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Reductive Groups as Metric Spaces

by

H. Abels

1. Introduction

In this paper four descriptions of one and the same quasi-isometry class of pseudo-
metrics on a reductive group G over a local field are given. They are as follows. The first
one is the word metric corresponding to a compact set of generators of G. The second
one is the pseudo-metric given by the action of G by isometries on a metric space. That
these two pseudo-metrics on a group G are quasi-isometric holds in great generality.
The third pseudo-metric is defined using the operator norm for a representation ρ of
G. This pseudo-metric depends very much on the representation. But for a reductive
group over a local field it does not up to quasi-isometry. The fourth pseudo-metric is
given on a split torus over a local field K by valuations of the K∗–factors. The main
result is that these four pseudo-metrics on a reductive group over a local field coincide
up to quasi-isometry. We thus have four different descriptions of one and the same very
natural and distinguished quasi-isometry class of pseudo-metrics.

This paper contains foundational material for joint work in progress with G. A. Margulis
on the following two topics. One is work on the following question of C. L. Siegel’s.
Given a reductive group G over a local field and an S–arithmetic subgroup Γ of G.
Then it was one of the main results of reduction theory to describe a fundamental
domain R for Γ in G, a so called Siegel domain. Siegel asked in his Japan lectures [S,
end of Section 10] on reduction theory of 1959, if – in our terminology, see Section 2.3
– the natural map R → Γ\G is a coarse isometry. He asked this question only for
the special case G = SL(n,R), Γ = SL(n,Z) and d the pseudo-metric on G coming
from the standard Riemannian metric on the symmetric space of G, the space of positive
definite real symmetric n×n–matrices. We now have a positive answer in full generality,
for arbitrary reductive groups G over local fields, S–arithmetic subgroups Γ and for
pseudo-metrics d on G which are norm-like. We call a pseudo-metric on G norm–like
if it is coarsely isometric to a metric coming from the operator norm of a rational
representation, or, equivalently, coming from a norm on a maximal split torus, see
Sections 5 and 6. This raises of course the question which pseudo-metrics are norm-like.
Note that coarse isometry is a much stricter equivalence relation among pseudo-metrics
than quasi-isometry. We show in this paper that the three last types of pseudo-metrics
on reductive groups are norm-like. It is an open question whether the first one, namely
the word metric, or, more generally (Section 3.8), any coarse path pseudo-metric, gives
a norm-like pseudo-metric. In joint work in progress with G. A. Margulis we show that
this is the case if G is a torus or if the rank r of a maximal split torus in the semi-simple
part of G is equal to one. This is probably even true for r = 2.

The question of Siegel has an interesting history. A first positive answer was given
by Borel in [1]. It was discovered much later [JM] that the proof contains a gap. It
occurs on pp. 550 – 552, (12) does not imply (14), but (14) is essential to prove (5),
the main inequality. There are now proofs for Siegel’s conjecture, in its original form
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2 H. Abels

[2] and more generally for real reductive groups G, ordinary arithmetic subgroups and
the pseudo-metric d coming from the symmetric space [4, 6].

Here are some more details about our approach to Siegel’s question. For the sake of
exposition we restrict ourselves to the case G = SL(n,R) and Γ = SL(n,Z). Let T
be the subgroup of SL(n,R) of diagonal matrices t = diag(t1, . . . , tn) of determinant
one, a maximal R–split torus. The negative Weyl chamber is by definition the subset
C− = {diag(t1, . . . , tn) ∈ T | 0 < t1 ≤ t2 ≤ · · · ≤ tn}. A Siegel set R in SL(n,R) is, by
definition, a subset of G of the form K ·C− ·L, where K and L are compact subsets of
G. The main result of reduction theory for this case states that for appropriate sets K
and L the Siegel set R is a set of representatives for G/Γ. So the natural map G→ G/Γ
restricts to a surjection π : R→ G/Γ. It has other nice properties, e.g., π |R is a proper
map. The question of Siegel mentioned above asked about the metric properties of π.
Let d be a right invariant pseudo-metric on G. Define a pseudo-metric d on G/Γ in the
natural way, i.e., d(g Γ, h Γ) = inf{d(gγ, h) | γ ∈ Γ}. Now Siegel’s question was: is
π : R→ G/Γ a coarse isometry? In other words: is there a constant C such that

d(g Γ, h Γ) ≤ d(g, h) ≤ d(g Γ, h Γ) + C

for every pair g, h of points of R? Siegel himself showed in [S, Section 10] that this is
the case if we fix one variable, i.e., for every g ∈ G there is a constant C = C(g) such
that the right inequality holds for every h ∈ R. It suffices to show this for one point
g ∈ G.
Here are the main steps of our proof that the answer is yes. We may assume that g and
h are in the negative Weyl chamber C− and that d = dρop is the metric coming from a
rational representation, see Section 5. We prove that, for γ ∈ Γ,

d(g γ, h)→
(I)
≥ d(a(g γ), h) →

(II)
≥ d(w−1g, h) →

(III)
≥ d(g, h)

up to constants, where G = K ·A ·N , g = k(g) ·a(g) ·n(g), is the Iwasawa decomposition
and γ ∈ B wB in the Bruhat decomposition with w an element of the Weyl group Sn−1.
Note that (III) is a very special property of reflection groups. It does for example not
hold for g, h in the fundamental domain of a finite rotation group and w in this group.
An important step in the proof of (II) is

(II′) a(g γ) = w−1g w + r

where r is up to a compact error term the exponential of a positive linear combination
of Σw−1 where Σw−1 = {α ∈ Φ+ | w−1αw ∈ Φ+} and Φ+ is the set of positive roots.
That we found (II′) is due to discussions with Alex Eskin who showed us a geometric
picture of this fact.

Let us point out the following features of this proof. It is different from both Ding’s
[2] which is by induction on n, and from Leuzinger’s [L] which uses Tits buildings and
facts about the geometry of symmetric and locally symmetric spaces, in particular their
geometry at infinity. Our proof works in full generality, for arbitrary local fields and
arbitrary S–arithmetic subgroups. Also we admit arbitrary norm-like metrics, not only
those coming from the symmetric space or the Bruhat–Tits building. Finally it gives
further information concerning reduction theory, namely the inequalities stated above.
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2. Metrics

We first need to recall some concepts concerning metric spaces.

2.1. Let X be a set. A function d : X×X → R is called a pseudo-metric (on X) if d is
non-negative, zero on the diagonal, symmetric and fulfills the triangle inequality, i.e., if

d(x, y) ≥ 0 for every x, y in X

d(x, x) = 0 for every x in X

d(x, y) = d(y, x) for every x, y in X

d(x, y) + d(y, z) ≥ d(x, z) for every x, y, z in X.

So a pseudo-metric on X is a metric on X if and only if d(x, y) = 0 implies x = y. A
pair (X, d) consisting of a set X and a (pseudo-) metric d on X is called a (pseudo-)
metric space. In a pseudo-metric space (X, d) the ball of radius r with center x is
denoted Bd(x, r) or B(x, r). So

Bd(x, r) =
{
y ∈ X : d(x, y) ≤ r

}
.

2.2. Let (X, d) and (X ′, d′) be pseudo-metric spaces. A map f : X → X ′ is called a
quasi-isometry if there are real numbers C1 > 0 and C2 such that

C−11 · d(x, y)− C2 ≤ d′(f(x), f(y)) ≤ C1 · d(x, y) + C2

and X ′ =
⋃
x∈X Bd′(f(x), C2). Thus, for every point x′ ∈ X ′ there is a point x ∈ X such

that d(x′, f(x)) ≤ C2. Define a map g : X ′ → X by choosing for every x′ ∈ X a point
x = g(x′) with this property. Then g : X ′ → X is a quasi-isometry, actually with the
same multiplicative constant C1, and we have d(x, gf(x)) ≤ C2 and d′(x′, fg(x′)) ≤ C2

for every x ∈ X and x′ ∈ X ′.
2.3. A map f : X → X ′ between pseudo-metric spaces (X, d) and (X ′, d′) is called
a coarse isometry if f is a quasi-isometry and the multiplicative constant C1 can be
chosen to equal 1. Equivalently, the function (x, y) 7→ d′(f(x), f(y))−d(x, y) is bounded
on X × X and every point of X ′ is at bounded distance from f(X). Finally, f :
X → X ′ is called an isometry if both these bounds are zero, i.e., if f is surjective and
d′(f(x), f(y)) = d(x, y) for every x, y in X. If f is a (coarse) isometry, then so is any
map g : X ′ → X considered above. It follows that if there is a (quasi-, coarse) isometry
from X to X ′ then there is one from X ′ to X. Two pseudo-metrics on the same set are
called (quasi-, coarsely) isometric if the identity map is a (quasi-, coarse) isometry. It
follows that these relations are equivalence relations between pseudo-metric spaces and
also between pseudo-metrics on the same set.

2.4. We will mainly be interested in pseudo-metrics on groups. So let G be a group.
A pseudo-metric d on G will be called left invariant (right invariant) if every left
translation (right translation) is an isometry. So d is left invariant on G if and only if
d(gh1, gh2) = d(h1, h2) for every g, h1, h2 in G. Define a function f on G by f(g) =
d(e, g). If d is a left (right) invariant pseudo-metric on G, then f is non-negative, zero
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at the identity element, symmetric and fulfills the triangle inequality, i.e.,

f(g) ≥ 0 for every g ∈ G,
f(e) = 0 for the identity element e,

f(g) = f(g−1) for every g ∈ G and

f(gh) ≤ f(g) + f(h) for every g, h in G.

Conversely, given a function f with these properties then d(g, h) := f(g−1h), resp.
d(g, h) = f(hg−1), defines the unique left (right) invariant pseudo-metric d on G such
that d(e, g) = f(g) for every g ∈ G. A function f on G with these properties is
sometimes called a norm on G. But we want to reserve the term “norm” for a more
special situation.

3. The word metric

Let G be a group and let Σ be a set of generators of G. Then the word length `Σ(g) of
an element g ∈ G with respect to Σ is defined as

`Σ(g) = inf
{
r : g = aε11 . . . a

εr
r , ai ∈ Σ, εi ∈ {+1,−1}

}
.

The function `Σ has the properties stated above and furthermore `Σ(g) = 0 implies
g = e. So dΣ(g, h) := `Σ(g

−1h) defines a left invariant metric dΣ on G, which is called
the word metric associated with Σ. The ball of radius r with center e is

BdΣ(e, r) = (Σ ∪ Σ−1)r =
{
aε11 . . . a

εr
r : ai ∈ Σ , εi ∈ {+1,−1}

}
,

and thus consists of all words of length at most r with respect to the alphabet Σ∪Σ−1.
The word metric dΣ depends of course on Σ. But if Σ and Σ′ are both finite sets of
generators of G then dΣ and dΣ′ are quasi-isometric, since if `Σ(Σ

′) is bounded by C1

then dΣ ≤ C1 · dΣ′ . Similarly:

3.1. Lemma. Let G be a locally compact topological group and let Σ and Σ′ be compact
sets of generators of G. Then the word metrics dΣ and dΣ′ on G are quasi-isometric.
They are actually Lipschitz equivalent, i.e., the additive constant C2 in the definition of
quasi-isometry may be chosen equal to zero.

By the preceding argument it suffices to show the following.

3.2. Lemma. Let G be a locally compact topological group and let Σ be a compact set
of generators of G. Then every compact subset of G has bounded word length `Σ.

Proof. The sequence of compact subsets An = BdΣ(e, n) = (Σ ∪ Σ−1)n of G covers the
locally compact space G. So one of them contains a non-empty open subset U of G by
the Baire category theorem, say U ⊂ An. Then A2n is a neighbourhood of the identity
element e, since A2n contains U · U−1. If now K is a compact subset of G there is a
finite subset M of K such that M · A2n contains K. Thus `Σ(K) ≤ `Σ(M) + 2n. ¤
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3.3. Remark. Both Lemmas 3.1 and 3.2 remain true if Σ and Σ′ are relatively compact
sets of generators of G which contain a non-empty open subset of G, as follows from
the second part of the proof of Lemma 3.2. But Lemma 3.2, and hence Lemma 3.1, is
not true for an arbitrary relatively compact set of generators of G; e.g., let G be the
additive group R. The word length `Σ′ corresponding to the set of generators Σ′ = [0, 1]
is `Σ′(x) = d |x| e, the smallest integer ≥ |x|. Consider the following set of generators
Σ. There is a basis B of the Q–vector space R such that B ⊂ [0, 1] and B contains
for every n ∈ N an element bn with 0 ≤ bn ≤ 1

n
. Such a basis can be obtained from a

given basis of R over Q by multiplying every basis element with an appropriate rational
number. Put Σ = {q · b : b ∈ B, q ∈ Q ∩ [0, 1]} ⊂ [0, 1]. Then Σ is a set of generators
of R, contained in [0, 1] but `Σ is unbounded on [0, 1], since `Σ(n bn) = n. In fact, for
every real number x =

∑
b∈B qb · b with qb ∈ Q, we have `Σ(x) =

∑
b∈Bd |qb| e.

Here is a geometric approach to the word metric.

3.4. Definition. A pseudo-metric d on a set X is called a coarse path pseudo-metric if
there is a real number C such that for every pair of points x, y in X there is a sequence
x = x0, x1, . . . , xt = y for which d(xi−1, xi) ≤ C for i = 1, . . . , t and

d(x, y) ≥
t∑

i=1

d(xi−1, xi)− C.

In other words, the triangle inequality d(x, y) ≤ ∑t
i=1 d(xi−1, xi) is in fact an equality

up to a bounded error.

3.5. A left invariant pseudo-metric d on a group G is a coarse path pseudo-metric if
and only if the function f with f(g) = d(e, g) has the following property. There is a
real number C such that for every g ∈ G there is a sequence g1, . . . , gt of elements of G
such that g = g1 · · · · · gt, f(gi) ≤ C for i = 1, . . . , t and f(g) ≥ ∑t

i=1 f(gi) − C. The
equivalence is seen as follows. Starting with g ∈ G take a sequence x0 = e, x1, . . . , xt = g
as above and put gi = x−1i−1 · xi. Conversely, for x, y in G take a sequence g1, . . . , gt as
above for g = x−1y and put xi = x · g1 · · · · · gi.
3.6. Example. A word metric dΣ on a group is a coarse path metric, since by definition
C = 1, B(e, 1) = Σ ∪ Σ−1 ∪ {e} and the error in the triangle inequality is zero with
notation as in 3.4.

3.7. One can generalize this example as follows. Given a set of generators Σ of G and
a bounded function ω : Σ→ [0,∞) on Σ we can define a weighted word length on G by

`Σ,ω(g) = inf

{ t∑

i=1

ω(gi) : t ∈ N ∪ {0}, g = gε11 · · · · · gεtt , gi ∈ Σ, εi ∈ {+1,−1}
}
.

Then `Σ,ω has all the properties of 2.4 so that dΣ,ω(g, h) := `Σ,ω(g
−1h) defines a left

invariant pseudo-metric on G which is in fact a coarse path pseudo-metric, as is readily
seen. Furthermore, dΣ,ω is the supremum of the pseudo-metrics d on X with the prop-
erty that d(e, g) ≤ ω(g) for g ∈ Σ.

3.8. The importance of this generalization lies in the following fact: every left invari-
ant coarse path pseudo-metric is a weighted word pseudo-metric up to coarse isometry.
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More precisely, let d be a left invariant coarse path pseudo-metric on G and let C be
as in 3.4. Then Σ := Bd(e, C) is a set of generators of G and we have

dΣ,ω − C ≤ d ≤ dΣ,ω,

where ω : Σ→ [0, C] is defined by ω(g) = d(e, g) for g ∈ Σ.

3.9. Note that a metric d′ that is coarsely isometric to a coarse path metric d need not
be a coarse path metric itself; e.g., on G = Z the metric

d′(x, y) =

{
0 if x = y

|x− y|+ 1 if x 6= y

is left invariant and coarsely isometric to the Euclidean metric on Z which is a left
invariant coarse path metric, in fact the word metric for the set of generators Σ = {1}.
But d′ is not a coarse path metric. For a given C > 0 the error term dΣ,ω(e, n)−d′(e, n)
grows linearly in |n|, where Σ = B(0, C) and ω(m) = d′(0,m). If we consider coarse
path pseudo-metrics up to quasi-isometry only, we do not need a weight function ω by
the following lemma.

3.10. Lemma. Let d be a left invariant coarse path pseudo-metric on a group G. Then
d is quasi-isometric to a word metric, namely to dΣ with Σ = Bd(e, C), where C is as
in 3.4.

Proof. Let C be a constant as in Definition 3.4, put f(g) = d(e, g) and Σ = B(e, C).
Then for every g ∈ G there are g1 . . . gt ∈ Σ such that g = g1 . . . gt and

f(g) ≥
t∑

i=1

f(gi)− C. (∗)

We may assume that for every i = 1, . . . , t−1 we have f(gi)+f(gi+1) > C. Since if this
is not the case we combine successive factors gi, gi+1, . . . , gj into one factor gi · · · · · gj
such that f(gi · · · · · gj) ≤ C but f(gi · · · · · gj · gj+1) > C, starting with i = 1. This does
not destroy the validity of (∗) by the triangle inequality. Then

f(g) ≥ t− 1

2
· C − C.

This together with the obvious inequality t ≥ `Σ(g) shows one of the inequalities of
the desired quasi-isometry. The other one is seen as follows. The group G is generated
by Σ = B(e, C). Let s = `Σ(g), g = g1 · · · · · gs, gi ∈ Σ. Then f(g) ≤ ∑s

i=1 f(gi) ≤
C · `Σ(g). ¤

As a corollary we obtain the following uniqueness result.

3.11. Proposition. Let G be a locally compact topological group. Let d and d′ be two
left invariant coarse path pseudo-metrics on G with the following two properties:

(C) Compact sets have bounded diameter.

(P) Balls of bounded radius are relatively compact.
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Then d and d′ are quasi-isometric. Furthermore, if such a pseudo-metric d exists on G,
then G has a compact set Σ of generators and d is quasi-isometric to the corresponding
word metric dΣ.

The letter C alludes to “compact” or “continuous”. Note that C holds if d is continuous,
but that the pseudo-metrics we consider need not be continuous, e.g., dΣ is not, in
general. The letter P alludes to “proper” since (P ) holds if and only if inverse images of
compact sets have compact closure for the map x 7→ d(e, x) (or for the map x 7→ d(y, x)
for some (any) point y ∈ G).

Proof. d is quasi-isometric to the word metric dΣ with Σ = Bd(e, C), where C is as in
Definition 3.4 for d. Then Σ is relatively compact by (P ) for d. Similarly for d′ which
is quasi-isometric to dΣ′ , with Σ′ relatively compact. Then Σ′ is of bounded diameter
for d, by (C), hence for the quasi-isometric word metric dΣ, too. Thus `Σ(Σ

′) ≤ C1,
say, which implies dΣ ≤ C1 · dΣ′ and similarly for the converse. Finally, Σ is a relatively
compact set of generators for G, so G has a compact set Σ′′ of generators. It follows
as above that dΣ ≤ C2 · dΣ′′ for some C2 > 0 and the converse dΣ′′ ≤ C3dΣ for some
C3 > 0 by the Baire category argument of the proof of 3.2. ¤

4. A geometric pseudo-metric

Let (X, d) be a pseudo-metric space and let the group G act on X by isometries. Let
x0 be a point of X. Then

dX,x0(g, h) := d(g x0, h x0) (4.1)

defines a left invariant pseudo-metric dX,x0 on G. For another point x1 ∈ X the pseudo-
metrics dX,x0 and dX,x1 on G are coarsely isometric, see 2.3. There are many examples
of this type. Here are two of them. Another one is 4.5.

4.2. Let G be a connected Lie group. There is a left invariant Riemannian tensor on
G which gives rise to a left invariant path metric dRiem on G. Any two such metrics
dRiem are quasi-isometric, in fact Lipschitz equivalent, since any two norms on the finite
dimensional real vector space TeG are equivalent. This metric on G can be regarded as
an example of a geometric pseudo-metric as above, if we let G act on (G, dRiem) by left
translations.

4.3. Let G be a Lie group, which is connected or, more generally, has a finite group
of connected components, and let K be a maximal compact subgroup of G. Then the
homogeneous space X = G/K carries a Riemannian tensor invariant against the action
of G on X. Thus, for the corresponding path metric dX on X the group G acts by
isometries. Again, dX is unique up to Lipschitz equivalence. Hence the corresponding
pseudo-metrics dX,x0 on G are unique up to Lipschitz equivalence if we fix x0, e.g.
x0 = e ·K, and are unique up to quasi-isometry for arbitrary x0 ∈ X.

We ask if the pseudo-metrics 4.2 and 4.3 are quasi-isometric to each other and quasi-
isometric to the word metric for a compact set of generators. The answer is yes by the
following proposition in view of Lemma 3.1.
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4.4. Proposition. Let (X, d) be a locally compact space X with a coarse path pseudo-
metric d having the properties (C) and (P ) of 3.11. Suppose the locally compact group
G acts properly on X by isometries such that G\X is compact. Then G has a compact
set Σ of generators and the pseudo-metric dX,x0 on G is quasi-isometric to the word
metric dΣ. It follows that any two pseudo-metrics of the form dX,x0 for spaces X as
above are quasi-isometric. (Recall that an action of a locally compact group G on a
locally compact space X is called proper if for every compact subset K of X the subset
{g ∈ G; g K ∩K 6= ∅} of G is compact.)

Proof. Let K be a compact subset of X such that X = GK. We may assume that
x0 ∈ K. Let D be the diameter of K. Then every point of X is of distance ≤ D from
some point of the orbit Gx0. Thus the embedding of the orbit Gx0 into X is a coarse
isometry from (Gx0, d |Gx0) to (X, d). It follows that the G–map G→ X, g 7→ g x0, is
a coarse isometry since it is the composition of the isometry G→ Gx0, g 7→ g x0, and
the coarse isometry Gx0 → X. Note that the pseudo-metric dX,x0 on G also has the
properties (C) and (P). To see (P) use that the action of G on X is proper. Let C be a
constant as in the Definition 3.4 of a coarse path pseudo-metric. Let Σ = B(e, C+2D)
with respect to the pseudo-metric dX,x0 on G. Then Σ is relatively compact. We may
assume that Σ is a neighbourhood of e by taking a larger constant C or D if necessary.
We claim that Σ generates G and that dX,x0 and dΣ are quasi-isometric which implies
our claim in view of Remark 3.3. To prove this let g ∈ G. There is a coarse path
x0, x1, . . . , g x0 = xt such that d(xi−1, xi) ≤ C for i = 1, . . . , t and

d(x0, g x0) ≥
t∑

i=1

d (xi−1, xi)− C.

For every i = 0, . . . , t there is an element gi ∈ G such that d(xi, gi x0) ≤ D. Here we
put g0 = e and gt = g. Then dX,x0(gi−1, gi) = d(gi−1x0, gix0) ≤ C + 2D, so g−1i−1 · gi ∈ Σ
and hence g is in the group generated by Σ. Furthermore, we may assume that in our
coarse path we have d(xi−1, xi)+ d(xi, xi+1) > C for i = 1, . . . , t− 1, since otherwise we
leave out some points of our coarse path. It follows that

dX,x0(e, g) ≥
t∑

i=1

d(xi−1, xi)− C ≥
t− 1

2
· C − C

and thus

dΣ(e, g) ≤ t ≤ 2

C
dX,x0(e, g) + 3.

The inverse inequality is easy to see, as follows. Let g = g1 · · · · · gt, gi ∈ Σ with
t = `Σ(g). Note that Σ = Σ−1, so we can avoid factors of the form g−1i . Then

dX,x0(e, g) = d(x0, g x0) ≤
t∑

i=1

d(hi−1x0, hix0)

where hi = g1 · · · · · gi. Thus ht = g, h0 = e and h−1i−1hi = gi ∈ Σ and hence

d(hi−1x0, hi x0) = d(x0, h
−1
i−1hi x0) = d(x0, gi x0) ≤ C + 2D

which implies dX,x0(e, g) ≤ (C + 2D)t = (C + 2D)`Σ(g) = (C + 2D)dΣ(e, g). ¤
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4.5. Example. For a non-archimedian local field K the group G = G(K) of K–points
of a simple algebraic group G defined over K acts on the corresponding Bruhat–Tits
building X. There is a G–invariant metric d on X for which every apartment of X is
isometric to a Euclidean space. We thus obtain a geometric metric dX,x0 on G, unique
up to quasi-isometry, and quasi-isometric to the word metric dΣ for a compact set Σ of
generators of G, by 4.4, since the action of G on X is proper and G \X is compact.

5. The operator norm

For a local field K we define a function on the group GLn(K) by

|g|op = sup(| log ‖g‖ | , | log ‖g−1‖ |),
where ‖·‖ is the operator norm associated with the normed vector space Kn. According
to 2.4 the function | · |op gives a left invariant pseudo-metric dop(g, h) = |g−1h|op on
GLn(K), which is unique up to coarse isometry since any two norms onKn are Lipschitz
equivalent.

We thus can endow every closed subgroup ofGLn(K) with a left invariant pseudo-metric
which is unique up to quasi-isometry. But note that if G is a locally compact topological
group and ρ1 and ρ2 are two faithful representations of G into groups GLn(K) as above
with closed image, then the two induced pseudo-metrics dρiop defined by dρiop(g, h) :=
dop(ρi(g), ρi(h)), g, h ∈ G, on G need not be quasi-isometric; e.g., for G = R let
ρ1 : R→ GL1(R), ρ1(t) = et, and ρ2 : R→ GL2(R), ρ2(t) = ( 1 t

0 1 ). Then d
ρ1
op is coarsely

isometric to the Euclidean metric on R but dρ2op(e, t) is coarsely isometric to log(1+ |t|).
If G is the group G(K) of K–points of a reductive K–group G, though, then the operator
pseudo-metric dρop does not depend on ρ up to quasi-isometry, as will follow from our
uniqueness result 6.6, which we will prove after yet another description of the quasi-
isometry class of the pseudo-metrics we are interested in.

6. The norm on a torus

Let K be a local field, i.e., a locally compact non-discrete topological field. There is a
proper continuous homomorphism

v : K∗ → R
from the multiplicative group K∗ of non-zero elements of K to the additive group R,
given by the logarithm of the valuation. Every continuous homomorphism from K∗ to
R is a multiple of v. The image of v is closed and co-compact in R, namely equal to
R if the field K is archimedian and a non-trivial cyclic subgroup of R, if K is non-
archimedian. More generally, let T be a topological group which is isomorphic to a
direct product of n groups K∗i , where Ki are – possibly different – local fields. Then
there is a proper continuous homomorphism

v : T → Rn,
namely v(x1, . . . , xn) = (v1(x1), . . . , vn(xn)), where vi : K

∗
i → R are as above. Every

other proper continuous homomorphism v′ : T → Rn is of the form v′ = α ◦ v with



10 H. Abels

α ∈ GL(n,R). Its image is closed and co-compact in Rn. If ‖ · ‖ is a norm on the
R–vector space V = Rn we obtain an invariant pseudo-metric dnorm on T by putting

dnorm(t1, t2) = ‖v(t1)− v(t2)‖ = ‖v(t1t−12 )‖
with corresponding function f given by f(t) = dnorm(e, t) = ‖v(t)‖.
6.1. Definition. Any function f on T obtained in this way will be called a norm onT .

Here is a handy characterization of norms.

6.2. Proposition. Let G be a topological group isomorphic to a direct product of a
finite number of K∗i , Ki local fields. Let d be an invariant pseudo-metric on G and
let f be the corresponding function. Then d is a norm on G if and only if f has the
properties (C) and (P ) and

f(g2) = 2f(g) ((∗)2)
holds for every g ∈ G.
We will prove a slightly more general result in a moment, namely 6.3 (2).

One may ask which locally compact topological groups G admit such a function f which
has the properties above. The answer is, these G are as close to split tori as one can
expect. The precise answer is as follows.

6.3. Proposition. Let G be a locally compact topological group. Suppose there is
a left invariant pseudo-metric d on G such that the corresponding function f has the
properties (C), (P ) and (∗)2. Then

(1) G contains a unique largest – and hence normal – compact subgroup K and G/K
is isomorphic to a group V ×D, where V is a finite-dimensional real vector space
and D is a discrete torsion free abelian group.

(2) If G has a compact set of generators then f has the following form:

f(g) = ‖π(g)‖
for every g ∈ G, where π : G → G/K is the natural projection and ‖ · ‖ is a
norm on the finite-dimensional real vector space (G/K) ⊗ R ∼= V ⊕ (D ⊗ R).
The norm ‖ · ‖ on V ⊕ (D ⊗ R) is uniquely determined by f .

We are thus lead to the following definition. This definition of a norm coincides with
6.1 if G is a direct product of a finite number of K∗i , Ki a local field, by 6.2.

6.4. Definition. Let G be a locally compact topological group. A norm on G is a
function f : G→ R with the following properties:

• f is non-negative, zero at the identity element, symmetric and fulfills the trian-
gle inequality (see 2.4);

• (C) f is bounded on compact sets;

• (P) Sets on which f is bounded have compact closure;

• (∗)2 f(g2) = 2f(g).
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6.5. Corollary. Let G be a locally compact topological group having a compact set of
generators.

a) Any two norms on G are quasi-isometric, in fact Lipschitz equivalent.

b) Two norms on G are coarsely isometric if and only if they coincide.

One may ask if a norm on G gives a coarse path pseudo-metric. This is true if G/K is
a vector space but is not true otherwise. For a complete answer see the next section.

Proof of Proposition 6.3 and Corollary 6.5. Let f : G → R have the properties
of Proposition 6.3. Using Definition 6.4 we call f a norm on G. We first show that

f(gn) = |n|f(g) ((∗)n)
for every n ∈ Z and g ∈ G. We may assume that n ∈ N since f is symmetric, i.e.,
f(g) = f(g−1). We have f(gn) ≤ nf(g) by the triangle inequality and f(g2

m
) = 2mf(g)

by (∗)2. Hence if n ≤ 2m, say n = 2m − `, we obtain f(gn) = f(g2
m · g−`) ≥

f(g2
m
)− f(g`) ≥ 2mf(g)− `f(g) = nf(g), the converse inequality.

Next we show that the set K = {x ∈ G; f(x) = 0} is the largest compact subgroup of
G. First of all, K is a subgroup of G, by the triangle inequality, symmetry of f and
since f(e) = 0. And K has compact closure, by (P ). So K is a compact subgroup of
G. On the other hand, if x is an element of G for which the cyclic subgroup < x >
generated by x has compact closure, then f(x) = 0, by (∗)n and (C). Thus every
compact subgroup of G is contained in K.

It follows that K is a normal subgroup of G and G/K has no non-trivial compact
subgroup. Furthermore f is constant on the cosets of G mod K by the triangle in-
equality and hence induces a function f : G/K → R, which is again a norm and has
the additional property that

f(x) = 0 implies x = e,

equivalently, that the associated pseudo-metric is actually a metric. We now claim that

f(xyx−1) = f(y) for every x, y in G.

We have

f(xyx−1) ≤ 2f(x) + f(y)

by the triangle inequality. Applying this to yn instead of y we obtain for n ∈ N:
nf(xyx−1) = f((xyx−1)n) = f(xynx−1) ≤ 2f(x) + f(yn) = 2f(x) + nf(y).

Dividing by n and letting n→∞ yields

f(xyx−1) ≤ f(y)

for every x, y ∈ G which of course implies our claim.

It follows from (P ) that the group G has the following property, called [FC]−. For
every element y ∈ G the conjugacy class {xyx−1;x ∈ G} has compact closure. The
structure of these groups is known: if G has no non-trivial compact subgroup then G
is isomorphic to V × D, where V is a finite dimensional real vector space and D is a
discrete torsion free abelian group, see [GM, Theorem 3.16].
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It thus remains to show part (2) of 6.3. Suppose that G has a compact set of gen-
erators. Then D is finitely generated since it is the image of G under a continuous
homomorphism. So D, being torsion free abelian, is a lattice in the finite dimensional
R–vector space D ⊗ R. To prove (2) we may assume that K = {e} by what we proved
already and hence that G = V ×D. We thus have to show that f : V ×D → R is the
restriction of a (unique) norm on W := V ⊕ (D ⊗ R). Recall that f has the following
properties:

f(a) ≥ 0 for every a ∈ G, (1)

f(a) = 0 iff a = 0, (2)

f(a+ b) ≤ f(a) + f(b) for a, b ∈ G, (3)

f(na) = |n|f(a) for a ∈ G and n ∈ Z. (4)

f has the properties (C) and (P ). Here we have written the group law in G as addition
and correspondingly the identity element as 0.

Let C be a compact convex subset of W such that C = −C and C ∩G contains a basis
B of W . Then f(C ∩G) is bounded by (C), say f(C ∩G) ⊂ [0, ρ]. It follows from (3)
and (4) that

f(a) ≤ ρ · `B(a) + C1

for every a ∈ G, where `B is the following norm on the real vector space W

`B

(∑

b∈B
αbb

)
=
∑

b∈B
|αb|,

and C1 =
1
2
ρ dimW + sup{f(g), g ∈ G ∩ 1

2
dimW · C}. Using the homogeneity (4) we

can actually conclude that

f(a) ≤ ρ · `B(a), (5)

since we have f(na) ≤ ρ `B(na) + constant for every n ∈ N and both f and `B fulfill
(4). The function f extends to a unique function f1 on G ⊗ Q with the property (4).
Then f1 has the properties (1) – (5). In the next step f1 extends to a unique continuous
function F on W , by (5) for f1. It follows that F has the properties (1) and (3) – (5).
It remains to show (2) for F . Let C be a compact subset of W such that W = C +G,
e.g. our compact convex subset above will do. If F (w) = 0 for w 6= 0 in W , then F
is bounded on Rw + C, by (3) and since F is continuous, but Rw + C intersects G in
an unbounded set, which contradicts (P ) for f . This proves 6.3. Concerning 6.5, a)
follows from the fact that any two norms on a finite dimensional real vector space are
equivalent, b) is clear in view of positive homogeneity. ¤

The main result of this paper is the following theorem, which states that all the pseudo-
metrics we considered are quasi-isometric for a reductive group G over a local field.

6.6. Theorem. Let G be a reductive group over a local field k and let G = Gk.

(1) Then the following pseudo-metrics on G are quasi-isometric:

• dΣ for any compact set Σ of generators of G,
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• dgeom for the symmetric space G/K if k is archimedian or the Bruhat–Tits build-
ing of G if k is non–archimedian,

• dop for any faithful representation of G defined over k.

(2) Any invariant pseudo-metric d on G is uniquely determined up to coarse isometry
by its restriction to T = T k where T is a maximal k–split torus in G.

(3) Finally, d |T is quasi-isometric to any norm on T for any of the pseudo-metrics on
G considered in (1).

The theorem holds more generally for any pseudo-metric dgeom on G which comes from
an action of G as in Proposition 4.4.

Proof. The pseudo-metrics of the types dΣ and dgeom are quasi-isometric among them-
selves and to each other by 3.1 and 4.4. We have a Cartan decomposition of G: there is
a compact subset K of G such that G = K ·T ·K. This implies (2), since all the pseudo-
metrics we consider have the property (C), and by the way also (P ) of 3.11. Also, all
our claims are trivial or easily seen, if G is a torus. It thus remains to prove that dG |T
and dT are quasi-isometric for the pseudo-metrics dG and dT on G and T , respectively,
of the three types considered in (1). This is obvious for dop. For dgeom it follows from
the following facts: for the archimedean case the orbit of a maximal R–split torus is a
totally geodesic flat sub-manifold of the symmetric space G/K (see [M, §5]). For the
non–archimedean case, every minimal gallery in the Bruhat–Tits building is contained
in one apartment. Finally, for the word metric dΣ corresponding to a compact set Σ of
generators of G we have

dΣ |T ≤
1

r
dΘ,

if r ∈ N is such that (Σ ∪ Σ−1)r contains a compact set Θ of generators of T . On the
other hand, Σ is bounded for the operator pseudo-metric dop on G (for a given faithful
representation of G defined over k), say dop(e,Σ) ⊂ [0, R] hence dop(e, x) ≤ C−1dΣ(e, x)
for every x ∈ G. The quasi-isometry of dop |T with dΘ now implies a converse inequality
between dΘ and dΣ |T . Thus dΘ and dΣ |T are quasi-isometric. ¤

So Theorem 6.6 says that all the interesting pseudo-metrics on G are quasi-isometric.
And the proof was not difficult. It is quite a different matter to determine which of
them are coarsely isometric. For the application to Siegel’s question mentioned in the
introduction we are particularly interested in the following class of pseudo-metrics on
G which we call norm–like.

6.7. Definition. A left invariant pseudo-metric on a reductive group G = G k over
a local field k is called norm-like if its restriction to one, equivalently every, maximal
split torus is coarsely isometric to a norm.

The claimed equivalence is implied by the fact that every inner automorphism is a
coarse isometry with respect to every left invariant pseudo-metric.

6.8. Remarks. Let G = G k be a reductive group over a local field.

(a) Every norm-like pseudo-metric has the properties (C) and (P) of 3.11.
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(b) Any two norm-like pseudo-metrics on G are quasi-isometric.

(c) The metrics of type dop are norm-like.

(d) The metric dgeom is norm-like for the symmetric space G/K if k is archimedian
or the Bruhat–Tits building of G if k is non-archimedian.

(e) There is no left invariant pseudo-metric on SL2(R) whose restriction to every
split torus is a norm.

Proof. The Cartan decomposition implies (a), and (b) follows since any two norms on
T are quasi-isometric, see 6.5 a).

(c) Let ρ be a faithful representation of G defined over k in the vector space V . If
e1, . . . , en is a common eigenbasis of V for T with corresponding characters λ1, . . . , λn,
then for the sup-norm ‖Σαi`i‖ = supi |αi| on V we have dop(e, t) = supi | log v(λi(t))|
for t ∈ T . So t 7→ dop(e, t) is a norm on T .

(d) Follows from the facts concerning dgeom mentioned in the proof of Theorem 6.6.

(e) Note that two coarsely isometric norms on a split torus are in fact equal, by 6.5 b).
Hence if the restriction of d to every split torus is a norm, every inner automorphism
Intg induces an isometry Intg : T → Intg(T ), since Intg induces a coarse isometry of
norms. Thus the function x 7→ d(e, x) is constant on every conjugacy class C(x) of
x ∈ T . But the closure of C(x) is not compact for x 6= e. We thus get a contradiction
to property (P ) of 3.11. ¤

7. Norm versus coarse path metrics

A norm ‖ · ‖ on a vector space W gives a coarse path metric on W . But it is not true
that it induces a coarse path metric on every lattice in W . Here is a description of
those norms which induce a coarse path metric on a given closed subgroup of W . The
following proposition concerning the general case of an arbitrary closed subgroup of W
may be hard to digest at first sight. The subsequent Corollary 7.3 describing the case
of a lattice in W gives a criterion that is much easier to state. Also, the Example 7.2
of the Euclidean norm may help to see the point of the proposition.

7.1. Proposition. Let ‖ · ‖ be a norm on the finite-dimensional real vector space
W = V ⊕ (D ⊗ R) , where D is a finitely generated torsion free abelian group. The
restriction of ‖ · ‖ to V ⊕ D is a coarse path metric if and only if the norm one ball
B1 = {w ∈W : ‖w‖ ≤ 1} has the following property: there is a finite subset S of D, not
containing 0, and for every d ∈ S a compact subset Kd of (B1 ∩ (V + Rd))r (B1 ∩ V )
such that B1 is the convex hull of

⋃
d∈SKd ∪ (B1 ∩ V ).

7.2. Example. The Euclidean norm on W does not give a coarse path metric on
V ⊕D unless V = W.

7.3. Corollary. If D is a finitely generated torsion-free abelian group, then a norm
‖ · ‖ on D ⊗ R induces a coarse path metric on D if and only if the norm one ball
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B1 = {w ∈ W : ‖w‖ = 1} has a finite number of extremal points and all of them are
real multiples of elements of D.

Proof. We first show necessity. Let ‖ · ‖ be a norm on W which induces a coarse path
metric on V ⊕D. Let C be the constant in the definition of a coarse path metric and
let S be the finite set of elements d 6= 0 in D such that d+ V contains a point of norm
at most C. The case W = V is trivial. So we assume D 6= {0}. Then S contains a
basis of D and hence every point of W has distance at most C1 :=

C
2
· rankD from some

point of V + D. It follows that for every w ∈ W and every n ∈ N there are integers
βd(n) ∈ N and vectors vd(n) ∈ V for d ∈ S0 = S ∪ {0} such that

‖d+ vd‖ ≤ C,

‖∑d∈S0 βd(n) · (d+ vd(n))− nw‖ ≤ C + C1,

and ‖nw‖ − C1 ≤
∑

d∈S0 βd(n)‖d+ vd(n)‖ ≤ ‖nw‖+ C + C1.

Then, for d 6= 0, the sequence βd(n)
n

is bounded since ‖d+ vd(n)‖ ≥ inf{‖d+ v‖, v ∈ V }
and for d = 0 we may and do choose ‖v0‖ ≥ C

2
at the expense of another constant C

2

in the inequalities above. Then βd(n)
n

and d + vd(n) converge for d ∈ Sd and n in some
subsequence of N, to βd and d+ vd, say. We thus obtain

‖d+ vd‖ ≤ C, ‖v0‖ = C, βd ≥ 0,
∑

d∈S0 βd(d+ vd) = w,
∑

d∈S0 βd‖d+ vd‖ = ‖w‖.

Note that we have a positive lower bound ε as follows:

‖d+ vd‖ ≥ ε > 0 for d ∈ S0.

For ‖w‖ = 1 we rewrite the equations above: put αd = βd · ‖d+ vd‖. Then
∑

d∈S0 αd · wd = w,

αd ≥ 0,
∑
αd = ||w||,

where wd =
d+vd
‖d+vd‖

for d ∈ S, and wd is contained in the compact subset Kd = B1 ∩ (V + [ε,∞) · d) for
d 6= 0 and w0 ∈ B1 ∩ V . This proves necessity.

To prove sufficiency, suppose ‖ · ‖ is as in the claim of the proposition. We may assume
that the set S is symmetric, i.e., −s ∈ S if s ∈ S and then assume that every point wd
of Kd is of the form wd = rd(d+ vd) with positive rd. There is a positive number ε such
that if wd = rd(d+ vd) ∈ Kd then rd ≥ ε for every d ∈ S, since all the Kd are compact
and do not intersect V . Every w ∈ W can be written as w = ‖w‖∑d∈S0 αdwd with
S0 = S ∪ {0}, wd ∈ Kd, w0 ∈ K0 := B1 ∩ V , αd ≥ 0 and Σαd = 1. We have ‖wd‖ = 1 if
αd > 0 and hence ‖d+vd‖ = 1

rd
≤ 1

ε
if we set wd = rd(d+vd). For every d ∈ S there is a

non-negative integer nd such that |nd− αd rd‖w‖ |≤ 1
2
for d 6= 0 and |n0− α0‖w‖ | ≤ 1

2
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for d = 0. Put w′ = Σd∈S0nd(d+ vd) ∈ V +D. Then w′ has the following properties:

‖w − w′‖ ≤ 1

2

∑

d∈S0
αd 6=0

nd‖d+ vd‖ ≤ C1

with C1 =
1

2
|S|ε−1 + 1,

‖d+ vd‖ ≤ max

(
1

ε
, 1

)
if nd > 0

and

‖w′‖ ≤
∑

d∈S0
nd‖d+ vd‖

≤
∑

d∈S0
|nd − αd‖w‖ | ‖d+ vd‖ +

∑

d∈S0
αd rd‖d+ vd‖ ‖w‖

≤ C1 + ‖w‖
∑

αd 6=0

αd‖wd‖ = C1 + ‖w‖,

which implies our claim. ¤
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Finiteness Properties of Groups Acting on Twin Buildings

by

P. Abramenko 1

1. Twin BN–pairs

In the theory of (reductive) algebraic groups, the notion of a BN–pair introduced by
Jacques Tits plays an important role. Similarly important are twin BN–pairs in the
theory of Kac–Moody groups over fields. This concept was already implicitly present in
Tits’ fundamental paper [5] on Kac–Moody groups. (By the way, I am using the notion
Kac–Moody group here in the sense of Tits, i. e., we are talking about the “minimal
version” of Kac–Moody groups here.) An explicit definition of a twin BN–pair was
given by Tits in [6, Subsection 3.2]. To fix ideas, let us reproduce this definition here.

Definition 1. Let G be a group with two BN–pairs (B+, N), (B−, N) with the same
subgroup N and such that B+ ∩ N = B− ∩ N . Denote by W the common Weyl group
W = N/B+ ∩ N = N/B− ∩ N , and let S be the distinguished set of generators of
W. We denote the lenght function on W with respect to S by l. Then (B+, B−, N) is
called a twin BN–pair in G if the following two conditions are satisfied.

(TBN1) BεwB−εsB−ε = BεwsB−ε for ε ∈ {+,−}, all w ∈ W, and all s ∈ S such that
l(ws) < l(w),

(TBN2) B+s ∩B− = ∅ for all s ∈ S.

The rank r of the twin BN–pair (B+, B−, N) is defined as the cardinality r = |S|.

Analogously as the usual BN–axioms imply the Bruhat decomposition, for a twin BN–
pair one obtains the Birkhoff decomposition G =

⋃
w∈W B+wB−, which is also a disjoint

union (see [6] or [1, Lemma 1]).

A subgroup P of G is called parabolic (with respect to the twin BN–pair (B+, B−, N))
if it contains a conjugate of B+ or of B−. Any parabolic subgroup P of G is conjugate
to a standard parabolic subgroup of the form

Pε,J = BεWJBε =
⋃

w∈WJ

BεwBε

where ε ∈ {+,−}, J ⊆ S, and where WJ =< J > is the (special) subgroup of
W generated by J . The rank of Pε,J and of any of its conjugates is by definition the
cardinality |J |. The parabolic subgroup Pε,J and any of its conjugates is called spherical
if WJ is finite.

The twin BN–pair (B+, B−, N) is called n–spherical (with n ∈ N) if each of its parabolic
subgroups of rank ≤ n is spherical, i. e. if an only if WJ is finite for any J ⊆ S of
cardinality |J | ≤ n.

Examples. As indicated above, a Kac–Moody group over a field k always possesses a

1Research supported by the Deutsche Forschungsgemeinschaft through a Heisenberg-fellowship.
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twin BN–pair (see [6, Subsection 3.3] or [1, Example 5]). As a special case, one obtains
in a canonical way a twin BN-pair of rank m+1 of affine type in G = G(k[t, t−1]) if G is
a simple and simply connected Chevalley group (scheme) of rankm. (The twin BN–pair
in G can also be described without any Kac–Moody theory, see [2, Section 3].) Note that
this twin BN–pair is m–spherical and that G(k[t]) is a spherical parabolic subgroup of
G(k[t, t−1]) in the above sense. This example generalizes to (absolutely almost) simple
and simply connected isotropic k–groups G of k–rank m and G = G(k[t, t−1]), see [6,
Subsection 3.2] and [1, Section 3.1] for the explicit description of the twin BN–pair in
G(k[t, t−1]) for some classical groups G.
Having the above examples in mind, we are going to discuss some results about finiteness
properties of groups with twin BN–pairs, respectively of their parabolic subgroups. By
finiteness properties we here mean finite generation, finite presentation, as well as the
higher (homological) finiteness properties FPl, respectively Fl (which is FPl plus finite
presentability in case l ≥ 2). In the examples it is clear that one even cannot expect
finite generation if the field k is infinite. So one would deal with finite fields k = Fq
in these examples, and we need to introduce the parameter q in the general context of
twin BN–pairs in some appropriate way. We shall also have to take into account that
in non split–situations different parameters (like in unitary groups the cardinality of a
field with an involution and the cardinality of the fixed field under this involution) can
play a role.

Definition 2. For a group G with twin BN–pair (B+, B−, N), Weyl group W, and
distinguished set of generators S of W, we define the parameters qmin, qmax ∈ N ∪ {∞}
as follows:

qmin = min
ε∈{+,−},s∈S

[Pε,{s} : Bε] − 1, qmax = max
ε∈{+,−},s∈S

[Pε,{s} : Bε] − 1

2. Some results

In this section, we are working with the following

Standing Assumption: G is a group with a twin BN–pair (B+, B−, N) of finite rank
r and with finite parameter qmax. We also assume that the intersections

⋂
g∈G gB+g

−1

and
⋂
g∈G gB−g

−1 are finite.

It is clear that r and qmax ought to be finite if any finiteness results are to be expected.
Also, we cannot deduce anything for the group G in this context if it has big normal
subgroups

⋂
g∈G gB+g

−1 and
⋂
g∈G gB−g

−1. However, in the examples described above,
these intersections will always be finite, provided that the field k is finite. Since finite
generation and finite presentation are of interest in their own right and since the corre-
sponding proofs work under less technical assumptions in these cases, I shall first state
what can be proved here.

Theorem 1. If the twin BN–pair (B+, B−, N) is 2-spherical and 4 ≤ qmin, then any
parabolic subgroup of G is finitely generated. If, in addition, the twin BN–pair is not
3–spherical, then any spherical parabolic subgroup of G is not of type FP2 (and, hence,
in particular not finitely presented).
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Counter–Example 1.

(1) It is neither surprising nor hard to show that the spherical parabolic subgroups
of twin BN–pairs which are not 2-spherical are not finitely generated. The
most prominent example in this context is the observation due to Nagao and
reproved by Serre that SL2(Fq[t]) is not finitely generated. (However, G itself
is always finitely generated under our standing assumption, which is easily seen.)

(2) It is much more surprising and considerably harder to show that the parameter
qmin does matter in this context. In fact, it can be shown that certain Kac–
Moody groups of compact hyperbolic type of rank 3 over the fields F2 and F3
have proper parabolic subgroups which are not finitely generated.

Theorem 2. If the twin BN–pair (B+, B−, N) is 3-spherical and 7 ≤ qmin, then any
parabolic subgroup of G is finitely presented. If, in addition, the twin BN–pair is not
4–spherical, then any spherical parabolic subgroup of G is not of type FP3.

For the full group G, one can derive finite presentability under less restrictive assump-
tions. This follows directly from the main result of [3].

Theorem 3. If the twin BN–pair (B+, B−, N) is 2-spherical and 4 ≤ qmin, then G is
finitely presented.

Counter-Example 2.

(1) G cannot be expected to be finitely presented if the twin BN–pair is not 2–
spherical. In fact, if the Weyl group W of our twin BN–pair is the infinite
dihedral group, then it can be proved that G is not finitely presented. This gen-
eralizes a result of Stuhler stating that SL2(Fq[t, t−1]) is not finitely presented.

(2) It is again more surprising that the assumption on qmin in Theorem 3 is indeed
necessary. Recent studies (which have to be elaborated) indicate that there exist
Kac–Moody groups of compact hyperbolic type of rank 3 over F2 (and maybe
also over F3) which are not finitely presented.

The theorem about higher finiteness properties is now in a similar spirit as the Theorems
1 and 2, but it requires (in view of the method of proof) additional assumptions.

Theorem 4. Assume that the twin BN–pair (B+, B−, N) is n–spherical and that 22n−1 ≤
qmin. Assume further that the Coxeter diagram of the the Coxeter system (W,S) asso-
ciated to the twin BN–pair does not contain any subdiagrams of type F4, E6, E7, or E8.
Then any parabolic subgroup of G is of type Fn−1. If, in addition, the twin BN–pair is
not (n+ 1)–spherical, then any spherical parabolic subgroup of G is not of type FPn.

Theorem 4 has the following corollary, which is also stated as Theorem C in Chapter
III of [1]. (The special case G = SLn+1 was already treated before independently by
Abels and the author.)

