I in U+.

For any positive root a �∈ R(I), we set I (a) = {j ∈ I : aj is not prenilpotent
with a}. Then for any choice of parameters ka ∈ Kι(a) and kj ∈ Kj , j ∈ I (a), the
element ( ∏

j∈I (a)

uaj
(kj )

)
· ua(ka) ·

( ∏
j∈I (a)

uaj
(kj )

)−1

lies in UI , and the family of all such elements is a generating system for UI .

3.C. Actions of Levi factors on unipotent radicals. We first define the Levi factors.

Definition. Let I be a spherical subset of S. We define the (standard) Levi factor of
type I to be the group LI =∏s∈I SL2(Ks)×∏s �∈I ts(K

×
s ).

Let us define now the action of individual elements in the group LI on UI .
First, the T -action was defined in 3.B (its action on U+ restricts to UI ). Let v =(∏

j∈I (a) uaj
(kj )

) · ua(ka) ·
(∏

j∈I (a) uaj
(kj )

)−1 be an element of UI in the form
given in 3.B. Let us pick s ∈ I and k ∈ Ks . If s �∈ I (a) we assume that us(k)

centralizes v. Otherwise, we define us(k)vus(k)−1 to be( ∏
j∈I (a)\{s}

uaj
(kj )

)
uas (ks + k) · ua(ka) · uas (ks + k)−1

( ∏
j∈I (a)\{s}

uaj
(kj )

)−1
.

Let us now pick s ∈ I and λ ∈ K
×
s . If s �∈I (a) or if s ∈ I (a) but ks = 0, we set

ms(λ)vms(λ)−1 =
( ∏

j∈I (a)

uaj
(kj )

)
· us(a)(λ

−2εaδsι(a)ka) ·
( ∏

j∈I (a)

uaj
(kj )

)−1
.

Otherwise, i.e. if s ∈ I (a) and ks �= 0, we define ms(λ)vms(λ)−1 to be( ∏
j∈I (a)\{s}

uaj
(kj )

)
uas

(−λ2

ks

)

· ua

((−λ

ks

)2εaδsι(a)

ka

)
· uas

(−λ2

ks

)−1 ( ∏
j∈I (a)\{s}

uaj
(kj )

)−1
.

In other words, up to the conjugating element
(∏

j∈I (a)\{s} uaj
(kj )

)
, the formulas

are copied from the tree case (2.C).
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3.D. Checking the product relation. We now check that these individual actions
provide an action by LI ; this is done by checking that g(hvh−1)g−1 = (gh)v(gh)−1

for any generator v ∈ UI and any g, h ∈ LI . The Levi factor of type I is a direct
product and the actions of different factors in 3.C are easily seen to commute with
one another, so it is enough to check each factor separately. We are reduced to
showing that for a single factor SL2(Ks), the actions of us(k), ts(λ) and ms(λ) as
above provide an SL2(Ks)-action. We noted in 3.C that the formulas defining the
individual actions are the same as those of the tree case up to conjugation by elements
of the form

(∏
j∈I (a)\{s} uaj

(kj )
)
, which are all centralized by SL2(Ks). Therefore

the latter verification follows from the computation made in 2.D. This finally shows
that the Levi factor LI acts on the unipotent radical UI .

Definition. Let I be a spherical subset of S. We define the (standard) parabolic
subgroup of type I to be PI = LI � UI .

The definition of UI in 3.B implies that U+ = UI .U
I , where UI � U+ and

UI = ∏
s∈I Uas . This provides a surjective group homomorphism UI � UI �

U+. The presentation defining U+ implies the existence of another surjective group
homomorphism U+ � UI � UI , and the composition of these two homomorphisms
is the identity map of U+. Therefore we have U+ ∼= UI � UI for any spherical
subset I of S. This implies that for an inclusion J ⊂ I of spherical subsets, we have
UJ ∼= UI\J � UI where UI\J =∏s∈I\J Uas .

3.E. Twin root datum. We consider the group

P J
I =

∏
s∈J

SL2(Ks)×
∏

s∈I\J
(ts(K

×
s ) � Us)×

∏
s �∈I

ts(K
×
s ),

which is a standard parabolic subgroup of the Levi factor LI , containing the Levi
factor LJ . In the middle factor, the group ts(K

×
s ) � Us is the upper triangular Borel

subgroup of SL2(Ks). In the language of parabolic subgroups of reductive groups,
the group

∏
s∈I\J Us is the unipotent radical of the parabolic subgroup P J

I of LI ,
and we can also write

P J
I = LJ �

∏
s∈I\J

Us.