Corollary. Let G be an absolutely almost simple classical group, defined over Fq and
of Fq–rank n > 0. Assume that 22n−1 ≤ q. Then G(Fq[t, t−1]) and G(Fq[t]) are of type
Fn−1, and G(Fq[t]) is not of type FPn.
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3. Brief comment on the proofs

The main idea is to exploit the action of the group G and of its parabolic subgroups on
the twin building (∆+,∆−, δ∗), where δ∗ is the W–valued co-distance on the chambers
of this twin building (cf. [6] or [1, Section I.2] for the definition of the twin building
associated to a twin BN–pair; one uses the Birkhoff decomposition for the twin BN–pair
to define the co-distance in a similar way as the Bruhat decomposition for BN–pairs
is used to define the usual W–valued distance in a building). This W–valued co-
distance has a numerical variant d∗ (if c+, c− are chambers in ∆+,∆−, respectively, and
if δ∗(c+, c−) = w ∈ W , then d∗(c+, c−) = l(w)), and this numerical co-distance can be
used in order to filter the twin building, respectively one of its “halves”. For instance,
if P is a spherical parabolic subgroup of G, then it is the stabilizer of some simplex, say
a− ∈ ∆−, so that P = Ga− . Now we consider the action of Ga− on ∆+ and study the
Ga−–invariant filtration of ∆+ given by ∆+,j = {x+ ∈ ∆+ | d∗(x+, a−) ≤ j}, where
d∗(x+, a−) is defined to be the minimum of all d∗(c+, d−) running over all chambers
c+ containing x+ and all chambers d− containing a−. In this situation we can apply
the FPn criterion derived by Brown (cf. [4]) provided that we have enough (or rather
the “right”) local information about the building ∆+ in order to deduce the desired
homotopy properties about the Ga−–invariant filtration (∆+,j)j∈N. It is in connection
with this local information that one has to make some assumptions concerning qmin

and where one has to exclude the exceptional types, which are (still) technically too
complicated.

On the other hand, if we consider G and not a spherical parabolic subgroup, then it is
more effective to study the action of G on the (topological) product ∆+ ×∆− and to
consider the G–invariant filtration given by the sub-complexes

{
(x+, y−) ∈ ∆+ ×∆− : d∗(x+, y−) ≤ j

}
.

In order to determine the precise “finiteness length” of G as in the case of spherical
parabolic subgroups (where the investigation of one half at a time was sufficient), one
still needs some local information concerning this new filtration. The results in Section
2 show that G in general enjoys better finiteness properties than its spherical parabolic
subgroups. If this last piece of local information alluded to above was available then I
could give a complete proof of (for instance) the following result.

Claim. Let G be as in Theorem 4, and assume in addition that the twin BN–pair has
rank n + 1 and is not (n + 1)–spherical (like, for instance, SLn+1(Fq[t, t−1])). Then G
is of type F2n−1, but not of type FP2n.

Detailed proofs of the theorems stated in Section 2, hopefully together with a completed
proof of the above claim, will be published elsewhere.
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Higher Finiteness Properties of S-Arithmetic Groups in the
Function Field Case I

by

H. Behr

It is well known that S-arithmetic subgroups of reductive algebraic groups over number
fields have “all” finiteness properties (see [BS 2]). On the other hand there exist many
counterexamples in the function field case. Let F be a finite extension of Fq(t), G
an almost simple algebraic group of F -rank r, 0S an S-arithmetic subring of F with
|S| = s, rv the Fv-rank of G over the completion Fv of F for v ∈ S, and finally Γ a
S-arithmetic subgroup of G(F ). We are interested in the following question:

Is it true that Γ is of type Fn−1 but not Fn if and only if r > 0 and
∑

v∈S
rv = n?

(For the definition of finiteness properties, see the introduction of [Ab].) The answer is
‘yes’ in the following cases:

(a) G = SL2: see [St 2],

(b) n = 1 or 2 (finite generation or finite presentability): see [B 2],

(c) G classical, 0S = Fq[t] under the assumption that q is big enough compared
with r: see [Ab] and [A] for SLn.

In particular it is not known if the assumption in (c) is necessary. For r = 0, in the
so-called cocompact case, Γ is of type F∞ (cf. [BS 2]).

This paper is an attempt to attack the above question with some new methods —
old in other contexts. First of all, inspired by the work of Serre, Quillen, Stuhler,
and Grayson (cf. [G1,2]), we use semi-stability for reduction theory, and the idea to
determine the homotopy type of the boundary of the unstable region by retraction. In
this part we only deal with Chevalley groups G and arithmetic rings OS for |S| = 1.
The groups G(F ) and Γ act on the Bruhat–Tits building X = Xv, corresponding to
G and Fv; Γ leaves the unstable region X ′ invariant. X ′ has a cover whose nerve is
given by the spherical Tits building X0, so it is (r − 1)-spherical. The retraction to
its boundary is not possible as in the number field case, since the geodesic lines are
branching (discretely). Therefore we have to “split up” X ′ into apartments, thereby

constructing a bigger complex X̃ ′, which has a cover with nerve OppX0, defined by an
opposition relation in X0. This complex was first considered by Charney for G = GLn,
by Lehrer and Rylands for classical groups who called it “split building”, finally v.
Heydebreck showed in the general case that this complex is also (r− 1)-spherical — so

is X̃ ′. X̃ ′ can be retracted to its boundary Ỹ , but Ỹ is not finite mod Γ. Thus we have

to consider a subcomplex X̃ ′Γ, where opposition is defined only with respect to Γ and

to show that X̃ ′Γ is a deformation retract of X̃ ′. Now we obtain that ỸΓ is finite modulo
Γ and can deduce the Fn−1-property of Γ. For the negative part, i.e., Γ is not of type
Fn, one should come back to filtrations, the method used for the proofs of (a), (b) and
(c) above, but for the moment I have no detailed argument. Thus we sketch the proof
of the following.

22
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Theorem. For s = 1, the S-arithmetic subgroup Γ = G(OS) of a simply connected
almost simple Chevalley group G of rank r is of type Fr−1.

Conjecture. Γ is not of type Fr.

I hope that this program will turn out to be useful even in more general situations: for
coefficient rings which are defined by more than one prime or, on the other side, for
non-split groups.

I am grateful to Peter Abramenko for constructing a very instructive counter-example
to an earlier version of this paper, and I would like to thank him, Kai-Uwe Bux, and
Anja von Heydebreck for helpful discussions, and Mrs. Christa Belz for carefully typing
several versions.

1. Notations

Let us denote by

F a finite extension of the field of rational functions Fq(t) in t
with coefficients in the finite field Fq, q = pm;

F̂ = Fv the completion of F with respect to the valuation v of F ;

O and Ô the valuation rings with respect to v in F or F̂ ;

G a simply connected almost simple Chevalley group, defined
over F ;

r the F -rank of G, I = {1, . . . , r};
T a maximal (split) F -torus of G;

∆ = {αi}i∈I a set of simple roots of G with respect to T ;

P∆0 a parabolic subgroup of G of cotype ∆0, ∆0 ⊆ ∆, which
means that ∆−∆0 is a set of simple roots for the semi-simple
part of P∆0 , especially

B = P∆ the Borel subgroup, defined by ∆, and

Pα the maximal parabolic subgroup for ∆0 = {α}.
X the Bruhat–Tits–building, corresponding to G and v with

its simplicial structure and its metric topology;

A = XT the apartment of X corresponding to T , thus A ∼ Rr;
{αi(x)}i∈I the coordinates of x ∈ A which means by abuse of notation

the following: If x = t · x0, x0 the “origin” of A, t ∈ T (F̂ ),
then αi(x) := −v(αi(t));

X0 the spherical Tits building of G(F );

Γ the S-arithmetic subgroup of G(F ) for S = {v}.
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2. Reduction Theory and the Unstable Region

We shall use reduction theory for arithmetic groups over function fields in the version
described by Harder in [H2], 1.4. He defines

π(x, P ) := vol (Kx ∩ U(F̂ ))
for a special point x ∈ X, corresponding to a maximal compact subgroup Kx of G(F̂ )
and a F -parabolic group P and its unipotent radical U ; the volume vol comes from the
adelic Tamagawa measure. The function

dP (x) := logq π(x, P )

can be extended by linear interpolation to all points x in an apartment A = XT , defined

by a maximal split F̂ -torus T , contained in P and thereby uniquely for all x ∈ X. We
may consider dP as a co-distance with respect to the simplex σP , given by P in the
spherical building X∞ at infinity (cf. [Br2], VI.9).

For the action of T (F̂ ) on XT via adT we have the formula

dP (t · x) = dP (x) + logq |δP (t)|
where δP is the character “sum of roots in U”, which is a multiple of the dominant
weight ωP and the q-logarithm is the negative additive valuation −v(δP (t)).
For each Borel group B over F and its set ∆ = {α1, . . . , αr} of simple roots (with
respect to a F -torus T ), the maximal parabolic groups Pα (α ∈ ∆) containing B and
their fundamental weights ωPα , one has

α =
∑

β∈∆
cα,βωPα =

∑

β∈∆
c′α,βδPα ,

where cα,β are the integral coefficients of the Cartan-matrix, such that c′α,β ∈ Q; in
particular, c′α,α is positive and c′α,β for β 6= α is zero or negative (for at most 3 β’s).
Using these coefficients, Harder defines numerical invariants

nα(x,B) :=
∏

β∈∆
π(x, Pβ).

Again we pass to the additive version, setting

cB,α(x) := logq [nα(x,B)]

and obtain for each b ∈ B(F ) the relation

cB,α (b · x) = cB,α(x) + logq |α(b)|
= cB,α(x)− v(α(b)).

cB,α is an affine linear function on the apartment XT ; we define the origin OB by
cB,α(OB) = 0 for all α ∈ ∆ and by abuse of notation α(t · OB) := −v(α(t)) for
t ∈ T (F ), thus we get by linear interpolation a set of affine coordinates
{α1(x), . . . , αr(x)} for each point x ∈ XT . We are now able to state themain theorems
of reduction theory (for Chevalley groups).

(A) There exists a constant C1 such that for all x ∈ X there is a F -Borel group B
with cB,α(x) ≥ C1 for all α ∈ ∆; then x is called “reduced with respect to B”.
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(B) There exists a constant C2 ≥ C1, such that for x ∈ X reduced with respect to B
and B′, and cBα(x) ≥ C2 for all α ∈ ∆0 ⊆ ∆, P = P∆0 ⊇ B, it follows P ⊇ B ′;
then x is called “close to P”, P is uniquely determined.

(C) There exists a constant C3 ≥ C2, depending on the arithmetic group Γ, such that
for x ∈ X, reduced with respect to B and with cB,α(x) ≥ C3 for all α ∈ ∆0 ⊆ ∆,
we have for the unipotent radical U of the parabolic group P = P∆0 ⊇ B

U(F̂ ) = (U(F̂ ) ∩Kx)(U(F ) ∩ Γ);

x is then called “very close to P”.

(D) For each constant C ≥ C1 the set

XC :=

{
x ∈ X

∣∣∣∣
cB,α(x) ≤ C for all α ∈ ∆ and all B
for which x is reduced with respect to B

}

is Γ-invariant and XC/Γ is compact.

(E) The number of Borel subgroups over F of G belongs to finitely many classes
under Γ-conjugation (see [B1], 8).

Remark. The constant C1 can be chosen as C1 ≤ −2g− 2(h− 1) where g denotes the
genus of F and h is a “class-number” (for the precise definition see [H1], 2.2.6). For
example, if Γ = SLn (Fq[t]) we may use C1 = 0, but in general C1 is negative.

We define the cone or sector of points in XT , reduced with respect to B ⊃ T by

DB,T := {x ∈ XT |αi(x) ≥ C1 for i = 1, . . . , r}.
Warning: For different Borel groups B and B ′, containing the same torus T , the origins
OB und OB′ need not coincide and therefore the sectors DB,T , B ⊃ T do not cover
in general the apartment XT : see the example below. For a F parabolic group P of
cotype ∆0 6= ∅, we denote by X ′P the set of all points x ∈ X which are close to P :

X ′P :=

{
x ∈ X

∣∣∣∣
cB,α(x) ≥ C1 for all α ∈ ∆ \∆0

cB,α(x) ≥ C2 for all α ∈ ∆0
for all B ⊆ P

}

or X ′P :=
⋃

B⊆P
DB :=

⋃

B⊆P

(⋃

T⊆B
DB,T ∩X ′P

)
,

and call
X ′ :=

⋃

P

X ′P =
⋃

P max

X ′P

the unstable region of X; the name is given in analogy to the description with vector
bundles for the group G = SLn (cf. [G1], 4). For a F -parabolic group Q let P run over
all maximal F -parabolic groups which contain Q; then we have

X ′Q =
⋂

P⊇Q
X ′P .

We obtain a polyhedral decomposition of X ′, defining

X ′′Q := X ′Q \
⋃

Q1$Q

(X ′Q ∩X ′Q1) .
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In the special case, where C1 = 0, we have in a fixed sector DB,T the following descrip-
tions:

X ′Q ∩DB,T = {x ∈ DB,T

∣∣α(x) ≥ 0 for all α ∈ ∆, α(x) ≥ C2 for all α ∈ ∆0}
X ′′Q ∩DB,T = {x ∈ DB,T

∣∣ 0 ≤ α(x) ≤ C2 for all α ∈ ∆ \∆0,

α(x) ≥ C2 for all α ∈ ∆0}

where Q = P∆0 . In particular for Q = B, which means ∆0 = ∆, X ′′B ∩DB,T is a cone
inside DB,T , for Q = P maximal, i.e. ∆0 = {α}, we get for X ′′P ∩ DB,T a cylindric
convex set, furthermore infinite prisms etc. Finally we have X ′P =

⋃
Q⊆P

X ′′Q .

Remark. Assume we have an enumeration of the set of simple roots, given by a type
function on the vertices of the spherical building X0, then for x ∈ X ′′Q the set of maximal
parabolic subgroups P containing Q defines a chain which generalizes the “canonical
filtration” of vector bundles for G = SLn (cf. [G1]) or respectively lattices in the
number field case (cf. [St1] and [G2]).

Above all we are interested in the boundary Y := ∂X ′ of the unstable region, which
can be described for a parabolic group Q of cotype ∆0 6= ∅ as follows:

YQ := ∂X ′′Q :=




x ∈ X ′′Q

∣∣∣∣∣∣∣∣

cβ,α(x) ≥ C1 for all α ∈ ∆ \∆0 and all
B ⊆ Q

cβ,α(x) ≥ C2 for all α ∈ ∆0 and equality for
at least one B ⊆ Q





Y = ∂X ′ :=
⋃
Q

∂X ′′Q .

In the next step we distinguish geodesic lines in X ′′Q: A point x ∈ X ′′Q with coordinates
α(x) for an appropriate B determines uniquely a boundary point y ∈ YQ by setting
α(y) = α(x) for all α ∈ ∆ − ∆0 and α(y) = C2 for all α ∈ ∆0, the segment xy lies
on a geodesic. The “geodesic action” on this line in the apartment XT is given by
the torus T∆0 := {t ∈ T | α(t) = 0 for all α ∈ ∆ − ∆0}, contained in the radical of
Q = P∆0 , centralizing its semi-simple part. Along these geodesic lines we can define a
retraction of X ′′Q to its boundary YQ, for instance parametrized by the distance function
dQ. Therefore the local definitions fit together for X ′Q, but unfortunately they define
no retraction from X ′Q to ∂X ′Q since the geodesic lines are branching into different
apartments. We shall need a further retraction from the sets X ′P to “infinity” along
geodesics of “type P∆0”, given by the action of T∆0 , see next section.

Example. G = SLn, Γ = SLn(Fq[t])

(1) In this case Γ admits a strict simplicial fundamental domain D which is a sector
DB,T for a fixed pair T ⊂ B: see [Ab], I.3); this result can also be deduced
from reduction theory with Siegel sets. This corresponds to the fact that we can
choose C1 = 0, C2 = 1 in Harder’s theory for this case. One may then define
the polyhedral decomposition locally in D and extend it to X by the action of Γ.

(2) In order to show that origins OB and OB′ of different sectors in an apartment
must not coincide, we use n = 3: Denote by B+ the upper triangular matrices
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in SL3, by B
− = wB+w−1 with w =




0 0 1
0 −1 0
1 0 0


 the lower triangular matrices,

define B′ = g ·B− := g B−g−1 = g wB+w−1g−1 with

g =




1 0 t−n

0 1 0
0 0 1


, n ∈ N, such that B+ and B′ are opposite Borel groups,

defining an apartment A. We obtain an equation gw = γwb with γ ∈ Γ, b ∈
B (Fq(t)), explicitly




t−n 0 1
0 −1 0
1 0 −1


 =




1 0 0
0 −1 0
tn 0 −1







t−n 0 0
0 1 0
0 0 tn







1 0 t−n

0 1 0
0 0 1


.

Compute

cB′,α′(OB) = cgw·B+, gw(α)(gw(OB))

(since w(OB) = OB and g fixes a half-plane containg OB)

= cγwB+,γw(α)(γw · b(OB))

= cB+,α(b(OB)) (by left-invariance of the measure)

= cB+,α(OB) + v(α(b)) = 0− n,
which is valid for α = α1 and α = α2, thusOB 6= OB′ : to getOB′ , we have to shift
OB in “direction of B ′”, precisely: with the coordinates α1, α2 corresponding to
B one has OB′ = (−n,−n).

3. Compactification of the Bruhat–Tits Building

For the boundary at infinity of X we do not use the topologization of the building at
infinity due to Borel–Serre; it is more convenient to have the compactification, con-
structed by Landvogt in [L], but we restrict it to the part defined over F . For a local

field F̂ and a reductive algebraic group H denote by X(H) the Bruhat–Tits building

for the pair (H, F̂ ), then define

X := X(G) :=
⋃

P∈P
X (P/Ru(P )) ,

where P is the set of all parabolic F -subgroups of G and Ru(P ) the unipotent radical

of P (cf. [L], 14.21). X is equipped with a topology which comes from the F̂ -analytic

topology on G(F̂ ) and the compactification of apartments, described below, and it
induces the metric topology on each of the buildings X(P/Ru(P )). Consequently we
consider only the — incomplete, but good (cf. [Br2], VI.9) — apartment system A,
defined over F , which is in 1-1-correspondence with the apartment system A0 of the
Tits building X0 of G(F ).

For A ∈ A denote by V the underlying F̂ -vectorspace, by Σ the Coxeter complex
with respect to G in V , by C a chamber of Σ and by ∆(C) a set of simple roots,
such that C = {x ∈ A | α(x) ≥ 0 for all α ∈ ∆(c)}. For an open face C ′ of C, set
∆(C ′) := {α ∈ ∆(C) | α|C′ > 0} and denote by 〈C ′〉 the subspace of V , generated by
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C ′. V C :=
⋃

C′∈Σ
C′⊆C

V/〈C ′〉 is called the corner defined by C. Provide R̃ := R∪{∞} with

its natural topology and topologize V C in such a way that the map f : V C −→ R̃n,
given by

f(x+ 〈C ′〉) :=
{
∞ for α ∈ ∆(C ′)
α(x) for α ∈ ∆(C) \∆(C ′)

is a homeomorphism. A set U ⊆ V :=
⋃

C′∈Σ
V/〈C ′〉 is called open if U ∩ V C is open

for all chambers C ∈ Σ; by that V becomes compact and is called the compactifi-

cation of V . A := A × V V
Σ
is then the compactification of A with corners AC (cf.

[L], §2). We abbreviate in the following: X(P ) := X(P/Ru(P )), and we define the
boundary of X to be

∂X := X \X =
⋃

P 6=G
X(P ) .

The closure of X(P ) in X is given by
⋃
Q⊆P

X(Q); we shall also need XP := X ∪X(P ).

Our next aim is to determine the homotopy type of the unstable region X ′, using the
cover with the sets X ′P , P a maximal parabolic F -group. The nerve of this cover is the
spherical Tits building X0 which is known to be (r − 1)-spherical. For this purpose we
have to show that the sets X ′P and their intersections X ′Q (Q an arbitrary F -parpabolic
group) are contractible, and to prove this we construct retractions to infinity, more
precisely to X(Q), defined by the geodesic action of the torus T∆0 for Q = P∆0 . To
describe it in a sector DB,T , T ⊇ T∆0 , it is helpful not to use all local coordinates α
for DB,T (α ∈ ∆), but only those α, lying in ∆ − ∆0 and to complete them with the
functions dP for all P = Pα, α ∈ ∆0 (this is admissible since the roots in ∆−∆0 and
the fundamental weights for ∆0 are linearly independent). Then we can define the map

rQ,B,T : DQ,B,T × [0,∞] −→ DQ,B,T (Q ⊇ B)

forDQ,B,T := DB,T ∩X ′Q∩XQ where the closure is meant inX, given by rQ,B,T (x, t) = xt
with

α(xt) = α(x) for all α ∈ ∆−∆0 and x ∈ X
dP (xt) = dP (x) + t for all P = Pα, α ∈ ∆0 and x ∈ X
α(x) = x for all α ∈ ∆, x ∈ X \X.

For different tori T and T ′, containing T∆0 , points x ∈ DB,T and x′ ∈ DB′,T ′ can have
the same image for t = ∞ in X(Q), described by different systems of coordinates α,
coming from the apartments XT and XT ′ respectively, but the coordinates dP for P ⊇ Q
are defined independently from these apartments. Thus the maps rQ,B,T fit together,
defining for t =∞ a retraction

rQ : X ′Q ∩XQ −→ X(Q) .

The map rQ is continuous since its restrictions to the sectors DB,T are fibrations. More-
over, the map rQ is surjective: For each point x ∈ X(Q) we find a point x′ projecting
to x for sufficiently large values dP (x

′) for all P ⊇ Q such that x′ is close to Q, and
therefore exists B ⊆ Q for which x′ is reduced, so x′ ∈ DB,T for some T ⊆ B and
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x′ ∈ DB,T ∩X ′Q. Finally the affine building X(Q) is contractible, thus by the retraction

rQ the set X ′Q ∩XQ is also contractible and as a metrizable manifold the same is true
for its interior X ′Q (cf. [BS1], 8.3.1).

Proposition 1. The unstable region X ′ is (r − 1)-spherical.

Proof. X ′ =
⋃

P∈Pmax
X ′P with Pmax := {P maximal F -parabolic in G}, the non-empty

intersections of the covering sets X ′P are of type X ′Q, Q F -parabolic, and we have seen
above that alle this sets are contractible. The covering sets are closed and the cover is
locally finite because X is a locally finite simplicial complex. Its nerve is given by the
spherical Tits buildingX0 as an abstract complex which is known to be (r−1)-spherical.
Thus we obtain that X ′ is (r − 1)-spherical, using the same theorem as Borel–Serre in
[BS1], 8.2. ¤

Remark. For the group G = SLn (or G = GLn), Proposition 1 was proved by Grayson
with a similar argument using vector bundles (cf. [G1], thm. 4.1). The same idea can

be used for ∂X := X − X =
⋃
P 6=G

X(P ). We have the natural cover ∂X =
⋃
P 6=G

X(P )

with X(P ) =
⋃
Q⊆P

X(Q); all these sets are contractible as Bruhat–Tits buildings or

closures of them and their intersection pattern is given again by X0. So we get the
following.

Corollary 1. ∂X is (r − 1)-spherical.

4. Buildings with Opposition

(a) In each apartment A0 of a spherical building X0 there exists a natural opposition
involution. If A0 is described as an abstract Coxeter complex Σ = Σ(W,S) with
group W and generating set S, WJ = 〈J〉 for J ⊆ S, i.e. Σ = {wWJ | w ∈
W, J ⊆ S} and w0 denotes the element of maximal length in W , then define

opΣ(wWJ) := ww0WwoJw0 ;

expecially if the Coxeter diagram has no non-trivial symmetry, then w0Jw0 = J
for all J . If X0 is the spherical Tits building of a group G(F ) (G reductive,
F a field), the simplices of X0 may be identified with the proper F -parabolic
subgroups of G(F ). Each such group has a Levi decomposition P = LnRu(P ),
and two parabolics are called opposite if they have a common Levi subgroup,
more precisely,

P op P ′ :⇐⇒ P ∩ P ′ is a Levi subgroup of P and P ′.

[Ru(P )](F ) acts simply transitive on the set of all parabolic subgroups opposite
P (cf. [BT], § 4), thus we can identify them with the elements of this radical if
we distinguish one opposite group.

(b) Pairs of opposite simplices of a spherical building with incidence in both com-
ponents provide again a simplicial complex. It was introduced by R. Charney
(see [C]) for G = GLn, even over Dedekind domains in the language of flags;
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she showed that it has the same homotopy type as the spherical building of
GLn itsself. Lehrer and Rylands (see [LR]) defined such a complex for reductive
groups G — they called it the “split building” of G — and proved the corre-
sponding homological result for types An and Cn. A. von Heydebreck (see [vH])
considered this complex for arbitrary spherical buildings and showed that it is
also (n− 1)-spherical in dimension n. We use the definition

OppX0 := {(P, P ′) | P opP ′}.
(c) Moreover, we need a subcomplex of OppX0, where the opposition relation is

defined with respect to Γ.

As a first step we distinguish an apartment A1 = XT1 of X, T1 a maximal split F -torus
such that N(T1) ∩ Γ contains (a copy of) the Weyl group W of X0 (for instance, A1

could contain a vertex with stabilizer G(Ô) ⊃ G(Fq) ⊃ W ). We fix a Borel group
B1 ⊃ T1 and its opposite B′1 in A1. The choice of B′1 defines an identification of
OppB1 := {B′ | B′ opB1} with UB1(F ), and we can consider the subset OppΓB1,
corresponding to UB1(F ) ∩ Γ =: U1 ∩ Γ such that

OppΓB1 := {B′ = γ1B
′
1γ
−1
1 | γ1 ∈ U1 ∩ Γ}.

We extend this notion Γ-invariant: For B = γB1γ
−1 with γ ∈ Γ, the element γ is

determined up to B1(F )∩Γ, so we obtain different opposite Borel groups B ′ = δB′1δ
−1

with δ ∈ γ · (U1 ∩ Γ) — neglecting the torus component in T1 ⊂ B1 since it fixes also
B′1. Consequently the identification of OppB with UB(F ) depends on the choice of δ,
but this has no influence on the definition

OppΓB := {B′ = γ′B′(γ′)−1 | γ′ ∈ UB(F ) ∩ Γ}
because UB = γU1γ

−1, which implies with u, u′ ∈ U1 ∩ Γ:

γ′B′(γ′)−1 = γu′γ−1γuB′1(γu)
−1(γu′γ−1)−1 = γu′uB′1(γu

′u)−1

thus OppΓB = γ ·OppΓB1γ
−1. In general, not all F -Borel groups are conjugate under

Γ; there exist finitely many Γ-conjugacy classes (see part E of reduction theory). We
fix a set

B1, B2 = g2B1g
−1
2 , . . . , Bh = ghB1g

−1
h (gi ∈ G(F ))

of repesentatives and also of their opposite groups

B′1, B
′
2 = g2B

′
1g
−1
2 , . . . , Bh = ghB

′
1g
−1
h ,

and define in the same way as above

OppΓBi := {B′ = γiB
′
iγ
−1
i | γi ∈ UBi

(F ) ∩ Γ}, i = 1, . . . , h

and for B = γBiγ
−1, B′ = γB′iγ

−1

OppΓB := {B′ = γ′B(γ′)−1 | γ′ ∈ UB(F ) ∩ Γ},
which does not depend on the special choice of B ′ (but we do not have giOppΓB1g

−1
i =

OppΓBi in general). Finally we can make the same procedure with parabolic groups,
starting with the set of standard parabolic groups Q1 containing B1 and their oposites
Q′1 ⊇ B′1. Since Q1 and Q

′
1 have a Levi subgroup in common, we obtain all Γ-opposites

of Q1 by conjugation of Q′1 with elements from UQ1(F ) ∩ Γ and we have to restrict in
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all definitions above the groups UB(F ) ∩ Γ to its subgroups UQ(F ) ∩ Γ for Q ⊇ B. We
denote this relation by OppΓ and define

OppΓX0 := {Q,Q′) | Q opΓQ
′}.

5. Proof of the theorem (sketch)

In order to define a retraction from the unstable region to its inner boundary, we have to
split it up into apartments, thereby constructing a bigger complex (part of an “affine
split building”) as follows: denote by T ,B,Q and P the sets of maximal tori, Borel
groups, parabolic and maximal parabolic groups in G, all defined over F (for other
notations cf. section 2)

Z := {(x, T ) ∈ X ′ × T | ∃B ∈ B : x ∈ DB,T},
by definition DB,T ⊂ XT and T ⊂ B.

Since a maximal torus T is uniquely determined by a pair of opposite Borel groups
(B,B′), say T = TB,B′ , there exists an equivalent description

Z = {(x,B′) ∈ X ′ × B | ∃B ∈ B : B opB ′, x ∈ DB,T for T = TB,B′}.
In Z we need an equivalence relation, according to the structure of OppX0, so we define

(x1, T1) ∼ (x2, T2) ⇐⇒
{
x1 = x2 =: x ∈ DB1,T1 ∩DB2,T2

∃Q ∈ Q : Q ⊇ B1, Q ⊇ B2, x ∈ X ′′Q.
The group Q is uniquely determined by reduction theory and this fact implies the tran-
sitivity of the relation. We can define the equivalence also using the second description
of Z:

(x1, B
′
1) ∼ (x2, B

′
2) ⇐⇒





x1 = x2 =: x
∃ (Q,Q′) ∈ OppX0 : Bi ⊆ Q, B′i ⊆ Q′ for i = 1, 2
x ∈ X ′′Q.

In this situation the common Levi subgroup L of Q and Q′ is the centralizer of a torus
TL (not necessarily maximal), contained in T1 ∩ T2. Let us denote by

[x,B′] the class of (x,B ′) and by

X̃ ′ := Z/ ∼= {[x,B ′] | (x,B′) ∈ Z} and

X̃ ′Q,Q′ := {[x,B′] ∈ X̃ ′ | x ∈ X ′Q, B′ ⊆ Q′} for (Q,Q′) ∈ OppX0 ,

and finally the analogous definition for X̃ ′′Q,Q′ with x ∈ X ′′Q. The topology of X̃ ′ is given
as follows: we choose for X ′ the metric topology as a subspace of the affine building

X, for T and B the F̂ -analytic topology induced from G(F̂ ), since all maximal tori
in T or all Borel groups in B are conjugate under G(F ); finally we have the product

topology on Z and the quotient topology on X̃ ′. One should emphasize that every point
(x,B′) has an open neighbourhood in Z of the form U × V , where U is the disjoint
union of open sets UT in XT , because the complex X is locally finite, so we can avoid

ramification inside UT . For a point [x,B ′] in X̃ ′′Q,Q′ ⊂ X̃ ′ there exists a neighbourhood

U×V , where U is the union of segments of geodesic lines in X̃ ′′Q,Q′ , defined by the torus
T = T∆0 if Q and Q′ are both of cotype ∆0. We want moreover to define a boundary
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at infinity for X̃ ′, generalizing the construction of Landvogt. There the Bruhat–Tits
buildings X(Q) := X(Q/Ru(Q)), which contribute to the boundary ∂X are defined

only by quotient groups. For a pair (Q,Q′) of opposite parabolic groups, the common
Levi group L = Q∩Q′ is isomorphic to Q/Ru(Q), so we may consider X(L) instead of

X(Q), defined by a subgroup of G. For X̃ ′ it is more convenient to split up also ∂X,
using the different buildings X(L) instead of a single X(Q). Therefore we set

∂∞X̃ ′ :=
⋃
L

X(L) ,where L = Q ∩Q′, (Q,Q′) ∈ OppX0.

X
′

:= X̃ ′ ∪ ∂∞X̃ ′ .
The details are the same as in Landvogt’s construction, but let us remark that for a

point of ∂∞X̃ ′ each neighbourhood meets infinitely many “apartments” X̃ ′T := {[x, T ] ∈
X̃ ′ | x ∈ XT}. Now we can imitate the proof of Proposition 1, in order to determine

the homotopy type of X̃ ′. We have a cover

X̃ ′ =
⋃

OppX0

X̃ ′Q,Q′ =
⋃

(P,P ′)

X̃ ′P,P ′ with (P, P ′) ∈ OppX0 ∩ (P × P)

with closed sets; their intersections are given by

X̃ ′Q,Q′ =
⋂{

X̃ ′P,P ′
∣∣∣ (P, P ′) ⊇ (Q,Q′)

}
,

thus this cover has the nerve OppX0. The covering sets and their intersections can be

surjectively contracted to X(L) ⊂ ∂∞X̃ along geodesic lines defined by the torus TL in

the center of L = Q∩Q′ and X(L) is a contractible space, so X̃ ′Q,Q′ is also contractible.
Using the result of v. Heydebreck, cited in section 4, we know that OppX0 is (r − 1)-
spherical, and therefore we have the following.

Proposition 2. X̃ ′ is (r − 1)-spherical.

But in contrast to X ′ it is now possible to retract X̃ ′ to its “inner boundary” (cf. section
2)

Ỹ := ∂0X̃
′ := {[x,B′] ∈ X̃ ′ | x ∈ Y }

along geodesic lines in X̃ ′′Q,Q′ , which do not ramify in X̃ ′, because we identified different

apartments only in these sets X̃ ′′Q,Q′ , and the geodesics coincide in their intersections.
Thus we obtain the following.

Corollary 2. Ỹ is (r − 1)-spherical.

We need the analogous results for a subcomplex X̃ ′Γ of X̃ ′, replacing in the definitions
the relation “op” by “opΓ”, consequently we have to admit only pairs of Borel groups
(B,B′) with B opΓB

′ and tori TB,B′ for (B,B
′) ∈ OppΓX0. For this purpose we require

that also OppΓX0 is (r−1)-spherical witch is true for G = SLn by the proof of Charney
(see [C]), for the general case see the appendix. Then we obtain the following result.

Proposition 3. X̃ ′Γ and ỸΓ := Ỹ ∩ X̃ ′Γ are (r − 1)-spherical.
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The next step is to show that ỸΓ is modulo Γ a finite complex — this is the only point

where we need X̃ ′Γ instead of X̃ ′. For the points of ỸΓ the numerical invariants of
reduction theory are bounded from above (and below by definition), so part D of the

“main theorem” says that ỸΓ/Γ is compact. Moreover, by part (E) there exist only
finitely many conjugacy classes of Borel groups, therefore in a set of representatives

[y,B′] for ỸΓ/Γ with y ∈ DB,T only finitely many Borel groups B occur, and since

B′ opΓB, there is only one B ′ modulo Γ for each B : ỸΓ/Γ is a finite complex. Since all
stabilizers in Γ are finite, we can apply the finiteness criterion of K. Brown (see [Br1],
1.1 and 3.1) to get the following result.

Proposition 4. Γ is of type Fr−1.

Remark (concerning the conjecture “Γ is not of type Fr”): Construct an infinite series
of (r − 1)-spheres Sk in Y = ∂0X

′, which are contractible only in growing parts Xk,
defined by a (rough) filtration of X; then {πr−1(Xk)} is not “essentially trivial” in the
sense of K. Brown (see [Br1], 2).

6. Appendix

For the group G = SLn the complex OppΓX0 is also (r − 1)-spherical by [C] and so

are X̃ ′Γ and ỸΓ. It is not true that OppΓX0 is a deformation retract of OppX0, as was
shown by Abramenko, who constructed a counter-example. But we have the following.

Lemma. X̃ ′Γ is a deformation retract of X̃ ′.

Proof. We wish to map a point [x,B ′] of X̃ ′ with x ∈ DB,T ⊂ XT , B opB′, T = TB,B′
to [x,B′0] with the same x ∈ X ′ and B′0 opΓB, obtaining a new torus T0 := TB,B′0 .
Identifying the Borel groups opposite to B with elements of U(F ) (the unipotent radical
of B), for [x,B ′] the group B′ corresponds to an element of U(F ) ∩ Kx with Kx =
StabG(F )(x) since x ∈ XTB,B′

. This compact group contains finitely many elements of

the discrete group U(F ) ∩ Γ; we have to make a choice: There is one element, defining
B′0 and T0, such that XT0 ∩ XT is maximal because the intersection is given as the
intersection of half-apartments, defined by root groups, and for a Chevalley group, U
is the semi-direct product of its root-groups. This definition is compatible with the

equivalence relation in Z and the map induces the identity on X̃ ′Γ. Moreover, this map
is also continuous: the topology in the second component is induced by the analytic

topology of the group G(F̂ ); an element of U(F ) ∩ Kx has a neighbourhood which
contains only one element of U(F ) ∩ Γ, due to its discreteness. ¤

Remark. Since OppΓX0 is the nerve of a cover of X̃ ′Γ, we proved indirectly that it is
(r − 1)-spherical. A direct proof for groups over Dedekind rings would be of interest.
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Controlled Topology and Group Actions

by

R. Bieri∗ and R. Geoghegan†

This is a report on our work during the last few years on extending the Bieri-Neumann-
Strebel-Renz theory of “geometric invariants” of groups to a theory of group actions on
non-positively curved (= CAT(0)) spaces. With the exception of Theorem 8, which is
proved here, and the related material in §5.3, proofs of all our theorems can be found in
our papers [BGI] (controlled connectivity and openness results), [BGII] (the geometric
invariants) and [BGIII] (SL2 actions on the hyperbolic plane). An earlier expository
paper [BG 98] is also relevant.

1. The Geometric Invariants

Here we recall the “geometric” or “Σ-” invariants of groups developed during the 1980’s
by Bieri, Neumann, Strebel and Renz (abbrev. BNSR); see [BNS 87], [BR 88], [Re 88].
We set things out in a way which leads directly to generalizations which were not
anticipated in the original literature. Let G be a group of type1 Fn, n ≥ 1. Let X be a
contractible G-CW complex which is either (a) free with cocompact n-skeleton, or (b)
properly discontinuous and cocompact. Case (a) exists by the definition of Fn; Case (b)
is often useful but can only exist when G has finite virtual cohomological dimension.

1.1. Controlled connectivity. Let χ : G→ R be a non-zero character, i.e., a home-
omorphism to the additive group of real numbers. Reinterpret R as the group of trans-
lations, Transl(E1), of the Euclidean line E1, and thus reinterpret χ as an action of
G on E1 by translations. In an obvious way, χ defines a (unique up to bounded ho-
motopy) G-equivariant “control function” h : X → E1. We say that the action χ is
controlled (n − 1)-connected (abbrev. CCn−1) over ∞ if for any s ∈ R and p ≤ n − 1
there exists2 λ(s) ≥ 0 such that every map f : Sp → h−1([s,∞)) extends to a map

f̃ : Bp+1 → h−1([s− λ(s),∞)), and s− λ(s)→∞ as s→∞. Clearly, χ is CCn−1 over
∞ if and only if rχ is CCn−1 over ∞ for some (equivalently, any) r > 0.

1.2. The Geometric Invariants. Let S(G) be the sphere of non-zero characters on
G modulo positive scalar multiplication: when χ ∈ Hom(G,R) is a non-zero character
we denote by [χ] the point of S(G) represented by χ. The preferred endpoint of R is
∞. Define

Σn(G) := {[χ] ∈ S(G) | χ is CCn−1 over ∞}.
∗Supported in part by a grant from the Deutsche Forschungsgemeinschaft.
†Supported in part by grants from the National Science Foundation.
1G is of type Fn if there is a K(G, 1)-complex with finite n-skeleton. All groups are of type F0, F1

is “finitely generated”, F2 is “finitely presented”, etc. F∞ means Fn for all n.
2We will see in §7 that it would be equivalent to have λ independent of s in which case the convergence

to ∞ would be automatic.
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This is the nth (homotopical) geometric invariant of [BR 88] and [Re 88], and coincides
with the invariant ΣG′ of [BNS 87] when n = 1.

1.3. A recasting in terms of a single translation action. Consider G → G/G′,
the abelianization homomorphism. Write V := G/G′ ⊗ R. There is an induced homo-
morphism G→ G/G′ → V . We reinterpret V as Transl(V ), the group of translations,
and we rewrite this homomorphism as α : G → Transl(V ), the canonical translation
action of G on V . The vector space V has a natural base point 0. An endpoint of V
is a ray starting at 0. The set, ∂V , of endpoints is a sphere of dimension (dim V ) −1
with the obvious topology. We choose an inner product (·, ·) for V . Then each e ∈ ∂V
defines a “projection on the e-direction” functional πe ∈ V ∗ by πe(x) = (x, ue), where
ue is the point on the ray e of unit distance from 0. Thus we get, for e ∈ ∂V , a character
χe = πe ◦ α : G → R. The map ∂V → S(G), e 7→ [χe] is a homeomorphism. Looking
ahead, we say that the action α is CCn−1 over e ∈ ∂V if and only if χe is CC

n−1 over
∞. We define

Σn(α) := {e ∈ ∂V | α is CCn−1 over e}.
Then the above homeomorphism e 7→ [χe] identifies Σ

n(α) with Σn(G). It is from this
point of view – Σn(α) as an invariant of an action α of G on V – that our generalization
takes off.

2. Isometric actions on CAT(0) spaces

In Section 1 we considered a canonically defined translation action of G on a certain
finite-dimensional real vector space V . We chose an inner product for V and hence a
metric. Translations are isometries with respect to any such metric, and V (with this
metric) is an example of a proper CAT(0) space. In our generalization we consider
actions of G by isometries on proper CAT(0) spaces. A general reference on CAT(0)
spaces is [BrHa].

2.1. Proper CAT(0) spaces. A metric space (M,d) is a proper CAT(0) space if
(i) it is a geodesic metric space: this means that an isometric copy of the closed interval
[0, d(a, b)] called a geodesic segment joins any two points a, b ∈M ; (ii) for any geodesic
triangle ∆ in M with vertices a, b, c let ∆′ denote a triangle in the Euclidean plane
with vertices a′, b′, c′ and corresponding side lengths of ∆′ and ∆ equal; let ω and ω′

be geodesic segments from b to c and from b′ to c′ respectively; then for any 0 ≤ t ≤
d(b, c), d(a, ω(t)) ≤ ||a′ − ω′(t)||; and (iii) d is proper, i.e., the closed ball Br(a) around
any a ∈M of any radius r is compact. In a CAT(0) space the geodesic segment from a
to b is unique and varies continuously with a and b. This implies that CAT(0) spaces
are contractible.

Examples of CAT(0)-spaces are Euclidean space Em, hyperbolic space Hm, locally
finite affine buildings, complete simply connected open Riemannian manifolds of non-
positive sectional curvature, and any finite cartesian product (Π

i
Mi, d) of CAT(0) spaces

(Mi, di) with d(a, b) := (
∑
i

di(ai, bi)
2)

1
2 .
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A geodesic ray in M is an isometric embedding γ : [0,∞) → M . Two geodesic rays
γ, γ′ are asymptotic if there is a constant r ∈ R such that d(γ(t), γ ′(t)) ≤ r for all t.
The set of all geodesic rays asymptotic to γ is called3 the endpoint of γ and denoted
e = γ(∞). The collection of all endpoints of geodesic rays form the boundary ∂M
of M . Since d is proper it is complete, so for every pair (a, e) ∈ M × ∂M there is
a unique geodesic ray γ : [0,∞) → M with γ(0) = a and γ(∞) = e. Hence there
is a natural bijection between ∂M and the set of all geodesic rays emanating from a
base point, and ∂M acquires the compact-open topology of the latter via this bijection.
This topology, which is independent of the choice of a, is compact and metrizable. It
is called the cone topology. An action on M by isometries induces a topological action
on ∂M . Associated to each geodesic ray γ of M is its Busemann function βγ :M → R
given by βγ(b) = lim

t→∞
(d(γ(0), γ(t))− d(b, γ(t)). For each s ∈ R the associated horoball

HBs(γ) := β−1γ ([s,∞)). Horoballs “centered” at γ play a role analogous to that of

balls centered at a ∈ M . Indeed,4 HBs(γ) = clM(
⋃{Bt−s(γ(t))|s < t}). Horoballs are

contractible.

2.2. CCn−1 over end points. Let n ≥ 0 be an integer, let M be a proper CAT(0)
space, let X be an n-dimensional contractible free G-CW-complex such that G\Xn is
finite or a properly discontinuous cocompact contractible G-CW complex, let ρ : G→
Isom(M) be an isometric action and let h : X → M be a control function (i.e., a
G-map). We pick a geodesic ray γ : [0,∞) → M and let e = γ(∞). We write X(γ,s)

for the largest subcomplex of X lying in h−1(HBs(γ)). We say that X is controlled
(n − 1)-connected (CCn−1) in the direction γ (with respect to ρ) if for any horoball
HBs(γ) and −1 ≤ p ≤ n− 1 there exists λ(s) ≥ 0 such that every map f : Sp → X(γ,s)

extends to a map f̃ : Bp+1 → X(γ,s−λ(s)) and s − λ(s) → ∞ as s → ∞. The number
λ depends on the horoball HBs(γ). When p = −1 this says that each X(γ,s) is non-
empty. Equivalent forms of this definition are discussed in Section 7. The property “X
is CCn−1 in the direction γ” is a property of the endpoint e rather than the ray γ. It is
also independent of the choice of X and of h, i.e., it is a property of the action ρ. So,
if X is CCn−1 in the direction γ we will say that ρ is CCn−1 over (or in the direction)
e = γ(∞). Our generalization of Σn(G) ∼= Σn(α) in Section 1 is

Σn(ρ) := {e ∈ ∂M | ρ is CCn−1 over e}.
This is the nth (homotopical) geometric invariant of the action ρ of G on M . A second

generalization of Σn(G), the nth “dynamical invariant”
◦
Σ n(ρ) will be introduced in

Section 3.

2.3. The case n = 0. Clearly, e ∈ Σ0(ρ) if and only if h(X) has non-empty intersection
with every horoball HBs(γ) (where γ defines e). For example, if µ is the action of
SL2(Z) on the hyperbolic plane H (upper half space model) by Möbius transformations,
then ∂H = R∪{∞} and Σ0(µ) = ∂H−(Q∪{∞}); see Section 6.1. As another example,

3In Section 1, V has a natural basepoint. In general, we do not wish to prefer a basepoint in M so
the definition of endpoint must be given in a basepoint-free manner.

4In Section 1, V has a natural base point 0, e is identified with a geodesic ray γ starting at 0,
βγ = πe, and the horoballs HBs(γ) are the half spaces containing (most of) this ray whose boundaries
are orthogonal to γ.
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consider the action α in Section 1. Then clearly5 Σ0(α) = ∂V . It is no accident that
one of these actions is cocompact and the other is not; in fact, we have the following.

Theorem 1. Σ0(ρ) = ∂M if and only if the action ρ is cocompact.6

3. The dynamical invariants

Most of our results on the invariant Σn(ρ) depend on the fact that a certain subset
◦
Σ n(ρ) of Σn(ρ), which often coincides with Σn(ρ), has a dynamical description. This
requires

3.1. A new tool. If X and Y are two CW complexes, we write F̂(X,Y ) for the set of
all cellular maps f : D(f)→ Y , where D(f) is a finite subcomplex of X. By a sheaf of

maps on X with values in Y we mean any subset F of F̂(X,Y ) which is closed under
restrictions and finite unions. The sheaf F is complete (resp. locally finite) if each finite
subcomplex of X occurs as the domain of some member (resp. finitely many members)
of F . A cross section of the complete sheaf F is a map X → Y whose restrictions
to all finite subcomplexes lie in F . For example, every cellular map φ : X → Y is
a cross section of its “restriction”, the sheaf Res(φ) consisting of all restrictions of φ
to finite subcomplexes. These concepts become useful if X and Y are endowed with
cell permuting actions of a group G. Then F̂(X,Y ) has a natural G-action: if g ∈ G
and f ∈ F̂(X,Y ) then the g-translate of f , which we write gf ∈ F̂(X,Y ), has domain
D(gf) = gD(f) and maps gx to gf(x) for each x ∈ D(f). A G-sheaf is a sheaf which is
invariant under this action. If φ : X → Y is a G-equivariant cellular map then Res(φ)
is a G-sheaf and is, of course, locally finite. If φ is an arbitrary cellular map then the
G-sheaf generated by Res(φ) will not, in general, be locally finite. But if it is so – and
the important fact is that this happens far beyond the equivariant case – we call φ a
finitary (more precisely: G-finitary) map. Thus a finitary map φ : X → Y is just a
cellular map which can be exhibited as a cross section of a locally finite G-sheaf.

In our situation, finitary maps will occur as cellular endomorphisms φ : Xn → Xn.
Recall that Xn is endowed with a chosen G-equivariant control map h : Xn → M into
the CAT(0)-space M . We call a cellular map φ : Xn → Xn a contraction towards
e ∈ ∂M if there is a number ε > 0 with

βγhφ(x) ≥ βγh(x) + ε, for all x ∈ Xn,

where γ : [0,∞) → M is a geodesic ray with γ(∞) = e. The nth dynamical invariant
of ρ is

◦
Σ
n(ρ) := {e ∈ ∂M | Xn admits a G-finitary contraction towards e}.

This turns out to be independent of the choices of h and Xn.

5We omitted n = 0 in Section 1 to be faithful to the history. It is a nice exercise to consider n = 0
in the context of Section 1.

6An action of G on M is cocompact if there is a compact subset K ⊂M with GK =M .
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3.2. Relationship with Σn(ρ). Now we consider the action of G on ∂M induced by

ρ. It is clear that both
◦
Σ n(ρ) and Σn(ρ) are G-invariant subsets of ∂M . The following

result asserts that
◦
Σ n(ρ) is a “characteristic subset” of Σn(ρ).

Theorem 2.
◦
Σ n(ρ) = {e ∈ ∂M | cl∂M(Ge) ⊆ Σn(ρ)}.

As an immediate consequence we see that if E ⊆ ∂M is a closed G-invariant subset

of ∂M then E ⊆
◦
Σ n(ρ) if and only if E ⊆ Σn(ρ). This applies, in particular, to the

following two important special cases.

Corollary. a)
◦
Σ n(ρ) = ∂M if and only if Σn(ρ) = ∂M .

b) Assume e ∈ ∂M is fixed under G. Then e ∈ Σn(ρ) if and only if e ∈
◦
Σ n(ρ).

In the “classical” context of Section 1 (BNSR-theory) G acts on a Euclidean space
V by translations, α : G → Transl(V ), and so the action induced on ∂V is trivial.

Hence
◦
Σ n(α) = Σn(α); this special case of assertion b) of the corollary is the so-called

“Σn-Criterion” of the older theory.

3.3. Openness results. The “angular distance” between two points e and e′ of ∂M
is the supremum over points a ∈ M of the angle between the geodesic rays γ and
γ′ representing e and e′ where γ(0) = γ ′(0) = a. This is a metric on ∂M and the
corresponding length metric is called the “Tits distance”, denoted Td(e, e′) In general,
the topology on ∂M given by Td is finer than the cone topology: i.e. id: (∂M, Td)→
(∂M , cone topology) is continuous. The space (∂M, Td) is a complete CAT(1) metric
space. Two extremes are represented by M = Ek where the two topologies agree giving
Sk−1, and M = Hk, k-dimensional hyperbolic space, where (∂M, Td) is discrete while
(∂M , cone topology) is Sk−1. If a cellular endomorphism φ : Xn → Xn is a contraction
towards some e ∈ ∂M , then φ is also a contraction towards all e′ ∈ ∂M sufficiently

close to e in the Tits metric. Hence,
◦
Σ n(ρ) is open in the Tits metric topology of

∂M . In fact, when the function spaces Isom(M) and Hom(G,Isom(M)) are given the
compact-open topology, one can show the following.

Theorem 3. {(ρ, e) | e ∈
◦
Σ n(ρ)} is open in Hom(G, Isom(M))×∂M when ∂M carries

the Tits distance topology.

For a different and deeper openness theorem we need ∂M compact, i.e., the cone topol-
ogy on ∂M .

Theorem 4. If E is a closed subset of (∂M , cone topology) then {ρ | E ⊆ Σn(ρ)} is
an open subset of Hom(G,Isom(M,E)). In particular, {ρ | Σn(ρ) = ∂M} is open in
Hom(G,Isom(M)).