We have

PI = LI � UI ⊃ P J
I � UI =

(
LJ �

∏
s∈I\J

Us

)
� UI ∼= LJ �

( ∏
s∈I\J

Us � UI
)
.

The group
∏

s∈I\J Us lies in the Levi factor LI whereas the group UI\J =∏
s∈I\J Uas of the previous subsection lies in UJ . But these two groups are nat-

urally isomorphic and under the isomorphism, the LI -action on UI (defined in 3.C)
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restricted to
∏

s∈I\J Us is the UI\J -action on UI by conjugation given by the presen-

tation of U+. By UJ ∼= UI\J � UI (end of 3.D), this shows that for any inclusion
J ⊂ I as above we have an injective group homomorphism PJ ↪→ PI . Finally, vary-
ing such inclusions we can see the finite set of standard spherical parabolic subgroups
as an inductive system of groups with injective transition maps.

Definition. (i) We denote by � the limit of the inductive system indexed by the
inclusions of spherical subsets I , where the groups are the corresponding parabolic
subgroups PI .

(ii) We denote by N its subgroup generated by the elements ms(λ) when s varies
in S and λ in K

×
s .

Remarks. 1) Since any transition map of the inductive system is injective, any
parabolic subgroup PI is naturally a subgroup of �.

2) In the terminology of [HP, Section 5], � is the fundamental group of the
complex of groups indexed by the cone over the first barycentric subdivision of the
finite nerve of the Coxeter system (W, S). This complex of groups is described
precisely in the remark following [loc. cit., Proposition 5.1], and to recover our
situation it is enough to replace the group GJ therein by the parabolic subgroup PJ

(with the convention that B = P∅).

In view of the relation ms(λ)ms(−1) = ts(λ), we see that N contains T , and in
fact T � N . For each spherical subset I we denote by NI the subgroup of the Levi
factor LI generated by T and the elements ms(1), s ∈ I . Then we obtain another
inductive system indexed by the spherical subsets, whose limit is N . The Coxeter
group W itself is also the limit of the inductive system obtained from the previous
one by factoring out by the intersections with T , and there is a natural isomorphism
ϕ : W ∼= N/T under which s is sent to the class ms(λ)T .

Now let a = w.as = w′.at be a root of �. Since we are dealing with right-angled
Coxeter groups (3.A) we have s = t and w−1w′ ∈ W {s} = 〈j : j ∈ S \ {s} and
[j, s] = 1〉. As usual we can identify w with a coset of T in N , and since T normalizes
the root groups Uas , the conjugate wUasw

−1 is well-defined. Therefore we can write

w′Uat w
′−1 = w(w−1w′)Uas (w

−1w′)−1w−1 = wUasw
−1,

which shows that wUasw
−1 only depends on the root a. Moreover the action of the

elements ms(λ) on U {s} shows that in the case of a positive root a, the group wUasw
−1

corresponds to the group Ua attached to a in the presentation defining U+ (3.B).
Our main constructive result about twinnings of right-angled buildings can now

be stated.

Theorem. (i) The triple (�, {Ua}a∈�, T ) is a twin root datum in which for any
prenilpotent pair of roots the corresponding root groups commute.
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(ii) Every right-angled building with a parameter system of cardinalities of pro-
jective lines belongs to a Moufang twinning.

Proof. (i) We have to prove axioms (TRD0) to (TRD4) of 1.A, together with the
improvement of (TRD1) on the trivial commutation of root groups. (TRD0) and the
second part of (TRD2) are clear by the discussion preceding the statement of the theo-
rem, where the subgroup N and the root groups are defined. The first part of (TRD2)
follows from a simple computation in SL2: ms(λ) = u−as (λ

−1)uas (λ)u−as (λ
−1)

(see Example 1 in 1.A) and [T5, comment following 3.3] for the uniqueness as-
sertion). Let now {a; b} be a prenilpotent pair of roots. There is w ∈ W such
that w.{a; b} ⊂ �+, so that the conjugates ϕ(w)Uaϕ(w)−1 and ϕ(w)Ubϕ(w)−1 lie
in U+, in which the commutation relation is trivial by definition. This proves the
improvement of (TRD1). The parabolic subgroup P{s} injects in � and we have
P{s} = UasmsB �B with U−as \ {1} ⊂ UasmsB. This proves the second assertion of
(TRD3) and the first assertion follows from all the other axioms [A, §1, Remark 2].
It remains to prove (TRD4). This is clear because � is generated by the parabolic
subgroups PI and any such group is generated by the root groups it contains.

(ii) The twin root datum structure implies that � naturally acts on a twin building
�± with Weyl group W ∼= N/T and that �± enjoys the Moufang property [T5].
Moreover any residue of type {s}, s ∈ S, is isomorphic to the building P

1(Ks). But it
follows from [HP, Proposition 5.1] that, up to isomorphism, there is a unique right-
angled building of given Coxeter type (W, S) and parameter system. This uniqueness
implies (ii) when the parameter system consists of cardinalities of projective lines.

�

Remark. In 4.B, we will need a slight modification of the construction. We will need
to replace the group SL2 by the group GL2, in order to obtain local actions on residues
of panels via PGL2 instead of PSL2. This can be done as follows. In the definition
of T (3.B), each factor ts(K

×
s ) = {( λ 0

0 λ−1

) : λ ∈ K
×
s

}
can be replaced by the group{

ds(λ, μ) = ( λ 0
0 μ

) : λ, μ ∈ K
×
s

}
, and in the definition of the Levi subgroups LI ,

each factor SL2(Ks) can be replaced by a factor GL2(Ks) (3.C). In the actions given
in 3.B and 3.C, the only change concerns the diagonal matrices of GL2(Ks) acting
on root groups, for which we shall set the formula

ds(λ, μ)ua(k)ds(λ, μ)−1 = ua

((
λ

μ

)εaδsι(a)

k

)
for any s ∈ S, any a ∈ �+ and any λ, μ ∈ K

×
s and k ∈ Kι(a). This generalizes the

formula ts(λ)ua(k)ts(λ)−1 = ua(λ
2εaδsι(a)k) of 3.B since ts(λ) = ds(λ, λ−1). Then

the group � generated by T and the root groups has a twin root datum structure
(�, {Ua}a∈�, T ) with Weyl group the right-angled Coxeter group W .
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4. Non-linearities

A Kac–Moody group defined over Fq has no reason to be linear in characteristic p

(where q is a power of p) merely because it is defined by a presentation involving
subgroups that are linear over Fq . Moreover an infinite Kac–Moody group over Fq

cannot be linear over any field of characteristic different from p [Ré3]. In Sections 2
and 3 we constructed groups of root datum type with more than one ground field and
we now show that if these fields have different characteristics, then the group cannot
be linear.

4.A. Non-linearity of Borel subgroups. Our result actually shows that even much
smaller subgroups of the alluded to above groups have strong non-linearity properties.

Theorem. Let (W, S) be a right-angled Coxeter system with Coxeter diagram D .
Let {Ks}s∈S be a choice of fields with two fields Ks and Kt of different characteristics
for s �= t in the same connected component of D . Let � be the corresponding group
defined in 3.E and let 
 be the fixator of some chamber in the associated twinned
buildings. Then, any group homomorphism ρ : 
 → ∏

α∈A Gα(Fα) has infinite
kernel, whenever the index set A is finite and Gα is a linear algebraic group defined
over the field Fα for each α ∈ A.

Proof. Any two chamber-fixators are isomorphic, so we deal with the standard posi-
tive chamber C (3.A). Its fixator is B = T � U+ (3.B), and we shall use the notation
B rather than 
. Let C be the connected component of the vertices s and t in the
Coxeter diagram of (W, S). We let Cs denote the subset of vertices in C to which
are attached fields having the same characteristic as Ks . The complement C \ Cs is
non-empty since it contains t . Taking an edge connecting Cs to C \ Cs we obtain an
edge with one vertex, say i, with corresponding field Ki of characteristic pi and the
other vertex, say j , with corresponding field Kj of characteristic pj �= pi .