Here, Isom(M,E) is the space of isometries of M which leave E invariant. The core
idea in the proof of these openness theorems is the following: the control function
h : Xn →M can be chosen to vary continuously with the action ρ ∈ Hom(G, Isom(M)).
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Let e ∈
◦
Σ n(ρ) for a given action ρ, so that we have a finitary contraction φ : Xn → Xn

towards e. If we could describe φ in terms of a finite number of equations we might
expect that the very same φ would also be a contraction towards e if the action ρ were
subjected to a small perturbation. However, a description of φ requires not only the
finitary G-sheaf F(φ) generated by Res(φ) but also an infinite number of choices of
members of F(φ). Thus we cannot expect the same φ to work for all ρ′ near ρ. But
the sheaf F(φ) itself can be described in terms of a finite number of equations and
we can pin down a finite number of inequalities which are necessary and sufficient for
F(φ) to have a cross section which contracts towards e. Thus, even though perturbing
the action ρ slightly to ρ′ requires a new finitary contraction φ′ towards e to establish
e ∈ Σn(ρ′), we are able to guarantee that φ′ does exist as a cross section of the old sheaf
F(φ). A similar reasoning applies to prove Theorem 4 once the following preliminary
result is established.

Proposition. If E ⊆ ∂M is a G-invariant closed (and hence compact) subset, with

E ⊆
◦
Σ n(ρ), then there is a locally finite G-sheaf F with the property that for each

e ∈ E the sheaf 7 F admits a cross section φe : Xn → Xn which is a contraction
towards e.

4. The case when
◦
Σ n(ρ) = ∂M

4.1. Contractions towards a point a ∈ M . The case when
◦
Σ n(ρ) = ∂M deserves

special attention. By definition we then have finitary contractions φe : Xn → Xn

towards each e ∈ ∂M , and we just mentioned in the Proposition that these can be
obtained as cross sections of a single locally finite sheaf F . It seems natural to expect
that parallel to the construction of these φe one ought to be able to construct cross
sections φa : X

n → Xn contracting toward points a ∈M in the following obvious sense:
a cellular map φ : Xn → Xn is said to be a contraction towards a ∈ M if there exists
a radius r > 0 and a number ε > 0 such that d(a, hφ(x)) ≤ d(a, h(x)) − ε for every
x ∈ Xn with d(a, h(x)) > r (this is independent of a). In order to deduce the existence

of a contraction towards a ∈M from the hypothesis
◦
Σ n(ρ) = ∂M we will actually need

the mild assumption that M be almost geodesically complete (see below). But quite
generally it can be expressed in terms of

4.2. The CCn−1 property over a ∈M . For a ∈M and r > 0 we denote by X(a,r) the
largest subcomplex of X lying in h−1(Br(a)). We say X is controlled (n− 1)-connected
(CCn−1) over a (with respect to h) if for all r ≥ 0 and −1 ≤ p ≤ n − 1 there exists

λ ≥ 0 such that every map f : Sp → X(a,r) extends to a map f̃ : Bp+1 → X(a,r+λ).
If X is CCn−1 over some a ∈ M it is easy to see that X is in fact CCn−1 over each
point of M , so we can speak of X being CCn−1 over M without reference to a point
a ∈M . The number λ in the definition of “CCn−1 over a” depends on a and on r. See
Section 7 for more on this definition. The number λ can be chosen to be a function
λ(r) independent of a if and only if the G-action on M is cocompact. The property of

7Note that the same F works for all e ∈ E.
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X being CCn−1 is independent of the choice of X and of h, i.e., is a property of the
action ρ. So, if X is CCn−1 we will say that ρ is CCn−1.

Theorem 5. Assume the action ρ : G → Isom(M) is cocompact. Then the following
two conditions are equivalent:

(i) ρ is CCn−1 over a ∈M,

(ii) there exists a G-finitary contraction φ : Xn → Xn towards a ∈M .

Moreover, (i) or (ii) implies

(iii)
◦
Σ n(ρ) = ∂M = Σn(ρ).

4.3. Almost geodesic completeness. The (proper) CAT(0) space (M,d) is geodesi-
cally complete if every geodesic segment [0, t] → M can be extended to a geodesic ray
[0,∞) → M . We say the CAT(0) space (M,d) is almost geodesically complete if there
is a number µ ≥ 0 such that for any two points a, b ∈M there is a geodesic ray γ with
γ(0) = a such that γ([0,∞)) meets Bµ(b). A recent Theorem of P. Ontaneda shows
that this property is often guaranteed in cases of interest.

Otaneda’s Theorem. [On] Let M be a non-compact proper CAT (0)-space such that
Isom(M) acts cocompactly. A sufficient condition for almost geodesic completeness is
that the cohomology with compact supports H∗c (M) be non-trivial. This condition is
satisfied whenever some subgroup of Isom(M) acts cocompactly with discrete orbits.8

Theorem 5′. (Boundary Criterion) If ρ : G→ Isom(M) is an isometric action on
a proper and almost geodesically complete CAT (0)-space M then the conditions (i), (ii)
and (iii) in Theorem 5 are equivalent.9

As a consequence of Theorem 5′ the openness result of Section 3 implies that (i), (ii)
and (iii) are “open conditions” for ρ ∈ Hom(G, Isom(M)) when G is of type Fn and M
is almost geodesically complete. In [BGI] we give a direct proof of the openness of (i)
and (ii) without reference to (iii). This proof is more technical but has the advantage
that the assumption that M be almost geodesically complete is not needed.

Theorem 6. If G is a group of type Fn then the set
{
ρ | ρ is cocompact and CCn−1 over a ∈M

}

is an open subset of Hom(G, Isom(M)).

Remark: We believe that the equivalent conditions (i) and (ii) in Theorem 5 define
basic properties of an isometric action ρ, and that Theorem 5′ should be viewed as a
tool to establish these properties, via the Boundary Criterion. In fact, this criterion

8D. Farley has shown that this condition is also satisfied if M (as above) is an Mκ-complex with
finite shapes (see [BrHa] for the relevant definitions).

9We do not know whether the assumption that M be almost geodesically complete is necessary in
Theorem 10. It is not needed in the case n = 0, which is Theorem 1. It is an open problem as to
whether there exists a non-compact CAT(0) space M which is not almost geodesically complete but
admits a cocompact group action by isometries.
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is a local–global principle: it breaks up the problem of deciding whether ρ is CCn−1

into “local” questions over each e ∈ ∂M , so that different methods and viewpoints
may be used for different endpoints. An example of this occurs in Section 6.1 where
we establish the precise CCn−1 properties of the Möbius action of various subgroups of
SL2(R) on the hyperbolic plane.

5. Applications

5.1. Openness Results for the Fn-property. When the action ρ : G → Isom(M)
has discrete orbits10 then the property that ρ be CCn over a ∈M has an interpretation
in terms of the finiteness property “type Fn” on the stabilizer Ga of a.

Theorem 7. Let ρ : G → Isom(M) be a cocompact action which has discrete orbits.
Then ρ is CCn−1 if and only if the stabilizer Ga has type Fn.

Theorem 7 is a consequence of the following homotopy version of K.S. Brown’s finiteness
criterion [Br 87, Theorem 2.2]:

Fn-Criterion. Let H be a group, Y a contractible free H-CW complex and (Kr)r∈R
an increasing filtration of Y by H-subcomplexes so that Y =

⋃
rKr and each Kr has

cocompact n-skeleton. Then H is of type Fn if and only if Y is CCn−1 with respect to
the filtration (Kr).

11

Indeed, Theorem 7 follows by setting Y = X, Kr = X(a,r) and H = Ga. Clearly X(a,r)

is a Ga-subcomplex. The remaining part of the proof, that each Xn
(a,r) is cocompact as

a Ga-complex, is not hard.

A special case of Theorem 7 is worth noting. If N = ker ρ we have a short exact
sequence N Â→G→→Q with Q ≤ Isom(M), and short exact sequences for the stabi-
lizers N Â→Ga→→Qa. If we replace the assumption that ρ have discrete orbits by the
stronger assumption that the induced action of Q on M be properly discontinuous12

then Theorem 2 applies – but since all Qa are finite the assertion that Ga be of type
Fn is equivalent to N being of type Fn. Hence Theorem 2 becomes the following.

Theorem 7′. Let Q act cocompactly and properly discontinuous on M. Then ρ is CCn−1

if and only if N has type Fn.

From Theorem 6 we get:

Corollary. Let R(G,M) denote the space of all isometric actions of G on M which
have discrete orbits. Then the set of all isometric actions ρ ∈ R(G,M) which are
cocompact and have point stabilizers of type Fn is open in R(G,M).

10An action of G on M has discrete orbits if every orbit is a closed discrete subset of M .
11In Sections 2.2 and 3.1 we defined CCn−1 using filtrations which came from control functions,

but the definition makes sense with respect to any filtration.
12An action of Q on M is properly discontinuous if every point a ∈M has a neighbourhood U such

that {q ∈ Q|qU ∩ U 6= ∅} is finite (equivalently: if the action has discrete orbits and has finite point
stabilizers).
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Corollary. Let R0(G,M) denote the subspace of all ρ ∈ R(G,M) with the property
that ρ(G) acts properly discontinuously on M. Then the set of all ρ ∈ R0(G,M) which
are cocompact and have ker ρ of type Fn is open in R0(G,M).13

There is no hope of a general openness result in Hom(G, Isom(M)) for the finiteness
properties “ker ρ is of type Fn” or “the point stabilizers of ρ are of type Fn”. This indi-
cates the advantage of the property CCn−1 over these traditional finiteness properties.
To get a counterexample, consider a finitely generated group G whose Abelianization
G/G′ is free of rank 2, and takeM to be the Euclidean line E1. Then every non-discrete
translation action of G on E1 has kernel the commutator subgroup G′. But the non-
discrete translation actions are dense in the space of all translation actions. So if we had
an openness result for the property “ker ρ is finitely generated”, it would imply “G′ is
finitely generated if (and only if) some homomorphism χ : G→→Z has finitely generated
kernel”. This is absurd as is shown by the direct product G = 〈a, x|xax−1 = a2〉 × Z
which has commutator subgroup isomorphic to the dyadic rationals, i.e., G′ ∼= Z[12 ].

5.2. Connections with Lie groups and local rigidity. The following examples ex-
plain how our openness results are related to locally rigid isometric actions of discrete
groups on classical symmetric spaces.

Example: Let M be a locally symmetric space of non-compact type (e.g. the quo-
tient of a virtually connected non-compact linear semisimple Lie group by a maxi-
mal compact subgroup). The natural Riemannian metric makes M a proper CAT(0)
space. The group Isom(M) is a Lie group. Call its Lie algebra g. Each representa-
tion ρ ∈ Hom(G, Isom(M)) makes g into a ZG-module which we denote by g(ρ). A
theorem of Weil [We 64] says that if G is finitely generated and if H1(G; g(ρ)) = 0
then all nearby representations are conjugate to ρ in Isom(M), i.e., ρ has a neighbour-
hood N in Hom(G, Isom(M)) such that every ρ′ ∈ N is of the form ρ′(g) = γρ(g)γ−1

where γ (dependent on ρ′) is an isometry of M ; then ρ is said to be locally rigid (see
[Rag p.90]). In that case ker(ρ′) = ker(ρ) for all ρ′ ∈ N – a much stronger statement
than the conclusion of the last Corollary. But this Corollary holds in situations where
H1(G; g(ρ)) 6= 0, so one may wish to think of it as a weak form of local rigidity: the
kernels may not be locally constant, but their finiteness properties are locally constant.
The next example illustrates this.

Example: Let G be the group presented by 〈x, y|xy2 = y2x〉. For n ≥ 0 define
ρn : G → Z by ρ0(x) = 0, ρ0(y) = 1, and when n ≥ 1 ρn(x) = n, ρn(y) = n2. It is
shown in [BS] that ker(ρ0) is a free group of rank 2 and when n ≥ 1, ker(ρn) is a free
group of rank n2 + 1. For n ≥ 1 define ρ̃n : G → R by ρ̃n(g) = 1

n2
ρn(g). Identify-

ing R with the translation subgroup of Isom(R), we see that {ρ̃n} converges to ρ0 in
Hom(G, Isom(R)), and ker(ρ̃n) = ker(ρn) for all n ≥ 1. Indeed, each ρ̃n is a cocompact
action and ρ̃n(G) acts properly discontinuously on R. This is a case where our Corollary
applies but local rigidity fails.

13This Corollary has predecessors in the literature for the case of homomorphisms ρ : G → Z.
Openness of the condition “ker ρ is finitely generated” was proved in [Ne 79], and of the condition “ker
ρ is finitely presented” in [FrLe 85]. See also [BRe 88] and [Re 88].
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Remark: The paper [Fa 99] contains results in a Lie group context which can be seen
as analogous to Theorem 3 and the last Corollary.

5.3. The problem of fibering a manifold over a manifold. In this section we
point out a connection between this work and the problem of deforming a map of
closed connected manifolds to a fiber bundle map. The various definitions of CCn−1 in
Sections 1-3 have homological analogues. We will only state one in detail. We say that
X is controlled (n− 1)-acyclic (CAn−1) in the direction γ (with respect to the action ρ)
if for any horoball HBs(γ) and −1 ≤ p ≤ n − 1 there exists λ(s) ≥ 0 such that every
singular p-cycle (with integer coefficients) in X(γ,s) bounds a singular (p + 1)-chain in
X(γ,s−λ(s)), and s − λ(s) → ∞ as s → ∞. By standard methods, one proves, for this
situation (see, for example, [Ge]):

Hurewicz Theorem. For n ≥ 2, CC1 in the direction γ and CAn−1 in the direction
γ is equivalent to CCn−1 in the direction γ.

A group G is of type F [resp. type FD] if there exists a finite [resp. finitely dominated14]
K(G, 1)-complex. Let N ½ G ³ Q be a short exact sequence of groups where G has
type F and Q acts properly discontinuously and cocompactly on the proper CAT(0)
space M . Assume that M is almost geodesically complete.

Question. When is N of type FD?

We may choose our free G-complex X to be contractible, cocompact and of finite
dimension, say dimension d. It follows that N has geometric dimension ≤ d, since
N\X is a K(N, 1)-complex of dimension d. It is well-known (see [Ge; Chapter 2] for
example) that geometric dimension ≤ d together with type Fd implies type FD. By
Theorem 2′ it follows that if the action ρ of G on M (induced by G→ Q ↪→ Isom(M))
is CCd−1 then N has type Fd. If we combine the Boundary Criterion (Theorem 5′),
Theorem 7′ and the Hurewicz Theorem stated above, we conclude the following.

Theorem 8. If N is finitely presented and the action ρ is CAd−1 over every e ∈ ∂M
then N is of type FD.

In [BG 98] we replace the condition “CAd−1 over every e” by a condition “Hi(G;N (ρ)) =
0 ∀i ≤ d − 1” where N (ρ) is a G-module of “Novikov coefficients” analogous to the
Novikov Ring in, for example, [No], [Pa], [Ra]. We will not repeat that discussion here.
But it is worth noting the following connection with the fibering problem for manifolds.

Let f : V → W be a map from a closed aspherical triangulable d-manifold to a closed
k-manifold of non-positive sectional curvature. Assume both manifolds are connected
and that f induces on fundamental group an epimorphism G³ Q with kernel N . Then
the space N\Ṽ is the homotopy fiber15 of f ; it is aspherical, so it is finitely dominated if
and only if N has type FD. Since W̃ is a proper almost geodesically complete CAT(0)

14Y is finitely dominated if there exist a finite complex W and maps Y → W → Y so that the
indicated composition is homotopic to idY .

15Given a map φ : A → B between topological spaces there is a space A′ containing A as a strong

deformation retract and a Hurewicz fibration φ′ : A′ → B with A ↪→ A′
φ′−→ B homotopic to φ; see

[Sp; Ch. 2]. The fiber of φ′ (or any space of the same homotopy type) is the homotopy fiber of φ.



Controlled Topology and Group Actions 45

space, we are in the situation of Theorem 14, and thus, once we know that N is finitely
presented (something that can be checked fairly easily in practice) Theorem 14 reduces
the problem of checking that the homotopy fiber of f is finitely dominated to a local
homological condition over each e ∈ ∂W̃ . The relevance of this to geometric topology
is the following theorem of Farrell and Jones [FJ 89].

Theorem. Let d − k ≥ 5 and let W be hyperbolic (i.e., of constant negative sectional
curvature). Then f is homotopic to a block bundle map if and only if the homotopy
fiber of f is finitely dominated.

We will not define “block bundle” here – see [FJ 89]; it is a weaker concept than “fiber
bundle”. Note that the K-theoretic torsions which are required to vanish in [FJ 89,
Theorem 10.7] do vanish under these hypotheses.16

6. Examples

6.1. SL2 actions on the hyperbolic plane. Let m be a positive integer. The Möbius

action,

[
a b
c d

]
z =

az + b

cz + d
, of SL2(Z[ 1m ]) on the hyperbolic plane H (the upper half

space model {z ∈ C | Im z > 0} with metric ds/y and ∂H = R ∪ {∞}) is an action by
isometries. Except for the case of SL2(Z), i.e. m = 1, it is an indiscrete action. We
denote this action by µm : SL2(Z[ 1m ])→ Isom(H).

Theorem 9. Let m be divisible by exactly s different primes. Then

Σn(µm) =

{
∂H, if n < s

R−Q, if n ≥ s.

The lowest case, m = 1 (s = 0) arose in Section 2.3. Theorem 9 contains the well-known
fact that under the Möbius action of SL2(Z) on H, the irrational boundary points are
precisely the “points of approximation”; see [Be] and [BG 98, §3.4]. By Theorem 1 it
also includes the easily proved fact that the Möbius action µm is cocompact if and only
if m ≥ 2. In the cocompact (m ≥ 2) case the Boundary Criterion (Theorem 5′) yields

Corollary. For m ≥ 2, µm is CCn−1 over a ∈M if and only if n < s.

6.2. Generalization to other subgroups of SL2(R). We briefly comment on the
proof of Theorem 9 and we will observe that it goes through in more general circum-
stances. The full proof is in [BGIII]. The crucial facts about a group G ≤ SL2(R) and
its Möbius action µ : G → Isom(H) which we need are the following: G acts cocom-
pactly on a contractible locally finite CW -complex Y so that the base point stabilizer
H ≤ G is a Fuchsian group17. (In Section 6.1 we had G = SL2(Z[ 1m ]), H = SL2(Z),
and Y the product of the Bruhat-Tits trees for the s different prime divisors of m.)
The space X = H × Y is contractible and the diagonal action of G on X is properly
discontinuous. Hence X, endowed with projection h : X ³ H, is suitable for computing

16We thank Tom Farrell for drawing our attention to this connection with [FJ 89].
17That is, a discrete subgroup of SL2(R) with finite covolume.
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Σn(µ) provided G acts cocompactly, i.e., when H is a cocompact Fuchsian group. If so
we find easily that Σn(µ) = ∂H for all n ≥ 0.

If H is a non-compact Fuchsian group (such as SL2(Z)), X is not permitted in the
limited definition of Σn(ρ) given in Section 2. However, the more elaborate definitions
given in Section 7.2 below, show us how to check the CC-properties using X and h.
In the absence of cocompactness we need a filtering of X by cocompact subspaces, and
these must be chosen with care. In the special case when H has finite index in G then
G is itself Fuchsian and we can take X = H filtered by the truncated planes

Ct = H−H{z ∈ C | Im(z) < log t}, t ≥ 0.

One finds for all n ≥ 0

Σn(µ) = {e ∈ ∂H | e not a parabolic fixed point of H}
= {e ∈ ∂H | e not a cusp of any Dirichlet domain for H}.

The assumption that the G-CW-complex Y be locally finite implies that its stabilizers
are commensurable; hence G is in the commensurator of H. By a famous theorem of
Margulis [Ma] it follows that if the index of H in G is not finite then H must be an
arithmetic Fuchsian group. These groups are classified, and from this classification (e.g.
[Ka]) we find that ifH is not cocompact then, up to conjugacy, we haveG ≤ SL2(Q) and
H commensurable with SL2(Z). This brings us close to the special case of Section 6.1
where G = SL2(Z[ 1m ]) but does leave room for more examples.

The proof of Theorem 9 (and its generalizations) proceeds then as follows. Once the
filtration of the G-space X by cocompact subspaces is set up, the inclusion R − Q ⊆
Σ∞(µ) can be established. The discussion of the rational endpoints e ∈ Q ∪ {∞} is
based on the following somewhat surprising result which - in the restricted situation
of this subsection - relates the question “is e ∈ Σn(µ)?” to the restricted action of the
stabilizer Ge on H.

Theorem 10. For e ∈ Q ∪ {∞} and n ≥ 0, we have e ∈ Σn(µ) if and only if
e ∈ Σn(µ | Ge).

The advantage of passing to Ge is twofold. On the one hand Ge fixes the endpoint e and
hence permutes the horoballs at e. In fact the action µ induces a character χe : Ge → R
with gHBs(γ) = HBs+χe(g)(γ), for all g ∈ Ge, where γ is a geodesic ray with γ(∞) = e.
In [BGII] we prove that e ∈ Σn(µ | Ge) if and only if [χe] ∈ Σn(Ge). On the other hand
the stabilizer Ge is a metabelian group and this allows us to extract what we need from
the literature on the geometric invariants in the sense of Section 1: namely, a theorem
of H. Meinert [Me 96] which reduces Σn(Ge) to Σ1(Ge), and the computation of Σ1(Ge)
by means of valuations on fields in [BS 81] and [BGr 84].

6.3. Tree actions. Let T be an infinite locally finite tree and let ρ : G → Isom(T )
be a cocompact action of G by simplicial automorphisms. Then, by Bass-Serre theory,
G is the fundamental group of a finite graph of groups (Γ,G), where Γ = G\T and
G is the system of edge and vertex stabilizers along a fundamental transversal of T .
The edge stabilizers are of finite index in the vertex stabilizers since T is locally finite.
Following [Bi 98] we define the finiteness length of G [resp. G] to be flG := sup{k | G is
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of type Fk} [resp. flG := inf{flH | H ∈ G}], and the connectivity length of a character
χ : G→ R to be cl(χ) := sup{k | k ≤ flG and [χ] ∈ Σk(G)}. In this case, flG = flH for
any H ∈ G. We begin by noting three elementary facts. First, T is almost geodesically
complete so we may apply Theorem 5′. Secondly, if the fixed point set (∂T )G is a proper
subset of ∂T then it is either empty or a singleton; for if there are two singleton orbits
then ∂T consists of just those points18. Thirdly, any orbit consisting of more than one
point is dense19, so that its closure is ∂T . It follows that if S is the union of closures of

orbits—and
◦
Σ n(ρ) is such a set—then S = ∂T or is a singleton or is empty. It is well

known that flG ≤ flG, so if (∂T )G = ∅ then20

(∗)
◦
Σ
n(ρ) =

{
∂T if 0 ≤ n ≤ flG
∅ if flG < n ≤ flG.

There remains the case when the G-tree T has exactly one fixed end e. For such a tree
we have the associated non-zero character χe : G→ R of Section 6.2 measuring the shift
towards e. Thus if n ≤ flG, Σn(ρ) is defined, and by Theorems 7 and 5′, Σn(ρ) = ∂T . In
particular, e ∈ Σn(ρ) and therefore [χe] ∈ Σn(G), implying n ≤ cl(χρ,e). In summary:
flG ≤ cl(χρ,e) ≤ flG and

(∗∗)
◦
Σ
n(ρ) =





∂T if 0 ≤ n ≤ flG
{e} if flG < n ≤ cl(χρ,e)
∅ if cl(χρ,e) < n ≤ flG.

In [BGII], we compute the parameters flG, cl(χp,e) and flG occurring in (∗∗) when G
is metabelian of finite Prüfer rank21. Among such groups one can achieve (in (∗∗))
◦
Σ n(ρ) = ∂T and

◦
Σ n(ρ) = {e} in arbitrarily large ranges of n, while

◦
Σ n(ρ) = ∅ only

occurs when n = flG <∞.

7. Controlled connectivity

The usefulness of the theorems in this paper depends on one’s ability to check the CC
or CA properties. It turns out that there are various formulations of these conditions
which are equivalent, but not obviously so. We discuss these for the CC case; the CA
case is entirely analogous.

7.1. G of type Fn. Up to now we have only used the properties CCn−1 in contexts
where G is of type Fn; specifically we required that G\Xn be a finite complex. In this
case we can characterize CCn−1 in the direction γ (see Section 2) in various ways.

Theorem 11. The following are equivalent:

18And in that case T is essentially a line, a case already understood.
19Let e be in such an orbit. The union of lines from g1e to g2e, for all g1, g2 ∈ G is non-empty: it

is a G-invariant subtree. This together with cocompactness implies Ge is dense.
20When flG or flG =∞, this is to be understood as meaning “for all n”.
21This means: the commutator subgroup G′ is abelian with finite torsion and finite torsion free rank

(dimQ(G
′ ⊗Q <∞).
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(i) for any m ∈ Z and −1 ≤ p ≤ n− 1, there exists an integer λ(m) ≥ 0 such that
m − λ(m) → ∞ as m → ∞ and every map f : Sp → X(γ,m) extends to a map

f̃ : Bp+1 → X(γ,m−λ(m)),

(ii) for any m ∈ Z and −1 ≤ p ≤ n− 1, there exists an integer µ(m) ≥ 0 such that
m+ µ(m)→ −∞ as m→ −∞ and every map f : Sp → X(γ,m+µ(m)) extends to

a map f̃ : Bp+1 → X(γ,m),

(iii) for any m ∈ Z and −1 ≤ p ≤ n − 1 there exist integers λ(m), µ(m) ≥ 0 such

that every map f1 : S
p → X(γ,m) extends to a map f̃1 : B

p+1 → X(γ,m−λ(m)), and

every map f2 : S
p → X(γ,m+µ(m)) extends to a map f̃2 : B

p+1 → X(γ,m).

Condition (i) is clearly equivalent to saying that ρ is CCn−1 over e := γ(∞). Hence
(ii) and (iii) are equivalent formulations of that definition. If [Sp, Z] denotes the set of
homotopy classes of maps from Sp to the space Z, then (iii) can be rephrased as saying
that the sequence

· · · ← [Sp, X(γ,m)]← [Sp, X(γ,m+1)]← · · ·
of sets and functions (induced by inclusions) is “essentially trivial” both as an inverse
sequence and as a direct sequence. The terms “pro-trivial” in the inverse case and “ind-
trivial” in the direct case are also used. It often turns out that Condition (i) holds with
constant λ(m) =: λ ≥ 0. The proof of Theorem 11 then shows that µ(m) in Condition
(ii) can also be taken to be constant; in fact µ(m) = λ. Theorem 11 is proved in the
Appendix to [BGII].

7.2. More general G and X. In checking the CC conditions, there are occasions,
such as the examples described in Sections 6.1 and 6.2, when the natural X is not
cocompact. And we would wish for a definition of CCn−1 even when G does not have
type Fn. These two issues are addressed in this section. For proofs see [BGIII].

Let G be a group, (M,d) a proper CAT(0), X a non-empty G-space (i.e. G acts on X
by homeomorphisms) and h : X → M a G-map (a “control function”). We say that
X is controlled n-connected (abbrev. CCn) over the point a ∈ M if each cocompact
G-subspace K of X lies in a cocompact G-subspace K ′ such that for each r ≥ 0 and
each −1 ≤ p ≤ n there exists λ ≥ 0 satisfying:

(∗a) every singular p-sphere in K over Br(a) bounds a singular (p + 1)-ball in K ′

over Br+λ(a).

This property is independent of the choice of control function h, because if h′ is another
then for each cocompact set K ⊂ X there is a number δK such that d(h(x), h′(x)) ≤ δK
for all x ∈ K. So only the existence of a control function X → M is needed for the
definition to make sense. In general, λ depends on K, r and a. If X is CCn over
a ∈ M then X is CCn over every point of M , but with varying λ. If λ can be chosen
independent of a (i.e., depending only on K and r), we say that X is uniformly CCn

overM . Again, this is independent of the control function. The case p = −1 is included
in (∗a): it means that h−1(Br+λ(a)) ∩K ′ is non-empty. Of course any non-empty X is
CC−1 over each a ∈M . But “uniformly CC−1” has a useful interpretation:
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Proposition 1. X is uniformly CC−1 over M if and only if the G-metric space M is
cocompact. ¤

The proof is straightforward, as is the proof of:

Proposition 2. Let M be cocompact. Then X is CCn over some a ∈M if and only if
X is uniformly CCn over M . ¤

These CCn-properties of X over M are homotopy invariant in a strong sense:

Theorem 12. (Invariance Theorem) Let h : X → M and h′ : X ′ → M be G-maps
and let X ′ be G-homotopically dominated by X.22 If X is CCn over a (resp. uniformly
CCn over M) then X ′ is CCn over a (resp. uniformly CCn over M).

Proof. The proof is routine. ¤

There is a “best” X to choose overM , namely the universal cover of aK(G, 1)-complex,
by definition a contractible free G-CW complex. Since the action on X is free and M is
contractible, control functions h : X →M exist. This brings us to our main definition:
we say that the G-action onM is CCn over a ∈M [resp. is uniformly CCn] if this X is
CCn over a [resp. is uniformly CCn overM ]. This definition is independent of X and h
by Theorem 16. More precisely, we can check whether the G-action on M is CCn over
a, or uniformly CCn, by using any contractible space X on which G acts freely and
properly discontinuously, and any control map, provided X has the G-homotopy type
of a G-CW complex. For example, we may use the universal cover of a K(G, 1)-space
which is an ANR rather than a CW complex. By a G-ANR we simply mean an ANR
equipped with an action of G by homeomorphisms.

Proposition 3. Let X be a contractible G-ANR, let the action of G on X be properly
discontinuous, let h : X →M be a control function, and let a ∈M . If G has a torsion-
free subgroup of finite index, then X is CCn over a ∈M (resp. is uniformly CCn over
M) if and only if the G-action on M is CCn over a (resp. is uniformly CCn over M).

In other words, in this case one can read off the CC-properties of the action onM using
this X and h.

Let e ∈ ∂M be represented by the geodesic ray γ. The pair (X, h) is CCn over e if
each cocompact G-subspace K of X lies in a cocompact subspace K ′ such that for each
t ∈ R and each −1 ≤ p ≤ n there exists λ ≥ 0 satisfying

(∗e) every singular p-sphere in K over HBt(γ) bounds a singular (p + 1)-ball in K ′

over HBt−λ(γ)

and

(∗∗e) every singular p-sphere in K over HBt+λ(γ) bounds a singular (p + 1)-ball in
K ′ over HBt(γ).

22That is, there are G-maps φ : X → X ′ and ψ : X ′ → X such that φ ◦ ψ is G-homotopic to idX′ .
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Of course this23 depends only on e, not on γ. Moreover, independence of h and the
obvious analogue of Theorem 16 concerning G-homotopy invariance hold here too. We
say that the G-action onM is CCn over e ∈ ∂M if some (equivalently, any) contractible
free24 G-CW complex X is CCn over e. If G has a torsion-free subgroup of finite index
the obvious analogue of Proposition 7.3 holds and “the G-action on M being CCn over
e” can be measured using a properly discontinuous G-ANR.

It should be clear to the reader that the definitions of CCn−1 given here are consistent
with those given in earlier sections.

8. A Non-finitely generated example

With this extended definition of the CC properties, we can state a natural extension of
Theorem 9. Let S be an infinite set of primes and let ZS denote the subring of Q whose
denominators, in lowest terms, only involve primes in S. Let µS : SL2(ZS)→ Isom(H)
denote the Möbius action. Whereas the groups SL2(Z[ 1m ]) are of type F∞, the group
SL2(ZS) is not finitely generated. Nevertheless, using our extended definition we have
the following.

Theorem 13. The action µS is CC∞ over all points of ∂H.25

Note that this applies in particular to the SL2(Q) action on H.
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Finiteness Properties of Soluble S-Arithmetic Groups
– a Survey

by

K.-U. Bux

1. Introduction: Groups and Geometries

Every group is supposed to act upon a certain set preserving some additional structure.
This set, which is almost always a space, should be associated to the group in a natural
way – in many cases, the set comes first and the group is associated to the set. Linear
groups act on vector spaces. Fuchsian groups act on the hyperbolic plane. Symmetry
groups of geometric configurations act upon these objects.

In some cases the right space to act on is not that easily found. The mapping class
group of a surface, i.e., the group of homotopy classes of homeomorphisms of that
surface does not act upon the surface since it is a proper quotient of its automorphism
group. Nevertheless, it acts upon the Teichmüller space of the surface. The group of
outer automorphisms of a free group of finite rank acts on the Culler-Vogtmann space
(outer space). These spaces have been christened in honor of those who found them.
This indicates that it is not at all easy to find the right space.

How can we distinguish the right action from other actions? Most groups admit actions
on many spaces. What distinguishes a good choice? As a rule of thumb, we will aim
at small stabilizers as well as a small quotient space. In the case of a free action, every
orbit is isomorphic to the group, and if the quotient space is a point, then there is only
one orbit to deal with. Hence, at least philosophically, small quotient and stabilizers
will force the space acted upon to look roughly like the group itself. Hence one may be
able to deduce some properties of the group by proving some analogues for the space.

1.1. Finiteness Properties. To give a flavour of the theorems one obtains by employ-
ing geometrically arising group actions, we shall deal with finite generation and finite
presentation first. Both of the following theorems are due to A. M. Macbeath [Macb64,
Theorem 1]. J.-P. Serre also gave a proof [Serr77, Chapitre 1 § 3 Appendice, page 45].

Let X be topological space and U be an open subset of X. We assume that X is locally
connected and locally simply connected. Hence covering space theory applies. Suppose
that the group G acts on X such that

X = GU :=
⋃

g∈G
gU.

Put H := {h ∈ G | hU ∩ U 6= ∅}. Note that H is symmetric, i.e., h−1 ∈ H for every
h ∈ H.
Theorem 1.1. If X is nonempty and path connected, H generates G. In particular, if
H is finite, then G is finitely generated.

52
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We can refine this result to obtain presentations as follows. Let X := {xh | h ∈ H}
be a set of letters, one for each element of H. Fix the following set of relations R :=
{xh1xh2x−1h3 | hi ∈ H, h1h2 = h3}. The group

G̃ := 〈X | R〉

admits an obvious homomorphism ϕ : G̃→ G taking xh to h.

Theorem 1.2. Suppose U is path connected and X is 1-connected, i.e., nonempty,
connected, and simply connected. Then ϕ is an isomorphism.

Corollary 1.1. If H is finite in addition to the assumptions of Theorem 1.2, then G
has a finite presentation.

So we see that finite generation or finite presentability of a group are somehow geometric
or topological properties of the group.

Example 1. The integers Z acts on R by translations. The translates of the open
interval (−1

2
, 11

2
) cover R. We find H = {−1, 0, 1} and obtain the finite presentation

Z =
〈
x−1, x0, x1|x−1x0 = x0x−1 = x−1, x0x0 = x−1x1 = x1x−1 = x0, x1x0 = x0x1 = x1

〉
.

Example 2. Let X = E2 be the Euclidean plane and consider the group G of those
isometries of X that leave invariant the tiling by equilateral triangles shown below. G
is a Euclidean Coxeter group.

U

Triangular decomposition of E2

Let U be an open disc containing a fixed triangle ∆. Since an element of G being an
isometry is uniquely determined by the images of the three vertices of ∆, only finitely
many elements of G can take ∆ to a nearby triangle. Hence the assumptions of Theo-
rem 1.2 are satisfied and we conclude that G is finitely presented.
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Example 3. More interesting is that we can do the very same thing for SL2(Z). This
group acts on the upper half plane H2 = {z ∈ C | =(z) > 0} via

(
a b
c d

)
z =

az + b

cz + d
.

The upper half plane is a model for hyperbolic geometry and the action of SL2(Z) is by
hyperbolic isometries. It leaves invariant a set of hyperbolic geodesics as shown in the
figure – recall that, within the upper half plane model, geodesic lines are represented by
vertical lines and half circles centered on the real line. Thus, we obtain a decomposition
into fundamental domains.

U

i

0 1
Decomposition of H2 in fundamental domains

Taking an open neighbourhood U ⊂ H2 of one of these domains and applying Theo-
rem 1.2 shows that the group SL2(Z) is finitely presented. In fact even more is true.
At every vertex of the decompositions there are three intersecting lines. So six geodesic
rays issue from each vertex. Three of these run straight away to infinity (that is, they
approach the ideal boundary of the hyperbolic plane by going vertically upwards or ap-
proaching the real line) whereas the other three join the vertex to its three neighbouring
vertices. The edges (line segments of finite length joining neighbouring vertices) form
a three-valent tree. The group SL2(Z) acts on this tree since an isometry cannot take
an edge to an infinite geodesic ray. Furthermore, SL2(Z) has a subgroup of finite index
that acts freely on this tree. Finally, the action of this subgroup has a compact quo-
tient. This is one of the strongest finiteness conditions a group can satisfy. A group
G is of finite type if it acts cocompactly (i.e., with compact quotient) and freely on a
contractible CW-complex. An equivalent condition is that G is the fundamental group
of a finite complex whose homotopy groups in dimensions ≥ 2 vanish. G is virtually of
finite type if it has a subgroup of finite index which is of finite type. As we have seen,
SL2(Z) is virtually of finite type. We will see below that this statement generalises to
all arithmetic groups for which SL2(Z) is the most simple non-trivial example.
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There are finiteness properties of intermediate strength between finite generation and
finite presentability on the one hand and being of finite type on the other hand. We can
weaken the condition of being of finite type by restricting the cocompactness condition
to a low dimensional skeleton: A group G is of type Fm if it acts freely on a contractible
CW complex whose m-skeleton has finite quotient mod G. The cellular chain complex
of such a complex provides a free resolution of the trivial ZG-module Z which is finitely
generated up to dimension m. We can define a further weakening by saying that G is
of type FPm if Z considered as a trivial ZG-module has a projective resolution that is
finitely generated up to dimension m. Hence every group of type Fm is of type FPm.
The converse, however, does not hold [BeBr97, Examples 6.3(3)]. A group is finitely
generated if and only if it is of type F1 (or FP1; the difference does not show up in this
dimension), and it is finitely presented if and only if it is of type F2. Recall that the
m-skeleton of a contractible CW complex is (m − 1)-connected, that is, its homotopy
groups are trivial in dimensions less than m.

Theorem 1.3 ([Brow87, Proposition 1.1]). Suppose G acts cocompactly on an (m−1)-
connected CW complex X by cell permuting homeomorphisms such that the stabilizer
of each cell c is of type Fm−dim(c). Then G is of type Fm.

In particular, this theorem allows for finite cell stabilizers whereas the definition of
higher finiteness properties uses a free action. Although the relationship of Theorem 1.3
and Corollary 1.1 is not apparent, the former generalises the latter. Let G, X, and U
be as in Theorem 1.2. The nerve of the covering X =

⋃
g∈G gU is the simplicial complex

N defined by the following two conditions.

(1) The vertex set of N is G.

(2) A finite subset σ ⊆ G spans a simplex if and only if

Uσ :=
⋂

g∈σ
gU 6= ∅.

The group G acts on N on the left by multiplication. The stabilizer of any simplex is
finite. The action is cocompact if the set H = {h ∈ G | U ∩ hU 6= ∅} is finite. Hence
Corollary 1.1 follows from Theorem 1.3 and the following

Proposition 1.1. If X is 1-connected and U is path connected then the geometric
realization |N | is 1-connected.

Proof. Our proof is modeled on an argument of Quillen’s [Quil78, Section 7].

We may assume that X is locally path connected. Otherwise we retopologize X by the
topology generated by path components of open subsets of X. With this topology, X is
locally path connected and still 1-connected [Span66, Chapter 2, Exercises A2-3]. The
subset U remains open and path connected.

Let X be a topological space and X be the category of open subsets in X with inclusions
as morphisms. Given a partially ordered set D, a good cover of X over D is a functor
U : D → X satisfying X = lim−→

α∈D
U(α). A U-covering of X is a covering space of X that

covers every U(α) evenly. Let Setbij be the category of sets with bijections as the only
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morphisms. There is a one-to-one correspondence between functors E : D → Setbij
and U -coverings π : E → X given by

E = lim−→
α∈D
U(α)×E(α).

The covering π : E → X covers X evenly if and only if E is naturally equivalent to a
constant functor.

The set of simplices in the nerve N , also denoted by N , is partially ordered by the face
relation. The functor U assigning to every simplex σ ∈ N the set

U (σ) := Uσ =
⋂

g∈σ
gU

is a good cover of X over N . Since X is 1-connected, every covering of X covers X
evenly and is a U -covering for that reason. Hence every functor N → Setbij is naturally
equivalent to a constant functor.

There also is a good cover N of the geometric realization |N | over N given by

N (σ) := St◦N(σ).

Since the open star of every simplex is contractible, any covering of |N | covers every
N (σ) evenly. Hence all coverings of |N | are N -coverings. These, corresponding to
functors from N to Setbij and therefore to coverings of X, cover |N | evenly. Hence |N |
is 1-connected. ¤

In Theorem 3.1 we will quote a refinement of Theorem 1.3 that provides necessary
and sufficient conditions for higher finiteness properties. There are many other finite-
ness properties. For instance, a group could be of finite cohomological or geometrical
dimension. See [Brow82, Chapter VIII] for more about this.

Example 4. Finally, let us consider a group that leads us directly to the heart of the
matter. Fix a finite field k and let K := k(t) be the field of rational functions over k.
This field contains the ring L := k[t, t−1] as a subring. We will consider the group

B0
2(L) :=

{(
u p
0 u−1

) ∣∣∣u ∈ L∗, p ∈ L
}
⊆ SL2(L).

It acts on L via (
u p
0 u−1

)
q :=

uq + p

u−1
= u2q + up

as inspired by the action of SL2(Z) on C in the preceding example, and as above, we
will turn this action into an action on a tree. For each m ∈ Z put

Vm :=
{∑

i∈Z
αit

i ∈ L
∣∣∣αi = 0 ∀i ≤ m

}

We regard these sets as neighbourhoods of 0 ∈ L. Translation yields neighbourhoods for
each Laurent polynomial p ∈ L

Vm(p) := {q ∈ L | p− q ∈ Vm}.
We call m the radius of Vm(p). Let

V := {Vm(p) | p ∈ L, m ∈ Z}
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be the set of all these neighbourhoods partially ordered by inclusion. Observe that B0
2(L)

acts on V preserving the ordering. The inclusion relation gives rise to a directed graph
with vertex set V. For two elements V, V ′ ∈ V, insert an edge pointing from V to
V ′ if there is no W ∈ V with V ′ $ W $ V while V ′ $ V . So the edges point from
V precisely to those elements of V that are maximal with respect to inclusion in V .
Note that these are finite in number whence we obtain a locally finite graph T+, on
which B0

2(L) acts. T+ does not contain directed cycles, and given two neighbourhoods
V, V ′ ∈ V with nonempty intersection V ∩ V ′ 6= ∅, one of them contains the other.
Hence each vertex of T+ is the terminal vertex of at most one edge, though |k| edges
issue from there. It follows that T+ does not contain undirected cycles. Furthermore,
every neighbourhood V is contained in some neighbourhood Vm of 0. Hence every vertex
in T+ is joined by an edge path to the line

· · · −→−Vm−1−→−Vm−→−Vm+1−→−· · ·
whence T+ is a tree. Since the action of B0

2(L) on T+ does not have finite stabiliz-
ers, we cannot obtain finite generation of this group by applying Theorem 1.2 to T+.
Nevertheless, there is a remedy. The “co-neighbourhoods”

Wm :=
{∑

i∈Z
αit

i ∈ L
∣∣∣αi = 0 ∀i ≥ m

}

give rise to a second tree T− in a completely analogous manner. The diagonal action of
B0
2(L) on the product T+ × T− permutes the cells (vertices, edges, and squares) of this

complex. Stabilizers of cells are now finite, however, the action has no compact quotient.
So we pass to an appropriate subspace. As neighbourhoods have radii, co-neighbourhoods
have “co-radii”. The map that associates to every vertex (Vm(p),Wn(q)) in the Product
T+×T− the number m−n extends linearly to edges and squares of T+×T−. We denote
this map by

π : T+ × T− → R
and observe that it is invariant under the action of B0

2(L). The space

X := π−1(0)

is connected, and Theorem 1.3 implies that B0
2(L) is finitely generated. This construction

will be considered again in Section 4 where we shall also prove that B0
2(L) is not finitely

presented.

1.2. Arithmetic Groups. We will think of a linear algebraic group as a group of
matrices of determinant 1 which is defined by polynomial equations that the matrix
coefficients are supposed to satisfy. These coefficients can be taken from any fixed ring
containing the constants that occur in the defining equations. A typical example is
SOr. Note that a set of polynomial equations chosen at random will almost always
fail to define a subgroup of the special linear group SL. Nevertheless, if it does, then
the fact that the determinant is 1 shows that if the coefficients of a matrix belong
to a certain ring, the coefficients of its inverse will do so, too. [Bore91] may serve as
a reference on linear algebraic groups. Among the linear algebraic groups, there are
two extreme types: soluble groups on the one hand side and semi-simple groups on
the other hand side. A linear algebraic group is semi-simple if it does not contain a
nontrivial connected soluble normal subgroup. Therefore, any linear algebraic group
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is an extension of a semi-simple group by a soluble group. Reductive groups are close
to semi-simple groups. A linear algebraic group is reductive if it contains only “small”
connected soluble normal subgroups, that is, these soluble normal subgroups do not
contain unipotent elements. Maximal connected soluble subgroups of linear algebraic
group are called Borel subgroups. Since they need not be normal, semi-simple and
reductive groups may contain many Borel subgroups. They are a most important tool
in studying reductive groups.

An arithmetic group or an S-arithmetic is obtained from a linear algebraic group when
the coefficients of its matrices are chosen from an arithmetic ring or an S-arithmetic
ring. We already have encountered such rings in the examples. Z is the most simple
arithmetic ring. Generally, any ring of algebraic integers in a number field is called
arithmetic. In the number field case, e.g., over the rationals Q, S-arithmetic rings are
obtained from arithmetic rings by localizing at a finite set S of prime elements. That
is, one allows some primes to be inverted. All these rings live inside of global number
fields which are by definition finite extensions of the rationals Q. Number fields have a
nice arithmetic structure, and it has been recognized long ago that there are fields of
positive characteristic which exhibit a very similar behaviour. These are the so called
global function fields which are finite extensions of fields k(t) of rational functions over
finite fields k. It does not make sense to look for algebraic integers in these fields – they
form a finite subfield, the so called constant functions. Hence there are no interesting
arithmetic rings. Nevertheless, S-arithmetic subrings can be defined even though the
notion of primes has to be recasted in terms of valuations. The precise definitions, which
apply to number fields as well, are given in the next section. At the moment it suffices
to know that the polynomial ring k[t] and the ring k[t, t−1] of Laurent polynomials are
S-arithmetic rings over a set of one prime and two primes, respectively. SL2(Z) and
B0
2(k[t, t

−1]) are typical examples. SL2(Z) is an arithmetic subgroup of a semi-simple
linear algebraic group and B0

2(k[t, t
−1]) is an S-arithmetic subgroup of a Borel group.

As long as people have studied arithmetic groups, they have been investigating finiteness
properties. This is not surprising since, as we have seen, finiteness properties are of
geometric nature and the geometries associated to algebraic groups are a fundamental
tool in studying them and their arithmetic subgroups. This goes for S-arithmetic
subgroups as well. For an arithmetic group over a number field, the symmetric space
of the real Lie group of real points of the algebraic group is a geometric model whereas,
over function fields, Bruhat-Tits buildings provide good geometries for S-arithmetic
groups. The hyperbolic plane of Example 3 is a symmetric space, and the trees T+ and
T− of Example 4 are Bruhat-Tits buildings associated to the two primes defining the
ring of Laurent polynomials.

Let us discuss the number field case first. Let G be a linear group defined over the
global number field K with ring of integers O. Beside finite generation and finite
presentability (see [BoHa62] and [Behr62]), the first result on higher finiteness properties
is a theorem of M.S. Raghunatan [Ragh68, Theorem 1, Corollaries 2 and 4] implying
that an arithmetic subgroup of G(K) is of type F∞ provided that G is semi-simple.
He proved even more, namely that any arithmetic subgroup of a semi-simple group is
virtually of finite type. This is a far-reaching generalisation of Example 3. A. Borel and
J.-P. Serre reproved Raghunathan’s result by different means [BoSe73, Theorem 9.3].
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They also observed that this theorem implies that an arithmetic subgroup of G(K) is
of type F∞ regardless of whether the linear group G is semi-simple. Furthermore, they
generalised the result to S-arithmetic groups [BoSe76, Proposition 6.10]. In this case
however, they had to assume that the linear algebraic group is reductive. Then, as
above, an S-arithmetic subgroup is virtually of finite type.

What about non-reductive linear algebraic groups? M. Kneser proved that G(OS)
is finitely presented if and only if for each non-Archimedian prime v ∈ S the locally
compact group G(Kv) is compactly presented whereKv denotes the completion ofK at v
[Knes64]. Compact presentability is the analogue of finite presentability in the category
of locally compact topological groups. Using Kneser’s result, H. Abels characterized all
finitely presented S-arithmetic groups over number fields [Abel87]. The main point is
that G(Kv) is compactly presented if and only if a maximal Kv-split soluble subgroup
B(Kv) is compactly presented. This reduces the problem to soluble groups. For these,
he proved:

Theorem 1.4. Let Γ be a soluble S-arithmetic group. Then there is a short exact
sequence

N ↪→ Γ→→ Q

where N is nilpotent and Q contains a finitely generated Abelian subgroup of finite index.
Γ is finitely presented if and only if the following two conditions hold

(1) The Abelianization N
/
[N,N ] is a tame ZQ-module.

(2) H2(N,Z) is finitely generated over ZΓ.

To explain tameness, we have to consider homomorphisms χ : Q → R. Such a homo-
morphism defines a submonoid Qχ := {q ∈ Q | χ(q) ≥ 0}. A ZQ-module is said to be
tame if, for every homomorphism χ, the module is finitely generated either over ZQχ or
over ZQ−χ or over both rings. This concept was introduced by R. Bieri and R. Strebel
in [BiSt80] to study finite presentability of metabelian groups. This line of thought has
been generalised by H. Abels and A. Tiemeyer to deal with higher finiteness properties.
It yields the following

Theorem A. Let K be a global number field and S a finite nonempty set of primes
containing all Archimedian primes. Let OS be the corresponding S-arithmetic subring
of K. Furthermore let B be a Borel subgroup scheme of a reductive group defined over
K. Then the S-arithmetic group B(OS) is of type F∞.

P. Abramenko (unpublished) proved this result before. His proof establishes that B(OS)
is virtually of finite type. In spite of these results, there does not yet exist a general-
isation of Theorem 1.4, i.e., a list of necessary and sufficient conditions for a soluble
S-arithmetic group to be of type Fm. Further examples of soluble arithmetic groups are
due to H. Abels (see [Abel79] and [AbBr87]). We will discuss the proof of Theorem A
in Section 3 following Abels and Tiemeyer.

Less is known in the function field case. Even for reductive groups the problem of
determining the finiteness properties of S-arithmetic subgroups is unsolved. For these,
H. Behr has given a complete solution for finite generation and finite presentability in
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[Behr98]. Concerning higher finiteness properties, there are mainly two series of exam-
ples. U. Stuhler proved that SL2(OS) is of type F|S|−1 but not of type FP|S| ([Stuh76]
and [Stuh80]), where OS is an S-arithmetic subring of any global function field. This
series shows a positive influence of the number of primes. On the other hand, P. Abra-
menko [Abra87] and H. Abels [Abel91], have proved independently, that SLn(Fq[t]) is
of type Fn−2 but not of type FPn−1 provided that q is big enough. P. Abramenko gen-
eralised this series to other classical groups [Abra96]. It is not yet known whether the
assumption on q can be dropped. H. Behr, though, has proposed a strategy for proving
a positive answer recently [Behr99].

For soluble groups, the author obtained the following result ([Bux97a] and [Bux97b],
see [Bux99] for an English version).

Theorem B. Let K be a global function field and S a finite nonempty set of primes.
Let OS be the corresponding S-arithmetic subring of K. Furthermore let B be a Borel
subgroup scheme of a Chevalley group defined over Z. Then the S-arithmetic group
B(OS) is of type F|S|−1 but not of type FP|S|.

Concerning other soluble groups, little is known in the function field case (see [Bux97b,
Bemerkungen 8.10 and 8.11] or [Bux99, Remarks 8.6 and 8.7]). We will outline the
proof of Theorem B in Section 4. Since the detailed proofs will be published elsewhere,
we focus on the geometric aspects.