Notice that si and sj generate an infinite dihedral group; set t = sj si . To simplify
notation the root asi will be denoted ai . For any integer m ≥ 0, the root ai(m) =
tm.(sj .ai) is a positive root of �. Similarly, for any integer m ≥ 0 we set aj (m) =
t−m.(si .aj ) and we have aj (m) ∈ �+. For any m′ ≥ m we have ai(m

′) ⊃ ai(m),
implying that the pair of roots {ai(m

′); ai(m)} is prenilpotent. In view of the defining
relations of �, the subgroup of B generated by the root groups Uai(m), m ≥ 0, is the
direct sum of countably many copies of Ki ; so it is an infinite group of exponent pi ,
which we denote by Vi . Similarly, the group Vj = 〈Uaj (m) : m ≥ 0〉 is an infinite
subgroup of exponent pj in B.

We set Ai = {α ∈ A : char(Fα) = pi} and Aj = {α ∈ A : char(Fα) = pj }.
For each α ∈ A, let prα :

∏
α∈A Gα(Fα) � Gα(Fα) be the natural projection. By

[Mar, VIII.3.7] for each α �∈ Ai the group (prα � ρ)(Vi) is finite, so there is a finite
index normal subgroup Ni �Vi such that

∏
α �∈Ai

(prα �ρ)(Ni) is trivial, and similarly
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for j replacing i. The subgroup generated by Uai
, Uaj

, U−ai
= miUai

m−1
i and

U−aj
= mjUaj

m−1
j satisfies the axioms of a twin root datum with infinite dihedral

Weyl group, and by applying [KP, Proposition 3.5 (c)] to the corresponding refined
Tits system (1.A), we have a free product decomposition of its subgroup generated
by the positive root groups of type i and j . This shows that Vi ∗ Vj injects in B,
and if we pick v ∈ Ni \ {1} and v′ ∈ Nj \ {1}, then vv′ has infinite order. But since
v ∈ Ni and v′ ∈ Nj the images ρ(v) and ρ(v′) commute with one another and both
have finite order. We have found in B a subgroup isomorphic to Z with finite image
under ρ. �

t

t

C

ai

ai(0)

ai(1)

aj (m)

aj (m+ 1)

aj (0)

aj

If we assume that each field Ks in the theorem is a finite field Fqs , then we are in
the situation of 1.B and 1.C: we have a locally finite building �+ = � and a locally
compact group G (1.B), which we see as a completion of �.

Recall moreover that a discrete subgroup D in a topological group H is called a
lattice if the homogeneous space H/D carries a finite H -invariant measure [Mar,
I.0.40]. A lattice D < H is called uniform if the quotient space H/D is compact.
The theory of lattices in Lie groups shows that it is extremely useful to see an abstract
discrete group D as a lattice in a topological group H (with a much richer structure).
The connection with our specific situation is the following. Let W(t) denote the
growth series of the Weyl group W with respect to the generating system S, meaning
the power series

∑
n≥0 cnt

n where cn is the number of words of length n. If W( 1
q
)

converges for q = mins∈S qs , then this implies that any spherical negative parabolic
subgroup 
 of � is a (non-uniform) lattice of G [Ré2]. Combining this with the
previous theorem provides the next result.

Corollary. In the same situation as in the theorem, we assume further that each
field Ks is a finite field Fqs , that 
 is the fixator of some negative facet and that
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q = mins∈S qs is large enough so that 
 is a lattice in G. Then, any group homo-
morphism ρ : 
→∏

α∈A Gα(Fα) as in the theorem has infinite kernel. �

We therefore obtain a wide family of group inclusions 
 < G generalizing lattices
in Lie groups, the difference being that no group here is linear. Non-linearity follows
from the use of ground fields of different characteristics (which is not available in the
case of a Kac–Moody group over a finite field), and uses our construction of exotic
twin root data in 3.E. Linearity problems for Kac–Moody groups over finite fields are
considered in [Ré5], but the results in the latter work concern the full Kac–Moody
groups � rather than their parabolic subgroups 
.

4.B. Two kinds of lattices. In this last subsection we show that, in some cases, the
topological group G of the corollary not only contains non-linear lattices but also
lattices which are linear in characteristic 0. For this we assume that, given (W, S)

and {Fqs }s∈S as in the corollary, the group � is defined by means of the modification
described in the concluding remark of 3.E. This is to have the group � acting locally
on residues of panels of type s via PGL2(Fqs ) rather than via PSL2(Fqs ).