Acknowledgement. I would like to thank Prof. Heinz Helling and Prof. Thomas Müller
for giving me the opportunity to present part of this work at the conference they orga-
nized at Bielefeld in August 1999. I am indebted to Peter Brinkmann and Blake Thorn-
ton for very helpful criticism on the manuscript.

2. Notation

LetK be a global field. HenceK is either a global number field (that is, a finite extension
of the rationals Q) or a global function field (that is a finite extension of the field of
rational functions k(t) of a finite field k). For detailed information about global fields
and their arithmetic, see [O’Me73], [CaFr67], or [Weil73]. Let A be the finite set of
non-Archimedian primes of K, which is empty if K is a function field. Recall that a
prime or place v of K is an equivalence class of valuations. To this we can associate the
corresponding completion Kv of K. This is a local field. Its additive group therefore has
a Haar measure. For each x ∈ Kv, the multiplication by x induces an automorphism
of the additive group, which rescales the Haar measure by a positive real number |x|v.
If v is non-Archimedian, the corresponding valuation ring Ov := {x ∈ Kv | |x|v ≤ 1}
of v-adic integers is a local ring. For any finite, nonempty set S of primes containing
A let OS := {f ∈ K | |f |v ≤ 1 ∀v 6∈ S} denote the corresponding S-arithmetic ring
and AS :=

�
v∈SKv × �

v 6∈S Ov the ring of S-adeles. The adele ring is the direct limit
A := lim−→

S

AS. This is a locally compact ring. It contains K as a discrete subring via the

diagonal embedding because each element in K belongs to Ov for all but finitely many
primes v – in the language of the function field case: a function has at most finitely
many poles. Let G be a linear algebraic group defined over K represented as a group of
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matrices with determinant 1. Then for any subring R of any K-algebra, the group G(R)
of R-points is defined. Hence we regard G as a functor taking (topological) subrings
of K-algebras to (topological) groups. The group G(OS) is called an S-arithmetic
subgroup of G. It does depend on the matrix representation chosen for G. Nevertheless,
any two representations of G yield commensurable S-arithmetic groups. For this reason,
any group commensurable with G(OS) is called S-arithmetic, as well. In the number
field case, the set A of Archimedian primes is nonempty. Hence, over number fields,
A-arithmetic groups exist. These are simply called arithmetic. Since commensurable
groups have identical finiteness properties, we may confine our investigation to groups
of the form G(OS).

3. The Number Field Case

Throughout this section, K is a number field. H. Abels and A. Tiemeyer introduced
higher compactness properties Cm and CPm for locally compact groups which extend
compact generation (equivalent to C1 and to CP1) and compact presentability (equiv-
alent to C2) [AbTi97]. For a discrete group, the properties Cm (respectively CPm)
and Fm (respectively FPm) are equivalent. In [Tiem97], a Hasse Principle is derived
relating finiteness properties of S-arithmetic groups to compactness properties of linear
algebraic groups over local fields. We will discuss this in Section 3.2. Applying this,
Tiemeyer settled Theorem A mainly using the technique of contracting automorphisms
already present in [Abel87]. This approach yields a comparatively simple proof, also
due to Tiemeyer, for the result of Borel´s and Serre´s on the finiteness properties of
S-arithmetic groups. We will present this argument in Section 3.3. It does not yield,
however, that these groups are virtually of finite type.

3.1. Finiteness Properties and Compactness Properties. The starting point
of the definition of compactness properties is the following celebrated criterion of
K. Brown’s.

Theorem 3.1 ([Brow87, Theorems 2.2 and 3.2]). Let Γ be a discrete group and (Xα)α∈D
a directed system of cocompact Γ-CW-complexes with equivariant connecting morphisms
and (m − 1)-connected limit. Suppose that, for each Xα, the stabilizers of all j-cells
are of type Fn−j (respectively FPn−j). Then Γ is of type Fm (respectively FPm) if and
only if the directed systems of homotopy groups (πn(Xα))α∈D (respectively the directed
systems of reduced homology groups (Hn(Xα))α∈D) are essentially trivial for all n < m.

Herein, a directed system (Gα)α∈D of groups is called essentially trivial if for each
element α ∈ D there is a β ≥ α such that the natural map Gα → Gβ is trivial. Defining

Mor
(
(Gα)α∈D, (G

′
β)β∈D′

)
:= lim←−

α∈D
lim−→
β∈D′

Mor
(
Gα, G

′
β

)

we turn the class of all directed systems of groups into the category indGr [AbTi97,
Section 1]. In indGr, the essentially trivial directed systems of groups are precisely
those that are isomorphic to the initial element of this category represented by the
trivial system of trivial groups. Henceforth we consider directed systems of groups as
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elements of indGr.

For every group Γ, there is a canonical directed system of cocompact simplicial Γ-
complexes indexed by the finite subsets F ⊆ Γ, namely the Γ-orbit of F in the the
simplicial complex of all finite subsets of Γ, acted upon by left translation. Sim-
plex stabilizers are finite and the limit is contractible. Hence finiteness properties
can – in principle – be tested with this directed system in view of Theorem 3.1. We
will somehow mimic this construction for locally compact groups. Let G be a lo-
cally compact group, X a locally compact space together with an action of G on
X, and EX the free simplicial set over X whose m skeleton is just Xm+1. The
face (respectively degeneration) maps are given by deleting (respectively doubling)
a coordinate. Note that G acts on EX diagonally and therefore also on its geo-
metric realization |EX|. This is a contractible space. Furthermore, let CX denote
the set of all compact subsets of X directed by inclusion. For each set C ∈ CX,
G · EC := {(gx0, . . . , gxm) | g ∈ G, {x0, . . . , xm} ⊆ C, m ∈ N} is a G-invariant simpli-
cial subset of EX. Hence we have a directed system EGX := (G·EC)C∈C∈X of simplicial
G-sets depending functorially on G and X, whose limit is EX. Taking the geometric re-
alization first and passing afterwards to either homotopy groups πn or reduced homology
Hn, induces the directed systems of groups ind−πn(EGX) := (πn(|G·EC|))C∈CX ∈ indGr

and ind−Hn(EGX := (Hn(|G · EC|))C∈CX ∈ indGr, respectively.

Definition 1. The pair (G,X) satisfies condition Pm (respectively condition PPm)
if ind − πn(EGX) ∼= 0 (respectively ind − Hn(EGX) ∼= 0) for all n < m. That is,
these associated directed systems are essentially trivial. Now we can define compactness
properties of locally compact groups. The group G is of type Cm (respectively of type
CPm) if the pair (G,G) satisfies condition Pm (respectively PPm) where G is considered
as a G-space via left multiplication.

It is immediate from Brown’s criterion that these notions agree for discrete groups with
the properties Fm and FPm, respectively.

Remark 1. Recall that an object R in a category is a retract of the object O if there
are arrows R ↪→ O and O →→ R whose composition is the identity on R. Retract
diagrams are preserved by covariant and contravariant functors. Hence a retract of the
group G enjoys at least the same compactness and finiteness properties as G because
of the categorial characterisation – vanishing of some functorially assigned objects – of
compactness and finiteness properties given above.

We will use the following lemmata.

Lemma 1 ([AbTi97, Lemma 3.2.2]). The Pm- and PPm-conditions are independent
of the choice of the G-space X provided the action of G on X is proper. Hence the
conditions Cm and CPm can be tested using any proper G-space.

Corollary 3.1 ([AbTi97, Corollary 3.2.3]). If G is a locally compact group and B ≤ G
is a closed subgroup with compact quotient G

/
B then G and B have the same compactness

properties.

In the case of finiteness properties, one can use Brown’s Criterion 3.1 to slightly improve
the lemma.
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Lemma 2. Let X be a G-space such that, for all k-tuples of points in X, the intersection
of their stabilizers is of type Fm−k. Then G is of type Fm (respectively FPm) if and
only if the pair (G,X) satisfies Pm (respectively PPm).

Lemma 3 ([AbTi97, Lemma 3.1.1]). A finite direct product of locally compact groups
is of type Cm (respectively CPm) if each of its factors is of type Cm (respectively CPm).

3.2. The Hasse Principle. In this section we shall outline the proof of

Theorem 3.2 (Hasse Principle [Tiem97, Theorem 3.1]). Let G be a linear algebraic
group. Then the S-arithmetic group G(OS) is of type Fm (respectively FPm) if and only
if for each non-Archimedian prime v ∈ S the locally compact completion G(Kv) is of
type Cm (respectively CPm).

Proof. For a non-Archimedian prime v, the group G(Ov) is a compact open subgroup
of G(Kv), which is a locally compact group. Let us put GS :=

�
v∈S G(Kv). This is a

locally compact group since S is finite. The subgroup KS :=
�
v∈S−A G(Ov) is compact

and open in GS−A. Since we have

G(AS) =
�

v∈S
G(Kv)×

�

v 6∈S
G(Ov)

we can, on the one hand, consider KS as a subgroup of G(AS); on the other hand,
there is a natural projection map πS : G(AS) → GS. Since KS is open in GS−A,
X := GS−A

/
KS

is a discrete set upon which GS−A acts properly. G(OS) also acts on
X, via πS. The stabilizers are of the form G(OS) ∩ gKSg

−1 and can be shown to be
commensurable with G(OS) ∩KS = G(A) whence they are arithmetic and therefore of
type F∞. Hence, by Lemma 2, G(OS) is of type Fm (respectively FPm) if and only if
the pair (G(OS), X) is of type Pm (respectively PPm). On the other hand, by Lemma 3,
G(Kv) is of type Cm (respectively CPm) for each v ∈ S − A if and only if the direct
product GS−A =

�
v∈S−A GKv is of type Cm (respectively CPm). Because of Lemma 1,

this in turn holds if and only if the pair (GS−A, X) is of type Pm (respectively PPm).
Hence we have to compare the actions of G(OS) and GS−A on X. In particular it suffices
to show that the filtrations EG(OS)X and EGS−AX are cofinal. So let K be a compact
(that is finite) subset of X. Obviously

G(OS) · EK ≤ GS − A · EK
whence we only have to prove that there is another finite subset L ⊂ X such that

GS−A · EL ≤ G(OS) · EK.
In [Tiem97, Corollary 2.3], it is deduced from Borel’s Finiteness Theorem [Bore63,
Theorem 5.1] that there are finitely many g1, . . . , gm such that GS−A =

⋃m
i=1 G ′(OS)giKS,

where G ′(OS) := πS(G(OS)). Observe that for finite K ⊂ X the set L :=
⋃
i=1mgiKSK

is finite since KS acts with finite orbits on X as it is a compact group. Then, for every
g ∈ GS−A, there is a gi and an element γ ∈ G(OS), acting via its image in G ′(OS), such
that g ∈ γgiKS, whence gK = γgiKSK ⊆ γL. From this,

GS−A · EL ≤ G(OS) · EK
follows immediately. ¤
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Corollary 3.2. Let P be a parabolic subgroup of G. Then G(OS) and P(OS) have the
same finiteness properties.

Proof. For each prime v, since G(Kv)
/
P(Kv) is compact by [BoTi65, Proposition 9.3], the

groups G(Kv) and P(Kv) have the same compactness properties by Corollary 3.1. Now
the claim follows by the Hasse principle. ¤

Remark 2. Corollary 3.2 yields a quick and dirty proof for Theorem A, since S-
arithmetic subgroups of Chevalley groups are of type F∞ by [BoSe76, Proposition 6.10].
Using Corollary 3.2 this way, however, is somehow approaching the problem from the
wrong angle. The corollary should be considered the other way round, namely, as reduc-
ing the problem of determining the finiteness properties of general S-arithmetic groups
to S-arithmetic subgroups of connected soluble linear algebraic groups.

3.3. Stand Alone Proofs. In this section we shall indicate how S-arithmetic sub-
groups of soluble groups can be studied. Let G = T n U be a locally compact semi-
direct product of locally compact groups where T is Abelian. An element t ∈ T is
contracting or acts by contraction on U if its positive powers converge uniformly to the
identity on compact subsets of U . The following proposition, which generalises [Abel87,
Proposition 1.3.1], shows that one is fortunate having a contracting element at hand.

Proposition 3.1 ([Tiem97, Theorem 4.3]). If T contains a contracting element, G and
T have identical compactness properties.

Proof. Since T is a retract of G, we only have to show, that compactness properties of
T are inherited by G. So assume that T is of type Cn. Let KG be a compact subset of
G. Enlarging this subset if necessary, we might assume that it is of the form

KG = KTKU

where KT is compact in T and KU is a compact neighbourhood of the identity in U
satisfying tKU t

−1 ⊆ KU after replacing t by a power if necessary. Since we can test
compactness properties of T by means of its action on G, there is a compact subset
L ⊇ KG ∪KGt

−1 such that the inclusion of T · EKG ↪→ T · EL induces trivial maps in
homotopy groups up to dimension n. We claim that this holds also for the inclusion of
G · EKG ↪→ G · EL. Consider the map

αt : EG → EG

(g0, . . . , gk) 7→ (g0t
−1, . . . , gkt

−1)

and observe that it takes G · EKG to itself because any simplex therein is of the form

σ = (gx0u0, . . . , gxkuk)

with xi ∈ KT and ui ∈ KU , and is taken to

αt(σ) = (gx0u0t
−1, . . . , gxkukt

−1)

= (gx0t
−1tu0t

−1, . . . , gxkt
−1tukt

−1)

= (gt−1x0tu0t
−1, . . . , gt−1xktukt

−1),

which belongs to G·EKG] because of tuit
−1 ∈ KU . From the first line of these equations,

moreover, it follows that σ and αt(σ) are faces of a common simplex in G · EL since
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KGt
−1 ⊆ L. Hence a sphere S in G · EKG is homotopic to the sphere αt(S) inside

G · EL. The map αt, however, has another remarkable property. It contracts EG
towards T · EKG: consider a vertex xu in EG, x ∈ T , u ∈ U . We have

αnt (xu) = t−nxtnut−n

and eventually tnut−n ∈ KU , since t is contracting. Hence, any compact subset of EG
is taken to G · EKG by some positive power of αt. Combining the properties of αt, we
can move any sphere S of dimension ≤ n in G · EKG inside G · EL into T · EKG. This
sphere, however, is homotopically trivial inside T · EL ⊆ G · EL by choice of L. ¤

Proposition 3.2. Let P be a parabolic subgroup of the reductive group G, both defined
over a local field F of characteristic 0 whose associated valuation v : F ∗ → R is non-
Archimedian. Then P(F ) is of type C∞.

Remark 3. Combined with the Hasse principle Theorem 3.2, this yields a proof of
Theorem A which does not depend on [BoSe76]. Moreover, Corollary 3.2 implies that
G(F ) is of type C∞, too.

Proof. In view of [BoTi65, Proposition 9.3] and Corollary 3.1, it suffices to construct
a maximal connected F -split soluble subgroup B ≤ G such that B(F ) is of type C∞.
We start with a maximal F -split torus T in G. The set of all characters T → Mult
is a finitely generated Abelian group, denoted by X+(T ). Therefore X+(T ) ⊗Z R is
a real vector space. This is where the root system Φ := Φ(G, T ) lives. It is the set
of weights of the adjoint representation of T over the Lie algebra g of G. Thus, for
every root α ∈ Φ, we are given a corresponding weight space and a corresponding
unipotent subgroup Uα ≤ G. Fix a base of Φ thereby determining the positive half
Φ+, and let be the group generated by all Uα for α ∈ Φ+. This is a unipotent group
[BoTi65, 3.8 (iv)], upon which T acts by conjugation inside G because we started with
the adjoint representation. Furthermore, B := T n U is a maximal connected F -split
soluble subgroup of G. Hence, it suffices to show, that T (F )n U(F ) is of type C∞ for
each prime v. To prove this, we will find a contracting element t ∈ T (F ). Then the
claim follows from Proposition 3.1 since T (F ) is of type C∞ for it contains a cocompact
finitely generated Abelian group. Whether or not an element of T (F ) is contracting
can be checked via its action on the Lie algebra: an element t acts by contraction on
U(F ) if for every positive root α ∈ Φ+, the inequality v(α(t)) > 0 holds. Consider now
the one parameter subgroups in T . They form a lattice of maximum rank in the dual of
X+(T )⊗ZR ⊃ Φ. Hence there is a one parameter subgroup ξ : Mult→ T representing
a point on which all positive roots are strictly positive. Finally, t := ξ(x) fits our needs
provided v(x) > 0. ¤

4. The Function Field Case

From now on, K is a global function field. In this case even S-arithmetic subgroups
of reductive groups have finite finiteness length, and no Hasse Principle holds – the
different primes have to work together in order to ensure higher finiteness properties.
The main tool for establishing finiteness properties in this setting is to study the action
of the S-arithmetic group G(OS) on the product of Bruhat-Tits buildings associated
to G and the primes in S. Such buildings always exist if G is reductive [BrTi72]. For
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general G, no replacement is known. Nevertheless, since Theorem B only deals with
Borel subgroups of Chevalley groups, we can use the buildings associated to the latter
in order to investigate the S-arithmetic subgroups of the former. We shall freely use
the terminology related to buildings and the reader should have a basic knowledge of
these geometric objects and their relationship to algebraic groups. Standard references
are [Brow89] and [Rona89]. Nevertheless, the main geometric argument in Section 4.2
does only depend on properties of buildings that are explicitly stated there.

4.1. Preliminaries on Chevalley Groups and their Associated Bruhat-Tits
Buildings. Let G be a Chevalley group, i.e., a semi-simple linear algebraic group
scheme defined over Z. They have been introduced by Chevalley in [Chev60]. A stan-
dard reference is [Stei68]. Fix a Borel subgroup B of G and a maximal torus T inside
B such that both are also defined over Z. Since a global function field K has only
non-Archimedian primes, there is a Euclidean Bruhat-Tits building Xv := X(G, Kv)
associated to each prime v ∈ S. This is a CAT(0)-space whose boundary at infinity is
the spherical building X̃v canonically associated to G and Kv. The group B(Kv) is the
stabilizer of the fundamental chamber Cv ∈ X̃v at infinity. Likewise, T (Kv) stabilizes of
the standard apartment Σv in Xv, which corresponds to an apartment in X̃v containing
Cv. It is a Euclidean Space in which we choose a simplicial cone Sv ⊆ Σv representing
Cv. We take the cone point to be the origin of Σv, turning it into a Euclidean vector
space.

Recall that the root system Φ of G with respect to T consists of morphisms from T
to Mult, the group scheme associating to each ring its group of multiplicative units,
e.g., represented as diagonal 2× 2 matrixes of determinant 1. So we can represent the
root system on Σv by a set of linear forms Φv. Furthermore, we are given a base and a
system of positive roots ∆ ⊆ Φ+ ⊂ Φ corresponding to the Borel subgroup B. These
give rise to sets of linear forms ∆v ⊆ Φ+

v ⊂ Φv. The linear forms in ∆v form a system

of coordinates ξv :=
(
α
(1)
v , . . . , α

(r)
v

)
: Σv → Rr on Σv such that

Sv = {sv ∈ Σv | α(j)
v (sv) ≥ 0 ∀j ∈ {1, . . . , r}}

holds. This description remains true if all positive roots are taken into account. We
normalize the coordinates such that an element tv ∈ T (Kv) acts on Σv as a translation
with coordinates (

log(|α(1)(tv)|v), . . . , log(|α(r)(tv)|v)
)

The subgroup of elements in B(Kv) that fix at least one point in Σv is the group of
Kv-points U(Kv) of the unipotent radical U := kerB → T . Moreover, Σv is a strong
fundamental domain for the action of U(Kv) on Xv, and there is a well defined map
ρv : Xv → Σv called the retraction centered at Cv.

We will study the diagonal action of B(OS) on the product X :=
�
v∈S Xv. The

retractions ρv induce a retraction ρ :X → Σ :=
�
v∈S Σv onto the product of standard

apartments. The coordinates ξv defined above give rise to a system of coordinates

ξ : s = (sv)v∈S 7→
(
α
(1)
v , . . . , α

(r)
v

)
v∈S ∈ Rr|S| on Σ. Since we normalized the coordinates

ξv, the map ζ : Σ → Rr, s = (sv)v∈S 7→
(∑

v∈S α
(1)
v (sv), . . . ,

∑
v∈S α

(r)
v (sv)

)
v∈S is

invariant with respect to the action of T (OS) since the product formula [O’Me73,
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Theorem 33.1] implies that for every x ∈ OS,
∏

v∈S
|x|v = 1.

Hence, the map π := ζ ◦ ρ :X → Rr is invariant under the action of B(OS) on X.

Lemma 4 ([Bux97b, Lemma 2.3]). For every compact subset C ⊂ Rr, the S-arithmetic
group B(OS) acts cocompactly on π−1(C).

Sketch of Proof. We use adele topology. The main ingredient is that U(K) is a discrete
subgroup of U(A) with compact quotient [Bux97b, Lemma 1.1]. This generalises the
well known result that the additive group of K is discrete in A and that A

/
K is compact

[Weil73, Theorem 2, page 64]. It follows that for every polysimplex σ ∈X the double
quotient

U(AS)
∖U(OS)

/
StabU(AS)(σ)

is discrete and compact; hence finite. This implies that the map

U(OS)
∖
X → Σ

induced by ρ is proper. Now the claim follows from Dirichlet’s Unit Theorem [CaFr67,
page 72].

4.2. Positive Results. We outline the proof of the first half of Theorem B, namely

Theorem 4.1. The group B(OS) is of type F|S|−1.

We apply Theorem 1.3. Lemma 4 exhibits subspaces of X on which B(OS) acts co-
compactly. Cell stabilizers are finite as they are intersections of the compact stabiliz-
ers in B(AS) the discrete group B(OS). Hence it suffices to show that the preimage
π−1(C) is (|S| − 2)-connected for some compact set C ⊂ Rr, e.g., for a point. We put
Y := π−1(0) = ρ(H) ⊆ X where H = ker ζ : Σ → Rr. We write Y as an ascending
union

Y =
∞⋃

j=0

Y j

where Y 0 is contractible and Y j+1 is obtained from Y j by glueing in a convex Euclidean
set along its boundary such that, homotopically, this amounts to attaching a cell of
dimension at least |S| − 1. This way, no nontrivial homotopy elements are introduced
up to dimension |S| − 2.

4.2.1. Moufang Buildings and Λ-Complexes. The Moufang condition describes a certain
interplay between the geometry of a building and its group of automorphisms. We shall
not quote the precise definition here since Proposition 4.1 below, which is the technical
core of the proof of Theorem 4.1, spells out all properties of Moufang buildings we
use. It is known that the buildings Xv are locally finite Euclidean Moufang buildings
[Bux97b, Fact 6.1]. Hence, the following proposition applies.
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Proposition 4.1 ([Bux97b, Lemma 6.2]). Let X be a locally finite Euclidean Moufang
building with a distinguished chamber C at infinity and a distinguished apartment Σ
containing C. Then there is a sequence Σ = Σ0,Σ1, . . . of apartments such that the
following conditions are satisfied:

(1) Each Σj contains C.

(2) The Σj cover X, i.e.,

X =
∞⋃

j=0

Σj.

(3) For every j > 0, the new part

Nj := Σj \
⋃

i<j

Σi

is an intersection of open half apartments in Σj.

None of the Nj contains C because this chamber is already present in Σ0 = Σ.

Remark 4. The Moufang assumption is crucial to the proof of Proposition 4.1 given
in [Bux97b], and I do not know whether the statement holds for non-Moufang locally
finite Euclidean buildings. Since the buildings arising in the number field case are non-
Moufang, a proof of Theorem A along the lines of the proof of Theorem B presented here
does not yet exist. We mention that A. von Heydebreck [Heyd99, Lemma 3.3] proved an
exact analogue of Proposition 4.1 for finite buildings by purely geometric means that do
not make use of any Moufang type assumption. For finite buildings, the distinguished
chamber at infinity is to be replaced by a chamber inside the building.

Proposition 4.1 says that we can build X starting from Σ by attaching first the closure
N1 along its boundary which lies in Σ. Then we glue in N2, N3, etc. Since Nj is
an intersection of closed half apartments all of which avoid C, it can be retracted to
its boundary. Hence the homotopy type does not change during this procedure. This
recovers the important fact that the building X is contractible. Note that the retraction
ρ := ρC,Σ : X → Σ restricts to an isomorphism of Coxeter complexes ρ : Σj → Σ for
every j. Since these are Euclidean Coxeter complexes, this map is an isometry. Since
Σ is a Euclidean Coxeter complex, the orthogonal part of its automorphism group is
a finite reflection group associated to a root system Φ := Φ(Σ), which we represent as
a finite set of linear forms on Σ. The chamber C at infinity determines a base and a
subset of positive roots Φ+ such that C is represented by the cone

{s ∈ Σ | α(s) ≥ 0 ∀α ∈ Φ+}.
We state some geometric axioms describing this setting.

Definition 2. Let Y be a metric, piecewise Euclidean CW complex and π : Y → E a
projection from Y onto a Euclidean vector space E. Furthermore, let Λ be a finite set
of linear forms on E. The pair (Y, π) is called a Λ-complex if there exists a sequence
E0, E1, . . . of subcomplexes in Y satisfying the following conditions:

(1) The map π restricts to an isometry π|Ej
: Ej → E for every j.
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(2) The subcomplexes Ej cover Y , i.e.,

Y =
⋃

j≥0
Ej.

(3) For every j > 0, the new part

Nj := Ej \
⋃

i<j

Ei

is the interior of a subcomplex in Ej whose π-image in E is of the form

{e ∈ E | λ(e) ≤ cλ},
where cλ ∈ R∪{∞} are constants not all of which are ∞. If cλ =∞, it imposes
no restriction on e.

A sequence of this form is called increasing.

Example 5. Proposition 4.1 implies immediately that, keeping the notation from above,
(X, ρ : X → Σ) is a Φ+-complex.

The following constructions provide many other examples. First, we consider direct
products in order to deal with X =

�
v∈S Xv.

Lemma 4.1. For i ∈ {1, 2}, let (Y i, πi : Y i → Ei) be an Λi-complex. Let pri : E1×E2 →
Ei denote the canonical projection and put Λ1 ] Λ2 := {λi ◦ pri : E1 × E2 → R | i ∈
{1, 2}, λi ∈ Λi}. Then (Y 1 × Y 2, π1 × π2 : Y 1 × Y 2 → E1 × E2) is a Λ1 ] Λ2-complex.

Proof. For i ∈ {1, 2}, let Ei
0, E

i
1, E

i
2, . . . be an increasing sequences for Y i. It is easy to

check that E1
0 × E2

0 , E
1
1 × E2

0 , E
1
0 × E2

1 , E
1
1 × E2

1 , E
1
2 × E2

0 , E
1
0 × E2

2 , E
1
2 × E2

1 , E
1
1 ×

E2
2 , E

1
2 × E2

2 , . . . is an increasing sequence for Y 1 × Y 2. ¤

Corollary 4.1. (X =
�
v∈S Xv,ρ :X → Σ) is a

⊎
v∈S Φ

+
v -complex.

Proof. All Xv are locally finite Euclidean Moufang buildings [Bux97b, Fact 6.1]. ¤

Now we turn to subcomplexes because we are interested in Y ⊆X.

Observation 4.1. Let (Y, π : Y → E) be a Λ-complex and let E′ be a linear subspace
of E. Put Λ|E′ := {λ|E′ | λ ∈ Λ}. Then (π−1(E′), ππ−1(E′) : π−1(E′) → E′) is a Λ|E′-
complex. We see this by taking an increasing sequence for Y and intersecting it with
the preimage of E′.

Corollary 4.2. (Y ,ρ|Y : Y → H) is a
(⊎

v∈S Φ
+
v

)
|H-complex.

4.2.2. Connectivity of Λ-Complexes. We call a set Λ of linear forms on a real vector
m-tame if no positive linear combination of up to m elements of Λ vanishes, i.e., if 0 is
not contained in the convex hull of up to m elements of Λ.

Proposition 4.2 ([Bux97a, Lemma 7.3]). Let (Y, π : Y → E) be a Λ-complex and
suppose Λ is m-tame. Then Y is (m− 1)-connected.
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Proof. Let E0, E1, E2, . . . be an increasing sequence for Y . Put

Yj :=
⋃

i≤j
Ej.

Since Y is covered by the Ej, it suffices to show that every Yj is (m − 1)-connected.
Since Y0 = E0 is contractible, we can prove the claim by induction if we control the
process of obtaining Yj+1 from Yj. From

Yj+1 = Yj ∪ (Ej+1 \ Yj)
and the fact that E0, E1, E2, . . . is increasing it follows that Yj+1 is obtained from Yj by
attaching, along its boundary, a convex set N ′j of the form

N ′j = {e ∈ E | λ(e) ≤ cλ∀λ ∈ Λ′}
where Λ′ ⊆ Λ is a nonempty subset and cλ ∈ R. We have to control the homotopy type
of the pair (N ′j, ∂N

′
j). If N ′j = ∂N ′j there is nothing to do. Hence we can assume that

N ′j has nonempty interior. First suppose that Λ′ spans the dual E∗, that is,

0 =
⋂

λ∈Λ′
kerλ.

There are two cases.

(i) N ′j is unbounded. The interior Nj contains an infinite ray r, but it does not contain
a whole line, since we assumed 0 =

⋂
λ∈Λ′ kerλ. Hence we may assume that r starts

at x ∈ ∂N ′j. If the boundary ∂N ′j does not contain a ray parallel to r we can argue
that moving all points parallel to r towards the boundary ∂N ′j defines a deformation
retraction of N ′j onto its boundary.

x
∂(N ′j)

r

Good Case

Unfortunately, this does not work if the boundary does contain a ray parallel to r.

x
∂(N ′j)

r

Bad case: no continuous retraction since points of ∂(N ′j) are not to move
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Nevertheless, modifying the lines of motion slightly such that points are departing from
r when they are approaching ∂N ′j works.

x

∂(N ′j)

r

Modified lines of motion yielding a retraction

e just have to make sure that these lines intersect the boundary ∂N ′j. This is achieved
most easily by ensuring that they even intersect a supporting hyperplane of N ′j at x
which can be accomplished, e.g., by choosing the lines of motion to form a family of
affine hyperbolas.

(ii) N ′j is bounded. Topologically N ′j is, a disc. Since we are assuming that it has
interior points, its dimension is the dimension of the surrounding space E which equals
the dimension of its dual E∗. In this case, furthermore, 0 lies in the convex hull of
Λ′. By Caratheodory’s Theorem [Eggl58, Remark (ii), page 38], there are dimE∗ + 1
elements in Λ′ whose convex hull contains 0. Since Λ and therefore Λ′ are m-tame,
m < dimE∗ + 1 follows. Therefore N ′j is a disc of dimension at least m. In either
case, attaching N ′j does not introduce nontrivial elements in the homotopy groups up
to πm−1. Suppose now Λ′ does not span E∗. Then we write N ′j as a direct product of

V :=
⋂

λ∈Λ′
kerλ

and a convex subset C ⊆ E
/
V . This quotient is dual to the span of Λ′, and the consid-

erations of the previous paragraph apply to C, yielding the same result. ¤

In order to apply this proposition to Y we have to prove

Lemma 4.2. The set
(⊎

v∈S Φ
+
v

)
|H is (|S| − 1)-tame.

This set is certainly not |S|-tame because of the product formula. Thus the lemma
roughly says that there are no further relations among the places.

Proof. Let ∑

v∈S,α∈Φ+
µv,ααv (1)

be a convex combination, that is, all coefficients αv are nonnegative and add up to
1. We have to show that this combination does not vanish on H unless at least |S|
coefficients are 6= 0. In fact, we will see that for each prime v ∈ S there is at least
one non-vanishing coefficient µv,α. Call a prime v void if all coefficients µv,α indexed
by that prime vanish. Any positive root is a positive integer combination of base
roots. Substitution of all the positive roots by these combinations in (1) yields again
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a nontrivial positive combination vanishing on H, now involving only base roots. Note
that this process may increase or decrease the number of vanishing coefficients, but it
does not alter the set of void primes. Therefore, since we want to prove that the set
of void primes is empty, we may assume without loss of generality that we are dealing
with a convex combination ∑

v∈S,α∈∆
µv,ααv (2)

of base roots. If this combination vanishes on H we conclude that∑

v∈S,α∈∆
µv,ααv ∈ im(ζ∗).

Hence, for each base root α involved, we have

µv,α = µv′,α ∀v, v′ ∈ S
by definition of ζ. Hence none of these coefficients vanishes because we started with a
nontrivial combination. ¤

4.3. Negative Results. In order to complete the proof of Theorem B we have to show
that B(OS) is not of type FP|S|. We proof this by reduction to the rank-1-case, but we
present only the algebraic reduction that applies to the Borel subgroups B0

n ≤ SLn and
Bn ≤ GLn. The general case is dealt with by an analogous geometric reduction to the
rank-1-case [Bux97b, Section 5].

Theorem 4.2 ([Bux97a, Theorem 8.1]). The group B0
2(OS) is not of type FP|S|.

This can be proven by various means. Since B0
2(OS) is metabelian, one can use the

Σ-theory of geometric invariants introduced by R. Bieri and R. Strebel [BiSt80]. This
line of reasoning was taken in [Bux97a].

Another way is via Bestvina-Brady-Morse theory [BeBr97]. For B0
2(OS) the Euclidean

buildings Xv are trees and the map

π :X → Rr = R
takes values in the real line since SL2 has rank r = 1. So we regard it as a height on
X. To this map, Bestvina-Brady-Morse theory applies, which can be used to reprove
that B0

2(OS) is of type F|S|−1 as follows. Ascending and descending links are easily
computed because of the product structure ofX. They turn out to be joins of ascending,
respectively descending, links in the factors. Hence they are points or joins of |S|-
spheres, and in either case (|S| − 1)-connected. From this the claim follows by the
Morse lemma of [BeBr97].

The method can be refined to yield as well a

Proof of Theorem 4.2. Consider the family of compact intervals of R = Rr as a directed
system via the relation of inclusion. We claim that the corresponding directed system

(π|S|−1(π
−1(I)))I ⊂ R

of homotopy groups of preimages in X is not essentially trivial. To show that, for any
I 3 0, the map

π|S|−1(π
−1(0))→ π|S|−1(π

−1(I))
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is not trivial, we take a vertex x ∈ X above max(I). In its descending link there are
spheres that are nontrivial in the whole link of x. Pick one and project it along geodesics
until it is on height 0. We see, that this height-0-sphere is nontrivial inX \{x} because
X is CAT(0) and there is a geodesic projection (X \ {x})→ LkX(x). This projection
takes back the height-0-sphere to the nontrivial homotopy element in LkX(x) we stated
with. Hence, the height-0-sphere does not become trivial in π−1(I).

Lemma 4.3. Bn(OS) and B0
n(OS) have identical finiteness properties.

Proof. Let Dn denote the scheme of diagonal matrices of rank n and let D0
n denote the

subscheme of those matrices that have determinant 1. Note that Dn(OS) is finitely
generated and contains a free Abelian subgroup A of finite index that decomposes as a
product A = A0 × A′ where A0 is a free Abelian subgroup of finite index in D0

n(OS).
Moreover, we can chose A′ to be a group of multiples of the identity matrix. Hence A′

acts trivially on the unipotent radical. Writing

Bn(OS) = Dn(OS)n Un(OS)
and

B0
n(OS) = D0

n(OS)n Un(OS),
we see that Bn(OS) is commensurable to A n Un(OS) = A′ × (A0 n Un(OS)), which
has the same finiteness properties as A0 nUn(OS). This, in turn, is commensurable to
B0
n(OS). ¤

Hence there is no loss in confining ourselves to Bn(OS). For this group, the following
observation easily accomplishes the reduction to B2(OS).
Observation 4.2. B2(OS) is a retract of Bn(OS) in the following way:




∗ ∗
0 ∗

. . . ∗

. . .
...

...
. . .

0 0

. . . ∗
0 ∗




with the obvious inclusion and projection map.

By Remark 1 it follows that B2(OS) has all finiteness properties that Bn(OS) enjoys.
Hence Bn(OS) is not of type FP|S| in view of Theorem 4.2, whence B0

n(OS) is neither.
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Topology in Permutation Groups

by

P. J. Cameron

1. Introduction

In a lecture at Oberwolfach in the 1980s with the title “Topology in permutation
groups”, Helmut Wielandt defended the proposition that topology in permutation
groups is of no use, and came to the conclusion that (with the addition of the word “al-
most”) this was indeed the case. Wielandt made it clear that he was not speaking about
the topology of permutation groups. (There is a natural topology on the symmetric
group, namely the topology of pointwise convergence. In the case of countable degree,
the open subgroups are those lying between the pointwise and setwise stabiliser of a
finite set, and the closed subgroups are the automorphism groups of first-order struc-
tures.) Nevertheless, many in the audience felt that Wielandt’s conclusion was too
pessimistic. Since then, further results have supported this view. The present paper is
a survey of some of these results. I begin with an account of Wielandt’s own work on
the subject, the connection of non-Hausdorff topologies preserved by G and the notions
of primitivity and strong primitivity. The next topic is a theorem of Macpherson and
Praeger, according to which a primitive group which preserves no non-trivial topology
is highly transitive. Their proof uses some deep results from model theory. I give an
elementary argument to replace part of the proof.

Some topologies low in the separation hierarchy can be interpreted as relational struc-
tures (specifically, preorders), so that their homeomorphism groups are closed subgroups
of the symmetric group. This observation is a bridge to the next topic, the topology of
permutation groups. This topic is too large for a survey, but some of the most impor-
tant results relating to the earlier material are discussed. By convention, a structure on
a set Ω is trivial if its automorphism group is the full symmetric group on Ω. Clearly,
knowing only that a group preserves a trivial structure tells us nothing about the group.

2. Primitivity and strong primitivity

A transitive permutation group G on a set Ω is primitive if G preserves no equivalence
relation on Ω apart from the trivial ones (equality and the relation Ω2). In his pioneer-
ing study of infinite permutation groups, Wielandt [20] observed that this condition is
not strong enough to derive analogues of results on finite primitive groups. Specifically,
let G is a primitive group on a finite set Ω, and let ∆ be a non-empty proper subset of
Ω. Then the following separation property holds: for any distinct α, β ∈ Ω, there exists
g ∈ G with αg ∈ ∆ and βg /∈ ∆. This fails for infinite primitive groups: if G is the
group of all order-preserving permutations of the real numbers, ∆ the set of positive
real numbers, and α < β, then no such g can exist. Wielandt proposed the property
of strong primitivity to remedy this defect. What follows is a slightly more general
approach.
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A preorder on a set Ω is a reflexive and transitive relation on Ω. A transitive permu-
tation group G on Ω is called strong if every G-invariant preorder is symmetric (and
so is an equivalence relation); and G is strongly primitive if it is strong and primitive,
that is, the only G-invariant preorders on Ω are the trivial equivalence relations. For
any transitive permutation group G, there is a natural bijection between G-congruences
and subgroups of G containing the point stabiliser Gα. Hence G is primitive if and only
if Gα is a maximal proper subgroup of G. The analogue for strong primitivity is as
follows:

Proposition 2.1. Let G be a transitive permutation group on Ω. There is a natural
bijection between G-invariant preorders on Ω and submonoids of G containing Gα.
Hence G is strong if and only if any submonoid of G properly containing the point
stabiliser Gα is a subgroup of G; and G is strongly primitive if and only if Gα is a
maximal proper submonoid of G.

Proof. Suppose that M(α) is a submonoid of G containing Gα. By conjugation, we can
define Mβ for all β ∈ Ω. Now define α → β if there is an element of M(α) mapping
α to β (equivalently, every element mapping α to β lies in M(α). This relation is a
preorder. For suppose that α → β and β → γ. Choose h ∈ M(β) with βh = γ. Then
h = g−1kg for some g, k ∈ M(α) (where αg = β); then αgh = γ and gh = kg ∈ M(α),
so α→ γ. Conversely, if → is a G-invariant preorder, and

M(α) = {g ∈ G : α→ αg},
then M(α) is a submonoid of G containing Gα; and the two constructions are mutually
inverse. ¤

For example, if G is strong, then NG(Gα)/Gα is a torsion group. In particular, the
regular representation of G is strong if and only if G is a torsion group. It is now a
simple exercise to show that, if G is strongly primitive, then the separation property
mentioned above holds.

3. Separation, preorders, and primitivity

If → is a preorder, then the relation ≡ defined by

x ≡ y if and only if x→ y and y → x

is an equivalence relation; and → induces a (partial) order on the set of equivalence
classes of ≡. Given a topology T on Ω, construct a preorder on Ω by the rule that x→ y
if and only if every open set containing x contains y. Conversely, given a preorder →,
take the neighbourhoods

Ux = {y ∈ Ω : x→ y} for x ∈ Ω

as a base for a topology on Ω. It is easy to see that the map

preorder→ topology→ preorder

is always the identity; the map

topology→ preorder→ topology
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gives a stronger topology which is in general strictly stronger, though if Ω is finite, this
map is also the identity. Note that the latter map is idempotent. We call a topology
relational if it is fixed by this map (that is, if it is derived from a preorder). By
definition, G is strongly primitive if and only if it preserves no non-trivial preorder.

Theorem 3.1. Let G be a transitive permutation group on Ω.

(a) G is primitive if and only if every non-trivial topology invariant under G is T0.

(b) G is strongly primitive if and only if every non-trivial topology invariant under
G is T1.

Proof. We observe that the topology derived from a preorder→ satisfies T0 if and only
if the equivalence relation ≡ is equality; and it satisfies T1 if and only if → has no arcs
except loops. Hence, if G preserves a non-T0 topology, then it preserves a non-trivial
equivalence, and if G preserves a non-T1 topology, then it preserves a preorder which
is not symmetric. The converse result in (a) is clear (if G is imprimitive, take open sets
to be all unions of blocks). For (b), if G is not strongly primitive, then by definition it
preserves a non-trivial preorder. ¤

Remarks. 1. If G preserves a non-T0 (resp. non-T1) topology, then it preserves a rela-
tional topology with the same property.

2. There is a unique countable homogeneous preorder which is universal (in the sense
that it contains all finite or countable preorders) and homogeneous (in the sense that
any isomorphism between finite sub-preorders extends to an automorphism). The cor-
responding relational topology is non-T0 and admits a transitive group of homeomor-
phisms. Similarly, there is a unique countable homogeneous partial order containing
all finite or countable orders. These follow immediately from Fräıssé’s construction
method [5] and the fact that the classes of finite preorders and finite partial orders both
have the amalgamation property.

4. Topologies and filters

Macpherson and Praeger [8] proved that a primitive permutation group on a countable
set Ω which is not highly transitive (that is, is not n-transitive for some n) is con-
tained in a maximal subgroup of Sym(Ω). The main part of their argument was to
show that such a group preserves a non-trivial filter on Ω. (A filter is a non-empty
family F of subsets of Ω which is closed under finite intersections and closed under
taking supersets, but does not contain the empty set. As usual, it is non-trivial if it
is not invariant under Sym(Ω). If Ω is countable, the only trivial filters are the indis-
crete filter {Ω} and the cofinite filter consisting of all cofinite subsets.) Their proof
comes in two parts: first, prove that such a group preserves a non-trivial topology;
and then show that any primitive group preserving a non-trivial topology must pre-
serve a non-trivial filter. Their argument requires substantial machinery from model
theory (the theorems of Ehrenfeucht–Mostowski, Engeler–Ryll-Nardzewski–Svenonius,
and Cherlin–Harrington–Lachlan), and the connection between the filter and the topol-
ogy is not clear. By contrast, the proof of the first step given below is more elementary,
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and only two constructions of filters from topologies are used: sets containing a finite
intersection of open dense sets; and complements of finite unions of discrete sets. The
condition that G preserves a filter is a “strong condition”, see Dixon, Neumann and
Thomas [3], Macpherson and Neumann [7]. On the other hand, McDermott [6] has
proved strong restrictions on permutation groups which preserve no non-trivial topol-
ogy.

Remarks. 1. I make essential use of Neumann’s Separation Lemma [10, Lemma 2.3]: if
G is a permutation group on Ω with no finite orbits, and Γ and ∆ are finite subsets of
Ω, then some translate of Γ by G is disjoint from ∆.

2. Primitivity is necessary. The group of all permutations preserving a partition of Ω
into two parts of the same cardinality preserves a non-trivial topology but no non-trivial
filter. Indeed, any imprimitive permutation group preserves a non-trivial topology,
namely, the set of all unions of blocks in a given system of imprimitivity.

3. In some cases, one can see directly that a permutation group preserves a non-
trivial topology. For example, from the countable random graph (see [2]) we derive
a topology by taking the closed vertex neighbourhoods (consisting of a vertex v and
all its neighbours) as a basis for the closed sets. In other cases, the construction of a
topology is much less obvious.

Before stating the theorem, I give a simple characterisation of primitive automorphism
groups of non-trivial topologies or filters. A moiety of the countable set Ω is an infinite
subset of Ω whose complement is also infinite.

Lemma 4.1. Let G be primitive on the countable set Ω.

(a) G preserves a non-trivial topology if and only if there exists a moiety ∆ of Ω
such that, for all g1, . . . , gn ∈ G, the set ∆g1 ∩ . . . ∩∆gn is empty or infinite.

(b) G preserves a non-trivial filter if and only if there exists a moiety ∆ of Ω such
that, for all g1, . . . , gn ∈ G, the set ∆g1 ∩ . . . ∩∆gn is infinite.

Proof. (a) Let G be primitive. Assume that G preserves a non-trivial topology. If
there is a non-empty finite open set, take a minimal such set U ; then U is a block of
imprimitivity, necessarily a singleton, and the topology is discrete. So take U to be a
non-empty non-cofinite open set; by what has just been proved, it is a moiety, and the
condition of the lemma obviously holds. Conversely, let ∆ be such a set. Then the class
of all non-empty sets of the form ∆g1 ∩ . . . ∩ ∆gn, for g1, . . . , gn ∈ G, is a basis for a
non-trivial G-invariant topology on Ω.

(b) Neumann’s Lemma implies that no filter invariant under an infinite transitive group
can contain a finite set. So if G preserves a non-trivial filter, take U to be any non-
cofinite set in the filter. Conversely, if ∆ is a moiety with the property of the lemma,
then the class of all sets containing ∆g1∩. . .∩∆gn for some g1, . . . , gn ∈ G is a non-trivial
filter admitting G. ¤

Theorem 4.1. Let Ω be an infinite set, and G a primitive permutation group on Ω.
Then G preserves a non-trivial topology on Ω if and only if G preserves a non-trivial
filter on Ω.
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Proof. I begin with some remarks on topologies admitting primitive groups. If such a
topology contains a non-empty finite open set, then it is discrete: for the minimal open
sets form a system of imprimitivity, and so all singletons are open. Similarly, if the
topology contains a cofinite open set, then every cofinite set is open (but we cannot
conclude that the topology is trivial in this case).

A set is dense if it meets every non-empty open set. Any finite intersection of dense
open sets is non-empty. (The proof is by induction on the number of sets. Given dense
open sets U1, . . . , Un, the set U1 ∩ . . . ∩ Un−1 is non-empty and open, by the inductive
hypothesis; so it meets the dense open set Un.) So the family of sets containing finite
intersections of dense open sets is a filter.

If a topology admits a primitive group, and is the union of finitely many discrete
subsets, then it is itself discrete. (To show this, it suffices to find a finite open set.
Let Ω = X1 ∪ . . . ∪ Xn, where X1, . . . , Xn are pairwise disjoint discrete sets. Choose
x1 ∈ X1. There exists an open set U1 with U1 ∩X1 = {x1}. If U1 = {x1}, we are done;
so suppose not. Then, without loss, U1 ∩X2 is non-empty; choose x2 ∈ U1 ∩X2. Then
there is an open set U2 with U2 ∩X2 = {x2}, so that

{x2} ⊆ (U1 ∩ U2) ∩ (X1 ∪X2) ⊆ {x1, x2}.
Continuing in this way, we end up with a finite open set.) It follows that, if the topology
is not discrete, then the set of complements of finite unions of discrete sets is a filter.

Now we begin the proof of the theorem. One direction is elementary: if F is a filter,
then {∅}∪F is a topology, which is non-trivial if F is. So we suppose that G is primitive
and preserves a non-trivial topology T , and (for a contradiction) that G preserves no
non-trivial filter. By our two constructions above, it follows that every open dense set
is cofinite, and every discrete set is finite. Form a graph Γ on Ω by joining x and y
whenever there exist disjoint open sets containing x and y.

Case 1. Γ contains no infinite clique. In this case, every finite clique is contained in
a finite maximal clique. Let {x1, . . . , xn} be a maximal clique. We can find pairwise
disjoint open sets U1, . . . , Un with xi ∈ Ui for i = 1, . . . , n. (For let Wij and Wji

be disjoint open sets containing xi and xj respectively, for i 6= j; then put Ui =⋂
j 6=iWij.) Now U = U1 ∪ . . . ∪ Un is open and dense (by the maximality of the clique

{x1, . . . , xn}); so F = Ω \ U is finite. Let {x′1, . . . , x′m} be another maximal clique, and
define U ′1, . . . , U

′
m, F

′ analogously. By Neumann’s Separation Lemma, we may assume
that the finite sets {x1, . . . , xn} ∪ F and {x′1, . . . , x′m} ∪ F ′ are disjoint. Suppose that
m > n. Then x1, . . . , xn lie in the union of the pairwise disjoint sets U ′1, . . . , U

′
m; say

xi ∈ U ′ki for i+1, . . . , n. Then one of the sets, say U ′l , does not contain any of x1, . . . , xn.
But then U1 ∩ U ′k1 , . . . , Un ∩ U ′kn are pairwise disjoint open sets containing x1, . . . , xn,
and Ul is disjoint from all of them, a contradiction. So m > n is impossible, and dually
n > m is impossible. Thus, we have m = n. We conclude that all maximal cliques
have the same size n. Now the induced subgraph of Γ on U1 ∪ . . . ∪ Un is complete
n-partite. (It clearly contains the complete multipartite graph; but any additional edge
would produce a clique of size greater than n.) We claim that Γ is complete n-partite.
For suppose not. Since complete n-partite graphs are characterised by their finite
subgraphs, there exists a finite subset Z of Ω on which the induced subgraph is not
complete n-partite. By Neumann’s Separation Lemma, we may assume that Z∩F = ∅.
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Then Z ⊆ U1 ∪ . . . ∪ Un, and we have a contradiction. So the claim is proved. Now, if
n > 1, we have a contradiction to the primitivity of G, since G preserves the complete
n-partite graph Γ. On the other hand, if n = 1, then Γ is a null graph, and so any two
non-empty open sets intersect. So the class of sets which contain a non-empty open set
is a filter, and is non-trivial since the topology is.

Case 2. Γ contains an infinite clique Y . Then the induced topology on Y is Hausdorff,
and so Y contains an infinite discrete subset (see below). So the filter of complements
of discrete sets is non-trivial. ¤

The fact that an infinite Hausdorff space contains an infinite discrete subset is an
exercise in the book by Sierpiński [17]. Since this is not very helpful, I include the
proof. Let X be an infinite Hausdorff space. Call a point x ∈ X bad if every open set
containing x is cofinite. Clearly there is at most one bad point. (Bad points can exist;
for example, the added point in the one-point compactification of an infinite discrete
space.) Now define a sequence x1, x2, . . . of points of X and a decreasing sequence
Y0, Y1, Y2, . . . of infinite sets as follows:

• Y0 = X.

• Given Yn−1, let xn be any non-bad point of Yn−1, Un an open set containing Xn

such that Yn = Yn−1 \ Un is infinite.

Now we claim that Z = {x1, x2, . . .} is discrete. For any xn, we have an open set Un
containing xn and no xm for m > n. Also, by the Hausdorff property, there is an open
set Vn containing xn and no xm for m < n. Then Z ∩ (Un ∩ Vn) = {xn}, and so Z is
discrete.

Problem. Can this result be quantified? That is, if X is a sufficiently vast Hausdorff
space, must it contain an uncountable discrete set? The space R shows that cardinality
2ℵ0 is not enough.

The companion theorem of Macpherson and Praeger [8] is:

Theorem 4.2. Let Ω be countable, and assume that the permutation group G on Ω
preserves no non-trivial filter on Ω. Then G is highly transitive (that is, G is n-transitive
for all natural numbers n).

I have been unable to produce an elementary proof of this theorem. In a special case,
this can be done. Let G be any permutation group on Ω. The algebraic closure of a
finite subset X of Ω is the union of the finite orbits of the pointwise stabiliser of X in
G. We say that algebraic closure is trivial if the algebraic closure of X is precisely X,
for all finite sets X.

Proposition 4.1. Let G be a permutation group on Ω, for which algebraic closure is
trivial. Then either G preserves a non-trivial topology on Ω, or G is highly transitive.

Proof. Suppose that algebraic closure is trivial, and that G is not highly transitive.
Then there exists a finite set X whose pointwise stabiliser has more than one orbit
outside X, and all its orbits are infinite. Let Y be one of these orbits. Then, for any
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elements g1, . . . , gn of G, the set Y g1 ∩ . . . ∩ Y gn is fixed by the pointwise stabiliser of
the finite set F = Xg1 ∪ . . . ∪Xgn, and contains no point of F . So Y g1 ∩ . . . ∩ Y gn is
empty or infinite. Now the result follows from Lemma 4.1. ¤

One would expect that, if algebraic closure were non-trivial, one could use it to construct
a non-trivial topological closure operation. But I have not succeeded in doing this. In
particular, defining a set to be closed if it contains the algebraic closure of each of its
finite subsets does not work.

5. Automorphism groups of filters

In this section we assume that the set Ω is countable. We show that any filter has a
large automorphism group, and in particular, the automorphism group of an ultrafilter
is a maximal subgroup of Sym(Ω). This section is based on the work of Neumann [12],
see also [7].

A filter F on Ω is principal if there is a subset X of Ω (necessarily non-empty) such that
F consists of all subsets of Ω containing X. An ultrafilter is a maximal filter. Thus,
a principal ultrafilter consists of all sets which contain a specified point x ∈ Ω. Given
a filter F , we let A(F) denote the automorphism group of F , and B(F) the set of all
permutations g ∈ Sym(Ω) with the property that Fix(g) ∈ F , where Fix(g) is the set
of fixed points of g. If F is the principal filter defined by X, then A(F) and B(F) are
the setwise and pointwise stabiliser of X respectively. We will see that they behave in
a similar way in general.

Proposition 5.1. (a) For any filter F , B(F) is a normal subgroup of A(F).
(b) If F1 and F2 are filters with F1 ⊆ F2, then B(F1) ≤ B(F2).

(c) If F is a non-principal ultrafilter then A(F) = B(F) is a highly transitive
maximal subgroup of Sym(Ω) which acts transitively on the sets of F which
are moieties (that is, are not cofinite).

Proof. All is straightforward. For (a), if X ∈ F and g ∈ B(F), then Xg ⊇ X ∩ Fix(g),
so Xg ∈ F . So B(F) ⊆ A(F). If g, h ∈ B(F), then Fix(gh−1) ⊇ Fix(g) ∩ Fix(h), so
gh−1 ∈ B(F); so this set is a group. Normality is clear. Part (b) is trivial. For (c),
we show first that A(F) = B(F). So let g be any permutation in A(F). Assume that
g /∈ B(F), so that Fix(g) /∈ F . Since F is an ultrafilter, Ω \Fix(g) ∈ F , so there exists
h ∈ B(F) with Fix(h) = Ω \ Fix(g). Then gh ∈ A(F) has no fixed points. Now let X
consist of alternate points from the cycles of gh (where, if a cycle has finite odd length,
we leave one gap of length 3), Y = Xgh, and Z = Ω \ (X ∪ Y ). The three sets X,Y, Z
comprise a partition of Ω, so one of them lies in the ultrafilter F . But each is disjoint
from its image under gh, so ∅ ∈ F , a contradiction. To prove the high transitivity,
we use the fact that a non-principal ultrafilter F contains the filter Fc of cofinite sets;
and B(Fc) is the finitary symmetric group. (Indeed, if F is any filter containing all the
cofinite sets, then B(F) is highly transitive.) Let X and Y be moieties belonging to
F . Then X ∩ Y is an infinite set in F . Partition this set into infinite subsets A and B.
Since F is an ultrafilter, one of A and B is in F , say A; then the pointwise stabiliser
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of A contains a permutation mapping X to Y . Finally, let G be a subgroup of Sym(Ω)
which properly contains A(F). Then G must move some moiety in F to one not in F ;
hence G acts transitively on moieties. Since the pointwise stabiliser of any moiety in G
is the symmetric group on its complement, it follows easily that G = Sym(Ω). ¤

6. Maximal subgroups

IfM is a maximal proper subgroup of Sym(Ω), where Ω is countable, then clearly either
M contains the finitary symmetric group F , or MF = Sym(Ω). In the latter case, M
has countable index in Sym(Ω) (since F is countable), and so by Theorem 8.1 below,
M is the stabiliser of a finite set. Conversely, the stabiliser of a finite set is a maximal
subgroup. In the former case, M is highly transitive. More generally, Macpherson and
Neumann [7] proved that any supplement for F in Sym(Ω) lies between the pointwise
and setwise stabiliser of a finite set. As noted earlier, Macpherson and Praeger [8]
proved:

Theorem 6.1. A primitive subgroup of Sym(Ω) which is not highly transitive is con-
tained in a maximal subgroup of Sym(Ω).

Not every proper subgroup of Sym(Ω) is contained in a maximal subgroup. Like every
uncountable group, Sym(Ω) is the union of a chain of subgroups, none of which are
maximal. Macpherson and Neumann proved that any chain of subgroups with union
Sym(Ω) has length strictly greater than |Ω|. It follows that some subgroup in the chain
necessarily contains the finitary symmetric group.

7. The rational world

Among countable topologies, there is one which is particularly interesting: the set Q
of rational numbers, with the usual topology. Unlike the case of R, the topology of Q
does not determine the order up to reversal; indeed, Q is homeomorphic to Qn for any
positive integer n, and its homeomorphism group is highly transitive. More generally,
Sierpiński [16] showed that a countable topological space is homeomorphic to Q if and
only if it is totally disconnected and T1 and without isolated points. Neumann [11] calls
such a space a rational world. He has investigated the rational world and its homeomor-
phism group, and among other things has determined all the possible cycle structures
of homeomorphisms. Strikingly, there are 2ℵ0 non-conjugate homeomorphisms which
permute all the points in a single cycle. The most dramatic theorem on the rational
world is due to Mekler [9], with an alternative proof by Truss [19]. It states that, for
countable groups, our necessary and sufficient conditions of Lemma 4.1 for a group to
act on a topology are actually necessary and sufficient for it to act on the rational world:

Theorem 7.1. Let G be a countable permutation group on a countable set Ω. Then
the following are equivalent:

(a) G is permutation-isomorphic to a subgroup of the group of homeomorphisms
of Q;
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(b) There is a subset ∆ of Ω such that, for any elements g1, . . . , gn ∈ G, the set
∆g1 ∩ · · · ∩∆gn is empty or infinite.

8. Topology of permutation groups

The symmetric group itself carries a natural topology, the topology of pointwise conver-
gence. A basis of neighbourhoods of the identity is formed by the pointwise stabilisers
of finite sets of points. The basic facts about this topology are well known; this sec-
tion contains only a few brief remarks. For the remainder of this section, we assume
that Ω is countable. In this case, Sym(Ω) is metrisable: taking Ω = N, we may set
d(g, h) = 1/n if ig = ih and ig−1 = ih−1 for all i < n but one of these equations fails
for i = n, where g, h ∈ Sym(Ω), g 6= h. The topology of Sym(Ω) can be recovered from
the group structure. This is a consequence of the following theorem due to Semmes [13]
and Dixon, Neumann and Thomas [3]:

Theorem 8.1. Let Ω be countable. Then a subgroup of index smaller than 2ℵ0 in
Sym(Ω) contains the pointwise stabiliser of a finite subset X of Ω, and is contained in
the setwise stabiliser of X.

The first assertion means that the open subgroups of Sym(Ω) are precisely those of
countable index. We say that Sym(Ω) has the small index property. The two assertions
together are called the strong small index property.

Closed subgroups of Sym(Ω) are characterised by the next result. Recall that a structure
is homogeneous if every isomorphism between finite substructures can be extended to
an automorphism.

Proposition 8.1. The following conditions are equivalent for a subgroup G of Sym(Ω),
where Ω is countable:

(a) G is closed in Sym(Ω);

(b) G is the automorphism group of a first-order structure on Ω;

(c) G is the automorphism group of a homogeneous relational structure on Ω.

Now we can ask whether the topology of a closed subgroup of Sym(Ω) can be recovered
from its group structure, that is, whether the group has the small index property. This
has been shown in many cases (for example, projective and affine spaces over finite
fields, the countable random graph, the countable atomless Boolean algebra), but is
not true for all closed subgroups (see Evans and Hewitt [4] for a counterexample).

9. Higher cardinalities

The questions considered here can of course be generalised to larger infinite sets. Typ-
ically, positive theorems tend to take on the more uncertain status of conjectures or
independence results. I refer interested readers to the papers [1, 14, 15, 18].
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Tübingen 1960; English translation Infinite Permutation Groups by P. V. Bruyns, pp. 199 – 235
in: H. Wielandt, Mathematische Werke, Volume 1: Group Theory (B. Huppert and H. Schneider
eds), de Gruyter, Berlin, 1994.



Euler Characteristics of Discrete Groups

by

I. M. Chiswell

1. Introduction

This is a write-up of the notes of a course given by the author in 1983/84. Apart from
the addition of several references, only minor changes have been made. To compensate,
a final section on progress since then has been added. The course originally was to
have been accessible to Master’s students taking basic algebra courses, although none
actually attended the course. Much of the material is therefore quite elementary. Thus
the necessary material on homological algebra and (co)homology of groups is developed.
At the same time, it is not claimed to be an introduction to (co)homology of groups. In
particular, the reader unfamiliar with this should be aware of various interpretations of
homology and cohomology modules in dimension at most 2. (See Ch.II, §§3, 5, Ch.III
§1 and Ch.IV, §§1–3 in [16], or Ch.10 in [98].) It is hoped the notes will be accessible
to beginning research students, but also lead to renewed interest in the subject.

Throughout, by a ring we mean an associative ring with an identity element, which
is assumed to be non-zero. By a module we mean a left module unless otherwise
indicated. An Euler characteristic on a class of groups X is a mapping χ : X → R,
where R is a commutative ring, such that if G ∈ X and (G : H) <∞ then H ∈ X and
χ(H) = (G : H)χ(G).

A method of defining such a mapping was given by Wall [114]. If G is a a group having a
finite complex as classifying space, sayX, then define χ(G) to be the Euler characteristic
of X. Wall observed that this can be extended as follows. Let vX denote the class of
groups which have a subgroup of finite index in X. If χ is an Euler characteristic
on X and R is a field of characteristic 0, then χ can be extended to vX by defining

χ(G) =
1

(G : H)
χ(H), where H ∈ X and (G : H) < ∞. Using Wall’s definition (with

R = Q), χ(G) = 1/|G| for finite groups G, and for finitely generated free groups F ,
χ(F ) = 1− rank(F), the rank being the number of elements in a basis. Wall also noted
the following properties of χ:

χ(G×H) = χ(G)χ(H);

χ(G ∗H) = χ(G) + χ(H)− 1.

assuming the right-hand side is defined. Generalising this suggests other desirable
properties of an Euler characteristic on a class X:

(1) if Q = G/N and N , Q ∈ X, then G ∈ X and χ(G) = χ(N)χ(Q);

(2) if G = A ∗C B is a free product with amalgamation and A, B, C ∈ X, then
G ∈ X and χ(G) = χ(A) + χ(B)− χ(C).

Another desirable property is the analogue of (2) for HNN-extensions:
86
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(2)′ if G = 〈A, t | tBt−1 = C〉 is an HNN-extension and A, B ∈ X (so C ∈ X), then
G ∈ X and χ(G) = χ(A)− χ(C).

Major progress was made by Serre [105], who defined an Euler characteristic on a class
of groups called FL, by means of an alternating sum of ranks of free ZG-modules. This
is an algebraic version of Wall’s definition. The work of Serre has been generalised in
two ways. Free modules can be replaced by projective modules over the group ring RG,
where R is any commutative ring. A suitable notion of rank for projective modules
was defined by Hattori [58] and by Stallings [107]. Stallings defined a function taking
values in the free R-module on the set of conjugacy classes of G. One obtains an Euler
characteristic µ by taking the coefficient of the trivial conjugacy class ([10], [25], [39]).
Taking R = Q generalises the definition on FL. The function µ satisfies (1), (2) and
(2)′ above.

A different generalisation was given by Brown [14] using analogues of Betti numbers.
The class of groups on which it is defined is different from that on which µ (with R = Q)
is defined, and neither is contained in the other. It is unknown whether or not the two
characteristics are the same for groups on which both are defined. The Brown char-
acteristic satisfies (1), (2) and (2)′ only with the extra assumption that the relevant
group G has a torsion-free subgroup of finite index. It has some interesting arithmetic
properties which have not been proved for µ.

Although these definitions have a natural geometric origin, it should not be assumed
they are the only possibilities. For example, given an Euler characteristic on a class X
with values in a field of characteristic 0, one can change its value by a scalar multiple on
a commensurability class in X and obtain a new Euler characteristic. Other definitions
of an Euler characteristic have been given by Bailey [9], by Paschke [90] and by Reznikov
[95]. The Euler characteristic ρ of Paschke is defined for all finitely generated groups
and is zero on the class of finite groups. However, if G, H are infinite, finitely generated
groups having a common finite subgroup F , then ρ(G ∗F H) = ρ(G)+ ρ(H)+ 1/|F |, so
ρ does not satisfy (2). Finally the “virtual signature” of Roy [99] is defined for virtual
Poincaré duality groups, and fails to satisfy some arithmetic properties of the Brown
characteristic.

The reader is assumed to be familiar with basic module theory, and the functors Hom
and tensor product, including their exactness properties, as well as the use of the uni-
versal property of tensor products to define maps on them. The ideas of projective
and flat module, and their basic properties, are assumed known (but projectives are
briefly discussed in §2, reflecting the expected audience for the course). This material
is covered, for example, in [98, Chapters 2 and 3]. A short exact sequence of groups will
usually be called a group extension. Familiarity is also assumed with the various ways
of viewing an associative algebra over a commutative ring (see [8, Ch.4, §5, Exerc.2],
[31, §3.2], [62, §3.9] and [71, Ch.V, §1]). When discussing Properties (1) and (2) above,
a knowledge of free products with amalgamation and HNN extensions will be assumed.
See, for example, [77, Ch.4].

Further, in places a knowledge of commutative algebra, elementary algebraic number
theory or singular homology theory is needed. Also, it is assumed the reader has seen
a version of the Artin-Wedderburn theory of semisimple rings. However, it is difficult
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to find a reference giving all aspects of the theory needed, so we comment on it.

First, if D is a division ring, the ring Mn(D) of n×n matrices over D decomposes as a
direct sum of simple left ideals, Mn(D) = L1⊕ . . .⊕Ln, where Li is the set of matrices
having all columns except column i equal to zero. This is an easy exercise. Clearly
the Li are all isomorphic as Mn(D)-modules to the module L of all column vectors of
length n with entries in D. Note that D embeds as a subring in Mn(D) (d 7→ d1Mn(D),
where 1Mn(D) is the n × n identity matrix). This gives the usual action of D on L by
restriction, so each Li has dimension n over D. Further, Li = Mn(D)eii, where eii is
the matrix with 1 in the i, i position and zeros elsewhere, and the identity matrix is
the sum e11 + . . . + enn of orthogonal idempotents. It is another easy exercise to show
Mn(D) is a simple ring.

Let S be a simple Mn(D)-module (simple modules are discussed in [8, Ch.6, §8]).
Choose x ∈ S, x 6= 0, so Mn(D)x is not the zero submodule of S, hence S = Mn(D)x.
The map Mn(D) → S, a 7→ ax, restricted to Li, is a module homomorphism, so is
either the zero map or an isomorphism (its kernel is a submodule of Li and its image
a submodule of S). It is not the zero map for all i, otherwise x =

∑n
i=1 eiix = 0, a

contradiction. It follows that S ∼= L. Thus Mn(D) has exactly one simple module, up
to isomorphism.

If A is a semisimple ring, then A is a direct product of finitely many matrix rings over
division rings, say A = A1 × . . . × Ar (see [31, §4.6]). If L is a simple A-module, then
AiL is a submodule, so is 0 or L, and is equal to L for at least one i, otherwise L = AL
would be zero. If AiL = AjL = L with i 6= j, then L = Aj(AiL) = 0 since AiAj = 0,
a contradiction. Hence AiL = L for exactly one value of i, and AjL = 0 for j 6= i.
It follows that L is a simple module for Ai, and any simple Ai-module L is a simple
A-module (defining AjL = 0 for j 6= i). From the previous paragraph, A has exactly r
isomorphism classes of simple modules, represented by S1, . . . , Sr, where Si is a simple
module for Ai. (They are pairwise non-isomorphic as A-modules since AiSi = Si and
AjSi = 0 for j 6= i.)

Also, we can write the identity element as a sum of orthogonal idempotents, 1 =
f1 + . . . + fm, where fi is the identity element of Ai. Decomposing fi as a sum of
orthogonal idempotents as above, we can write 1 = e1 + . . . + es, where the ei are
orthogonal idempotents, and number so that every simple A-module is isomorphic to
exactly one of Ae1, . . . , Aer.

Since A-modules are semisimple ([71, Ch.XVII, §4, Prop.4]), a finitely generated A-
moduleM is isomorphic to (Ae1)

m1⊕ . . .⊕ (Aer)
mr for some integers m1, . . . ,mr, which

are uniquely determined by M . For AiM ∼= (Aei)
mi and if Ai ∼= Mni(Di), (Aei)

mi has
dimension mini over Di.

Recall that an idempotent e in a ring A is called primitive if it cannot be written as
e = f + g, where f , g are orthogonal idempotents. If A is semisimple, e is primitive if
and only if Ae is a simple left ideal. This is left as an exercise.

Concerning notation, 1G denotes the identity element of the group G, although fre-
quently just 1 is used. Similar comments apply to the multiplicative identity element
of a ring. Usually idA is used to mean the identity map on the set A, but sometimes it
is just written as 1.
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2. Trace functions and Projective modules

Let A be a ring. A trace function on A is a map t : A → B, where B is an (additive)
abelian group, such that for all x, y ∈ A,

t(x+ y) = t(x) + t(y)

and t(xy) = t(yx).

Let [A,A] be the additive subgroup of A generated by {xy − yx | x, y ∈ A} and let
TA : A → A/[A,A] be the canonical map. Then TA is a trace function on A and
A/[A,A] = TA(A); we shall drop the subscript A and just write T (A) for A/[A,A]. If
t : A → B is any trace function, then [A,A] ⊆ Ker(t), and our first result is an easy
consequence.

Lemma 2.1. If t : A → B is any trace function, there is a unique homomorphism
s : T (A)→ B such that the diagram

A
TA //

t ÂÂ>
>>

>>
>>

> T (A)

s
||zz

zz
zz

zz

B

is commutative.

For this reason, TA is called the universal trace function on A. If f : A → A′ is a ring
homomorphism, then f([A,A]) ⊆ [A′, A′], so f induces a homomorphism f∗ : T (A) →
T (A′), and this gives a functor from the category of rings to the category of abelian
groups, sending A to T (A).

Examples.

(1) If A is commutative, T (A) = A and TA = idA.

(2) If A = A1 × A2 (product of rings), then [A,A] = [A1, A1]⊕ [A2, A2], so T (A) ∼=
T (A1)⊕ T (A2).

(3) Let R be a ring, A = Mn(R) (the ring of n × n matrices over R). Define
t : A → T (R) by t(rij) = TR (

∑n
i=1 rii). Then t is a trace function, so by

Lemma 2.1 there is a homomorphism s : T (A) → T (R), given by s(TA(rij)) =
TR((

∑n
i=1 rii). We claim that s is an isomorphism. In fact, the map R→ T (A),

r 7→ TA

(
r ... 0
...

...
0 ... 0

)
is a trace function on R, and by Lemma 2.1 there is an induced

map u : T (R) → T (A) given by (TA(r) = TA

(
r ... 0
...

...
0 ... 0

)
, and s and u are inverse

maps. For clearly su = 1, and to see us = 1, we need to show

(rij) ≡




∑n
i=1 rii . . . 0
...

...
0 . . . 0


 (mod [A,A])
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that is,
∑

1≤i,j≤n
rijeij ≡ (

∑n
i=1 rii) e11 (mod [A,A]), where eij is the matrix with

1 in the i, j position and 0 elsewhere. Using eijekl = δjkeil, if i 6= j then
eij = eiieij − eijeii ≡ 0 (mod [A,A]) and eii = (ei1e1i − e1iei1) + e11 ≡ e11
(mod [A,A]) and the result follows.

If A is a ring, then EndA(A
n) ∼= Mn(A) and Example 3 can be used to define a trace

function on EndA(A
n) with values in T (A). Stallings [107] went on to define a trace

function on EndA(P ), where P is a finitely generated projective module, using the fact
that P is a summand of An for some n. Instead, we shall follow Hattori’s basis-free
approach [58], which is a little more complicated, but useful. To begin, we recall that a
module P is projective if and only if the functor HomA(P, –) is exact, and this property
is characterised as follows.

Lemma 2.2. Let P be an A-module. The following are equivalent.

(1) P is projective;

(2) every short exact sequence 0→ K →M → P → 0 of A-modules splits;

(3) P is a summand of a free A-module.

Moreover, P is finitely generated projective if and only if it is a summand of a finitely
generated free A-module.

Proof. This is proved in many texts, for example [98]. ¤

We also recall that it follows easily that a summand of a projective module is pro-
jective, and a direct sum of projective modules is projective. We shall need another
characterisation of projective modules. If P is an A-module, P ∗ denotes HomA(P,A).

Definition. A coordinate system for an A-module P is a family {xi} of elements of
P together with a family {fi} of elements of P ∗ (where i runs through some index set)
such that, for all x ∈ P, fi(x) = 0 for all but finitely many i, and x =

∑
i

fi(x)xi.

Example. If P is free, let {xi} be a basis and let {fi} be the dual basis.

Lemma 2.3. An A-module P is projective if and only if it has a coordinate system,
and is finitely generated projective if and only if it has a finite coordinate system.

Proof. Suppose P is projective. There are a free module F and a surjectiveA-homomorphism
π : F → P , giving a short exact sequence 0 → Ker π → F

π→P → 0, which splits by
Lemma 2.2, that is, there is a homomorphism ϕ : P → F such that πϕ = idP . Let
{yi} be a basis for F and define xi = π(yi). Let {gi} be the dual basis and define
fi(x) = gi(ϕ(x)) for x ∈ P . Then fi ∈ P ∗ and for x ∈ P ,

x = π(ϕ(x)) = π(
∑

i

gi(ϕ(x))yi)

=
∑

i

gi(ϕ(x))π(yi) =
∑

i

fi(x)xi.
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showing {xi}, {fi} is a coordinate system. If P is finitely generated, F can be chosen
with {yi} finite.
Conversely, assume {xi}, {fi} is a coordinate system for P . Let F be free with basis {yi}
indexed by the same set, and let π : F → P be the A-homomorphism with π(yi) = xi.
Define ϕ : P → F by ϕ(x) =

∑
i fi(x)yi. Then πϕ = idP and there is a split exact

sequence

0 //Ker π //F
π //P //
ϕ

hh j_T 0

so F = ϕ(P )⊕Ker π ∼= P ⊕Ker π and P is projective by Lemma 2.2. If {xi}, {fi} is
finite, the xi generate P , so P is finitely generated. ¤

Now let P be an A-module. Then P ∗ is a right A-module (if f ∈ P ∗ and a ∈ A, fa is
defined by (fa)(x) = f(x)a, for x ∈ P ). The mapping

P ∗ × P → EndA(P )

(f, x) 7→ g

where g(y) = f(y)x, induces a homomorphism of abelian groups ϕ : P ∗ ⊗A P →
EndA(P ).

Lemma 2.4. The map ϕ is an isomorphism if and only if P is finitely generated
projective.

Proof. If ϕ is an isomorphism, it is surjective, so we can write idP = ϕ(
∑n

i=1(fi ⊗ xi))
for some n, where fi ∈ P ∗, xi ∈ P for 1 ≤ i ≤ n. Then for x ∈ P ,

x =
n∑

i=1

ϕ(fi ⊗ xi)(x) =
n∑

i=1

fi(x)xi

so {xi}, {fi} is a finite coordinate system for P .

Conversely, assume {xi}, {fi} is a finite coordinate system. Define ψ : EndA(P ) →
P ∗⊗A P by ψ(f) =

∑
i fi⊗ f(xi). We show ϕ and ψ are inverse maps. First, for x ∈ P

and f ∈ EndA(P ),

(ϕψ(f))(x) =
∑

i

ϕ(fi ⊗ f(xi))(x) =
∑

i

fi(x)f(xi)

= f

(∑

i

fi(x)xi

)
= f(x)
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showing ϕψ = 1. Also, for f ∈ P ∗, x ∈ P , ψϕ(f ⊗ x) = ψ(g), where g(y) = f(y)x, and

ψ(g) =
∑

i

fi ⊗ g(xi)

=
∑

i

fi ⊗ f(xi)x

=
∑

i

fif(xi)⊗ x

=

(∑

i

fif(xi)

)
⊗ x = f ⊗ x

because (
∑

i fif(xi))(y) =
∑

i fi(y)f(xi) = f(y). Since ϕ, ψ are additive homomor-
phisms and the tensors f ⊗ x (x ∈ P , f ∈ P ∗) Z-generate P ∗ ⊗A P , ψϕ = 1. ¤

For any A-module P , the map

{
P ∗ × P → T (A)

(f, x) 7→ TA(f(x))
induces a homomorphism of

abelian groups θ : P ∗ ⊗ P → T (A). If P is finitely generated projective, using Lemma
2.4, we obtain an additive homomorphism

TP/A : EndA(P )→ T (A).

This is given explicitly by the next lemma. When reference to the ring A is unnecessary,
TP/A will be abbreviated to TP .

Lemma 2.5. If {xi}, {fi} is a finite coordinate system for P and f ∈ EndA(P ), then

TP (f) =
∑

i

TA(fi(f(xi))).

Proof. We have

TP/A(f) = θ(ψ(f)) (ψ being the map in the proof of Lemma 2.4)

= θ

(∑

i

fi ⊗ f(xi)
)

=
∑

i

θ(fi ⊗ f(xi)) =
∑

i

TA(fi(f(xi))).

¤

In the case of a free module, TP can be described even more explicitly.

Lemma 2.6. If P is finitely generated free and a dual pair of bases {xi}, {fi} (1 ≤ i ≤
n) is taken as coordinate system, then for f ∈ EndA(P ),

TP (f) =
n∑

i=1

TA(aii)

where (aij) is the matrix of f with respect to {xi}.
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Proof. Just observe that fi(f(xi)) = aii. ¤

We are now ready to define a notion of rank for finitely generated projectives.

Definition. Let P be a finitely generated projective A-module. The rank element rP/A
of P is the element TP (idP ) ∈ T (A).

Again this will be abbreviated to rP when reference to A is unnecessary.

Examples.

(1) From Lemma 2.6, rAn = TA(n.1A) = nTA(1A).

(2) Let e be an idempotent in A, so A = Ae ⊕ A(1 − e) and Ae is a projective
A-module with coordinate system e, f , where f(ae) = ae. Hence rAe = TA(e).

(3) If P ∼= Q then rP = rQ. For if f : P → Q is an isomorphism and {xi}, {fi} is
a coordinate system for P , then {f(xi)}, {fif−1} is a coordinate system for Q.
Now apply Lemma 2.5.

(4) Let A =Mn(D) where D is a division ring. If e is a primitive idempotent in A,

then Ae ∼= Ae11, where e11 =

(
1 0 ... 0
0 0
...

...
0 0 ... 0

)
(see §1). Identifying T (A) and T (D)

(Example 3 after Lemma 2.1), from the previous examples TA(e) = TA(e11) =
TD(1). In particular, if D is a field, TA(e) 6= 0. Note, however, that there are
division rings D with T (D) = 0. See [57] for an example.

Lemma 2.7. Let P , Q be finitely generated projectives over A. Then

(1) P ⊕ Q is finitely generated projective and if f ∈ EndA(P ), g ∈ EndA(Q) then
TP⊕Q(f ⊕ g) = TP (f) + TQ(g). In particular rP⊕Q = rP + rQ;

(2) if f , g ∈ EndA(P ) then TP (f + g) = TP (f) + TP (g);

(3) if f ∈ HomA(P,Q) and g ∈ HomA(Q,P ), then TP (gf) = TQ(fg).

Proof. (1) Let {xi}, {fi} (i ∈ I) be a coordinate system for P and let {yj}, {gj} (j ∈
J) be a coordinate system for Q, where I and J are disjoint. Then {(xi, 0), (0, yj)},
{fi ⊕ 0, 0 ⊕ gj} is a coordinate system for P ⊕ Q (indexed by I ∪ J). Now apply
Lemma 2.5.

(2) Immediate from Lemma 2.5.

(3) Define f̃ , g̃ : P ⊕ Q → P ⊕ Q by f̃(p, q) = (0, f(p)) and g̃(p, q) = (g(q), 0),where

p ∈ P , q ∈ Q. Then f̃ g̃ = 0⊕ fg and g̃f̃ = gf ⊕ 0, so by Part 1 we can assume P = Q.
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Let {xi}, {fi} (i ∈ I) be a coordinate system for P . Then

g(xi) =
∑

j∈I
fj(g(xi))xj

so fg(xi) =
∑

j∈I
fj(g(xi))f(xj)

and by Lemma 2.5 TP (fg) = TA

(∑

i,j

fj(g(xi))fi(f(xj))

)

= TP (gf) by symmetry.

¤

Remarks.

(1) If P is finitely generated projective, we can write F = P ⊕Q where F is finitely
generated free. Then if f ∈ EndA(P ), TP (f) = TF (f ⊕ 0) = TA(

∑
i aii), where

(aij) is the matrix of f ⊕ 0 with respect to a basis of F , by Lemmas 2.5 and 2.7.
This shows the equivalence with Stallings’ definition of rank ([107]).

(2) By Lemma 2.7(1), the mapping P 7→ rP is a homomorphism of abelian groups
K0(A)→ T (A), where K0(A) is the Grothendieck group of A.

(3) By Lemma 2.7(2) and (3), TP/A : EndA(P ) → T (A) is a trace function. if F is

finitely generated free, then choosing a basis gives an isomorphism EndA(F )
'→Mn(A).

By Lemma 2.6, there is a commutative diagram

EndA(F )

TF/A
²²

∼= // Mn(A)

TMn(A)

²²
T (A) T (Mn(A))

∼=
s

oo

where s is the isomorphism constructed in Example (3) after Lemma 2.1. Hence
TF/A can be identified with the universal trace function on EndA(F ).

Now suppose f : A → B is a ring homomorphism. Then B, and indeed every B-
module becomes an A-module. Suppose B is a finitely generated projective A-module.
For b ∈ B, define ρb ∈ EndA(B) by ρb(x) = xb for x ∈ B. This gives a map B → T (A),
b 7→ TB/A(ρb), which is a trace function on B by Lemma 2.7, so by Lemma 2.1, there is
a homomorphism trB/A : T (B)→ T (A) given by:

trB/A(TB(b)) = TB/A(ρb)

Example. If B/A is a finite field extension (with f the inclusion map), then

trB/A(b) = [B : A]ins
∑

τ

τ(b)

where τ runs through the A-embeddings of B into a normal closure (or algebraic clo-
sure), and [B : A]ins means inseparable degree. This is left as an exercise. (Hint: for
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b ∈ B, trB/A(b) is the trace of the characteristic polynomial of ρb over A, which has
degree [B : A] and whose roots are the roots of the minimum polynomial of ρb, which
is the minimum polynomial of b over a.) In particular, if B/A is Galois, then

trB/A(b) =
∑

τ∈Gal(B/A)

τ(b),

the familiar trace in Galois theory.

Lemma 2.8. Let f : A → B be a ring homomorphism and assume B is finitely gen-
erated A-projective via f . Then if P is finitely generated B-projective, it is finitely
generated A-projective, and if g ∈ EndB(P ) then g ∈ EndA(P ) and

TP/A(g) = trB/A(TP/B(g)).

Proof. For some n and Q, we can write Bn ∼= P ⊕ Q, and this is a decomposition as
A-modules. Since Bn is a finitely generated projective A-module (direct sum of finitely
many projectives) and P is a summand, P is finitely generated A-projective. Clearly
EndB(P ) ⊆ EndA(P ). By Lemma 2.7(1),

TP/B(g) = TBn/B(g ⊕ 0)

TP/A(g) = TBn/A(g ⊕ 0)

so it is enough to prove the formula when P = Bn. By Remark (3) above, there is a
homomorphism t : T (B)→ T (A) making the following diagram commutative

EndB(B
n)

TBn/B //

TBn/A

²²

T (B)

t
vvm m m m m m m m

T (A)

and it is enough to show t = trB/A. Let b ∈ B and let g = ρb⊕0⊕ . . .⊕ 0︸ ︷︷ ︸
(n−1)

∈ EndB(B
n).

By Lemma 2.7(1) and Lemma 2.6,

TBn/B(g) = TB/B(ρb) = TB(b)

and TBn/A(g) = TB/A(ρb).

Hence t(TB(b)) = TB/A(ρb), as required.

¤

Corollary 2.1. In the situation of Lemma 2.8, rP/A = trB/A(rP/B).

If f : A → B is a ring homomorphism, B is also a right A-module, and if M is an
A-module, B ⊗A M is a B-module (via b(x ⊗m) = (bx) ⊗m for b, x ∈ B, m ∈ M).
We call B ⊗AM the B-module induced from M . Also, f induces a homomorphism of
abelian groups f∗ : T (A)→ T (B) (f∗(TA(a)) = TB(f(a))).
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Remark 2.1. If additionally f is surjective (so B ∼= A/I, where I = Ker(f)) then
M/IM is a B-module, defining b(m + IM) = am + IM , for any a ∈ A such that
b = f(a) (for b ∈ B, m ∈ M). The map ϕ : M → B ⊗A M , m 7→ 1 ⊗ m induces a
map M/IM → B ⊗A M which is a B-homomorphism. The map B ×M → M/IM ,
(b,m) 7→ am + IM , where f(a) = b, is well-defined and induces a homomorphism
B⊗AM →M/IM which is an inverse to ϕ. Thus M/IM ∼= B⊗AM . Taking f = idA
gives A⊗AM ∼= M .

Lemma 2.9. Let f : A → B be a ring homomorphism and let P be finitely generated
A-projective. Then B⊗AP is finitely generated B-projective, and if g ∈ EndA(P ), then
1 ⊗ g ∈ EndB(B ⊗A P ) and TB⊗AP/B(1 ⊗ g) = f∗(TP/A(g)). In particular, rB⊗AP/B =
f∗(rP/A).

Proof. Write F = P ⊕Q where F is a finitely generated free A-module. Then

B ⊗A F = (B ⊗A P )⊕ (B ⊗A Q)

and if e1, . . . , en is a basis for F , then 1⊗ e1, . . . , 1⊗ en is a B-basis for B ⊗A F , hence
B⊗AP is finitely generated B-projective. Let h = g⊕0 ∈ EndA(F ), so 1⊗h = (1⊗g)⊕0.
By Lemma 2.7(1),

TB⊗AP/B(1⊗ g) = TB⊗AF/B(1⊗ h), TP/A(g) = TF/A(h).

If (aij) is the matrix of h with respect to e1, . . . , en, then (f(aij)) is the matrix of 1⊗ h
with respect to 1⊗ e1, . . . , 1⊗ en. By Lemma 2.6,

TB⊗AF/B(1⊗ h) = TB

(
n∑

i=1

f(aii)

)
= f∗

(
TA

(
n∑

i=1

aii

))
= f∗(TF/A(h))

proving the lemma. ¤

Algebras. Let R be a commutative ring, A an (associative) R-algebra. Then [A,A]
is an R-submodule of A, hence T (A) is an R-module and and TA is an R-linear map.
Also, if X generates A as R-module, then {xy − yx | x, y ∈ X} R-generates [A,A].
Lemma 2.10. Let A,B be R-algebras, where R is a commutative ring. Then there is
an isomorphism of R-modules T (A⊗R B) → T (A)⊗R T (B), sending TA⊗RB(a⊗ b) to
TA(a)⊗ TB(b) (for a ∈ A, b ∈ B).

Proof. Let C = A ⊗R B. Then TA ⊗ TB : C → T (A) ⊗R T (B) is a trace function,
because the elements a ⊗ b generate C as R-module, so [C,C] is R-generated by the
elements

[a⊗ b, a′ ⊗ b′] = [a, a′]⊗ bb′ + a′a⊗ [b, b′]

where a, a′ run through A and b, b′ through B, and TA⊗TB clearly maps these elements
to 0. By Lemma 2.1, there is a map ϕ : T (C) → T (A) ⊗R T (B) sending TC(a ⊗ b)
to TA(a) ⊗ TB(b), and it is R-linear. Now TC([a, a

′] ⊗ b) = TC([a ⊗ b, a′ ⊗ 1]) = 0 and
similarly TC(a⊗ [b, b′]) = 0. Hence there is a well-defined map

T (A)× T (B) → T (C)

(TA(a), TB(b)) 7→ TC(a⊗ b)
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(because TA, TB are R-linear) and this induces an R-linear map

T (A)⊗ T (B) → T (C)

TA(a)⊗ TB(b) 7→ TC(a⊗ b)
and this is an inverse for ϕ. ¤

Lemma 2.11. Assume the hypotheses of Lemma 2.10. If P is finitely generated A-
projective and Q is finitely generated B-projective, u ∈ EndA(P ) and v ∈ EndB(Q),
then P ⊗R Q is finitely generated A⊗R B-projective and

TP⊗RQ(u⊗ v) = TP (u)⊗ TQ(v)
(identifying T (A⊗R B) and T (A)⊗R T (B) via the isomorphism of Lemma 2.10).

Proof. Let {xi}, {fi} be a finite coordinate system for P and let {yj}, {gj} one for Q.
Then {xi ⊗ yj}, {fi ⊗ gj} is a finite coordinate system for P ⊗R Q, so by Lemma 2.5,

TP⊗RQ(u⊗ v) = T

(∑

i,j

(fi ⊗ gj)(u(xi)⊗ v(yj))
)

= T

(∑

i

fi(u(xi))⊗
∑

j

gj(v(yj))

)

= TP (u)⊗ TQ(v).
¤

Corollary 2.2. Let R′ be a commutative R-algebra, A an R-algebra. Then there is an
isomorphism of R′-modules R′⊗RT (A)→ T (R′⊗RA) sending r′⊗TA(a) to TR′⊗RA(r

′⊗a)
for r′ ∈ R′, a ∈ A. If P is finitely generated A-projective and u ∈ EndA(P ), then R

′⊗RP
is finitely generated (R′ ⊗R A)-projective and

TR′⊗RP (1⊗ u) = 1⊗ TP (u).
In particular, rR′⊗RP = 1⊗ rP .

Proof. Immediate from Lemmas 2.10 and 2.11. ¤

3. Complexes and homology

Let A be a ring and let Z be an abelian group (written additively).

Definition. A Z-graded A-module is a family {Mz | z ∈ Z} of A-modules. If M =
{Mz} and N = {Nz} are Z-graded modules, and a ∈ Z, a homomorphism f : M → N
of degree a is a family {fz | z ∈ Z}, where fz :Mz → Nz+a is an A-homomorphism.

Note that, for any Z, there is a zero Z-graded module with 0z = 0 for all z ∈ Z. Also,
given a Z-graded module M , there is a zero homomorphism 0 : M → M with 0z = 0
for all z ∈ Z and an identity homomorphism idM : M →M with (idM)z = idMz for all



98 I. M. Chiswell

z ∈ Z. If f : M → N is of degree a and g : N → P is of degree b, then we can define
gf :M → P of degree a+ b by (gf)z = gz+afz:

Mz
fz //Nz+a

gz+a //Pz+a+b.

If f , g :M → N are of the same degree, we can define f + g and af (for a ∈ A) by
(f + g)z = fz + gz

(af)z = afz

(these are homomorphisms M → N of the same degree as f and g).

Definition. A Z-graded module N is a submodule of a Z-graded module M if Nz is a
submodule of Mz for all z ∈ Z. If N is a submodule of M, the quotient module M/N
is defined by: (M/N)z =Mz/Nz for all z ∈ Z.

If N is a submodule of M , there is a quotient map π : M → M/N , where πz is the
quotient map Mz → Mz/Nz for all z ∈ Z. Suppose f : M → N is of degree a. If P
is a submodule of M , define f(P ) by f(P )z = f(Pz−a), so f(P ) is a submodule of of
N . If Q is a submodule of N , define f−1(Q) by f−1(Q)z = f−1(Qz+a) for z ∈ Z. In
particular, define Im(f) = f(M) and Ker(f) = f−1(0), that is, Ker(f)z = Ker(fz). It
is left to the reader to formulate the First Isomorphism Theorem for graded modules.

Direct Sum. If M , N are Z-graded modules, define M ⊕N by (M ⊕N)z =Mz⊕Nz.
We shall be interested in Z-graded modules in three cases:

(1) Z={ 0} (ordinary modules)

(2) Z = Z
(3) Z = Z ⊕ Z (here a Z-graded module is called a Z-bigraded module, and if a

map has degree a = (α, β), it is said to have bidegree α, β).

In this section we shall consider Z-graded modules, but the next definition applies to
any abelian group Z.

Definition. A differential on a Z-graded module M is a homomorphism d : M → M
such that dd = 0.

If d has degree a, this means that dz+adz is the zero map for all z ∈ Z. Further,
dz+adz = 0 ∀z ∈ Z ⇐⇒ dz(Mz) ⊆ Ker(dz+a) ∀z ∈ Z

⇐⇒ dz−a(Mz−a) ⊆ Ker(dz)) ∀z ∈ Z
⇐⇒ d(M) = Im(d) is a submodule of Ker(d).

This leads to the following important idea.

Definition. If d is a differential on a Z-graded moduleM, the Z-graded module Ker(d)/Im(d)
is called the homology module of the pair (M,d), written H(M,d).

It is customary to write Hz(M,d) rather than H(M,d)z ; thus

Hz(M,d) = Ker(dz)/Im(dz−a).
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Now we come to the main object of study in this section.

Definition. A chain complex of A-modules is a Z-graded module C together with a
differential d of degree −1 :

. . . Cn+1

dn+1 //Cn
dn //Cn−1

dn−1 //Cn−2 // . . . (∗)

The homology of (C, d) is thus given by Hn(C, d) = Ker(dn)/Im(dn+1). Often, d is
suppressed and we just write C for the complex and Hn(C) for the homology module.

Note. The sequence (∗) is exact at Cn if and only if Hn(C) = 0.

Definition. A subcomplex of a chain complex (C, d) is a Z-graded submodule D of C
such that d(D) is a submodule of D. Then D is also a chain complex with d restricted
to D (in the obvious sense) as differential.

If D is a subcomplex of C, the quotient graded module C/D can be made into a chain
complex, defining d̄n : (C/D)n → (C/D)n−1 by

dn(c+Dn) = dn(c) +Dn−1 for c ∈ Cn.
Definition. The Z-graded module H(C/D, d̄) is the relative homology of the pair
(C,D), denoted by H(C,D).

Chain Maps. Let (C, d), (D, d′) be chain complexes of A-modules. A chain map
f : C → D is a homomorphism of Z-graded modules of degree 0 such that fd = d′f .
This means fn−1dn = d′nfn for all n ∈ Z, that is, all squares in the following diagram
are commutative.

. . . // Cn+1
//

fn+1
²²

Cn
dn //

fn
²²

Cn−1 //

fn−1
²²

. . .

. . . // Dn+1
// Dn

d′n // Dn−1 // . . .

If f : C → D is a chain map, there is an induced homomorphism of degree 0, H(f) :
H(C)→ H(D), defined by

Hn(f)(c+ Im(dn+1)) = f(c) + Im(d′n+1) (for c ∈ Ker(dn)).

Further, if f : C → D and g : D → E are chain maps then H(gf) = H(g)H(f) and
H(idC) = idH(C). In fact, there is a category A whose objects are chain complexes of
A-modules and whose morphisms are chain maps, and a category B whose objects are
graded A-modules and whose morphisms are homomorphisms, and we have defined a
functor H : A → B.

The Connecting Homomorphism. Let 0 //C
i //D

π //E //0 be a short ex-
act sequence of chain complexes of A-modules (which means i and π are chain maps

and 0 //Cn
in //Dn

πn //En //0 is exact for every n ∈ Z). Let dC , dD, dE be the
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differentials on C, D, E. There is a commutative diagram with exact rows (ignoring
the subscripts on the differentials):

0 // Cn
in //

dC
²²

Dn
πn //

dD
²²

1(/).*-+,
En //

dE
²²

0

0 // Cn−1

2(/).*-+,
in−1 //

dC
²²

Dn−1
πn−1 //

dD
²²

En−1 //

dE
²²

0

0 // Cn−2
in−2 // Dn−2

πn−2 // En−2 // 0

Suppose e ∈ En and dE(e) = 0. Then e = πn(d) for some d ∈ Dn, so πn−1(dD(d)) = 0,

by commutativity of square 1(/).*-+, . Hence dD(d) = in−1(c) for some c ∈ Cn−1 (uniquely

determined by d since in−1 is injective). Then

in−2(dC(c)) = dD(dD(d)) = 0

by commutativity of square 2(/).*-+, , and since in−2 is injective, dC(c) = 0. Using commuta-

tivity of squares and exactness of rows in a similar manner, we find that c+Im(dC) does
not depend on the choice of d, so there is a map (Ker(dE))n → Hn−1(C) sending e to
c+ Im(dC) which is clearly an A-homomorphism. Further, if e ∈ Im(dE), we may take
d ∈ Im(dD) (using surjectivity of πn+1 and commutativity: dEπn+1 = πndD). Hence
c = 0, so there is an induced A-homomorphism ∂n : Hn(E)→ Hn−1(C) given by:

∂n(e+ Im(dE)) = c+ Im(dC) (e ∈ Ker(dE))

for every n ∈ Z. This gives a homomorphism ∂ : H(E)→ H(C) of degree −1.
Definition. The homomorphism ∂ is called the connecting homomorphism of the short

exact sequence 0 //C
i //D

π //E //0 .

Theorem 3.1. In this situation there is an exact triangle

H(C)
H(i)

// H(D)

H(π)zzvvv
vv

vv
vv

H(E)

∂

ddHHHHHHHHH

of Z-graded modules, that is, there is an exact sequence of A-modules:

. . . Hn(C)
Hn(i) //Hn(D)

Hn(π) //Hn(E)
∂n //Hn−1(C)

Hn−1(i)// Hn−1(D)
Hn−1(π)// . . .

Proof. Given n, there are six inclusions to establish, and we shall prove one of them,
Im(Hn(π)) ⊆ Ker(∂n). Now an element of Im(Hn(π)) looks like πn(d) + Im(dE), for
some d ∈ Ker(dD). By definition of ∂, ∂n(πn(d)+Im(dE)) = c+Im(dC), where in−1(c) =
dD(d). But d ∈ Ker(dD) and i is injective, so c = 0, giving the desired inclusion. The
other five inclusions involve similar arguments and are left to the reader. ¤
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Corollary 3.1. If D is a subcomplex of a chain complex C, there is an exact sequence
of A-modules:

. . . Hn(D) //Hn(C) //Hn(C,D) //Hn−1(D) // Hn−1(C) // . . .

Proof. There is a short exact sequence of chain complexes

0 //D
i //C

π //C/D //0 ,

where in is the inclusion map and πn is the quotient map. ¤

Corollary 3.2. More generally, if E is a subcomplex of D and D is a subcomplex of
C, there is an exact sequence of A-modules

. . . Hn(D,E) //Hn(C,E) //Hn(C,D) //Hn−1(D,E) // Hn−1(C,E) // . . .

Proof. The exact sequence

0 //Dn
//Cn //Cn/Dn

//0

corresponding to the inclusion and quotient maps induces (by the isomorphism theorems
for modules) an exact sequence

0 //Dn/En //Cn/En //Cn/Dn
//0

for all n, giving a short exact sequence of chain complexes

0 //D/E //C/E //C/D //0 .

¤

Theorem 3.2 (Naturality of ∂). Given short exact sequences of chain complexes

0 // D // C // E // 0

0 // D′ // C ′ // E ′ // 0

with connecting homomorphisms ∂, ∂ ′ respectively, and chain maps fC , fD, fE such
that

D //

fD
²²

C //

fC
²²

E

fE
²²

D′ // C ′ // E ′

is commutative (in an obvious sense), there is a commutative diagram

. . . // Hn(D) //

Hn(fD)

²²

Hn(C) //

Hn(fC)

²²

Hn(E)
∂ //

Hn(fE)

²²

Hn−1(D) //

Hn−1(fD)

²²

Hn−1(C) //

²²

. . .

. . . // Hn(D
′) // Hn(C

′) // Hn(E
′)

∂′ // Hn−1(D′) // Hn−1(C) // . . .

whose rows are given by Theorem 3.1.
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Proof. This is left as an exercise, but note that commutativity of squares not involving
∂ follows from the fact, already noted, that H is a functor. ¤

Direct Sums. If (C, d), (C ′, d′) are chain complexes of A-modules, C ⊕ C ′ is a chain
complex with differential d′′ given by d′′n(c, c

′) = (dn(c), d
′
n(c
′)) (for c ∈ Cn, c

′ ∈ C ′n).
Further, Hn(C ⊕ C ′) ∼= Hn(C) ⊕ Hn(C

′). This will usually be all that is needed, but
clearly one can take the direct sum of any collection of chain complexes of A-modules,
and the analogous result for homology is true.

The Mapping Cone. This is an idea from algebraic topology, where chain complexes
and so homology modules are associated to topological spaces, and corresponds to the
mapping cone of a map of topological spaces.

Definition. Let f : (C, d) → (C ′, d′) be a chain map. The mapping cone of f is the
chain complex (M,d′′) defined by:

Mn = Cn−1 ⊕ C ′n
d′′(c, c′) = (−d(c), d′(c′) + f(c))

omitting the subscripts on the differentials.

There is a chain map i : C ′ →M , where in : C ′n → Cn−1⊕C ′n is the canonical embedding

c′ 7→ (0, c′). Define a chain complex (C̃, d̃) by C̃n = Cn−1 and d̃n = −dn−1. There is
also a chain map π : M → C̃, where πn : Cn−1 ⊕ C ′n → C̃n = Cn−1 is the canonical
projection. Then

0 //C ′
i //M

π //C̃ //0

is a short exact sequence of chain complexes.

Proposition 3.1. In these circumstances there is an exact sequence

. . . Hn(C
′)

i∗ //Hn(M)
π∗ //Hn−1(C)

f∗ //Hn−1(C ′)
i∗ // Hn−1(M) // . . .

(where subscripts have been omitted and i∗ = H(i), etc).

Proof. By Theorem 3.1 there is an exact sequence

. . . Hn(C
′)

i∗ //Hn(M)
π∗ //Hn(C̃)

∂ //Hn−1(C ′) // . . .

and clearly Hn(C̃) = Hn−1(C). It is also routine to check that ∂ = f∗. ¤

Chain Homotopy. This is another idea from algebraic topology, where homotopies
between maps of topological spaces give rise to chain homotopies between chain maps.

Definition. Let f , g : (C, d)→ (D, d′) be chain maps. A chain homotopy from f to g is
a homomorphism s : C → D of Z-graded modules of degree +1 such that sd+d′s = f−g.
That is,

sn−1dn + d′n+1sn = fn − gn (for all n ∈ Z)
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. . . // Cn+1
//

²²

Cn
dn //

fn−gn
²²

sn||yyyyyyyy
Cn−1 //

²²sn−1{{vvvvvvvvv
. . .

. . . // Dn+1
d′n+1

// Dn
// Dn−1 // . . . .

It is easy to see that there is an equivalence relation ' on the set of chain maps from
C to D, where f ' g if there is a chain homotopy from f to g. (This is read as “f is
chain homotopic to g”.)