Lemma. (i) The group � acts on a right-angled twin building �±, where �± is the
unique building of type (W, S) and parameter system {1+ qs}s∈S .

(ii) The kernel of the action on each building �± is the finite center Z(�).

Proof. (i) follows from 3.E and uniqueness of the buildings under consideration [HP,
Proposition 5.1]. (ii) follows from Tits system arguments as in [Ré1, 8.4.3]. In
particular, Z(�) is the subgroup of T made of the elements centralizing each root
group. Note that it is the product

∏
s∈S Z

(
GL2(Fqs )

) ∼= ∏
s∈S F

×
qs

, so it intersects
trivially the group U+, and hence any unipotent radical. �

By [GP] and the remark before the proof of [HP, Proposition 5.1] about complexes
of groups, �± is the universal cover of a simple complex of groups indexed by a cone
over the barycentric subdivision of the finite nerve of (W, S). In this theory, the
building �± is constructed together with a uniform lattice which is the limit of an
inductive system indexed by the same directed set as in 3.E (the set of spherical
subsets), but in which the groups can be chosen to be much simpler (e.g. finite) than
the parabolic subgroups. The simplest choice is when the parabolic subgroup PI is
replaced by the product

∏
s∈I Z/(qs + 1)Z, with the obvious inclusions as transition

maps. We call 
(W,S),1+q the uniform lattice defined by this choice of groups.

Proposition. The subgroup �/Z(�) of Aut(�±) contains the uniform lattice

(W,S),1+q .

Proof. The fixator in �/Z(�) of the standard facet of spherical type I admits a semi-
direct product decomposition LI/Z(�)�UI , with LI/Z(�) =∏s∈I PGL2(Fqs )×
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s �∈I F

×
qs

. According to Tits’ amalgam theorem [T1, §14], the group �/Z(�) is the

limit of the inductive system of the groups LI/Z(�) � UI = P I/Z(�) indexed by
the finite spherical subsets I .

For any prime power q, GL2(Fq) contains the multiplicative group of the field
Fq2 , a cyclic subgroup of order q2 − 1, and hence PGL2(Fq) contains a cyclic sub-
group of order q + 1. Since the first group is transitive on the projective line, so is
the second. Therefore we can see Z/(q + 1)Z as a subgroup of PGL2(Fq) which
acts simply transitively on the chambers of the corresponding building P

1(Fq) [Ch,
Proposition 5]. For each spherical subset I , this remark gives the first inclusion in
the chain

∏
s∈I Z/(qs + 1)Z < LI/Z(�) < PI/Z(�). Forgetting the middle term

we obtain a morphism of inductive systems, from the one defining 
(W,S),1+q to the
one defining �/Z(�). We obtain the desired inclusion by taking the corresponding
direct limits. �

Finally, we have coexistence of lattices linear in characteristic 0 and non-linear
lattices in the same topological group of root datum type whenever the uniform lattice

(W,S),1+q is known to be linear. This is the case for the lattices considered in [Bou],
where the Weyl group is right-angled Fuchsian (see the example in 3.A).

Corollary. Let (W, S) be the right-angled Coxeter system corresponding to the tiling
of the hyperbolic plane H

2by regular right-angled r-gons. Let {1 + qs}s∈S be a
parameter system consisting of cardinalities of finite projective lines, with qs prime
to qt for some s �= t . Let � be defined as above and let G be the topological
group attached to �. If q = mins∈S qs is large enough, then G contains non-linear
non-uniform lattices, whereas all its uniform lattices are linear in characteristic 0.

Proof. The assertion on non-linear lattices follows from the corollary in 4.A, and it
follows from [Hag, Introduction] that any uniform lattice in a right-angled Fuchsian
building is linear in characteristic 0. �

Remark. If 
 is a lattice in a higher-rank non-archimedean simple Lie group G, and
if X is a proper CAT(−1)-space with cocompact isometry group, then any 
-action
on X has a global fixed point [BM, Corollary 0.5]. The coexistence phenomenon of
the above corollary is thus excluded in the classical algebraic situation, unless the
building of G is a tree (i.e. G is a rank one group).
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