Lemma 3.1. If f is chain homotopic to g, then H(f) = H(g).

Proof. Ignoring the grading (i.e., omitting subscripts),

H(f)(c+ Im(d)) = f(c) + Im(d′)

H(g)(c+ Im(d)) = g(c) + Im(d′)

for c ∈ Ker(d), and we need to show that f(c) − g(c) ∈ Im(d′). But if s is a chain
homotopy from f to g, then

f(c)− g(c) = sd(c) + d′s(c) = d′(s(c)) ∈ Im(d′).

¤

Projective Resolutions. These will be used in the next section to generalise the
trace of an endomorphism and rank element of a projective module to a wider class of
modules. We begin with the definitions.

Definition. A chain complex C is positive if Cn = 0 for n < 0. A chain complex C is
projective (resp. free) if Cn is a projective (resp. free) module for all n ∈ Z.

This seems to be the usual terminology, although “non-negative” would be more accu-
rate than “positive”.

Definition. A complex over an A-module M is a positive complex (C, d) together with
an A-homomorphism ε : C0 →M such that εd1 = 0.

In this situation there is a chain complex . . . C1
d1→C0

ε→M → 0 . . ., called the aug-
mented complex, written C

ε→M . The map ε is called the augmentation map.

Definition. A resolution of an A-module M is a complex (C, d) over M whose aug-

mented complex C
ε→M is exact.

This means Hn(C) = 0 for n 6= 0, Im(d1) = Ker(ε) and ε is onto. Since H0(C) =

C0/Im(d1), there is an isomorphism H0(C)
∼=→M . Conversely, given a positive complex

C with Hn(C) = 0 for n 6= 0 and an isomorphism H0(C) ∼= M , we obtain a resolution
of M .



104 I. M. Chiswell

Note. Any module M has a projective (indeed free) resolution. Choose a free module
F0 mapping onto M , to get a short exact sequence

0→ K0
i→F0 →M → 0.

Now choose a free module F1 mapping onto K0, to get a short exact sequence

0→ K1 → F1
π→K0 → 0.

These sequences can be “spliced” to obtain an exact sequence

0→ K1 → F1
iπ→F0 →M → 0.

This can clearly be continued to construct a free resolution of M (putting Fn = 0 for
n < 0).

Theorem 3.3 (The Comparison Theorem). Let

γ :M →M ′ be a homomorphism of A-modules;

C
ε→M be an augmented projective complex over M ;

C ′
ε′→M ′ be an augmented resolution of M ′.

Then there is a chain map f : C → C ′ such that ε′f0 = γε, and any two such chain
maps are chain homotopic.

Proof. We have to construct fn for n ≥ 0 such that all squares in the following diagram
are commutative.

. . . // C3
//

f3
²²

C2
d2 //

f2
²²

C1
d1 //

f1
²²

C0
ε //

f0
²²

M //

γ

²²

0

. . . // C ′3 // C ′2 d′2

// C ′1 d′1

// C ′0 ε′
// M ′ // 0.

To construct f0, there is a map f0 making the following diagram commutative:

C0

γε

²²

f0

~~}
}

}
}

C ′0 ε′
// M ′ // 0.

since C0 is projective. We can now repeat this procedure on

. . . // C2
d2 // C1

d1 //

f1
²²Â
Â
Â

Im(d1) //

f0
²²

0

. . . // C ′2 d′2

// C ′1 d′1

// Im(d′1) // 0.

to construct f1, on checking that f0(Im(d1)) ⊆ Im(d′1). But this follows since ε′f0d1 =
γεd1 = 0 and Im(d′1) = Ker(ε′). Clearly this procedure can be continued to recursively
construct the map f .
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Suppose that g : C → C ′ is another chain map with ε′g0 = γε. Let h = f − g. There
is a diagram with commutative squares:

. . . // C1
//

h1
²²

C0

s0~~}
}

}
}

ε //

h0
²²

M //

0

²²

0

. . . // C ′1 d′1

// C ′0 ε′
// M ′ // 0.

and to construct a chain homotopy s from f to g we first want to construct s0 such
that d′1s0 = h0 (sn = 0 for n < 0). Now ε′h0 = 0 implies Im(h0) ⊆ Ker(ε′) = Im(d′1),
and since C0 is projective, there is a map s0 making the diagram

C0

h0
²²

s0

{{x
x

x
x

x

C ′1 d′1

// Im(d′1) // 0.

commutative, as required. Next, we want s1 such that d′2s1 = h1 − s0d1

C2
//

²²

C1
d1 //

h1
²²s1~~}

}
}

}
C0

h0
²²s0~~}}

}}
}}

}

C ′2 d′2

// C ′1 d′1

// C ′0

and to repeat the construction for s0, it is enough to show

Im(h1 − s0d1) ⊆ Ker(d′1) = Im(d′2).

But d′1(h1 − s0d1) = d′1h1 − d′1s0d1 = d′1h1 − h0d1 = 0 (h is a chain map), as required.
We can now continue to construct s2, s3 . . .. At the next stage, the calculation is a little
more elaborate: d′2(h2−s1d2) = d′2h2−d′2s1d2 = d′2h2− (h1−s0d1)d2 = d′2h2−h1d2 = 0,
since d1d2 = 0. After that, the calculations are similar, successively increasing all
subscripts by 1. ¤

Note. The map f in Theorem 3.3 is called a lift of γ.

Homotopy Equivalence.

Definition. A chain map f : C → D is a homotopy equivalence if there is a chain
map g : D → C such that fg ' idD and gf ' idC. A chain complex C is homotopy
equivalent to a chain complex D if there is a homotopy equivalence f : C → D.

Clearly homotopy equivalence is an equivalence relation on chain complexes.

Lemma 3.2. Let P , Q be projective resolutions of the same A-module M . Then P and
Q are homotopy equivalent.
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Proof. By Theorem 3.3, there are lifts f , g of idM as indicated:

P

f
²²

// M

=

²²
Q // M

Q

g

²²

// M

=

²²
P // M.

Then gf and idP are lifts of idM to P , so by Theorem 3.3, gf ' idP . Similarly,
fg ' idQ. ¤

Split Complexes. A chain complex is split (or contractible) if idC ' 0C . Then by
Lemma 3.1, H(idC) = H(0C), which implies H(C) = 0, so a split complex is exact.
Suppose (C, d) is an exact complex and let Kn = Ker(dn) = Im(dn+1). For each n ∈ Z,
there is a short exact sequence 0→ Kn

in−→Cn
πn−→Kn−1 → 0, where in is the inclusion

map and πn(c) = dn(c). Then dn = in−1πn and C is obtained by “splicing” these short
exact sequences:

Kn−1
in−1

##GG
GG

GG
GG

G

Cn+1
//

πn+1 ""EE
EE

EE
EE

Cn
dn

//

πn
<<yyyyyyyy

Cn−1 // . . .

Kn

in

==||||||||

Suppose additionally that C is split, and let s be a chain homotopy from idC to 0C , so
sd+ ds = idC :

Kn−1
in−1

$$HH
HH

HH
HH

H

Cn
dn //

πn
<<yyyyyyyy

Cn−1.
sn−1

oo

Let ϕn = sn−1in−1. Then:

0 //Kn
in //Cn

πn //Kn−1 //
ϕn

jj 0

is a split short exact sequence. For

πn = πn(sn−1dn + dn+1sn) = πnsn−1dn (πndn+1 = 0)

= πnsn−1in−1πn

= (πnϕn)πn

and since πn is surjective, πnϕn = idKn−1 .

Lemma 3.3. let (P, d) be an exact projective complex and suppose there exists an integer
k such that Pn = 0 for n < k. Then P is split.

Proof. Replacing (P, d) by (P̃ , d̃), where P̃n = Pn+k and d̃n = dn+k, we can assume

k = 0. Then P
d−1−→ 0 is a projective resolution of 0, and idP , 0P are both lifts of the

zero map 0→ 0. By Theorem 3.3, idP ' 0P . ¤
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Despite their simplicity, the next result and its corollary (the “long” version) are very
useful in dealing with projective complexes.

Lemma 3.4 (Schanuel’s Lemma). Let

0→ K
i→P

ε→M → 0

0→ K ′
i′→P ′

ε′→M → 0

be short exact sequences of A-modules, with P, P ′ projective. Then K ⊕P ′ ∼= K ′⊕P .

Proof. Let Q be the pullback of the diagram

P

ε

²²
P ′

ε′
// M

that is, let Q = {(p, p′) ∈ P ⊕ P ′ | ε(p) = ε′(p′)}, a submodule of P ⊕ P ′. There is a
short exact sequence

0→ K ′
j′→Q

π→P → 0,

where π(p, p′) = p, j ′(k′) = (0, i′(k′)) (k′ ∈ K ′), and a similar short exact sequence

0→ K
j→Q

π′→P ′ → 0.

Since P , P ′ are projective, these sequences split, so K ⊕ P ′ ∼= Q ∼= K ′ ⊕ P . ¤

Corollary 3.3. Let

0→ K → Pn → . . .→ P1 → P0 →M → 0
0→ K ′ → P ′n → . . .→ P ′1 → P ′0 →M ′ → 0

be exact sequences of A-modules with all Pi, P
′
i projective and M ∼= M ′. Then

K ⊕ P ′n ⊕ Pn−1 ⊕ P ′n−2 ⊕ . . . ∼= K ′ ⊕ Pn ⊕ P ′n−1 ⊕ Pn−2 ⊕ . . .
(the sums end with P0, P

′
0).

Proof. There are exact sequences

0→ K → Pn → . . . P2 → P1
d1−→L→ 0

0→ K ′ → P ′n → . . . P ′2 → P ′1
d′1−→L′ → 0

and
0→ L→ P0 →M → 0
0→ L′ → P ′0 →M ′ → 0

(where L = Ker(P1 → P0), etc). By Lemma 3.4, L⊕ P ′0 ∼= L′ ⊕ P0, and there are exact
sequences:

0 // K // Pn // . . . P2
// P1 ⊕ P ′0

d1⊕ idP ′0 // L⊕ P ′0 // 0

0 // K ′ // P ′n // . . . P ′2 // P ′1 ⊕ P0

d′1⊕ idP0 // L′ ⊕ P0
// 0.

The result now follows by induction on n. ¤
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Cochain Complexes. A cochain complex is a Z-graded module C with a differential
d of degree +1

. . .←− Cn+1 dn←−Cn dn−1←− Cn−1 . . .

The cohomology of (C, d) is the Z-graded module Ker(d)/ Im(d). Note that it is cus-
tomary to write the grading as a superscript; thus we write

Hn(C, d) = Ker(dn)/ Im(dn−1).

A cochain map f : (C, d)→ (C̄, d̄), where (C, d), C̄, d̄) are cochain complexes, is a map
f : C → C̄ of Z-graded modules of degree 0 such that fd = d̄f (fn+1dn = d̄nfn for
all n). Such a map induces a homomorphism H(f) : H(C, d)→ H(C, d̄) and there are
analogues of the results 3.1–3.2 for cochain complexes. Given a short exact sequence of
cochain complexes 0→ C → D → E → 0, there is an exact sequence

. . .→ Hn(C)→ Hn(D)→ Hn(E)
∂→Hn+1(C)→ . . .

etc. This can be deduced from the corresponding results for chain complexes, by noting
that if (C, d) is a cochain complex, then defining C̃n = C−n, d̃n = d−n gives a chain
complex with Hn(C) = H−n(C̃). Despite this, it is useful to have the notion of cochain
complex, since there are situations where a natural grading leads to a cochain complex.

A cochain homotopy from f to g, where f , g : (C, d) → (C̄, d̄) are cochain maps, is a
map of Z-graded modules s : C → C̄ of degree −1 such that sd + d̄s = f − g (in full,
sn+1dn + d̄n−1sn = fn − gn). There is an analogue of Lemma 3.1 and a notion of split
cochain complex, and split implies exact.

4. Modules of type FP

In this section we shall generalise the trace of an endomorphism and rank element of a
projective module to a wider class of modules. Once more fix a ring A.

Definition. A finite projective complex of A-modules is a chain complex P such that,
for all n ∈ Z, Pn is finitely generated projective, and Pn = 0 for all but finitely many
values of n. Given such a complex, if f : P → P is a chain map, we define

L(f) =
∑

i

(−1)iTPi(fi).

Here TPi is the function defined in Section 2, so L(f) ∈ A/[A,A]. Note that “finite”
refers to two things: the modules are finitely generated, and the complex is of finite
length (after truncating infinite strings of zero modules on the left and right).

Lemma 4.1. (1) If P, Q are finite projective chain complexes and f : P → Q,
g : Q→ P are chain maps, then L(fg) = L(gf);

(2) If f, g : P → P are chain maps (where P is a finite projective complex) and
f ' g, then L(f) = L(g).

Proof. (1) By Lemma 2.7, TPi(gifi) = TQi
(figi).
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(2) Let s be a chain homotopy from f to g, so f−g = sd+ds, where d is the differential
on P . Then

L(f)− L(g) =
∑

i

TPi(fi − gi)

=
∑

i

(−1)iTPi(si−1di + di+1si)

=
∑

i

(−1)i(TPi(si−1di)− TPi(disi−1))

= 0 by Lemma 2.7.

¤

Definition. An A-moduleM is of type FP over A ifM has a finite projective resolution,
that is, if there exists an exact sequence

0→ Pn → Pn−1 → . . .→ P1 → P0
ε→M → 0.

Let P
ε→M be a finite augmented projective resolution, ϕ ∈ EndA(M). By Theorem

3.3, there is a lift of ϕ to a chain map f : P → P .

Lemma 4.2. In these circumstances, L(f) depends only on ϕ.

Proof. Suppose Q
ε′→M is also a finite augmented projective resolution and g : Q→ Q

is a lift of ϕ. By Theorem 3.3, there exist lifts h, k of idM as indicated in the diagrams:

P

h
²²

ε // M

=

²²
Q

ε′
// M

Q

k
²²

ε′ // M

=

²²
P ε

// M

giving a commutative diagram:

P

h
²²

ε // M

=

²²
Q

ε′
//

g

²²

M

ϕ

²²
Q

k
²²

ε′ // M

=

²²
P ε

// M

so kgh is a lift of ϕ to P . By Theorem 3.3, kgh ' f , so by Lemma 4.1,

L(f) = L(kgh) = L(gh.k).

But similarly, ghk is a lift of ϕ to Q, so ghk ' g and L(ghk) = L(g), hence L(f) =
L(g). ¤
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Hence ifM is of type FP and ϕ ∈ EndA(M), we can define TM(ϕ) = L(f), for any lift f :
P → P of ϕ to a finite projective resolution P of M . (Thus TM(ϕ) =

∑
(−1)iTPi(fi).)

Note that TM(ϕ) ∈ T (A) = A/[A,A]. We shall denote TM by TM/A where necessary.

This generalises the function TP for finitely generated projectives P (. . . 0→ P
id→P → 0

is a finite augmented projective resolution of P , having an obvious lift of idP ). Also,
we can define the rank element

rM = TM(idM) (for M of type FP)

which will be denoted by rM/A if necessary. Thus rM =
∑

(−1)irPi , where P → M
is a finite augmented projective resolution (since idP is a lift of idM). We continue to
establish some properties of the function TM .

Lemma 4.3. Suppose M, N are modules of type FP over A. Then

(1) M ⊕N is of type FP, and if ϕ ∈ EndA(M), ψ ∈ EndA(N), then

TM⊕N (ϕ⊕ ψ) = TM(ϕ) + TN(ψ)

(in particular, rM⊕N = rM + rN);

(2) if ϕ, ψ ∈ EndA(M), then TM(ϕ+ ψ) = TM(ϕ) + TM(ψ);

(3) if ϕ ∈ HomA(M,N) and ψ ∈ HomA(N,M), then TM(ψϕ) = TN(ϕψ).

Proof. Let P
ε→M and Q

ε′→N be finite augmented projective resolutions.

(1) There is a finite augmented projective resolution P ⊕Q ε⊕ε′−→M ⊕N , so (1) follows
from Lemma 2.7(1).

(2) If f , g : P → P are lifts of ϕ, ψ respectively, then f + g is a lift of ϕ + ψ, and (2)
follows from Lemma 2.7(2).

(3) Let f : P → Q, g : Q → P be lifts of ϕ, ψ respectively. Then gf : P → P is a lift
of ψϕ and fg : Q→ P is a lift of ϕψ, so (3) follows from Lemma 4.1. ¤

There is a converse to Part (1) of the previous lemma.

Proposition 4.1. If M ⊕N is of type FP, then so are M and N .

Proof. Let

0→ Pn
dn−→Pn−1 → . . .→ P1

d1−→P0
ε−→M ⊕N → 0

be a finite augmented projective resolution of M ⊕N and let Si = Im(di+1), so Si is a
finitely generated submodule of Pi. Since ε is onto, andM , N are homomorphic images
of M ⊕N under the canonical projections, M and N are finitely generated, so we can
find short exact sequences

0→ K0 → Q0 →M → 0
0→ L0 → R0 → N → 0

where Q0, R0 are finitely generated projective, giving a short exact sequence:

0→ K0 ⊕ L0 → Q0 ⊕R0 →M ⊕N → 0. (∗)
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Also, there is a short exact sequence

0→ S0 → P0
ε−→M ⊕N → 0.

By Schanuel’s Lemma (3.4), S0⊕Q0⊕R0
∼= K0⊕L0⊕P0, hence K0 and L0 are finitely

generated. Therefore we can find short exact sequences

0→ K1 → Q1 → K0 → 0
0→ L1 → R1 → L0 → 0

with Q1, R1 finitely generated projective. On taking direct sum and splicing with the
sequence (∗), we obtain an exact sequence

0→ K1 ⊕ L1 → Q1 ⊕R1 → Q0 ⊕R0 →M ⊕N → 0.

There is also an exact sequence

0→ S1 → P1 → P0 →M ⊕N → 0

and by Cor. 3.3, (K1 ⊕ L1)⊕ P1 ⊕ (Q0 ⊕R0) ∼= S1 ⊕ (Q1 ⊕R1)⊕ P0, hence K1 and L1

are finitely generated. continuing in this way, we eventually construct exact sequences

0→ Kn−1 → Qn−1 → . . .→ Q1 → Q0 →M → 0
0→ Ln−1 → Rn−1 → . . .→ R1 → R0 → N → 0

with all Qi, Ri finitely generated projective. Now using Cor. 3.3 in the same way again
shows that Kn−1, Ln−1 are finitely generated projective, proving the result. ¤

We consider how the property FP and the function TM behave with respect to short
exact sequences.

Lemma 4.4. Suppose 0→ C
i−→D

π−→E → 0 is a short exact sequence of A-modules.

Let P
ε−→C and Q

ε′−→E be augmented projective resolutions. Then there exists an

augmented projective resolution R
θ−→D such that Rn = Pn ⊕Qn for all n ∈ Z,

0→ P
ĩ−→R

π̃−→Q→ 0

is a short exact sequence of chain complexes (where ĩn(p) = (p, 0) and π̃n(p, q) = q),
and such that ĩ is a lift of i and π̃ is a lift of π.

Proof. Let K = Ker(ε) and let L = Ker(ε′). Since Q0 is projective, there is an A-
homomorphism ϕ : Q0 → D such that

Q0

ε′

²²

ϕ

~~}}
}}

}}
}}

D π
// E // 0
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is commutative. Also, define ψ to be iε : P0 → D and let θ = ψ ⊕ ϕ : P0 ⊕ Q0 → D.
There is a commutative diagram

0

²²

0

²²

0

²²
0 // K //

²²

M //

²²

L //

²²

0

0 // P0
//

ε

²²

P0 ⊕Q0
//

θ
²²

Q0
//

ε′

²²

0

0 // C
i

//

²²

D π
//

²²

E //

²²

0

0 0 0

with columns and bottom two rows exact (M = Ker(θ) and the maps in the top row are
obtained by restriction from those in the middle row, which are the obvious ones). It
follows that the top row is exact. (To avoid a direct argument, view the rows as chain
complexes by adding zero modules, so the columns become a short exact sequence of
complexes, and apply Theorem 3.1, recalling that a complex is exact if and only if its
homology is zero.) Now repeat this procedure with 0 → K → M → L → 0 in place
of 0 → P → R → Q → 0 and splice columns. Continue, to recursively construct the
desired resolution. ¤

Lemma 4.5. Suppose

0 // C
i //

f
²²

D
π //

g

²²

E //

h
²²

0

0 // C
i // D

π // E // 0

is a commutative diagram of A-modules with exact rows. Let P
ε−→C and Q

ε′−→E be

augmented projective resolutions and let R
θ−→D be as in Lemma 4.4. Let f̃ : P → P

and h̃ : Q → Q be lifts of f, h respectively. Then there is a lift g̃ : R → R of g such
that

0 // P
ĩ //

f̃

²²

R
π̃ //

g̃

²²

Q //

h̃
²²

0

0 // P
ĩ // R

π̃ // Q // 0

is commutative (where ĩ and π̃ are as in 4.4).

Proof. To recursively construct g̃ as in 4.4, it is enough to define g̃0 : R0 → R0 such
that θg̃0 = gθ and

0 // P0
//

f̃0
²²

P0 ⊕Q0
//

g̃0
²²

Q //

h̃0
²²

0

0 // P0
// P0 ⊕Q0

// Q0
// 0
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is commutative. (For then f̃0, g̃0, h̃0 induce mapsK → K, L→ L,M →M in the proof
of 4.4, making the appropriate diagram commutative in order to continue.) To make

the diagram commutative, we need to find g̃0 of the form g̃0(p, q) = (f̃0(p)+λ(q), h̃0(q))
(p ∈ P0, q ∈ Q0), where λ ∈ HomA(Q0, P0). If g̃0 has this form, then by definition of θ
in 4.4,

θg̃0(p, q) = iεf̃0(p) + iελ(q) + ϕh̃0(q)

for p ∈ P0, q ∈ Q0, where πϕ = ε′. Also,

gθ(p, q) = g(iε(p) + φ(q))

= giε(p) + gϕ(q).

But giε(p) = ifε(p) = iεf̃0(p), so we must find λ such that

iελ(q) = (gϕ− ϕh̃0)(q)

for q ∈ Q0. Now

π(gϕ− ϕh̃0)(q) = πgϕ(q)− πϕh̃0(q)
= hπϕ(q)− πϕh̃0(q)
= hε′(q)− ε′h̃0(q) = 0.

Hence (gϕ−ϕh̃0)(q) = i(c) for some unique c ∈ C, so there is a map µ = i−1(gϕ−ϕh̃0) :
Q0 → C, and we need to choose λ so that ελ = µ. But this can be done since Q0 is
projective:

P0

ε

²²

Q0
λ

oo_ _ _ _ _ _

µ
xxppppppppppppp

C

²²
0.

¤

Theorem 4.1. Suppose 0 → C
i−→D

π−→E → 0 is a short exact sequence of A-
modules. If two of C, D, E are of type FP, then so is the third.

Proof. We distinguish three cases.

Case 1. C, E of type FP. Then D is of type FP by Lemma 4.4.

Case 2. C, D of type FP. Let P → C, Q → D be finite augmented projective resolu-
tions. Let f : P → Q be a lift of i (using Theorem 3.3). Let M be the mapping cone
of f . Recall that Mn = Pn−1 ⊕ Qn, so M is a positive, finite projective complex. By
Prop. 3.1, there is an exact sequence

. . . Hn(Q) //Hn(M) //Hn−1(P )
f∗ //Hn−1(Q) // . . .
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Since Hn(P ) = Hn(Q) = 0 for n 6= 0, Hn(M) = 0 for n 6= 0, 1. For n = 0, 1, there is a
commutative diagram with exact rows:

0 //H1(M) //H0(P )
f∗ //

∼=
²²

H0(Q) //

∼=
²²

H0(M) //0

0 //C
i

//D //E //0

hence f∗ is injective, so H1(M) = 0, and H0(M) ∼= H0(Q)/f∗(H0(P )) ∼= D/i(C) ∼= E.
Thus M is a finite projective resolution of E, as required.

Case 3. D, E of type FP. Let P → D, Q → E be finite augmented projective resolu-
tions. Let f : P → Q be a lift of π. The mapping cone, M , of f is again a positive,
finite projective complex. By a similar argument to that in Case 2, Hn(M) = 0 for
n 6= 0, 1, H1(M) ∼= Ker(f∗) ∼= C and f∗ is onto, so H0(M) = 0. Let d be the differential
on M . Then there are short exact sequences

0→ Ker(d1)→M1
d1→M0 → 0

0→ Im(d2)→ Ker(d1)→ C → 0.

Since M0 is projective, the first sequence splits, so Ker(d1) is finitely generated projec-
tive, being a summand of M1. Then the exact sequence . . .→M3 →M2 → Ker(d1)→
C → 0 (obtained by splicing the second short exact sequence with . . .M3 → M2 →
Im(d2)→ 0) shows C is of type FP. ¤

Theorem 4.2. Suppose

0 // C
i //

f
²²

D
π //

g

²²

E //

h
²²

0

0 // C
i // D

π // E // 0

is a commutative diagram of A-modules with exact rows, and C, D, E are of type FP.
Then TD(g) = TC(f) + TE(h). In particular, rD = rC + rE.

Proof. Choose finite projective resolutions P , Q of C, E respectively, and let f̃ , g̃, h̃
be as in Lemma 4.5. We need to show L(g̃) = L(f̃) + L(h̃), and it is enough to show

that, for all n ∈ Z, TRn(g̃n) = TPn(f̃n) + TQn(h̃n). Thus (see the proof of Lemma 4.4)
we have reduced to the case C, E finitely generated projective, D = C ⊕ E and i, π
are the obvious maps. Then for c ∈ C, e ∈ E, g(c, e) = (f(c) + λ(e), h(e)) for some
A-homomorphism λ : E → C. That is, g = (f ⊕ h) + µ, where µ(c, e) = (λ(e), 0). By
Lemma 2.7, it is enough to show TC⊕E(µ) = 0. Let ρ : C ⊕ E → C ⊕ E be the map
(c, e) 7→ (0, e). then µ = µρ, and by Lemma 2.7, T (µ) = T (µρ) = T (ρµ) = T (0) = 0,
where T means TC⊕E. The last part follows on taking f , g, h to be the respective
identity maps. ¤
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Corollary 4.1. Suppose 0 → En → En−1 → . . . → E0 → E → 0 is an exact sequence
of A-modules with Ei of type FP for 0 ≤ i ≤ n. Then E is of type FP. Also, if

0 // En //

fn
²²

. . . // E0
//

f0
²²

E //

f

²²

0

0 // En // . . . // E0
// E // 0

is commutative, then TE(f) =
n∑
i=0

(−1)iTEi
(fi). In particular, rE =

n∑
i=0

(−1)irEi
.

Proof. Decompose the sequence into exact sequences 0 → En → En−1 → . . . → E1 →
F → 0 and 0→ F → E0 → E → 0, where F = Ker(E0 → E). Now use Theorems 4.1
and 4.2 and induction on n (in the second part, note that f0 induces a map g : F → F
by restriction). ¤

Exercise. Suppose 0 → En → En−1 → . . . → E0 → E → 0 is an exact sequence of
A-modules and Pi is a projective resolution of Ei for 0 ≤ i ≤ n. Writing Pij for (Pi)j,
show that E has a projective resolution Q with Qk =

⊕
i+j=k

Pij for k ∈ Z. (Use induction

as in Cor. 4.1 and the mapping cone for the case n = 1, as in Case 2 of Theorem 4.1.)

Modules of Type FL. A module M is of type FL if it has a finite free resolution,
that is, there is an exact sequence

0→ Fn → Fn−1 → . . . F1 → F0
ε→M → 0.

for some n ∈ Z, where each Fi finitely generated free. Clearly FL implies FP, and if M
is of type FL, then rM = mTA(1) for some m ∈ Z. Also, if M , N are of type FL, then
M ⊕N is of type FL, and there are analogues of Theorem 4.1 and Cor. 4.1 for modules
of type FL. Now suppose f : A→ B is a ring homomorphism and B is an A-module of
type FP via f . As in Section 2, we can define

trB/A : T (B)→ T (A)

by
trB/A(T (b)) = TB/A(ρb),

where ρb : B → B is defined by x 7→ xb.

Lemma 4.6. Let f : A → B be a ring homomorphism and assume B is an A-module
of type FP via f . If M is a B-module of type FP, then M is an A-module of type FP,
and if g ∈ EndB(M), then g ∈ EndA(M) and

TM/A(g) = trB/A(TM/B(g).

Proof. A finitely generated free B-module is isomorphic to Bn for some n, so by Lemma
4.3(1) and induction on n, any finitely generated free B-module is of type FP over A.
Hence any finitely generated projective B-module is of type FP over A by Prop. 4.1.
Let

0→ Pn → . . .→ P0 →M → 0.
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be a finite augmented projective resolution of M over B. Applying Cor. 4.1 to this
sequence, M is of type FP over A. Let g ∈ EndBM , so obviously g ∈ EndA(M). Let g̃
be a lift of g to the resolution.

By definition, TM/B(g) =
∑

i

(−1)iTPi/B(g̃i)

and by Cor. 4.1, TM/A(g) =
∑

i

(−1)iTPi/A(g̃i),

and since trB/A is Z-linear, it is enough to show TPi/A(g̃i) = trB/A(TPi/B(g̃i)), i.e., we
can assume M is finitely generated B-projective. Now argue as in Lemma 2.8, using
Lemma 4.3 (1) in place of Lemma 2.7(1). ¤

Automorphisms. Let α : A → A be a ring homomorphism, M an A-module. Let
αM be the A-module with the same addition asM , but scalar multiplication defined by
a ·m = α(a)m (a ∈ A, m ∈M), where on the right-hand side the scalar multiplication
of M is used. Note that EndA(M) = EndA(

αM). Also, there is an A-isomorphism

Ã⊗AM
∼=−→ αM

sending 1 ⊗ m to m, for m ∈ M , where Ã is A made into a right A-module via α−1

(a · b = aα−1(b) for a, b ∈ A, where the multiplication of A is used on the right hand
side) and a left A-module as usual (so a(b⊗m) = (ab)⊗m for m ∈M).

Lemma 4.7. If M is of type FP, then so is αM and TαM(f) = α−1∗ (TM(f)) for
f ∈ EndA(M), where α−1∗ : T (A) → T (A) is the homomorphism induced by α−1.
In particular, r αM = α−1∗ (rM).

Proof. If . . . P1
d1−→P0

ε−→M → 0 is a finite augmented projective resolution ofM , then

. . . −→ αP1
d1−→ αP0

ε−→ αM → 0

is one of αM (since αPi is projective using αPi∼=Ã ⊗A Pi and applying Lemma 2.9 to

α−1 : A → A). If f̃ is a lift of f (to both resolutions), it also follows from Lemma 2.9

that TαPi(f̃i) = α−1∗ (TPi(f̃i)) and the result follows since α−1∗ is Z-linear. ¤

Algebras. We note just one result concerning them. First, recall that if M is an A-
module, m ∈ M and a ∈ A, then a annihilates m means that am = 0, and we put
AnnA(m) = {a ∈ A | am = 0}, and AnnA(M) =

⋂
m∈M AnnA(m) (an ideal of A).

Lemma 4.8. Let A be an R-algebra, where R is a commutative ring and let M be an
A-module of type FP. Then TM : EndA(M)→ T (M) is R-linear, and rM is annihilated
by AnnR(M).

Proof. Let P → M be a finite augmented A-projective resolution of M . If g ∈
EndA(M), take a lift g̃ : P → P of g, so TM(g) =

∑
(−1)iTPi(g̃i). If r ∈ R, rg̃ is

a lift of rg, so TM(rg) =
∑

(−1)iTPi(rg̃i). Therefore to prove TM is R-linear, we can as-
sume M is finitely generated A-projective. Let {xj}, {fj} be a finite coordinate system
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for M . By Lemma 2.5,

TM(rg) = TA

(∑

j

fj(rg(xj))

)
= TA

(
r
∑

j

fj(g(xj))

)
= rTM(g)

(since fj is A-linear, so R-linear, and TA is R-linear). Thus TM is R-linear, and if
r ∈ AnnR(M), then rg = 0, and taking g = idM , the last part of the lemma follows. ¤

Remark 4.1. If f : A → B is a homomorphism of R-algebras and B is an A-module
of type FP via f, it follows that trB/A is R-linear (because ρrb = rρb for r ∈ R, b ∈ B,
and TB/A is R-linear by Lemma 4.8.)

5. Cohomological Dimension

Here we introduce the homology and cohomology modules of a group, and an associated
invariant of the group, its cohomological dimension.

Group rings. Let R be a ring and G a group, and denote by RG be the free R-module
with basis G. Thus RG is an additive group, and an element of RG has the form∑
g∈G

rgg, where rg ∈ R and rg = 0 for all but finitely many g ∈ G, and
∑
g∈G

rgg =
∑
g∈G

sgg

if and only if rg = sg for all g ∈ G. We can make RG into a ring, called the group
ring of G over R. Multiplication is defined using the multiplication in G and R; thus
(r1g1)(r2g2) = (r1r2)(g1g2) for ri ∈ R, gi ∈ G. This is extended to RG in the only
possible way so that the distributive law will hold. We define

(∑

g∈G
rgg

)(∑

g∈G
sgg

)
=
∑

g∈G
tgg

where tg =
∑
xy=g

rxsy. It can be checked that RG becomes a ring, with 1RG = 1R.1G =

1G, and G is a subgroup of the group of units of R.

There is a short exact sequence 0 → IG → RG
ε→R → 0, where ε

(∑
g∈G rgg

)
=∑

g∈G rg and IG = Ker(ε), which is called the augmentation sequence. The map ε is an
R-module homomorphism and a ring homomorphism, so IG is an ideal in RG, called the
augmentation ideal, and ε is called the augmentation map. Also, it is easy to see that IG
is a free R-module on {g−1 | g ∈ G, g 6= 1}. There is an R-homomorphism i : R→ RG,
r 7→ r1G, which is a ring embedding, and εi = idR, so as a sequence of R-modules, the
augmentation sequence splits. If M is an RG-module, it is an R-module (via i) and
(g,m) 7→ gm (g ∈ G, m ∈ M) gives an action of G on M as R-automorphisms.
Conversely, an R-moduleM with an action of G onM as R-automorphisms determines

an RG-module; scalar multiplication is defined by:
(∑

g∈G rgg
)
m =

∑
g∈G rg(gm).

Similar comments apply to right RG-modules.

Definition. An RG-module M is trivial if the G-action is trivial (gm = m for all
g ∈ G, m ∈M).
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Thus M is trivial if and only if IGM = 0. Since G has a trivial action on any mod-
ule, trivial RG-modules are in one to one correspondence with R-modules. We shall
always view R as a trivial RG-module unless stated otherwise. Then ε is an RG-
homomorphism, and the augmentation sequence can be made into the start of an
augmented RG-projective resolution of R, with ε as augmentation map, whence the
name.

Remark 5.1. If f : R → R′ is a ring homomorphism, there is a corresponding ring
homomorphism f̄ : RG→ R′G, sending

∑
g∈G

rgg to
∑
g∈G

f(rg)g.

Suppose H is a subgroup of G. Denote by R(G/H) the free R-module on G/H =
{gH | g ∈ G}. Since G acts on G/H by left multiplication, R(G/H) is an RG-module.
Also, RH is a subring of RG, and viewing R as a trivial RH-module, RG ⊗RH R
becomes an RG-module via the inclusion map RH → RG (see the remarks preceding
Lemma 2.9). Thus b(a⊗ r) = (ba)⊗ r (for a, b ∈ RG, r ∈ R).
Lemma 5.1. There is an RG-isomorphism RG⊗RH R→ R(G/H), given by g ⊗ 1 7→
gH, for g ∈ G.

Proof. This is left as an exercise. ¤

Lemma 5.2. Let X be a subset of G. Then G = 〈X〉 if and only if X − 1 generates
IG as RG-module, where X − 1 = {x− 1 | x ∈ X}.

Proof. Suppose X generates G. Write g ∈ G as g = y1 . . . yn, where each yi ∈ X±1.

Then g − 1 =
n∑
i=1

(y1 . . . yi−1)(yi − 1) and x−1 − 1 = −x−1(x − 1) for x ∈ X, hence

X − 1 generates IG. Conversely, assume X − 1 generates IG and let H = 〈X〉. Then
IG = RGIH . In the G-action on R(G/H), H fixes the coset m = H, so IHm = 0. But
then IGm = 0 since IG = RGIH , so G fixes the coset H, hence H = G. ¤

Definition. Let A be any ring, (P, d) a chain complex over A, M a right A-module.
Then M ⊗A P is the chain complex

. . . //M ⊗A Pn+1

(dn+1)∗//M ⊗A Pn
(dn)∗//M ⊗A Pn−1 // . . .

where, if U, V are A-modules and f ∈ HomA(U, V ), f∗ = 1⊗ f : M ⊗A U → M ⊗A V.
If N is an A-module, HomA(P,N) is the cochain complex

. . . HomA(Pn+1, N)oo HomA(Pn, N)
d∗n+1oo HomA(Pn−1, N)

d∗noo . . .oo

where, if f ∈ HomA(U, V ),

f ∗ : HomA(V,N)→ HomA(U,N)is given by f ∗(g)(u) = g(f(u))

(for g ∈ HomA(V,N), u ∈ U).

Assume from now on that R is a commutative ring, so RG is an R-algebra. If M
is an RG-module, then M is a right R-module, and there is a right G-action on M
(mg = g−1m), so M becomes a right RG-module.
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Definition. Let P be an RG-projective resolution of the trivial RG-module R. Let M
be an RG-module. The homology of G with coefficients in M, denoted by H∗(G,M), is
the Z-graded R-module H(M ⊗RG P ).

Thus Hn(G,M) = Hn(M ⊗RGP ). We have to check this does not depend on the choice
of P . If Q is another RG-projective resolution of R, then by Lemma 3.2, there are
chain maps f : P → Q and g : Q → P such that fg ' idQ, gf ' idP . If s is a chain
homotopy from gf to idP , then g∗f∗ ' idM⊗AP via s∗, so by Lemma 3.1 and the fact
that homology is a functor on chain complexes, Hn(g∗)Hn(f∗) = idM⊗AP . Similarly,
Hn(f∗)Hn(g∗) = idM⊗AQ, so Hn(f∗) : Hn(M ⊗A P )→ Hn(M ⊗A Q) is an isomorphism.

Definition. Let P be an RG-projective resolution of R and let M be an RG-module.
The cohomology of G with coefficients in M, denoted by H∗(G,M), is the cohomology
of the cochain complex HomRG(P,M).

Thus Hn(G,M) = Hn(HomRG(P,M)). By a similar argument to the one just given,
this is independent of the choice of P .

Example. This example is intended for those familiar with elementary algebraic topol-
ogy. Suppose G acts without fixed points on an acyclic topological space X. Then the
singular chain complex S(X) is a ZG-free resolution of Z. (See [98], Theorem 10.20.)
If G acts properly on X (i.e., every x ∈ X has an open neighbourhood U such that
gU ∩ U = ∅ for 1 6= g ∈ G), and M is a trivial ZG-module, there is an isomorphism of
complexes HomZ(S(X/G),M) ∼= HomZG(S(X),M), hence Hn(G,M) ∼= Hn(X/G,M)
(see [78], pp 135–136). Similar comments apply to the homology of G.

Note. Let G be a group, let R be a commutative ring and let f : M → N be an RG-
homomorphism. Let P → R be an augmented projective resolution. There is an induced
cochain map Hom(P, f) : HomRG(P,M)→ HomRG(P,N), sending g ∈ HomRG(Pn,M)
to fg. There is also an induced chain map f ⊗ 1 : M ⊗RG P → N ⊗RG P sending
m ⊗ p to f(m) ⊗ p for m ∈ M, p ∈ Pn. These induce, for each n, homomorphisms
Hn(G,M) → Hn(G,N) and Hn(G,M) → Hn(G,N), both of which will be denoted by
f̄ . (This should not cause confusion).

Lemma 5.3. Let G be a group, R a commutative ring and 0 → L
i→M

π→N → 0 a
short exact sequence of RG-modules. Then there are exact sequences

. . . Hn(G,L)
ī→Hn(G,M)

π̄→Hn(G,N)→ Hn−1(G,L)→ . . .

. . . Hn(G,L)
ī→Hn(G,M)

π̄→Hn(G,N)→ Hn+1(G,L)→ . . .

Proof. Let P → R be an augmented RG-projective resolution. Since P is projective,
using the preceding note, there is an exact sequence of cochain complexes

0→ HomRG(P,L)→ HomRG(P,M)→ HomRG(P,N)→ 0. (1)
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Since projectives are flat ([98, Cor. 3.46]), there is also an exact sequence of chain
complexes

0→ L⊗RG P →M ⊗RG P → N ⊗RG P → 0. (2)

The lemma follows on applying Theorem 3.1 and its analogue for cochain complexes to
(1) and (2). ¤

Exercise. If A, B are RG-modules, show that for all n,

Hn(G,A⊕B) ∼= Hn(G,A)⊕Hn(G,B)

and Hn(G,A⊕B) ∼= Hn(G,A)⊕Hn(G,B).

We shall now prove two useful technical results, which are needed to define cohomolog-
ical dimension.

Lemma 5.4. Let A be any ring, let (C, d) be a chain complex over A and let M be an
A-module. Let Yn = Coker(dn+1) = Cn/ Im(dn+1) and let fn : Yn → Cn−1 be the map
induced by dn : Cn → Cn−1. Then there is an exact sequence:

HomA(Cn−1,M)
f∗n // HomA(Yn,M) //Hn(HomA(C,M)) //0.

Proof. Let πn : Cn → Yn be the quotient map, so Cn
dn //

πn ÃÃA
AA

AA
AA

A
Cn−1

Yn

fn

<<zzzzzzzz

is commuta-

tive and Cn+1

dn+1 //Cn
πn //Yn //0 is exact. Since HomA(–,M) is left exact,

0 // HomA(Yn,M)
π∗n // HomA(Cn,M)

d∗n+1 // HomA(Cn+1,M)

is exact. Thus Ker(d∗n+1) = π∗n(HomA(Yn,M)) and since dn = fnπn, d
∗
n = π∗nf

∗
n, so

Im(d∗n) = π∗n(Im(f ∗n)). Since π
∗
n is injective,

Hn(HomA(C,M)) = Ker(d∗n+1)/ Im(d∗n)
∼= HomA(Yn,M)/ Im(f ∗n)

and the lemma follows. ¤

Corollary 5.1. If, in Lemma 5.4, Hn(HomA(C, Yn)) = 0, then Hn(C) = 0 and there
is a split exact sequence

0 //Yn
fn //Cn−1

πn−1 //Yn−1 //0.

Proof. Clearly Im(fn) = Im(dn) = Ker(πn−1), and πn−1 is surjective. By Lemma
5.4, f ∗n : HomA(Cn−1, Yn) → HomA(Yn, Yn) is surjective, in particular there exists
ϕ ∈ HomA(Cn−1, Yn) such that idYn = f ∗n(ϕ) = ϕfn. Hence fn is injective and the
sequence splits, as claimed. From the commutative triangle in the proof of Lemma 5.4,
Im(dn+1) = Ker(πn) = Ker(dn), since fn is injective, so Hn(C) = 0. ¤
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Theorem 5.1. Let R be a commutative ring, G a group and n ≥ 0 an integer. The
following are equivalent:

(i) for any exact sequence 0 → Kn → Pn−1 → . . . → P1 → P0 → R → 0 of RG-
modules with all Pi RG-projective, Kn is RG-projective;

(ii) there exists an augmented RG-projective resolution . . . 0 → Pn → Pn−1 →
. . .→ P1 → P0 → R→ 0;

(iii) for all RG-modules M and all integers k > n, Hk(G,M) = 0;

(iv) for all RG-modules M, Hn+1(G,M) = 0.

Proof. Clearly (i)⇒(ii)⇒(iii)⇒(iv), and to show (iv)⇒(i), assume (iv) and take an
exact sequence 0 → Kn → Pn−1 → . . . → P1 → P0 → R → 0 as in (i). Let Pn be
an RG-projective module mapping onto Kn, call the kernel of the mapping Kn+1, and
let Pn+1 be an RG-projective module mapping onto Kn+1. Continue, to construct a
projective resolution of R, (P, d). By (iv) and Cor. 5.1, there is a split exact sequence

0→ Yn+1 → Pn → Yn → 0

where Yi = Coker(di+1). Hence Yn is projective, and Kn = Im(dn) ∼= Cn/Ker(dn) =
Cn/ Im(dn+1) = Yn, so Kn is projective. ¤

We now come to the topic of this section.

Definition. Let G be a group, R a commutative ring. The cohomological dimension
of G over R, denoted cdR(G), is

inf
{
n ∈ N | n satisfies conditions (i)–(iv) of Theorem 5.1

}

where N is the set of natural numbers, including 0.

If the set is empty, the infimum is ∞, otherwise it is the least element of the set, so
cdR(G) ∈ N ∪ {∞}.
Example. Once again this example is for those with a knowledge of algebraic topology,
although we shall discuss CW-complexes later. Let X be a G-complex (a CW-complex
with an action of the group G which permutes the cells). If X is a free G-complex (i.e.
the stabilizer of each cell is trivial) and acyclic, then its cellular chain complex C is a ZG-
free resolution of Z . If X is of dimension at most n, then Cn+1 = Cn+2 = . . . 0, hence
cdZ(G) ≤ n. Given a group G, there is a connected CW-complex Y with fundamental
group π1(Y ) ∼= G which is aspherical (πn(Y ) = 0 for n > 1). See [16, Theorem 7.1,
Ch.VIII]. Such a space is called a K(G : 1) space. The universal covering X of Y
is a free acyclic G-complex, in fact it is contractible (see [16, Ch.I, §4]). Define the
geometric dimension of G, geomdim(G), to be

inf
{
n ∈ N | there exists a K(G : 1) of dimension n

}
.

From above, cdZ(G) ≤geomdim(G). Equality holds except for the possibility that
cdZ(G) = 2, geomdim(G) = 3 (see Theorem 11.1 below and the comments preceding
it, which refer to Brown’s book [16]).
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Remark 5.2. Suppose H is a subgroup of a group G, R a commutative ring. Then
RH is a subring of RG. If T is a transversal of H\G = {Hg | g ∈ G}, then RG is
a free RH-module, with basis T . (RG =

⊕
t∈T RHt, and RH → RHt, x 7→ xt is an

RG-isomorphism). Similarly, RG is a free right RH-module, with basis T −1 (or any
transversal for G/H). Since RG is RH-free, any RG-free module is RH-free, hence
any projective RG-module is RH-projective.

Lemma 5.5. If H is a subgroup of G, then cdR(H) ≤ cdR(G).

Proof. By the remark, if

0→ Pn → . . .→ P0 → R→ 0

is exact and all Pi are RG-projective, then the Pi are RH-projective, and the lemma
follows. ¤

Lemma 5.6. Let G be a group, R a commutative ring. Then cdR(G) = 0 if and only if

|G| is finite and a unit in R, in which case R is isomorphic to RGe, where e =
1

|G|
∑
g∈G

g,

an idempotent in RG.

Proof. Suppose cdR(G) = 0. This means R is a projective RG-module, which implies

the augmentation sequence 0 //IG //RG
ε //R //
ϕ

jj i_ 0 splits as a sequence of RG-

modules, via ϕ, say. Write ϕ(1) =
∑
g∈G

rgg; then for x ∈ G, xϕ(1) = ϕ(x1) = ϕ(1),

hence rxg = rg for all x, g ∈ G, so rg = r for all g ∈ G, where r is some fixed element
of R. Since rg = 0 for all but finitely many g, G is finite (ϕ 6= 0 since εϕ = idR). Thus

ϕ(1) = r

(
∑
g∈G

g

)
, and since εϕ(1) = 1, 1 = r|G|, so |G| is a unit in R. Conversely

suppose |G| is finite and a unit in R. Define ϕ : R → RG by ϕ(r) = re, where

e =
1

|G|
∑
g∈G

g. Then ϕ is an RG-homomorphism, since ge = e for g ∈ G, and εϕ = idR,

so the augmentation sequence splits as a sequence of RG-modules, hence R is RG-
projective. Since Im(ϕ) = Re = RGe and ϕ is injective, R ∼= RGe. ¤

Lemma 5.7. Let G be a finite group. Then cdR(G) <∞ if and only if |G| is a unit in
R.

Proof. If |G| is a unit in R, cdR(G) = 0 by Lemma 5.6. Conversely, suppose cdR(G) <
∞. It is enough to show every prime divisor p of |G| is invertible in R, and for every
such p, G has an element of order p. Therefore, it is enough to show |H| is a unit in
R for every cyclic subgroup H of G of prime order. By Lemma 5.5, cdR(H) < ∞ for
all subgroups H of G. Therefore we can assume G is cyclic, say G = 〈x〉, where x has
order m, say. There are exact sequences

0 // IG // RG
ε // R // 0 1(/).*-+,

0 // R
ν // RG

τ // IG // 0 2(/).*-+,
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where ν(r) = r(1 + x + . . . + xm−1) and τ(u) = u(x − 1). By successive splicing of 1(/).*-+,
and 2(/).*-+,, we obtain an exact sequence

0→ R→ RG→ RG→ . . .→ RG→ R→ 0

where the number of terms RG is at least cdR(G) − 1. Then by Theorem 5.1(i), R is
RG-projective, so cdR(G) = 0 and the lemma follows from Lemma 5.6. ¤

Corollary 5.2. If cdR(G) < ∞, then |H| is a unit in R for all finite subgroups H of
G. In particular, cdZ(G) <∞ implies G is torsion-free.

Proof. This is immediate from Lemmas 5.5 and 5.7. ¤

Lemma 5.8. If G = 〈x〉 is infinite cyclic, then cdR(G) = 1.

Proof. By Lemma 5.2, IG is a cyclic RG-module generated by (x− 1), and in fact IG is

free cyclic with basis {x− 1}. For an element u ∈ RG can be written as u =
∞∑

i=−∞
rix

i

where ri ∈ R, and ri = 0 for all but finitely many i. Then u(x − 1) = 0 implies
ri = ri−1 for all i, hence ri = 0 for all i, so u = 0. Since the augmentation sequence
0 → IG → RG → R → 0 is exact and IG, RG are RG-projective, cdR(G) ≤ 1, and
cdR(G) > 0 by Lemma 5.6. ¤

Note. If f : G → H is a group homomorphism, there is an induced homomorphism
of R-algebras f : RG → RH (for any commutative ring R), where f

(∑
g∈G rgg

)
=∑

g∈G
rgf(g). (In fact, the assignment G → RG becomes a functor from the category of

groups to the category of R-algebras.) This makes RH into an RG-module via f . If
N E G and f : G→ G/N is the quotient map, the RG-module structure induced by f
on R(G/N) is the same as that induced by the isomorphism R(G/N) ∼= RG⊗RN R of
Lemma 5.1.

Definition. A projective resolution P of M is of length n if Pk = 0 for k > n.

Proposition 5.1. Let N E G. Then cdR(G) ≤ cdR(N) + cdR(G/N).

Proof. Suppose cdR(N) = n < ∞. There is an exact sequence 0 → Pn → . . . → P0 →
R→ 0 with all Pi RN -projective. Since RG is a free right RN -module, it is flat, so we
can apply the functor RG⊗RN – to this sequence to obtain an exact sequence:

0→ P ′n → . . .→ P ′0 → R(G/N)→ 0 (∗)
where P ′i = RG⊗RN Pi, a projective RG-module (arguing as in Lemma 2.9), and using
Lemma 5.1. Hence any free R(G/N)-module has an RG-projective resolution of length
n (take a direct sum of copies of (∗)). It follows that any projective R(G/N)-module,
being a summand of a free module, has an RG-projective resolution of length n, using
Cor. 3.3. (The argument is a simplified version of that for Prop. 4.1, without the need to
show the modules are finitely generated.) Now suppose also that cdR(G/N) = m <∞.
Let 0 → Qm → . . . → Q0 → R → 0 be exact with all Qi R(G/N)-projective. As just
noted, each Qi has an RG-projective resolution of length n, so R has an RG-projective
resolution of lengthm+n, by the exercise after Cor. 4.1. Therefore cdR(G) ≤ m+n. ¤
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6. The Stallings Characteristic

Here the first definition of an Euler characteristic is given, and it will be denoted by µ.
It can take values in a commutative ring R and is defined on a class of groups denoted
by FP(R). It is based on the “Stallings total characteristic”, using the notion of rank
of a projective module given in Section 2. The idea of algebraically defining an Euler
characteristic for discrete groups in this way is due to Serre [105], who defined it for a
smaller class FL, using the more usual definition of rank for a free module. (This rank
will be discussed in detail in Section 8.)

Let R be a commutative ring, G a group and let A = RG (an R-algebra since R embeds
in the centre Z(RG) by r 7→ r1G). Then [A,A] is the R-submodule generated by

X = {gh− hg | g, h ∈ G} = {gxg−1 − x | g, x ∈ G}

(see the remarks preceding Lemma 2.10). It follows that T (A) = A/[A,A] is isomorphic
to R[G], where R[G] denotes the free R-module on the set of conjugacy classes of G.
For the R-homomorphism t : RG → R[G] defined by g 7→ [g], where [g] denotes the
conjugacy class of g in G, clearly satisfies [A,A] ⊆ Ker(t). By Lemma 2.1, t induces a
map s : T (A)→ R[G]. But the map [g] 7→ g + [A,A] (g ∈ G) is well-defined since X ⊆
[A,A], so extends to an R-homomorphism u : R[G]→ T (A), and s, u are inverse maps.
We shall identify T (A) with R[G] via s. Thus TRG(g) = [g] for g ∈ G, and this specifies
TRG since it is R-linear. If f : G→ H is a group homomorphism, then f extends to an
algebra homomorphism RG→ RH (see the note after Lemma 5.8) which we also denote
by f . The induced homomorphism f∗ : T (RG)→ T (RH) is given by f∗([g]G) = [f(g)]H
for g ∈ G, where subscripts denote conjugacy classes in the relevant group. Suppose H
is a subgroup of G and the index (G : H) < ∞. Then RG =

⊕
v∈V RHv, where V is

a transversal for H/G (Remark 5.2). Thus RG is a finitely generated free RH-module,
and there is an R-homomorphism trRG/RH : T (RG)→ T (RH) given by

trRG/RH(T (b)) = TRG/RH(ρb)

for b ∈ RG. (This definition is given after Lemma 2.7 in Section 2, and trRG/RH is
R-linear by Remark 4.1.)

Lemma 6.1. In this situation, suppose τ = TRG(g) = [g]G, where g ∈ H. Then
trRG/RH(τ) =

∑
σ∈T (H) zσσ, where

zσ =

{
0 if σ ∩ τ = ∅,
(CG(h) : CH(h)) for any h ∈ σ, if σ ⊆ τ .

(CG(h) means the centraliser of h in G, and T (H) = TRH(H) is the set of conjugacy
classes of H).

Proof. The map ρg, x 7→ xg, for g ∈ G, permutes the summands RHv of RG, and
stabilizes RHv if and only if Hvg = Hv, that is, vgv−1 ∈ H, in which case ρg(v) =
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vg = (vgv−1)v. By Lemma 2.6,

trRG/RH(τ) =
∑

v

TRH(vgv
−1) (sum over {v ∈ V | vgv−1 ∈ H})

=
∑

σ∈T (H)

zσσ,

where zσ is the number of v ∈ V such that vgv−1 ∈ σ. If σ∩τ = ∅, this is zero. Suppose
vgv−1 ∈ σ and take s ∈ V . Then

sgs−1 ∈ σ ⇔ sgs−1 = hvgv−1h−1 for some h ∈ H
⇔ s−1hv ∈ CG(g) for some h ∈ H
⇔ s ∈ HvCG(g).

Thus zσ = the number of s ∈ V such that Hs ⊆ HvCG(g)

= (CG(g) : CG(g) ∩ v−1Hv)
= (CG(g) : Cv−1Hv(g))

= (CG(vgv
−1) : CH(vgv

−1))

= (CG(h) : CH(h)) for any h ∈ σ
(this is independent of the choice of h, and vgv−1 ∈ σ).

(Independence of the index on h comes from the fact that conjugation by an element
of H is an automorphism of G mapping H onto H.) ¤

Definition. Let G be a group, R a commutative ring. Then G ∈ FP(R) means that
the trivial RG-module R is of type FP over RG, and G ∈ FL(R) means that R is of
type FL over RG. If G ∈ FP(R), we define

χG = rR/RG.

Thus χG =
∑
i

(−1)irPi , where 0 → Pn → . . . → P0 → R → 0 is a finite augmented

RG-projective resolution of R. We call χG the Stallings total characteristic of G. Thus
χG is an R-linear combination of conjugacy classes of G.

Definition. If G ∈ FP(R), define µ(G) = the coefficient of [1] in χG (denoted by
µ(G : R) if necessary).

Thus µ(G) ∈ R, and if G ∈ FL(R), then G ∈ FP(R) and χG = µ(G)[1]. Also,
G ∈ FP(R) obviously implies cdR(G) <∞.

Notation. If g ∈ G, τ = [g] and r ∈ T (RG), denote by r(g) or r(τ) the coefficient of
τ in r. Thus µ(G) = χG(1).

Example. This is again for readers familiar with algebraic topology. Suppose G =
π1(X), where X is a finite aspherical CW-complex. Then the cellular chain complex
C of X̃, the universal covering space of X, is a finite ZG-free resolution of Z, and Cn
has a ZG-basis in one-to-one correspondence with the n-cells of X. Hence G ∈ FL(Z),
χG = χ(X)[1] and µ(G) = χ(X) (the Euler characteristic of X). In fact, it suffices to
assume the universal covering space X̃ is acyclic (see [16, Ch.1, §4]). Cellular homology
is discussed in Section 11 below.
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Proposition 6.1. Suppose G ∈ FP(R) and H is a subgroup of finite index in G. Then
H ∈ FP(R) and µ(H) = (G : H)µ(G). If G ∈ FL(R), then H ∈ FL(R).

Proof. By Lemma 4.6, H ∈ FP(R) and

χH = rR/RH = trRG/RH(rR/RG) = trRG/RH(χG).

By Lemma 6.1 and R-linearity of trRG/RH (Remark 4.1),

χH(σ) = (CG(h) : CH(h))χG(τ),

for σ ∈ T (H), where h ∈ σ and τ is the G-conjugacy class containing σ. Now take
σ = [1] to obtain the formula for µ. Since RG is a finitely generated free RH-module,
finltely generated free RG-modules, being direct sums of finitely many copies of RG,
are finitely generated free RH-modules, and the last part follows. ¤

Remark 6.1. Let f : R → R′ be a homomorphism of commutative rings, G a group.

Then there is an isomorphism of R′-algebras R′ ⊗R RG
∼=−→R′G, given by r′ ⊗ rg 7→

r′f(r)g, for r′ ∈ R′, r ∈ R and g ∈ G. (The inverse map is given by g 7→ 1 ⊗ g; note
that r′ ⊗ rg = r′f(r)⊗ g.)

Hence, ifM is an RG-module, R′⊗RM is an R′G-module, and the G-action is given by
g(r′⊗m) = r′⊗ gm, for m ∈M . According to Cor. 2.2, R′⊗R T (RG) ∼= T (R′⊗RRG),
and T (R′⊗RRG) ∼= T (R′G) = R′[G], while T (RG) = R[G]. The resulting isomorphism
R′⊗RR[G]→ R′[G] is given by r′⊗r[g] 7→ r′f(r)[g], for r′ ∈ R′, etc. By Cor. 2.2 (with
u = idP ), if P is a finitely generated projective RG-module and rP =

∑
τ∈T (G)

rP (τ)τ ,

then R′ ⊗R P is finitely generated R′G-projective, and

rR′⊗RP = image of (1⊗ rP ) under this isomorphism =
∑

τ∈T (G)
f(rP (τ))τ.

Lemma 6.2. If f : R→ R′ is a homomorphism of commutative rings and G ∈ FP(R),
then G ∈ FP(R′) and µ(G : R′) = f(µ(G : R)).

Proof. If

. . . 0→ Pn → . . . P0 → R→ 0→ . . . (∗)
is a finite augmented RG-projective resolution, it splits as an R-complex by Lemma
3.3. (Each Pi is R-projective since RG is R-free, applying Lemma 2.8 to the inclusion
map R→ RG.) Applying the functor R′ ⊗R – gives

. . . 0→ P ′n → . . . P ′0 → R′ → 0→ . . . (∗∗)
(where P ′i = R′ ⊗R Pi), which is R′-split, so exact by Lemma 3.1. (If s is a chain
homotopy from the identity map to the zero map on (∗), 1 ⊗ s is a chain homotopy
from the identity map to the zero map on (∗∗).) By the comments preceding the lemma,
each P ′i is finitely generated R′G-projective and rP ′i (1) = f(rPi(1)). Thus (∗∗) is a finite
augmented R′G-projective resolution of R′, and the formula for µ follows. ¤

Remark 6.2. If 0→ K → Pn → . . .→ P0 → L→ 0 is an exact sequence of A-modules
(for any ring A), with L, P0, . . . , Pn all projective, then K is projective. (This follows
easily by induction on n.)
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Theorem 6.1. In the situation of Lemma 6.2, if R′ is a free R-module via f, then
G ∈ FP(R′) implies G ∈ FP(R).

Proof. (Stallings [108]) Let

. . . 0→ Qm → . . .→ Q0 → R′ → 0 (3)

be a finite augmented R′G-projective resolution. We shall construct a finite RG-
projective resolution of R inductively. Assume n ≤ m and finitely generated RG-
projectives Pi have been defined for 0 ≤ i ≤ n− 1 so that there is an exact sequence of
RG-modules

. . . 0→ Kn → Pn−1 → . . . P0 → R→ 0. (4)

Apply R′ ⊗R – to (2) to obtain

. . . 0→ K ′n → P ′n−1 → . . . P ′0 → R′ → 0 (5)

where K ′n = R′⊗RKn, etc). This is an exact sequence of R′G-modules with P ′i finitely
generated R′G-projective. (Argue as in Lemma 6.2, using Remark 6.2; exactness also
follows since R′ is free, so flat, as R-module.) Let L = Ker(Qn → Qn−1), so L is a
finitely generated R′G-module, and compare (3) and the exact sequence

0→ L→ Qn−1 → . . .→ Q0 → R′ → 0

using Cor. 3.3, to see that K ′n is a finitely generated R′G-module. Thus K ′n is R′G-
generated by a set {r′i ⊗ ki | i ∈ I}, where r′i ∈ R′, ki ∈ K and I is finite. Let
M be the RG-submodule of Kn generated by {ki | i ∈ I}. Applying R′ ⊗R – to
the short exact sequence 0 → M → Kn → Kn/M → 0 gives an exact sequence

M ′ α→K ′n → (Kn/M)′ → 0 (only right exactness of R′⊗R – is needed here). Clearly α is
surjective, so (Kn/M)′ = R′ ⊗R (Kn/M) = 0. Let {xj} be a basis for R′ as R-module.
Then

R′ ⊗R (Kn/M) =
⊕
j

Rxj ⊗R (Kn/M) ∼=
⊕
j

(Kn/M).

Thus Kn/M = 0 and Kn = M is a finitely generated RG-module. We can therefore
take a finitely generated RG-projective module Pn mapping onto Kn, with kernel Kn+1,
say, and by splicing we obtain an exact sequence

. . . 0→ Kn+1 → Pn → . . . P0 → R→ 0. (6)

Thus inductively we construct a sequence (4) for 0 ≤ n < m (for n = 0 we take the
augmentation sequence, so P0 = RG and K1 = IG). When n = m − 1, applying Cor.
3.3 as above shows that K ′m is finitely generated R′G-projective and Km is a finitely
generated RG-module. Since R′ is R-free, K ′m is a projective RG-module (R′G =
R′ ⊗R RG ∼=

⊕
j RG as RG-module, so R′G-free modules are RG-free, and an R′G-

summand is an RG-summand). But as RG-module, K ′m = R′ ⊗R Km
∼=
⊕

jKm,

hence Km is RG-projective,and when n = m, (4) is an augmented finite RG-projective
resolution. ¤

Corollary 6.1. (1) If G ∈ FP(R), then µ(G : R) is fixed by every ring endomor-
phism of R.

(2) If G ∈ FP(R), then G ∈ FP(K) for some prime field K.
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Proof. (1) is immediate from Lemma 6.2. If G ∈ FP(R), let I be a maximal ideal in R;
by Lemma 6.2 G ∈ FP(R/I), and by Theorem 6.1, G ∈ FP(K), where K is the prime
field of R/I. ¤

Lemma 6.3. If G ∈ FP(R), then G is finitely generated.

Proof. If . . . → P1 → P0 → R → 0 is an augmented finite RG-projective resolution,
let K = Ker(P1 → P0), so K = Im(P2 → P1) is finitely generated. There are exact
sequences

0→ K →P0 → R→ 0

0→ IG →RG→ R→ 0 (the augmentation sequence).

By Lemma 3.4, IG ⊕ P0
∼= K ⊕ RG, so IG is finitely generated as RG-module, by

y1, . . . , yk, say. Since IG is (freely) generated as R-module by {g − 1 | g ∈ G, g 6= 1},
each yi can be written as a finite R-linear combination of the elements of G− 1. Let X
be the set of elements g ∈ G such that g − 1 occurs in the expression of some yi, so X
is finite, and X − 1 generates IG as RG-module. By Lemma 5.2, X generates G. ¤

Lemma 6.4. (1) If G is a finite group, then G ∈ FP(R) if and only if |G| is a unit

in R, in which case χG =
1

|G|
∑

g∈G
[g], so µ(G) = 1/|G|.

(2) If G is infinite cyclic, then G ∈ FL(R) for any R and χG = 0 (so µ(G) = 0).

Proof. (1) follows from Lemmas 5.6 and 5.7 (see Example (2) after Lemma 2.6), and
(2) follows from the proof of Lemma 5.8. ¤

We now turn our attention to the extension formula for the function µ. First some
terminology is needed. If M is a free A-module with basis X (A being any ring) and
m ∈ M , we can write m =

∑
x∈X axx, for unique ax ∈ A. The support of m, denoted

supp(m), is the finite set {x ∈ X | ax 6= 0}. This applies to the R-free modules RG
(basis G), R[G] (basis T (G)) and R(G/H) (basis G/H), where G is a group and H is
a subgroup.

Lemma 6.5. Let 1 → N
i→G

π→Q → 1 be a group extension, R a commutative ring.
Let i∗ : T (RN) → T (RG), π∗ : T (RG) → T (RQ) be the induced maps. Assume
N ∈ FP(R). Then RQ is an RG-module of type FP, and is of type FL if N ∈ FL(R).
Let π∗ = trRQ/RG. Then

π∗(TRQ(1)) = i∗(χN)

and for τ ∈ T (Q),

supp(π∗(τ)) ⊆ {σ ∈ T (G) | π∗(σ) = τ}.

Proof. Let 0 → Pn → . . . → P0 → R → 0 be an augmented finite RN -projective
resolution. As in Prop. 5.1, we can apply RG ⊗RN – to obtain a finite augmented
RG-projective resolution of RQ:

0→ P ′n → . . .→ P ′0 → RQ→ 0
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where P ′i = RG⊗RN Pi. (As in Lemma 5.1, there is an isomorphism RG⊗RN R→ RQ
given by g ⊗ 1 7→ π(g).) If all Pi are RN -free, then all P ′i are RG-free. By definition,

π∗(TRQ(1)) = TRQ/RG(idRQ) = rRQ/RG

=
n∑

k=0

(−1)krP ′k/RG

=
n∑

k=0

(−1)ki∗(rPk/RN ) (by Lemma 2.9)

= i∗(χN).

For the last part, we can assume for convenience that i is an inclusion map. Fix
x ∈ G. For any RN -module M , let xM denote the RN -module with the same R-
module structure as M , but with N -action n.m = (x−1nx)m, for n ∈ N , m ∈ M ,
where on the right the original G-action on M is used. Then xR = R, and

0→ xPn → . . .→ xP0 → R→ 0

is another augmented finite RN -projective resolution, with the same maps as the orig-
inal one. (See Lemma 4.7-the conjugation N → N , n 7→ x−1nx induces an automor-
phism α : RN → RN , and xM is αM .) By Theorem 3.3, there is a lift of idR to a chain
map h : P → xP :

0 // Pn //

hn
²²

. . . // P1
//

h1
²²

P0
//

h0
²²

R // 0

0 // xPn // . . . // xP1
// xP0

// R // 0

Define h′k : P
′
k → P ′k by h′k(g⊗ p) = gx⊗ hk(p) (for p ∈ Pk, g ∈ G). It is easily checked

that h′k is well-defined and an RG-homomorphism. By definition, π∗(TRQ(π(x))) =
TRQ/RG(ρπ(x)), where ρπ(x) : RQ→ RQ is the map u 7→ uπ(x). Under the isomorphism
RG⊗RN R→ RQ above, ρπ(x) corresponds to the map given by g⊗1 7→ gx⊗1 (g ∈ G).
It follows that h′ : P ′ → P ′ is a lift of ρπ(x). Hence

π∗(TRQ(π(x))) =
∑

k

(−1)kTP ′k(h
′
k).

Fix k. Let {xj}, {fj} be a finite coordinate system for the RN -module Pk. Then
{1⊗xj}, {1⊗fj} is a coordinate system for the RG-module P ′k. (Here (1⊗fj)(g⊗p) =
gfj(p) for g ∈ G, p ∈ Pk.) By Lemma 2.5,

TP ′k(h
′
k) =

∑

j

TRG((1⊗ fj)(h′k(1⊗ xj)))

=
∑

j

TRG((1⊗ fj)(x⊗ hk(xj)))

=
∑

j

TRG(xfj(hk(xj)))

= TRG(xak), where ak =
∑

j

fj(hk(xj)) ∈ RN.
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Therefore π∗(TRQ(π(x))) = TRG(xa), where a =
∑

k(−1)kak ∈ RN , and the lemma
follows. ¤

Theorem 6.2 (Bass [10], Stallings [108]). Let 1→ N
i→G

π→Q→ 1 be a group exten-
sion, R a commutative ring. If N, Q ∈ FP(R), then G ∈ FP(R) and µ(G) = µ(N)µ(Q).
If N, Q ∈ FL(R), then G ∈ FL(R).

Proof. By Lemma 6.5, RQ is of type FP over RG, and if R is of type FP over RQ, it is
of type FP over RG by Lemma 4.6. Similarly N , Q ∈ FL(R) implies G ∈ FL(R) using
the analogue of Cor. 4.1 for modules of type FL. Also by Lemma 4.6,

χG = rR/RG = π∗(rR/RQ) = π∗(χQ)

=
∑

τ∈T (Q)
χQ(τ)π

∗(τ)

where π∗ is as in Lemma 6.5 (and is R-linear by Remark 4.1). By Lemma 6.5, [1]G ∈
supp(π∗(τ)) implies τ = [1]Q. Hence,

µ(G) = the coefficient of [1]G in χQ(1)π
∗([1]Q)

= the coefficient of [1]G in χQ(1)i∗(χN) (by Lemma 6.5)

= χQ(1)χN(1) = µ(Q)µ(N)

(because i∗ sends [n]N to [n]G). ¤

To make some simple applications of our results, some definitions are needed.

Definition. Let X be a class of groups (customarily, closed under isomorphism, and
containing the class I of all trivial groups). The class vX of groups which are virtually
in X is defined by:

G ∈ vX if and only if G has a subgroup of finite index H such that H ∈ X.

Also, the class pX of poly-X groups is the class of all groups G having a series 1 = G0 ≤
G1 ≤ . . . ≤ Gn = G, for some integer n ≥ 0, such that Gi−1 £Gi and Gi/Gi−1 ∈ X for
1 ≤ i ≤ n.

Examples of the use of this terminology are given in the corollaries below. A class
that will occur later is the class of virtually torsion-free groups. Note that v is not an
operator in the usual sense, since it fails to satisfy vI = I. In fact, vI = F, the class of
all finite groups. Thus finite groups are virtually trivial, an observation which should
not be made within earshot of a finite group theorist.

Note. As in Section 1, the function µ(– : R) can be extended to vFP(R) by defining

µ(G : R) =
µ(H : R)

(G : H)
,

where H ≤ G, H ∈ FP(R) and (G : H) <∞. Further, the analogue of Prop. 6.1 holds:
G ∈ vFP(R) and (G : H) <∞ implies H ∈ vFP(R) and µ(H : R) = (G : H)µ(G : R),
and similarly with vFP(R) replaced by vFL(R). However, this is unnecessary when
R = Q, by the next result.
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Corollary 6.2. (a) For any commutative ring R, FP(R) = pFP(R) and FL(R) =
pFL(R);

(b) FP(Q) = vFP(Q) and vFP(Z) ⊆ FP(Q).

Proof. (a) This is immediate using Theorem 6.2 and induction.

(b) Let (G : H) <∞, H ∈ FP(Q). Then N =
⋂
g∈G

gHg−1 is normal in G and has finite

index in H (and G), so N ∈ FP(Q) by Prop. 6.1. Also, G/N ∈ FP(Q) by Lemma 6.4,
so G ∈ FP(Q) by Theorem 6.2. Since FP(Z) ⊆ FP(Q) by Lemma 6.2, (b) follows. ¤

Corollary 6.3. (a) poly(infinite cyclic) groups are in FL(R) for any commutative ring
R (in particular, finitely generated torsion-free nilpotent groups are in FL(R)).

(b) virtually polycyclic groups are in vFL(R) for any commutative ring R (in particular,
finitely generated virtually nilpotent groups are in vFL(R)).

Proof. (a) follows from Lemma 6.4 and Cor. 6.2, and (b) follows since polycyclic groups
are virtually poly(infinite cyclic). See [96, 5.4.15]. ¤

Free Groups. To investigate the Stallings characteristic of a free group, we shall use
the idea of a derivation.

Definition. let G be a group, R a commutative ring, M an RG-module. The set
Der(G,M) of derivations from G to M is the set of all maps d : G→M such that

d(xy) = d(x) + xd(y) (for all x, y ∈ G).

Note that Der(G,M) is an R-module, with addition and scalar multiplication defined
pointwise. Any map d : G→M determines an R-linear map δ : IG →M by δ(g− 1) =
d(g) for g ∈ G, g 6= 1, and δ is an RG-homomorphism if and only if d is a derivation.
This gives a bijection

HomRG(IG,M)←→ Der(G,M)

(which is an R-isomorphism). Since G acts on the abelian group M , we can form the
split extensionMoG (the underlying set isM×G, with multiplication (m, g)(m′, g′) =
(m + gm′, gg′)). Let s : G → M oG be a map of the form s(g) = (d(g), g). Then s is
a group homomorphism if and only if d is a derivation.

Lemma 6.6. If G is a free group with basis X, then IG is a free RG-module with basis
X − 1.

Proof. The set X − 1 generates IG by Lemma 5.2. Let M be an RG-module and let
f0 : X − 1→M be a map. We have to show that f0 extends to an RG-homomorphism
f : IG → M . Define d0 : X → M by d0(x) = f0(x − 1), then s0 : X → M o G by
s0(x) = (d0(x), x). Then s0 has an extension to a group homomorphism s : G→MoG,

and s has the form s(g) = (d(g), g). (The composite map G → M o G
π−→G, where

π :M ×G→ G is the projection map, is idG, since it is the identity map on X.) Hence
d ∈ Der(G,M), and d corresponds to f ∈ HomRG(IG,M) given by f(g − 1) = d(g) for
g ∈ G. Clearly f extends f0. ¤
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Corollary 6.4. If G is a finitely generated free group, then G ∈ FL(R) for any com-
mutative ring R, and χG = (1 − rk(G))[1]G, so µ(G) = 1 − rk(G), where rk(G) means
the rank of G, i.e., the number of elements in a basis. If G 6= 1, then cdR(G) = 1.

Proof. By Lemma 6.6, the augmentation sequence 0 → IG → RG → R → 0 is a finite
augmented RG-free resolution of R, and the formula for χG follows. The last part
follows by Lemma 5.6. ¤

Note. There is converse to the last part of Cor. 6.4. If cdR(G) = 1 and G is torsion-
free then G is a free group. This is a profound theorem of Stallings and Swan (see [29],
and for a more recent account, [36, Ch. IV, §3]).

Free Products with Amalgamation. To study these, we shall again use derivations.
Let F be a free group with basis X. Then IG is RG-free on X − 1 (Lemma 6.6), and
we let {δx | x ∈ X} be the dual basis, with δx corresponding to x−1. Thus, for u ∈ IF ,

u =
∑

x∈X
δx(u)(x− 1)

and δx ∈ HomRF (IF , RF ). The corresponding element of Der(F,RF ) is denoted by
∂

∂x
;

thus
∂g

∂x
= δx(g − 1) for g ∈ F . Hence, for g ∈ F ,

(g − 1) =
∑

x∈X

∂g

∂x
(x− 1).

Extending
∂

∂x
from F to an R-linear map RF → RF , we have

u− ε(u) =
∑

x∈X

∂u

∂x
(x− 1) for u ∈ RF,

where ε : RF → R is the augmentation map. Then if π : F → G is an epimorphism of
groups, we can extend π to an R-algebra homomorphism RF → RG, to obtain

(∗) v − ε(v) =∑x∈X π

(
∂u

∂x

)
(π(x)− 1)

where u ∈ RF , π(u) = v and
ε : RG → R is the augmentation
map.

The maps ∂/∂x are called Fox derivatives.

Lemma 6.7. Suppose G = A ∗C B, a free product with amalgamation of groups. Then
there is an exact sequence of RG-modules

0→ R(G/C)
α−→R(G/A)⊕R(G/B)

β−→R→ 0

where α(xC) = (xA,−xB) and β(xA, 0) = β(0, xB) = 1 for x ∈ G.

Proof. Clearly βα = 0 and β is onto. We show that Ker(β) ⊆ Im(α). Let {ai},
{bj} be generators for A, B respectively, let F be the free group on the disjoint union
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X = {ai} ∪ {bj} and let let π : F → G be the epimorphism induced by the obvious
map X → G. Let v ∈ RG. Then by (∗) preceding the lemma,

v − ε(v) =
∑

i

π

(
∂ṽ

∂ai

)
(ai − 1) +

∑

j

π

(
∂ṽ

∂bj

)
(bj − 1)

where ṽ is chosen with π(ṽ) = v. Hence

vA− ε(v)A =
∑

j

π

(
∂ṽ

∂bj

)
(bj − 1)A

vB − ε(v)B =
∑

i

π

(
∂ṽ

∂ai

)
(ai − 1)B.

Suppose (vA,wB) ∈ Ker(β), that is, ε(v) + ε(w) = 0. Choose ṽ, w̃ with π(ṽ) = v,
π(w̃) = w. Then (using these formulas)

α

(∑

j

π

(
∂ṽ

∂bj

)
(bj − 1)C + ε(v)C −

∑

i

π

(
∂w̃

∂ai

)
(ai − 1)C

)
= (vA,wB)

so (vA,wB) ∈ Im(α) as required. It remains to show that α is injective. Suppose
α(vC) = 0, where v ∈ RG, that is, vA = vB = 0. Assume supp(vC) 6= ∅ and choose
g ∈ G such that gC ∈ supp(vC) is of maximal length. (Here length means length of
a reduced word representing g relative to the decomposition G = A ∗C B.) If g ∈ C
(length 0) then vC = rC for some r ∈ R, so rA = rB = 0, hence r = 0 and vC = 0,
contrary to supp(vC) 6= ∅. Hence g 6∈ C.

Case 1. A reduced word for g ends in a letter from A \ C. Since vB = 0, there must
be some g′ ∈ G with g′C ∈ supp(vC) and g′C 6= gC, but gB = g′B. Then g′ = gb for
some b ∈ B \ C, so g′ has greater length than g, a contradiction.

Case 2. A reduced word for g ends in a letter from A \ C. This similarly leads to
a contradiction since vA = 0. It follows that supp(vC) = ∅, that is, vC = 0, as
required. ¤

Theorem 6.3. Let G = A∗C B and let R be a commutative ring. If A, B, C ∈ FP(R),
then G ∈ FP(R) and

µ(G) = µ(A) + µ(B)− µ(C).

If A, B, C ∈ FL(R), then G ∈ FL(R).

Proof. Let 0 → Pn → . . . → P0 → R → 0 be a finite augmented RC-projective
resolution. Since RG is a free right RC-module, it is flat, so applying the functor
RG⊗RC – and using Lemma 5.1 gives an exact sequence

0→ P ′n → . . .→ P ′0 → R(G/C)→ 0

where P ′i = RG⊗RC Pi. Hence R(G/C) is of type FP as RG-module, and by definition,

rR(G/C) =
∑

i

(−1)irP ′i/RG

=
∑

i

(−1)iγ∗(rPi/RC) by Lemma 2.9



134 I. M. Chiswell

(where γ : RC → RG is the map induced by the inclusion C ↪→ G)

= γ∗(χC).

Similarly there are maps α : RA→ RG and β : RB → RG induced by inclusion maps
and rR(G/A) = α∗(χA), rR(G/B) = β∗(χB). By Lemma 4.3, R(G/A) ⊕ R(G/B) is of
type FP over RG and rR(G/A)⊕R(G/B) = α∗(χA) + β∗(χB). By Theorem 4.1 and Lemma
6.7, R is of type FP over RG (i.e. G ∈ FP(R)). Moreover, by Theorem 4.2, χG =
α∗(χA)+β∗(χB)−γ∗(χC), and comparing coefficients of [1]G, µ(G) = µ(A)+µ(B)−µ(C).
The last part follows using the FL analogue of Theorem 4.1. ¤

Note. There is a similar result for HNN-extensions which will not be proved. If
G = 〈t, A | tBt−1 = C〉 is an HNN-extension, and A, B ∈ FP(R) (so C ∈ FP(R) since
C ∼= B), then G ∈ FP(R) and µ(G) = µ(A)− µ(B).

The Relation Sequence. We shall next consider the Stallings characteristic for one-
relator groups, and to do this we need an exact sequence called the relation sequence.
We begin with two lemmas. If H is a subgroup of a group G and R is a commutative
ring, then there is an RG-homomorphism π : RG → R(G/H), given by g 7→ gH. We
define JH = Ker(π).

Lemma 6.8. In these circumstances, JH = RGIH ∼= RG⊗RH IH .

Proof. Apply RG ⊗RH – to the augmentation sequence for H. This gives the top row
of a commutative diagram with exact rows:

0 // RG⊗RH IH //

θ
²²

RG⊗RH RH //

ψ ∼=
²²

RG⊗RH R //

ϕ ∼=
²²

0

0 // JH
inclusion // RG

π // R(G/H) // 0

Here ϕ is given by Lemma 5.1, ψ is the usual isomorphism u⊗ v 7→ uv and θ is induced
by ψ. Hence θ is an isomorphism and JH = Im(θ) = RGIH . ¤

If 1 → K → E
π→G → 1 is a group extension, then the commutator quotient K =

K/[K,K] is an abelian group, and G acts on it using conjugation by elements of E
and lifting along π. That is, if g ∈ G, choose e ∈ E such that g = π(e) and define

gk = eke−1, where k ∈ K and k = k[K,K]. (For convenience we assume K → E is
an inclusion map.) Thus K becomes a ZG-module, with addition k + k ′ = kk′ for k,
k′ ∈ K. There is an exact sequence

0→ JK → RE
π→RG→ 0 (1)

which by restricting π gives an exact sequence

0→ JK → IE → IG → 0

giving by the isomorphism theorems a short exact sequence

0→ JK
JKIE

→ IE
JKIE

→ IG → 0. (2)
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From (1), RG ∼= RE/JK , so IE/JKIE is an RG-module, with scalar multiplication
given by g(u + JKIE) = eu + JKIE, for any e ∈ E such that π(e) = g, where g ∈ G,

u ∈ IE. (See Remark 2.1.) The map
IE
JKIE

→ IG in (2) is an RG-homomorphism, so

JK
JKIE

is an RG-submodule of
IE
JKIE

.

Lemma 6.9. If 1 → K → E
π→G → 1 is a group extension and R is a commutative

ring, then there is an RG-isomorphism

ψ : R⊗Z K −→
JK
JKIE

sending (1⊗ k) to (k − 1) + JKIE, for k ∈ K.

Proof. Again we assume K = Ker(π). There is a homomorphism of groups K → JK
JKIE

given by k 7→ (k − 1) + JKIE, because if k, k′ ∈ K,

(kk′ − 1) = (k − 1)(k′ − 1) + (k − 1) + (k′ − 1)

and (k− 1)(k′− 1) ∈ JKIE. This induces a homomorphism K → JK
JKIE

. Therefore, the

map R ×K → JK
JKIE

given by (r, k) 7→ r(k − 1) + JKIE induces an R-homomorphism

ψ : R ⊗Z K → JK
JKIE

. Thus ψ(1 ⊗ k) = (k − 1) + JKIE. Further, ψ is an RG-

homomorphism. For if g ∈ G,

ψ(g(1⊗ k)) = ψ(1⊗ gk) = ψ(1⊗ eke−1) = (eke−1 − 1) + JKIE

where π(e) = g, while
gψ(1⊗ k) = e(k − 1) + JKIE.

But e(k − 1) − (eke−1 − 1) = (eke−1 − 1)(e − 1) ∈ JKIE, so gψ(1 ⊗ k) = ψ(g(1 ⊗ k))
and it follows that ψ is an RG-homomorphism. We construct an inverse map to ψ. Let
T be a transversal for K/E with 1 ∈ T . Then

RE =
⊕
t∈T

RKt.

Since K E E, using t(k−1) = (tkt−1−1)t (k ∈ K), we see that JK = REIK =
⊕
t∈T

IKt.

Also, IK is R-free on {k− 1 | k ∈ K, k 6= 1}, so there is an R-homomorphism θ : JK →
R ⊗Z K given by (k − 1)t 7→ 1 ⊗ k. Now take k ∈ K, e ∈ E and write e = k ′t with
k′ ∈ K, t ∈ T . Then (k−1)(e−1) = ((kk′−1)− (k′−1))t− (k−1), and it follows that

θ is zero on JKIE. Hence there is an induced map ϕ :
JK
JKIE

→ R ⊗Z K. For k ∈ K,

t ∈ T , (k − 1)t − (k − 1) = (k − 1)(t − 1) ∈ JKIE, and it follows easily that ϕ and ψ
are inverse maps. ¤

Theorem 6.4. Let 1→ N → F
π→G→ 1 be an extension of groups, where F is a free

group with basis X and N = Ker(π). Then there is an exact sequence of RG-modules

0→ R⊗Z N θ−→Z
ζ−→RG→ R→ 0,
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where N = N/[N,N ] with G-action π(f)n = fnf−1, Z is RG-free with a basis {ex | x ∈
X}, and

θ(1⊗ n) =
∑

x∈X
π

(
∂n

∂x

)
ex, ζ(ex) = π(x)− 1.

Proof. From (2) preceding Lemma 6.9, there is an exact sequence of RG-modules

0→ JN
JNIF

→ IF
JNIF

→ IG → 0 (3)

By Lemma 6.6 IF is free on X− 1, so
IF
JNIF

is RG-free on {(x− 1)+JNIF | x ∈ X}, so
letting Z be a free RG-module with basis {ex | x ∈ X} in one-to-one correspondence

with X, there is an isomorphism





IF
JNIF

→ Z

u+ JNIF 7→
∑

x∈X π

(
∂u

∂x

)
ex

(using (∗) preceding 6.7). Also, by Lemma 6.9 there is an isomorphism ψ : R ⊗Z N →
JN
JNIF

which sends 1 ⊗ n to (n − 1) + JNIF . On splicing (3) with the augmentation

sequence for G and using these isomorphisms, we obtain the desired sequence. ¤

An extension of groups as in Theorem 6.4 corresponds to a presentation of the group
G, where N is the normal closure in F of the relators. The ZG-module N is called the
relation module of the presentation, and the exact sequence of RG-modules in Theorem
6.4 is called the relation sequence (over R) of the presentation.

One-relator Groups. The treatment of these is based on using the relation sequence
together with the Lyndon Identity Theorem, a result which we shall just quote. The
other ingredient needed is the following lemma.

Lemma 6.10. Let G be a group, R a commutative ring. Let C be a finite subgroup of

G with |C| invertible in R. Then R(G/C) is RG-projective, and rR(G/C) =
1

|C|
∑
c∈C

[c]G.

Proof. By Lemma 5.6, R isRC-projective and by Lemma 6.4, rR/RC = χC =
1

|C|
∑
c∈C

[c]C .

By Lemma 5.1, R(G/C) ∼= RG⊗RC R, and the result follows by Lemma 2.9 applied to
the inclusion map RC → RG. ¤

Lyndon Identity Theorem. If, in Theorem 6.4, N = 〈rn〉F , where r ∈ F, R is
not a proper power, n > 0 and C = 〈π(r)〉, the map R(G/C) → R ⊗Z N given by

gC 7→ 1⊗ g π(r) (for g ∈ G) is an RG-isomorphism.

Proof. This was proved in [76]. ¤

Note. It is also true that π(r) has order n in G, so |C| = n. See [79, Cor. 4.11, p.
266].
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Theorem 6.5. Let G = 〈x1, . . . , xm | rn〉 be a finitely generated one-relator group,
where r is not a proper power and n > 0. Then

(1) G ∈ vFL(Z);

(2) µ(G : Q) = 1−m+
1

n
;

(3) if n = 1, then G ∈ FL(Z).

Proof. By Theorem 6.4 and the Lyndon Identity Theorem, there is an exact sequence
of RG-modules

0→ R(G/C)→ RGm → RG→ R→ 0 (∗)

where C = 〈r〉 and r is the image of r in G. Take R = Z, and let H be a torsion-free
subgroup of finite index in G (the existence of H is proved in [52]). Then H acts freely
on G/C, so if T is a transversal for the double cosets HgC (g ∈ G), Z(G/C) is ZH-free,
with basis {tC | t ∈ T}. Thus (∗) is a finite augmented ZH-free resolution of Z, and
(1) follows. Now take R = Q. By Lemma 6.10, (∗) is an augmented QG-projective
resolution of Q, and

χG = (1−m)[1] +
1

n

n−1∑

i=0

[ri]

=

(
1−m+

1

n

)
[1] +

1

n

n−1∑

i=1

[ri].

Since r has order n, µ(G : Q) = 1−m+
1

n
. Finally, if n = 1, G is torsion-free and we

may take H = G (see [79, Theorem 4.12]). ¤

Centres of Groups of Type FP. Here we give the application of χG originally made
by Stallings [107] (Gottlieb’s Theorem). If G is a group and R is a commutative ring,
let C be the centre of RG. Then RG is a C-algebra and T (RG) is a C-module. In
particular the center Z(G) of G acts on T (RG), and γ[g] = [γg] (for γ ∈ Z(G), g ∈ G).

Lemma 6.11. Let G ∈ FP(R).

(i) γχG = χG for all γ ∈ Z(G);

(ii) if µ(G) 6= 0, then Z(G) is finite;

(iii) if χg = µ(G)[1] (e.g., if G ∈ FL(R)) and µ(G) 6= 0, then Z(G) = 1.

Proof. Let C be the centre of RG. By Lemma 4.8, χG = rR/RG is annihilated by
AnnC(R) = AnnRG(R) ∩ C = IG ∩ C, in particular by γ − 1 for γ ∈ Z(G), and (i)
follows. Since χG has finite support, (ii) and (iii) follow from (i). ¤
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Applications.

(1) Let G = 〈x1, . . . , xm | rn〉, where r is not a proper power and n > 0. Then from
the proof of Theorem 6.5, G ∈ FP(Q) and

χG =

(
1−m+

1

n

)
[1] +

1

n

n−1∑

i=1

[ri].

Also, no two of r, r2, . . . , rn−1 are conjugate in G (see [52]). Thus if Z(G) 6= 1,

then by Lemma 6.11, either 1−m+
1

n
= 0 or 1−m +

1

n
=

1

n
. That is, either

m = 2 and n = 1, or m = 1 (a result of Murasugi [89]).

(2) If X is a finite aspherical CW-complex and G = π1(X), then χG = χ(X)[1]
(example before Prop. 6.1). Thus by Lemma 6.11, if χ(X) 6= 0 then Z(G) = 1
(Gottlieb’s Theorem).

The Homological Characteristic. The function µ is obtained by taking the coeffi-
cient of [1] in χG. Another way of obtaining an element of R, which we now investigate,
is to take the sum of all coefficients in χG.

Definition. Let G ∈ FP(R). Then χ̃(G) =
∑

τ∈T (G)
χG(τ).

Lemma 6.12. If G ∈ FP(R) and Hi(G,R) is of type FP over R for all i, then

χ̃(G) =
∑

i≥0
(−1)ihi

where hi = rHi(G,R)/R.

Proof. Let 0 → Pn → . . . → P0 → R → 0 be an augmented finite RG-projective
resolution. Apply R⊗RG – to obtain a complex

. . . 0→ P̃n
dn→ . . .→ P̃1

d1→ P̃0
d0→R→ 0 . . .

(where P̃i = R ⊗RG Pi), with H∗(G,R) = H(P̃ , d). By Lemma 2.9 applied to the
augmentation map ε : RG→ R, P̃i is R-projective and

χ̃(G) = ε∗(χG) =
∑

i≥0
(−1)iε∗(rPi/RG) =

∑

i≥0
(−1)irP̃i/R.

There are short exact sequences

0→ Ker(di)→ P̃i → Im(di)→ 0 (1)

0→ Im(di+1)→ Ker(di)→ Hi(G,R)→ 0 (2)

and it follows by induction from Theorem 4.1 that Im(di) and Ker(di) are of type FP
over R for all i ≥ 0. Let zi = rKer(di)/R, pi = rP̃i/R and bi = rIm(di)/R. By Theorem 4.2
applied to these short exact sequences,

pi = zi + bi
zi = bi+1 + hi

}
which implies pi = bi + bi+1 + hi

hence χ̃(G) =
∑

(−1)ipi =
∑

(−1)ihi. ¤
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Corollary 6.5. If R is a principal ideal domain then

χ̃(G) =
∑

i≥0
(−1)i(free rank of Hi(G,R))1R.

Proof. The exact sequences (1) and (2) in the previous proof show that Hi(G,R) is a
finitely generated R-module. Also, any finitely generated R-module M is of type FL
over R. For, by the well-known theory of such modules, we can find a short exact
sequence

0→ N → F →M → 0

where F is free, with basis e1, . . . , ek and N is free with basis θ1e1, . . . , θrer for some
r ≤ k, where θ1|θ2| . . . |θr (and “|” means “divides”). This shows M is of type FL, and
rM/R = (k− r)1R = (free rank of M)1R. The result now follows from Lemma 6.12. ¤

In general χ̃ does not satisfy the index formula χ̃(H) = (G : H)χ̃(G) (where (G : H) <
∞). For example, if R = Q and G is finite, then χ̃(G) = χ̃(H) = 1 by Lemma 6.4.
However, this formula holds when R = Z, and is the basis for our second definition of
an Euler characteristic. The proof uses a theorem of Swan:

If G is finite and P is finitely generated ZG-projective, then Q⊗Z P
is finitely generated QG-free.

This will be generalised in the next section. A lemma of Hattori on characters is needed,
and we finish this section by proving it.

Definition. Let R be a commutative ring, A an R-algebra, M an A-module which is
finitely generated projective as an R-module. The character afforded by M is the map
ϕM : A → R, a 7→ TM/R(λa), where λa ∈ EndR(M) is defined by λa(m) = am for
m ∈M .

Lemma 6.13. In the definition just given, if A is finitely generated projective as R-
module, then so is every finitely generated projective A-module, and if P is such a
module, then

ϕP (a) = TA/R(λaρb), for any b ∈ A such that TA(b) = rP/A.

Proof. Let

{
{ai}, {fi} be a finite R-coordinate system for A

{xj}, {gj} be a finite A-coordinate system for P .
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Then {aixj}, {figj} is a finite R-coordinate system for P . Hence

ϕP (a) = TP/R(λa) =
∑

i,j

figj(λa(aixj)) by Lemma 2.5

=
∑

i,j

fi(gj(aaixj)) =
∑

i

fi(aaib),where b =
∑

j

gj(xj)

(so rP/A = TA(b) by Lemma 2.5)

=
∑

i

fi(λaρb(ai)) = TA/R(λaρb), again by Lemma 2.5.

If TA(b
′) = TA(b), then b− b′ = b′′, where b′′ ∈ [A,A], and it is enough by Lemma 2.7(2)

to show that TA/R(λaρb′′) = 0, since λaρb − λaρb′ = λaρb′′ . Again by Lemma 2.7(2) we
can assume b′′ = b1b2 − b2b1, where b1, b2 ∈ A. Then

λaρb′′ = λaρb1ρb2 − λaρb2ρb1 = (λaρb1)ρb2 − ρb2(λaρb1),
and the result follows by Lemma 2.7(2) and (3). ¤

Lemma 6.14 (Hattori). Let G be a finite group, R a commutative ring. Let P be
a finitely generated projective RG-module and let ϕP be the character affforded by P .
Then for g ∈ G,

ϕP (g) = |CG(g)|rP (g−1).

Proof. Take b =
∑

x∈G bxx ∈ RG such that rP = TRG(b). By Lemma 6.13, if κg,v(u) =
guv for g ∈ G, u, v ∈ RG, then

ϕP (g) = TRG/R(κg,b) =
∑

x∈G
bxTRG/R(κg,x).

Now the map G → G, u 7→ gux is a permutation of G, so by Lemma 2.6, using the
R-basis G for RG,

TRG/R((κg,x) = |{u ∈ G | gux = u}| = |{u ∈ G | x = ug−1u−1}|

=

{
0 if x 6∈ [g−1]

|CG(g)| if x ∈ [g−1].

Therefore ϕP (g) =
∑

x∈[g−1]
bx|CG(g)| = |CG(g)| rP (g−1). ¤

Corollary 6.6 (taking g = 1). In Lemma 6.14, rP/R = |G|rP (1). ¤

7. Swan’s Theorem

First, we prove a more general version of this theorem than that stated after Cor. 6.5,
and this is the version which will be used. Then we prove Hattori’s generalisation,
which is an interesting use of the rank element defined in Section 1. The basic idea
is that under certain circumstances, the rank element determines a finitely generated
projective module up to isomorphism. An account of the material needed on linear
topologies and completions is given, since it is difficult to extract all relevant results
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from a single source.

Denote by Jac(M) the Jacobson radical of an A-module M . We begin by quoting a
well-known result.

7.1 (Nakayama’s Lemma). Let M be a finitely generated module over a ring A, N
a submodule of M, I an ideal in A. If I ⊆ Jac(A) and M = N + IM, then M = N .

Proof. See [31, 10.3] ¤

Lemma 7.1. Let A be a ring, I an ideal with I ⊆ Jac(A) and let P, Q be finitely
generated projective A-modules. Then

(i) if f : P → Q is an A-homomorphism, the induced map f : P/IP → Q/IQ is
onto (resp. an isomorphism) if and only if f is onto (resp. an isomorphism);

(ii) P ∼= Q if and only if P/IP ∼= Q/IQ.

Proof. (i) If f is onto then Q = f(P ) + IQ, so Q = f(P ) by Lemma 7.1. If f is an
isomorphism then it is onto, so there there is a short exact sequence

0 //K //P
f //Q //
ϕ

hh j_T 0

where K = Ker(f), which splits (because Q is projective), via ϕ, say. Thus P =
ϕ(Q) ⊕ K, hence IP = ϕ(IQ) ⊕ IK (ϕ is one-to one). Also, f is one-to-one, which
means that f(p) ∈ IQ implies p ∈ IP , hence IP = ϕ(IQ) ⊕ K. Hence K = IK, so
K = 0 by Lemma 7.1.

(ii) Let g : P/IP
∼=−→Q/IQ. Since P is projective, there is a map f making the following

diagram commutative:

P

²²

f //_____ Q

²²
P/IP g

// Q/IQ.

But then g = f and (ii) follows from (i). ¤

Definition. A ring A is local if A/ Jac(A) is a division ring.

If A is commutative, A is local if and only if it has a unique maximal ideal (the maximal
ideal being Jac(A)).

Lemma 7.2. Over a local ring, all finitely generated projective modules are free.

Proof. Let P be finitely generated projective over a local ring A, J = Jac(A). Then
P/JP is a vector space over the division ring A/J , of finite dimension, say n. Hence
P/JP ∼= An/JAn, so P ∼= An by Lemma 7.1. ¤

.
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Lemma 7.3. Let K be a field of characteristic p > 0 and let G be a finite p-group.
Then KG is a local ring.

Proof. Because of the augmentation sequence 0 → IG → KG → K → 0 and the
fact that K is a simple KG-module (being a field), IG is a maximal left ideal, so
Jac(KG) ⊆ IG. It is enough to show IG is nilpotent, for then IG = Jac(KG) (see
[8, Ch.8, Prop. 3.3]). Choose an element c ∈ Z(G) (the centre of G) of order p
and let C = 〈c〉, G = G/C. By Lemma 6.8 and the observations preceding Lemma
6.9, there is a short exact sequence 0 → KGIC → IG → IG → 0. If u ∈ KG then
u(c− 1)p = up(c− 1)p = up(cp − 1) = 0, since c− 1 is central and K has characteristic
p, hence KGIC is nilpotent. Consequently, if IG is nilpotent then so is IG. The result
now follows by induction on n, where |G| = pn. ¤

Lemma 7.4. Let A be a ring, suppose e1 ∈ A and let f1 = 1− e1. Let R be the subring
of A generated by e1. Then for all n > 0, there exist en, fn ∈ A such that:

(i) en ∈ Ren1 and fn ∈ Rfn1 ;
(ii) 1 = en + fn.

Proof. Since e1, f1 commute, the Binomial Theorem applies:

1 = (e1 + f1)
2n−1 =

n−1∑

r=0

(
2n− 1

r

)
er1f

2n−1−r
1

︸ ︷︷ ︸
fn

+
2n−1∑

r=n

(
2n− 1

r

)
er1f

2n−1−r
1

︸ ︷︷ ︸
en

and en, fn can be taken as indicated. ¤

Now let R be a commutative ring. Recall that the nilradical of R, denoted rad(R), is
the set of all nipotent elements of R, and is an ideal. It is equal to the intersection of all
prime ideals of R ([62, Theorem 7.1]). Also, Jac(R) is the intersection of all maximal
ideals of R, and since maximal ideals are prime, rad(R) ⊆ Jac(R). Let X = Spec(R)
(the set of all prime ideals of R), and for U ⊆ R, let V(U) = {p ∈ X | p ⊇ U}. Note
that V(U) = V(I), where I is the ideal of R generated by U . We endow Spec(R) with
the Zariski topology, where the closed sets are the sets V(U) for U ⊆ R. Also, for
r ∈ R, let Xr = X \ V(r) = {p ∈ X | r 6∈ p}.
Note. If p ∈ X and e ∈ R is an idempotent, then e(1 − e) = 0, so either e ∈ p or
1− e ∈ p, but not both (since 1 6∈ p).

The term “clopen” is used to mean “closed and open”.

Lemma 7.5. A clopen set in X has the form Xe for some idempotent e ∈ R.

Proof. Let U be clopen; then U = V(I), X \ U = V(J), where I, J are ideals. Clearly

V(I + J) = V(I ∪ J) = V(I) ∩ V(J) = ∅
which implies I + J = R, so 1 = e1 + f1 for some e1 ∈ J , f1 ∈ I. Also (see [62, §7.5])

V(IJ) = V(I) ∪ V(J) = X



Euler Characteristics of Discrete Groups 143

which implies IJ ⊆ rad(R), hence (e1f1)
n = 0 for some n. Let en, fn be as in Lemma

7.4. Then enfn = 0 and 1 = en + fn, so en, fn are orthogonal idempotents, and en ∈ J ,
fn ∈ I. By the note preceding the lemma, V(I) = V(1− en) = Xen . ¤

Again let X = Spec(R) and fix a finitely generated projective R-module P . For p ∈ X,
Pp
∼= Rp⊗R P (see [62, §7.3]). Hence Pp is a finitely generated projective Rp-module by

Lemma 2.9, so is free by Lemma 7.2. Since R is commutative, the number of elements
in a basis for Pp is uniquely determined, and is called its rank, denoted rkR(Pp). (See
the discussion at the start of Section 8.) Thus there is a map

d : X → Z
d(p) = rkR(Pp).

Lemma 7.6. The map d is continuous, where Z is given the discrete topology.

Proof. Suppose d(p) = n, so Pp has a basis of the form
p1
s1
, . . . ,

pn
sn

, with pi ∈ P and

si ∈ R \ p. Since the si are units in Rp,
p1
1
, . . . ,

pn
1

is a basis for Pp. If F is the

free R-module on p1, . . . , pn , the obvious map f : F → P induces an isomorphism
fp : Fp → Pp. Hence Coker(f)p = 0, and Coker(f) is finitely generated, so there is a
single element s ∈ R \ p such that sCoker(f) = 0. Therefore, there is an epimorphism

f [s−1] : F [s−1]→ P [s−1]

which becomes an isomorphism when localised at p. (Rp is the localisation of R[s−1];
see [62, Prop. 7.4].) Since P [s−1] is projective over R[s−1], this epimorphism splits, so
Ker(f [s−1]) is finitely generated. It becomes zero when localised at p, so is annihilated
by an element of R[s−1] \ p[s−1], hence by some t ∈ R \ p. Let u = st, so there is an
isomorphism

f [u−1] : F [u−1]
∼=→P [u−1].

But then Fq
∼= Pq for all q ∈ X such that u 6∈ q, since Rq is a localisation of R[u−1],

for all such q. Hence d(q) = n for all q ∈ X \ V(u). Thus d is continuous at p, for all
p ∈ X. ¤

Lemma 7.7. Let P be a finitely generated projective module over a commutative ring
R. Then rP belongs to the subring of R generated by all idempotents.

Proof. Let d : X → Z be the continuous map in Lemma 7.6, where X = Spec(R). Since
X is compact ([62, Prop. 7.12]),

X = d−1(n1) ∪ . . . ∪ d−1(nk)
for some distinct integers n1, . . . , nk. By Lemma 7.5, d−1(ni) = Xei for some idempotent
ei ∈ R. Now

Xeiej = Xei ∩Xej = ∅ implies eiej ∈ rad(R), hence eiej = 0 (i 6= j).

Note that if p ∈ X, then p ∈ Xei if and only if p ∈ V(1 − ei) , if and only if p ⊇
R(1 − ei), if and only if p 6∈ X1−ei (see the note preceding Lemma 7.5). Since X =
Xe1∪. . .∪Xek , taking complements gives X1−e1∩. . .∩X1−ek = ∅, which similarly implies
(1− e1) . . . (1− ek) = 0. Hence 1 = e1 + . . .+ ek. Let p ∈ Xei ; under the canonical map
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R → Rp, rP/R 7→ d(p).1 = ni.1 by Lemma 2.9. Therefore there exists s 6∈ p such that

s(rP − ni) = 0. Denote the image of a ∈ R in the quotient R = R/R(1 − ei) by a. It
follows that rP − ni = 0. (Otherwise AnnR(rP − ni) ⊆ m, where m is a maximal ideal
of R containing R(1− ei) and m is its image in R, so m ∈ Xei and m ⊇ AnnR(rP − ni),
contradicting the previous paragraph.) Since R = Rei ⊕ R(1 − ei), (rp − ni)ei = 0.

Thus rP =
k∑
i=1

niei. ¤

Theorem 7.2. Let R be an integral domain, G a finite group such that no prime divisor
of |G| is invertible in R. Then RG has no idempotents except 0 and 1.

Proof. Let F be the field of fractions of R. If R has characteristic p > 0 then G is a
p-group, FG is local by Lemma 7.3, in fact we showed IG = Jac(RG) is nilpotent. If
e is an idempotent, e 6= 1, then e is not a unit, so Re 6= R, hence Re ⊆ Jac(RG), i.e.,
e ∈ Jac(RG), therefore e = 0. Suppose R has characteristic 0. let e be an idempotent in
RG, P = RGe. By Cor. 6.6, rP/R = |G| rP/RG(1), and by Lemma 2.9, rP/R = rF⊗RP/F ,
which is a non-negative integer, and is positive if P 6= 0 (F ⊗R P is the localisation
of P at 0, so F ⊗R P = 0 implies P = 0 since R-projective modules are torsion-free).

Thus
rP/R
|G| ∈ Q ∩ R, and in fact is an integer by hypothesis. (Write

rP/R
|G| =

a

b
with a,

b ∈ Z and coprime. Suppose a prime p divides b. Then there are integers α, β such that

1 = αa + βb, so
1

p
= α

(
b

p

)(
a

b

)
+ β

(
b

p

)
∈ R, a contradiction.) But RG = P ⊕ Q,

where Q = RG(1− e), so by Lemma 2.7, rP/R + rQ/R = |G|. By the above (applied to
1− e as well as e), rP/R, rQ/R are non-negative integers divisible by |G|, so one is zero,
hence either P or Q is zero. that is, e = 0 or 1. ¤

In the situation of Theorem 7.2, let P be a finitely generated projective RG-module,
F the field of fractions of R, PG = R ⊗RG P . By Lemma 2.9, PG is finitely generated
R-projective, and

rPG/R = ε∗(rP/RG) =
∑

τ∈T (G)
rP (τ)

where ε : RG→ R is the augmentation map. Let n = rank(PG), that is, n = dimF (F⊗R
PG). By Lemma 2.9 applied to the inclusion map R ↪→ F ,

n.1R =
∑

τ∈T (G)
rP (τ). (∗)

Lemma 7.8. In these circumstances, rP/RG = rRGn/RG = TRG(n).

Proof. By (∗), it is enough to show rP (g) = 0 for 1 6= g ∈ G. If R has characteristic
p > 0 then by Lemmas 7.2 and 7.3 F ⊗R P is FG-free, and the result follows from Cor.
2.2. Assume R has characteristic 0 and let H = 〈g〉 (where 1 6= g ∈ G). By Cor. 2.1
and Lemma 6.1, rP/RH(g) = rP/RG(g)(CG(g) : H), so it is enough to prove the result
for the abelian group H. But then R[H] is identified with RH, and by Lemma 7.7 and
Theorem 7.2, rP/RH belongs to the prime subring of RH, which is contained in R. ¤
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Theorem 7.3 (Swan). Let R be an integral domain, G a finite group such that no prime
divisor of |G| is invertible in R. Let F be the field of fractions of F and let P be a finitely
generated projective RG-module. Then F ⊗R P ∼= FGn, where n = dimF (F ⊗R PG).

Proof. As in Lemma 7.8, we need only consider the case that R has characteristic
0. By Lemma 7.8, rP/RG = rRGn/RG, where n = rank(PG). Hence by Cor. 2.2,
rF⊗RP/FG = rFGn/FG. By Lemma 6.14, F ⊗R P and FGn afford the same character, so
are isomorphic. (See [71, Ch.XVIII, §2, Theorem 3].) ¤

Linear Topologies and Completions. Let A be a ring,M an A-module. A filtration
of M is a sequence of submodules:

M =M0 ⊇M1 ⊇M2 ⊇ . . . (∗)
Given (∗), we can define a topology on M by taking the sets x +Mn (m ≥ 0) as the
open sets containing x, for each x ∈ M , and M becomes a topological group. Such a
topology is called a linear topology on M . Note that the topology is Hausdorff if and

only if
∞⋂
i=0

Mi = 0.

Definition. A sequence (xn)n≥0 in M is Cauchy if for all k ≥ 0, there exists an integer
U such that m,n > U implies xn−xm ∈Mk. The sequence converges to x ∈M (written
xn −→ x) if for all k there is an integer U such that n > U implies xn − x ∈Mk. The
module M is complete in this topology if every Cauchy sequence converges.

Note. A sequence (xn)n≥0 is Cauchy if and only if xn+1 − xn −→ 0.

In future we shall just write sequences as (xn), etc. Given M and the filtration (∗), let
CM be the set of all Cauchy sequences inM . Then CM is an A-module, with operations

(xn) + (yn) = (zn), where zn = xn + yn for all n

a(xn) = (wn), where wn = axn for all n,

(for a ∈ A). Let ZM = {(xn) ∈ CM | xn −→ 0}, an A-submodule of CM .

Definition. The quotient module M̂ = CM/ZM is called the completion of M .

There is an A-homomorphism ϕM : M → M̂ , x 7→ x̂ + ZM , where x̂ is the constant
sequence (xn), with xn = x for all n. We leave it as an exercise to check that:

• Ker(ϕM) =
∞⋂
i=0

Mi, so ϕM is one-to-one if and only if M is Hausdorff;

• ϕM is onto if and only if M is complete.

If N is a submodule of M , define

Ñ = {(xn) + ZM | there exists U such that n > U implies xn ∈ N}
= {(xn) + ZM | xn ∈ N for all n}.

Then M̂ has a linear topology defined by the filtration {M̃i}.
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Lemma 7.9. If un = ϕM(xn) for n ≥ 0, then (un) is a Cauchy sequence in M̂ if and

only if (xn) is a Cauchy sequence in M, in which case un −→ (xn) + ZM in M̂ .

Proof. If (yn) ∈ ZM , then for any k, yn ∈ Mk for sufficiently large n. Hence, for m,

n ≥ 0, um − un = ϕM(xm − xn) ∈ M̃k if and only if xm − xn ∈Mk, so (un) is Cauchy if
and only if (xn) is. If (xn) is Cauchy, given k, choose an integer V such that m, n > V

implies xm − xn ∈ Mk. Let x = (xn) + ZM . Then n > V implies x − un ∈ M̃k, so
un −→ x. ¤

Lemma 7.10. In the circumstances above,

(1) if N is a submodule of M then the closure ϕM(N) equals Ñ . In particular,

ϕM(M) is dense in M̂ ;

(2) the completion M̂ is complete and Hausdorff.

Proof. Clearly
⋂
k M̃k = 0, so M̂ is Hausdorff. To prove (1), take x = (xn) + ZM ∈ Ñ ,

where xn ∈ N for all n. Then un = ϕM(xn) ∈ ϕM(N) and un −→ x by Lemma 7.9, so

x ∈ ϕM(N). Conversely, let un = ϕ(xn), where xn ∈ N and suppose un −→ u ∈ M̂ .

By Lemma 7.9, un −→ (xn) + ZM , and since M̂ is Hausdorff, u = (xn) + ZM ∈ Ñ . It
is clear from the definition that a linear topology is first countable, so this proves (1).

Finally, take any Cauchy sequence (un) in M̂ . By (1), there exists xn ∈ M such that

ϕM(xn)−un ∈ M̃n. Then (ϕM(xn)) is Cauchy and converges to x, where x = (xn)+ZM ,

by Lemma 7.9, hence un −→ x, showing M̂ is complete. ¤

Let M , N be A-modules with linear topologies defined by filtrations (Mi), (Ni) respec-
tively. Let f : M → N be a homomorphism. Then f is continuous if and only if it is
continuous at 0, which is equivalent to: for all k, there exists l such that f(Ml) ⊆ Nk.

Suppose f is continuous. Then there is an A-homomorphism f̂ : M̂ → N̂ given by

f̂((xn) + ZM) = (f(xn)) + ZN .

Moreover, f̂ is continuous since f(Ml) ⊆ Nk implies f̂(M̃l) ⊆ Ñk. By Lemma 7.10(1),

f̂ is the unique homomorphism such that

M̂
f̂ // N̂

M

ϕM

OO

f
// N.

ϕN

OO

is commutative. (This makes M 7→ M̂ into a functor, between categories we leave the
reader to describe.) If f : M → N is an A-homomorphism and (Mi) is a filtration on
M , then (f(Mi)) is a filtration on N , adding N as the first term of the filtration if
necessary, and f becomes continuous. If L is a submodule of M , (L∩Mi) is a filtration
on L, and gives L the relative (subspace) topology.
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Note. The inclusion map i : L→M induces î : L̂→ M̂ and if (xn) ∈ CN ∩ZM , clearly
(xn) ∈ ZN , so î is injective, and its image is L̃. By Lemma 7.10, L̂ ∼= ϕM(L).

Lemma 7.11. Suppose 0 //L
i //M

π //N //0 is an exact sequence of A-modules,
and M has a linear topology induced by (Mi). Let L, N have the topologies indicated
above (viewing i as an inclusion map). Then

0 //L̂
î //M̂

π̂ //N̂ //0

is exact.

Proof. Clearly π̂ î = π̂i = 0 and î is injective (note above). We show that Ker(π̂) ⊆
Im( î ). Let (xn) ∈ CM be such that (π(xn)) ∈ ZN . Then π(xn) ∈ π(Mα(n)), where
α(n) −→ ∞ as n −→ ∞. Therefore we can write xn = un + i(zn), where un ∈ Mα(n),
zn ∈ L. Then (un) ∈ ZM and i(zn) = xn − un, so (i(zn)) ∈ CM , hence (zn) ∈ CL. Thus
(xn) + ZM = (i(zn)) + ZM = î((zn)) ∈ Im( î ). It remains to show that π̂ is onto. Let
(yn) ∈ CN and choose xn ∈ M such that π(xn) = yn. then (π(xn+1 − xn)) ∈ ZN , so as

above we can write xn+1−xn = un+i(zn), where (un) ∈ ZM , zn ∈ L. Let sn = x1+
n−1∑
j=1

uj.

Then (sn+1 − sn) −→ 0, so (sn) ∈ CM , and π(sn) = yn, so π̂((sn)) = (yn). ¤

For an elegant proof of Lemma 7.11, and interpretation of M̂ as lim
←−

M/Mi, see [6,

Ch.10]

Topologies determined by Ideals. Suppose A = I0 ⊇ I1 ⊇ I2 ⊇ . . . is a filtration
of the ring A, where all Ij are ideals of A. Then, with the topology determined by this
filtration, A is a topological ring (this is left as an exercise). Also, CA is a ring, with
multiplication

(an)(bn) = (cn), where cn = an bn for all n.

Further, ZA is an ideal in CA, so Â is a ring, and ϕA is a ring homomorphism. Obviously,

if A is commutative, so is Â. Let M be an A-module, (Mi) a filtration on M which
is compatible in the sense that InM ⊆ Mn for all n. Then CM is a CA-module, with
scalar multiplication (an)(mn) = (anmn), ZM is a CA submodule and ZACM ⊆ ZM .

Hence M̂ is an Â-module. If N is another A-module with a compatible filtration and

f :M → N is a continuous A-homomorphism, then f̂ is an Â-homomorphism. If B is a
ring with a filtration B = J0 ⊇ J1 ⊇ J2 ⊇ . . . by ideals, and f : A→ B is a continuous

ring homomorphism, then f̂ : Â→ B̂ is a ring homomorphism.

Definition. Let I be an ideal in the ring A. The I-adic topology on A is that defined
by the filtration (In)n≥0. The I-adic topology on an A-module M is that defined by
(InM)n≥0. A filtration (Mn) of M is I-admissible if IMn ⊆ Mn+1 for all n. An I-
admissible filtration is called essentially I-adic (or I-stable) if there exists r such that
IMn =Mn+1 for n > r.
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Exercise.

(1) An I-admissible filtration is compatible with the I-adic filtration on A.

(2) An essentially I-adic filtration induces the I-adic topology on M .

Example. Let R be a ring, A = R[x1, . . . , xn] the polynomial ring in n variables. Let
I be the ideal generated by {x1, . . . , xn}, so I = {f ∈ A | f(0) = 0}. Then the I-adic

completion Â is R[[x1, . . . , xn]], the formal power series ring in n variables. To see this,
if (am) ∈ CA and xk11 . . . xknn is a monomial, the coefficient of this monomial in am is
independent of m for sufficiently large m. Call it αk (where k = (k1, . . . , kn)). Then
the map

CA → R[[x1, . . . , xn]]

(am) 7→
∑

k

αkx
k1
1 . . . xknn

is a ring homomorphism inducing an isomorphism Â ∼= R[[x1, . . . , xn]].

If f : M → N is an A-homomorphism, and M , N have the I-adic topologies, then f
is continuous. Hence I-adic completion is a functor from the category of A-modules to

the category of Â-modules. Also, if f is an epimorphism, the I-adic filtration on M
induces the I-adic topology on N via f (because f(InM) = Inf(M)).

7.4 (Artin-Rees Lemma). Let A be a commutative Noetherian ring, let I be an ideal
in A, let M be a finitely generated A-module and let N be a submodule of M . Then
the filtration on N induced by the I-adic filtration on M is essentially I-adic. That is,
there exists r such that for n > r, InM ∩N = In−r(IrM ∩N).

Proof. See [6, Cor. 10.10] ¤

Lemma 7.12. Let A be a commutative Noetherian ring and let I be an ideal in A. If

0 //L
i //M

π //N //0 is an exact sequence of finitely generated A-modules then

0 //L̂
î //M̂

π̂ //N̂ //0

is exact (whereˆdenotes I-adic completion).

Proof. This is immediate from Lemmas 7.11 and 7.4. ¤

Note. If 0 //L //M //N //0 is a split exact sequence of A-modules (where
A is any ring), L is a summand of M and the I-adic filtration on M induces the I-

adic filtration on L, so 0 //L̂
î //M̂

π̂ //N̂ //0 is exact by Lemma 7.11. Also, it
is split since I-adic completion is a functor. Hence I-adic completion commutes with
finite direct sums.

Let A be any ring, I an ideal in A, M an A-module. There is an Â-homomorphism

αM : Â⊗AM → M̂, αM(â⊗m) = âϕM(m),
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where ˆ denotes I-adic completion and Â is a right A-module via ϕA. This gives a

natural transformation α from Â⊗A – to the functor M 7→ M̂ .

Lemma 7.13. Let A be a ring, I an ideal in A, M a finitely generated A-module.
Then the map αM just defined is onto. If A is commutative Noetherian, αM is an
isomorphism.

Proof. There is a short exact sequence 0→ N → F →M → 0 where F ∼= An for some
integer n, giving a commutative diagram with top row exact:

Â⊗A N //

αN

²²

Â⊗A F //

αF

²²

Â⊗AM //

αM
²²

0

0 // N̂ // F̂ //
M̂

// 0

(since tensor product is right exact). Also, the map F̂ → M̂ is surjective by Lemma
7.11. Since αA is an isomorphism, αF is, by the note after Lemma 7.12, therefore αM
is an epimorphism by commutativity of the right-hand square. If A is commutative
Noetherian, N is finitely generated, so αN is an epimorphism by the first part, and the
bottom row is exact by Lemma 7.12. The lemma follows by “diagram chasing” (see
[98, Lemma 3.32]). ¤

Corollary 7.1. Let R be a commutative Noetherian ring, I an ideal in R, M a finitely
generated R-module and letˆdenote I-adic completion. Then

(1) R̂ is a flat R-algebra;

(2) if R is complete Hausdorff in the I-adic topology, then so is M ;

(3) if N is a submodule of M , then N̂ ∼= ϕM(N) = R̂ϕM(N);

(4) the topology on R̂ is the R̂I-adic topology.

Proof. (1) By Lemmas 7.12 and 7.13, R̂⊗R– is exact on the category of finitely generated
R-modules, and (1) follows (see [98, Theorem 3.53]).

(2) If R is complete Hausdorff then ϕR is an isomorphism (earlier exercise), so β :M →
R̂⊗RM defined bym 7→ 1⊗m is an isomorphism. It follows that ϕM is an isomorphism,

since there is a commutative diagram R̂⊗RM
αM //

M̂

M

β

OO

ϕM

::vvvvvvvvvv

hence M is complete Hausdorff.

(3) Let i : N →M be the inclusion map. Since R is Noetherian, N is finitely generated.
There is a commutative diagram

R̂⊗R N
1⊗i //

αN

²²

R̂⊗RM
αM

²²

N̂
î //

M̂.
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By Lemma 7.12, î is injective, so î : N̂ → ϕM(N) is an isomorphism by the note

preceding Lemma 7.11. Since αN is an isomorphism (by Lemma 7.13), î(N̂) = αM(1⊗
i)(R̂⊗R N) = R̂ϕM(N).

(4) By definition, the topology on R̂ is that defined by the filtration (Ĩk)k≥0. By Lemma
7.10,

Ĩk = ϕR(Ik)

= R̂ϕR(I
k) by (3)

= R̂Ik

= (R̂I)k.

¤

Corollary 7.2. Again let R be commutative Noetherian, I an ideal, M a finitely gen-

erated R-module and let ˆ denote I-adic completion. Then ÎM ∼= IM̂ and M/IM ∼=
M̂/IM̂ .

Proof. By Lemma 7.12 there is a short exact sequence:

0 // ÎM
î //M̂ //M̂/IM //0.

ButM/IM is discrete in the I-adic topology, so complete and Hausdorff, hence ϕM/IM :

M/IM → M̂/IM is an isomorphism. By Cor. 7.1(3), î maps ÎM isomorphically to

R̂ϕM(IM) = IR̂ϕM(M) = IM̂. ¤

Remark 7.1. If, in Cor. 7.2, A is an R-algebra, finitely generated as R-module,

and M is a finitely generated A-module, then M̂ is the AI-adic completion of M, all
homomorphisms in the proof are A-homomorphisms and so M/IM is A-isomorphic to

M̂/IM̂ (because (AI)kM = IkAM = IkM, so the I-adic topology on M coincides with
the AI-adic topology).

If R is a commutative local ring, R/ Jac(R) is called the residue field of R.

Lemma 7.14. Let R be a commutative Noetherian ring, I an ideal in R, R̂ the I-adic
completion. Then:

(1) R̂ is commutative Noetherian;

(2) if R is local and I = Jac(R), then R̂ is local, Jac(R̂) = R̂I and R, R̂ have the
same residue field.

Proof. (1) First, I is finitely generated, by y1, . . . , yn say. Let B = R[x1, . . . , xn] be the
polynomial ring, with the J-adic topology, where J is the ideal generated by x1, . . . , xn,

so B̂ = R[[x1, . . . , xn]] (see the example preceding Lemma 7.4). Let f : B → R be the
epimorphism given by f |R = idR, f(xi) = yi for 1 ≤ i ≤ n. Then f(Jn) = In, so the
I-adic topology is induced by the J-adic topology on B via f . By Lemma 7.11, the
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resulting ring homomorphism f̂ : B̂ → R̂ is surjective. Since B̂ is Noetherian (see [71,

Ch.VI,§3]), so is R̂.

(2) By Cor. 7.2, R̂/R̂I ∼= R/I (as rings), so R̂/R̂I is a field, hence Jac(R̂) ⊆ R̂I. Thus

it is enough to show that R̂I ⊆ Jac(R̂) (R̂/ Jac(R̂) is then a field, so R̂ is local). Let

x ∈ R̂I. By Cor. 7.1(4), xn −→ 0 as n −→∞ in R̂. Also,

(1 + (−1)nxn+1) = (1 + x)(1− x+ x2 + . . .+ (−1)nxn) = (1 + x)sn

say. Now R̂ is Hausdorff by Lemma 7.10, so we can take limits, to see that (1 + x) is
invertible with inverse 1 − x + x2 − x3 + . . . (sn+1 − sn → 0, so (sn) is Cauchy, hence

the series converges since R̂ is complete by Lemma 7.10). It follows that R̂I ⊆ Jac(R̂)
(see [8, Ch.8, Prop. 3.1]). ¤

Lemma 7.15 (Krull Intersection Theorem). Let R be a commutative Noetherian ring,
I an ideal contained in Jac(R), M a finitely generated R-module. Then the I-adic
topology on M is Hausdorff.

Proof. Let N =
∞⋂
n=0

InM . By Lemma 7.4, there exists r such that, for n > r,

N = InM ∩N = In−r(IrM ∩N) = In−rN ⊆ IN ⊆ N

so N = IN . By Lemma 7.1, N = 0, as required. ¤

Terminology. We shall use “complete local ring” to mean a commutative Noetherian
local ring R, complete with respect to the I-adic topology, where I = Jac(R). This
topology is Hausdorff by Lemma 7.15.

Proposition 7.1. Let R be a complete local ring with I = Jac(R) its maximal ideal and
let F = R/I. Suppose F ′/F is a finite field extension. Then there is a complete local
ring R′, containing R as a subring, such that R′ is R-free of rank [F ′ : F ], Jac(R′) = IR′

and R′/I ′ is F -isomorphic to F ′, where I ′ = Jac(R′).

Proof. We use induction on [F ′ : F ]. The canonical map R → F induces a map
ϕ : R[x]→ F [x], g 7→ ḡ, on the polynomial rings. First suppose that F ′ = F (a) for some
a 6∈ F , and let the minimum polynomial of a over F be f̄ , where f ∈ R[x] and f is monic.
Then F ′ ∼= F [x]/F [x]f̄ . Let R′ = R[x]/R[x]f . Since f is monic, R embeds in R′, and
R′ is R-free on 1, b, . . . , bn−1, where b = x+R[x]f and n = deg(f) = deg(f) = [F′ : F]. It
follows that R′ is Noetherian. Also, ϕ has kernel IR[x], so induces a ring epimorphism

ψ : R′ → F ′ with kernel
IR[x] +R[x]f

R[x]f
, which we denote by I ′. Thus I ′ = IR′and

R′/I ′ ∼= F ′ (the isomorphism obtained is an F -isomorphism). Let J be an ideal of R′.
Then ψ(J) = 0 or F ′. Now ψ(J) = F implies R′ = J + IR′ (as R-modules), which
implies R′ = J by Lemma 7.1. On the other hand, if ψ(J) = 0 then J ⊆ I ′. Hence
R′ is a local ring, with Jac(R′) = I ′ = IR′. Also, the I ′-adic topology on R′ coincides
with the I-adic topology on R′ (by Remark 7.1 after Cor. 7.2), so R′ is a complete
local ring by Cor. 7.1(2). In general, if F 6= F ′, we can find an intermediate field K
such that F ′ = K(a) for some a and [K : F ] < [F ′ : F ]. Inductively there is a complete
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local ring S satisfying the conclusions of Proposition 7.1 with K in place of F ′, and
applying the argument already given to K, S in place of F , R gives the desired ring
R′. (If s1, . . . , sm is an R-basis for S and r1, . . . , rn is an S-basis for R′, then {sirj} is
an R-basis for R′.) ¤

Before proving Hatttori’s theorem, some results on lifting idempotents are needed.

Lemma 7.16. Let A be a ring, I an ideal such that A is complete and Hausdorff with
respect to the I-adic topology. Then

(a) If ε is an idempotent in A/I, there exists an idempotent e ∈ A such that ē = ε
(where ē = e+ I).

(b) If e is an idempotent in A and ē = ζ + η, where ζ and η are orthogonal idem-
potents in A/I, there exist orthogonal idempotents f, g ∈ A such that e = f + g
and f̄ = ζ, ḡ = η.

Proof. (a) Take e1 ∈ A such that ē1 = ε and put f1 = 1− e1. By Lemma 7.4, there are
en, fn ∈ A for n ≥ 1 such that

(1) en ∈ Ren1 and fn ∈ Rfn1 ;
(2) 1 = en + fn.

where R is the subring of A generated by e1. Now e1f1 ∈ I, so by (1) enfn ∈ In. By
(2), we have

(3) e2n ≡ en mod In.

By (1),

en + en+1 ≡ 0 mod Ren1
en − en+1 = fn+1 − fn ≡ 0 mod Rfn1

Hence e2n − e2n+1 ≡ 0 mod In (since Ren1f
n
1 ⊆ In).

By (3),

(4) en ≡ en+1 mod In.

From (4), (en) is a Cauchy sequence. Since A is complete and Hausdorff, we can let
e = lim

n→∞
en. By (3), e2n − en −→ 0 and since e2n −→ e2 (A is a topological ring), e2 = e.

Since en −→ e, there exists n such that e − en ∈ I, and by (4), e − e1 ∈ I. Therefore
ē = ε.

(b) Choose a ∈ A such that ā = ζ. Let e1 = eae, so ē1 = ζ. Use the argument of (a)
to find a sequence (en) such that en −→ f , where f 2 = f and f̄ = ζ, and en ∈ Ren1 (R
being the subring of A generated by e1). Since e1e = e1 and en ∈ Ren1 , ene = en for all
n, hence fe = f (since A is Hausdorff). Similarly ef = f . Now let g = e− f to obtain
the desired decomposition of e. ¤

Corollary 7.3. In Lemma 7.16, if ε1, . . . , εn are orthogonal idempotents in A/I and
e ∈ A satisfies e2 = e and ē = ε1 + . . . + εn, then there are orthogonal idempotents
ei ∈ A such that e = e1 + . . .+ en and ēi = εi for 1 ≤ i ≤ n.
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Proof. We use induction on n. For n = 2 it follows from Lemma 7.16(b). If n > 2,
apply Lemma 7.16(b) to e, ε1 + . . .+ εn−1 and εn. There exist orthogonal idempotents
f , en ∈ A such that e = f + en, f̄ = ε1 + . . . + εn−1 and ēn = εn. Inductively we can
write f = e1+ . . .+ en−1, where the ei (for 1 ≤ i ≤ (n− 1)) are orthogonal idempotents
in A with ēi = εi.Then fen = 0 implies 0 = (eif)en = eien, and similarly enei = 0 for
1 ≤ i ≤ (n− 1). ¤

Hattori’s Proof of Swan’s Theorem.

Lemma 7.17. Let R be a commutative local ring with maximal ideal M, and put R =
R/M . Let A be an R-algebra, finitely generated as an R-module, let A = A/MA and
let ϕ : A→ A be the natural map. Then

(1) Jac(A) = ϕ−1(Jac(A)) ⊇MA;

(2) ϕ induces an isomorphism A/ Jac(A) ∼= A/ Jac(A) (as R-algebras);

(3) A/ Jac(A) is semisimple.

Proof. Let S be a simple A-module. Since S is cyclic, it is a finitely generated R-module.
Also, MS is an A-submodule of S, so is either 0 or S. By Lemma 7.1, MS = S implies
S = 0, hence MS = (MA)S = 0. It follows that MA ⊆ ⋂

S AnnA(S) = Jac(A).

Hence all maximal left ideals of A contain MA, so Jac(A) = ϕ−1(Jac(A)) by the
Correspondence Theorem. Now (2) follows by the Isomorphism Theorems, and (3)
follows from (2) since Jac

(
A/ Jac(A)

)
= 0 and A/ Jac(A) is finite dimensional over R,

so has the descending chain condition on left ideals. (See [65, Part II, §3, Theorem 20]
and [31, §4.6, Theorem 6]; note however, we are using the definition of semisimplicity
in [31], which differs from that in [65].) ¤

Proposition 7.2. Let R, M and R be as in Lemma 7.17. If R has characteristic p > 0
and G is a finite p-group, then RG is a local ring.

Proof. Let A = RG in Lemma 7.17. Then A = RG and the result follows by Lemma
7.17(2) and Lemma 7.3. ¤

Now let R be a complete local ring with maximal ideal M and again let A be an R-
algebra, finitely generated as an R-module. Put R = R/M , A = A/MA. The M -adic
topology on A is the same as the AM -adic topology on A (see Remark 7.1), so A is
complete and Hausdorff in the AM -adic topology by Cor. 7.1(2). By Lemma 7.17(1),
Jac(A) ⊇ AM (=MA) and Jac(A) is nilpotent since A is a finite dimensional R-algebra
(see [8, Ch.8, Prop.2.5]; A is left Artinian since its left ideals are R-subspaces). Hence
Jac(A)k ⊆ AM for some k, so the AM -adic topology on A coincides with the J-adic
topology, where J = Jac(A). By Lemma 7.17, A/J is semisimple, so there are primitive
orthogonal idempotents ε1, . . . , εs ∈ A/J such that 1 = ε1 + . . . + εs and for some
r ≤ s, any finitely generated (A/J)-module is isomorphic to (A

J
ε1)

m1 ⊕ . . . ⊕ (A
J
εr)

mr

for unique integers m1, . . . ,mr (see §1). By Cor. 7.3, there are orthogonal idempotents
e1, . . . , es ∈ A such that ei + J = εi for 1 ≤ i ≤ s and 1 = e1 + . . .+ es.



154 I. M. Chiswell

Lemma 7.18. In this situation, suppose P is a finitely generated projective A-module.
Then P ∼= (Ae1)

m1 ⊕ . . .⊕ (Aer)
mr for unique integers m1, . . . ,mr. Moreover, if Q is a

finitely generated projective A-module and Pm ∼= Qm, then P ∼= Q.

Proof. The quotient P/JP is a finitely generated (A/J)-module, so is isomorphic to
(A
J
ε1)

m1⊕ . . .⊕ (A
J
εr)

mr for some integers m1, . . . ,mr. Let Q = (Ae1)
m1⊕ . . .⊕ (Aer)

mr .
Then Q is A-projective (because A = Ae1⊕ . . .⊕Aes) and Q/JQ ∼= P/JP . By Lemma
7.1, Q ∼= P . Uniqueness is similarly proved and the last part follows easily. ¤

Lemma 7.19. In Lemma 7.18, assume A/ Jac(A) is a direct sum of matrix algebras
over fields, and if R has characteristic p > 0, assume T (A) = A/[A,A] has no p-torsion.
Then TA(e1), . . . , TA(er) are Z-linearly independent.

Proof. Suppose on the contrary that
r∑
i=1

niTA(ei) = 0, where the ni ∈ Z, not all zero.

We can assume n1 6= 0 in R. Applying the homomorphism ϕ∗ : T (A)→ T (A/J), where

ϕ : A → A/J is the natural map, gives
r∑
i=1

niTA/J(εi) = 0. Let A/J = A1 × . . . × Ar,

where each Ai is a matrix algebra over a field Fi, with εi ∈ Ai (see §1). Then
T (A/J) = T (A1)⊕ . . .⊕ T (Ar) (see Example (2) after Lemma 2.1).

and T (Ai) ∼= Fi (Example (3) after Lemma 2.1). Also, Fi is a field extension of R, so
they have the same characteristic. To see this, A/J is an R-algebra, since MA ⊆ J , so
there is a ring homomorphism R→ Z(A/J) (the centre of A/J). Obviously Z(A/J) =
Z(A1)× . . .× Z(Ar) and by projection we obtain a homomorphism R→ Z(Ai) which
is an embedding, R being a field. But Z(Ai) = Fi1Ai

(the set of scalar matrices) which
is isomorphic to Fi. Therefore all niTAi

(εi) = 0, hence TA1(ε1) = 0, a contradiction (see
Example (4) after Lemma 2.6). ¤

We shall now quote another result without proof.

Theorem 7.5. Let B be a finite-dimensional algebra over a field F . Then there is a
finite field extension F ′ of F such that F ′ ⊗F B/ Jac(F ′ ⊗F B) is split semisimple over
F ′ (i.e., is a direct sum of matrix algebras over F ′).

Proof. See [34, 7.12 and 7.13]. ¤

Theorem 7.6. Let R be a complete local ring with maximal ideal M, let A be an R-
algebra, finitely generated as R-module, and let F = R/M . If F has characteristic
p > 0, assume T (A) has no p-torsion. Let P, Q be finitely generated projective A-
modules. Then P ∼= Q if and only if rP/A = rQ/A.

Proof. We show that rP/A = rQ/A implies P ∼= Q, the other implication being obvious.
We first reduce to the case that A/ Jac(A) is a direct sum of matrix rings over fields.
By Theorem 7.5, there is a finite field extension F ′/F such that F ′⊗F A/ Jac(F ′⊗F A)
is split semisimple, where A = A/MA. By Prop. 7.1 there is a complete local ring
R′, extending R, such that R′ is R-free of rank [F ′ : F ], F ′ is F -isomorphic to R′/M ′
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(whereM ′ is the maximal ideal of R′), andM ′ =MR′. Let A′ = R′⊗RA, an R′-algebra
finitely generated as R′-module. Since R′ ⊗R – is exact (R′ is a free R-module), there
is a short exact sequence

0→ R′ ⊗RMA
i→A′ → R′ ⊗R (A/MA)→ 0

and Im(i) =M ′A′, so A′/M ′A′ ∼= R′⊗R (A/MA). Also, there is a short exact sequence

0→MR′ → R′ → F ′ → 0

giving an exact sequence:

MR′ ⊗R (A/MA)→ R′ ⊗R (A/MA)→ F ′ ⊗R (A/MA)→ 0.

Further, F ′⊗R(A/MA) = F ′⊗F (A/MA) (literally equal, with the usual construction of
tensor products [98, Theorem 1.4]). Hence A′/M ′A′ ∼= F ′⊗F (A/MA) (as F -algebras),
so A′/M ′A′ becomes a product of matrix algebras over F ′ on factoring Jac(A′/M ′A′).
Hence A′/ Jac(A′) is a product of matrix algebras over F ′ by Lemma 7.17(2). Moreover,
if F has characteristic p > 0, the map λp : T (A) → T (A), x 7→ px is one-to-one by
assumption. Since R′⊗R– is exact, 1⊗λp : R′⊗RT (A)→ R′⊗RT (A) is one-to-one. By
Cor. 2.2, R′⊗R T (A) ∼= T (A′), and 1⊗λp corresponds to multiplication by p on T (A′),
hence T (A′) has no p-torsion. Let P ′ = R′ ⊗R P , Q′ = R′ ⊗R Q. Then by Cor. 2.2,
rP/A = rQ/A implies rP ′/A′ = rQ′/A′ . Also, P ′ ∼= P n as A-module, where n = [F ′ : F ].
hence

P ′ ∼= Q′ implies P n ∼= Qn, which implies P ∼= Q by Lemma 7.18.

Therefore, replacing R, A by R′, A′, we can assume that A/ Jac(A) is a direct sum of
matrix rings over fields. Using Lemma 7.18 we can write

P ∼= (Ae1)
m1 ⊕ . . .⊕ (Aer)

mr

Q ∼= (Ae1)
n1 ⊕ . . .⊕ (Aer)

nr

and by Lemma 2.7,

rP =
r∑

i=1

miTA(ei), rQ =
r∑

i=1

niTA(ei) (see Example (2) after Lemma 2.6).

Thus, if rP = rQ then
r∑
i=1

(mi − ni)TA(ei) = 0. By Lemma 7.19, mi = ni for all i, so

P ∼= Q. ¤

Corollary 7.4. Let R be a commutative Noetherian local ring with maximal ideal M
and let A be an R-algebra, finitely generated as R-module. If R/M has characteristic
p > 0, assume T (M) has no p-torsion. If P, Q are finitely generated projective A-
modules, then P ∼= Q if and only if rP/A = rQ/A.

Proof. Again we need only show that rP/A = rQ/A implies P ∼= Q. The idea is to take

completions and apply Theorem 7.6. Let R̂ be the M -adic completion of R, a complete

local ring by Cor. 7.1(4) and Lemma 7.14, with maximal ideal R̂M . Let Â be the
M -adic completion of A, which is also the AM -adic completion of A (Remark 7.1 after

Cor. 7.2). As M -adic completion, Â is an R̂-module, and as AM -adic completion,

Â is a ring, and Â becomes an R̂-algebra. By Lemma 7.13, there is an isomorphism

αA : R̂ ⊗R A → Â, and it is an R̂-algebra isomorphism. By Lemma 7.14, the residue
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fields R/M and R̂/R̂M are isomorphic, so have the same characteristic. By Cor. 7.1,

R̂⊗R– is exact, and arguing as in Theorem 7.6, if this characteristic is p > 0, then T (Â)

has no p-torsion. By Lemma 7.13, there are isomorphisms R̂⊗R P ∼= P̂ , R̂⊗R Q ∼= Q̂,

where P̂ , Q̂ are AM -adic completions. Hence,

rP = rQ ⇒ rP̂ = rQ̂ by Cor. 2.2

⇒ P̂ ∼= Q̂ by Theorem 7.6

⇒ P̂

MP̂
∼= Q̂

MQ̂

⇒ P

MP
∼= Q

MQ
as A-modules

by Cor. 7.2 and Remark 7.1 following it. By Lemma 7.17(1), AM = MA ⊆ Jac(A),
and MP = (AM)P , so by Lemma 7.1, P ∼= Q. ¤

Theorem 7.7. Let R be an integral domain and let p ∈ Spec(R) be such that Rp is
Noetherian. Let G be a finite group such that no prime divisor of |G| is invertible in
R. Let P be a finitely generated projective RG-module. Then Pp = Rp ⊗R P is a free
Rp-module.

Proof. If R has characteristic p > 0, the residue field of Rp has characteristic p and G is
a finite p-group. Hence RpG is local (Prop. 7.2) and Pp is free by Lemma 7.2. If R has
characteristic 0, so does Rp, and T (RpG) is a free Rp-module (on the conjugacy classes
of G). Hence T (RpG) has no p-torsion for all primes p.

By Lemma 7.8, rP/RG = n.TRG(1) for some n.

By Cor. 2.2, rPp
= n.TRpG(1) = r(RpG)n .

By Cor. 7.4, Pp
∼= (RpG)n.

¤

8. Consequences of Swan’s Theorem

This section is preparatory to our second definition of an Euler characteristic. Before
coming to the applications of Swan’s Theorem, another notion of rank for modules of
type FP is discussed, based on the rank of a free module in the usual sense. There is
also a homological lemma whose elegant proof is due to K.S. Brown.

If A is a ring and F is a finitely generated free A-module, having a basis with n
elements, then rF = nTA(1) (Example (1) after Lemma 2.6). However, the integer n
need not be uniquely determined by F , in general (it is only unique modulo [A,A]). For
example, let V be a free module with a countably infinite basis over a ring R and let
U = V ⊕ V . Then it is easy to construct an isomorphism U ∼= V . Let A = EndR(U).
Then A ∼= HomR(V, U) ⊕ HomR(V, U) ∼= A ⊕ A, and the isomorphism obtained is an
A-isomorphism. It follows that A ∼= An, so A has a basis with n elements, for all n ≥ 1.
For a ring A, the following are equivalent:
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(a) if M is a finitely generated free A-module, any two bases of M have the same
number of elements;

(b) if M is a finitely generated free right A-module, any two bases of M have the
same number of elements;

(because if e1, . . . , en is a basis for M , the dual basis for M ∗ = HomA(M,A) has n
elements). When these conditions are satisfied, we say that A has IBN (short for
invariant basis number).

Examples.

(1) If f : A → B is a ring homomorphism and B has IBN, then A has IBN . For
if F is a free A-module with basis e1, . . . , en, then B ⊗A F is free with basis
1⊗ e1, . . . , 1⊗ en.

(2) Left Noetherian rings have IBN , since they satisfy (a) (see [8, Ch.6, Prop.9.3]
or [98, Theorem 4.9]), so (applying this to the opposite ring) right Noetherian
rings satisfy (b) and have IBN . In particular, division rings have IBN (this
can also be seen using the argument from elementary linear algebra, for vector
spaces over a field).

(3) Consequently any ring admitting a homomorphism to a division ring has IBN .
This includes commutative rings (they map onto the quotient by a maximal
ideal, which is a field) and local rings.

(4) If R is a ring with IBN and G is a group, then RG has IBN , applying (1) to
the augmentation map RG→ R.

Assume now that A is a ring with IBN . If M is a finitely generated free A module,
we define the rank rkA(M) to be the number of elements in a basis for M . (If A is
a division ring this is the same as the dimension of M , denoted by dimA(M).) More
generally, if M is of type FL over A, we can define rkA(M) =

∑
i≥0

(−1)i rkA(Li), where
L → M is a finite augmented projective resolution of M . (This is independent of the
choice of L by Cor. 3.3.)

Remark 8.1. If 0→ Ln → . . .→ L0 → 0 is exact and each Li is of type FL, then
n∑

i=0

(−1)i rkA(Li) = 0.

The proof is similar to the proof of Cor. 4.1.

In particular, if 0 → N → K → M → 0 is a short exact sequence of modules of type
FL, then rkA(K) = rkA(M) + rkA(N). Applying this to a split short exact sequence,
if M , N are of type FL, rkA(M ⊕ N) = rkA(M) + rkA(N). If C is a positive chain
complex of A-modules such that Hn(C) is of type FL for all n, and zero for all but
finitely many values of n, we define

rkA(C) =
∑

i≥0
(−1)i rkA(Hi(C)).
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Lemma 8.1. In this situation, if Cn is of type FL for all n, and zero for all but finitely
many values of n, then

rkA(C) =
∑

i≥0
(−1)i rkA(Ci).

Proof. This is similar to part of the proof of Lemma 6.12 and is left to the reader. ¤

If R is a principal ideal domain, then an R-module M is of type FL if and only if it
is finitely generated, in which case rkR(M) is the torsion-free rank of M (see the proof
of Cor. 6.5). Let R be a principal ideal domain, let p ∈ R be prime, M a finitely
generated R-module and let F = R/pR. Define

Mp = M/pM = F ⊗RM (see Remark 2.1)

pM = {m ∈M | pm = 0}
Lemma. With the definitions just given, let r = dimF (Mp), s = dimF (pM). Then
r = rkR(M) + s.

Proof. Since (M ⊕N)p =Mp ⊕Np and p(M ⊕N) = pM ⊕ pN , we can assume (by the
structure theory for R-modules) that M ∼= R/aR, where a is 0 or a prime power. Let
m = rkA(M). There are three cases.

(1) If a = 0, then m = 1, r = 1, s = 0.

(2) If a = qn where q is a prime, not an associate of p, then m = r = s = 0.

(3) If a = qn where q is an associate of p, then M ∼= R/pnR and m = 0, r = 1,
s = 1.

¤

If M is a Z-graded module, we say that M is finitely generated if
⊕
i∈Z

Mi is finitely

generated. (That is, Mi is finitely generated for all i, and is zero for all but finitely
many i.)

Lemma 8.2. Let C be a positive complex of finite length over a principal ideal domain
R, with H(C) finitely generated. Let p be a prime element of R and put F = R/pR.
Then

rkR(C) =
∑

i

(−1)i dimF (Hi(F ⊗R C)).

Proof. Let ri = dimF (Hi(C)p) and si = dimF (pHi(C)). There is a short exact sequence

of chain complexes 0→ C
p→C

π→F ⊗R C → 0, where p is short for λp (multiplication
by p). By Theorem 3.1, there is an exact sequence

. . .→ Hi(C)
p→Hi(C)

π∗−→Hi(F ⊗R C)
∂−→Hi−1(C)

p→Hi−1(C) . . .
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Thus Ker(∂) = Im(π∗) ∼= Hi(C)/Ker(π∗) = Hi(C)/ Im(p) = Hi(C)p and Im(∂) =
Ker(p) = pHi−1(C). Therefore, using the exact sequence

0→ Ker(∂)→ Hi(F ⊗R C)→ Im(∂)→ 0,

dimF (Hi(F ⊗R C)) = si−1 + ri. By the lemma, ri = rkR(Hi(C)) + si, and the result
follows on taking alternating sums. ¤

We now introduce a new notion of equivalence for chain complexes, weaker than homo-
topy equivalence.

Definition. A chain map f : C → C ′ is a weak equivalence if H(f) is an isomorphism.

Note. If f : A ⊕ B → C ⊕ D is a homomorphism of direct sums, then we can write
f(a, b) = (α(a) + β(b), γ(a) + δ(b)) for a ∈ A, b ∈ B, where α : A→ C, β : B → C etc.

Thus f can be defined by a formal matrix

(
α β
γ δ

)
, and composition of such homomor-

phisms corresponds to matrix multiplication. This also applies when the modules are
graded, with α etc having the same degree as f .

Lemma 8.3. Let f : (C, d)→ (C ′, d′) be a chain map, M the mapping cone of f . Then

(1) the map f is a weak equivalence if and only if H(M) = 0;

(2) the map f is a homotopy equivalence if and only if M is contractible.

Proof. (1) This follows immediately from the exact sequence of Prop. 3.1:

. . . Hn+1(M) //Hn(C)
Hn(f) //Hn(C

′) //Hn(M) //Hn−1(C)
Hn−1(f)// Hn−1(C ′) . . .

(2) Recall Mn = Cn−1 ⊕ C ′n with differential d′′(c, c′) = (−d(c), d′(c′) + f(c)), which is

represented by the matrix

(
−d 0
f d′

)
. Suppose r is a chain homotopy from idM to 0

and r has matrix

(
u g
w v

)
. Then g is a chain map, u is a chain homotopy from gf to

idC and v is a chain homotopy from idC′ to fg. hence f is a homotopy equivalence.
Conversely, given g, u and v satisfying these conditions, define r by the matrix(

u− g(vf + fu) g
−v(vf + fu) v

)
.

Then r is a chain homotopy from idM to 0. ¤

Corollary 8.1. If f : C → C ′ is a weak equivalence and C, C ′ are positive projective
complexes, then f is a homotopy equivalence.

Proof. This follows from Lemma 8.3 and Lemma 3.3 applied to the mapping cone M
of f . ¤

Proposition 8.1. Let A be a left Noetherian ring and let (C, d) be a positive chain
complex of projective A-modules with Hn(C) finitely generated for all n, and such that,
for some integer k,

Hn(HomA(C,M)) = 0
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for all n > k and all finitely generated A-modules M . Then C is homotopy equivalent
to a finite positive projective complex.

Proof. First we construct a positive complex (F, d′) with Fn finitely generated free for
all n and a weak equivalence τ : F → C. Assume Fi, τi, d

′
i have been constructed for

i ≤ n so that Hi(τ) is an isomorphism for i < n and Hn(τ) is onto. (Here Hn(τ) refers to
the complex . . . 0→ Fn → . . .→ F0 → 0 . . .). Since A is left Noetherian, Ker(Hn(τ)) is
finitely generated. Let x1, . . . , xr be elements of Ker(d′n) representing a set of generators
for Ker(Hn(τ)). Choose y1, . . . , yr in Cn+1 such that dn+1(yi) = τn(xi) for 1 ≤ i ≤ r.
Also, choose z1, . . . , zs in Cn+1 representing generators for Hn+1(C). Let Fn+1 be a
free A-module with basis e1, . . . , er, f1, . . . , fs. Define τn+1 : Fn+1 → Cn+1 by ei 7→ yi,
fj 7→ zj, and define d′n+1 : Fn+1 → Fn by ei 7→ xi, fj 7→ 0 (1 ≤ i ≤ r, 1 ≤ j ≤ s).
This constructs (F, d′) and τ recursively. By Cor. 8.1, τ is a homotopy equivalence,
hence HomA(F,M) is homotopy equivalent to HomA(C,M) via τ ∗, for any A-module
M . (see the definition after Lemma 5.2). This is left as an exercise, using the fact
that HomA(–,M) is an additive functor. Hence Hn(HomA(F,M)) = 0 for all finitely
generated A-modules M and all n > k. By Cor. 5.1 applied to F , Hn(C) = Hn(F ) = 0
for n > k. Also by Cor. 5.1, putting Bk = Im(d′k+1), Fk/Bk is a summand of Fk, so is
projective. Define

F n =





Fn if n < k

Fk/Bk if n = k

0 if n > k.

Then d′k induces d̄k : Fk/Bk → Fk−1. Putting d̄n = d′n for n < d and d̄n = 0 for n > k
gives a finite positive projective complex (F, d̄). Define τ̄k : F k → Ck to be the map
induced by τk, τ̄n = τn for n < k and τ̄n = 0 for n > k. Then τ̄ is a weak equivalence,
so a homotopy equivalence by Cor. 8.1. ¤

We now come to the applications of Swan’s Theorem.

Lemma 8.4. Let R be a principal ideal domain, G a finite group such that no prime
divisor of |G| is invertible in R. Let C be a positive projective complex of finite length,
with H(C) finitely generated over R. Put CG = R ⊗RG C. Then H(CG) is finitely
generated over R and

rkR(C) = |G| rkR(CG).

Proof. The ringRG is a finitely generatedR-module and its left ideals areR-submodules,
so RG is left Noetherian (see [98, Theorem 4.1]). By Prop. 8.1, C is homotopy equiv-
alent to a finite positive projective complex, say D. Since R ⊗RG – is a functor, CG
is homotopy equivalent to DG (see the argument after the definition of homology of a
group in §5), so we can assume C is a finite positive projective complex. By Lemma
8.1, it is enough to show that if P is a finitely generated projective RG-module, then
rkR(P ) = |G| rkR(PG), where PG = R⊗RG P . Now rkR(P ) is the free rank of P , which
is equal to dimF (F ⊗R P ), where F is the field of fractions of R. By Theorem 7.3,
F ⊗R P ∼= FGn, where n = rkR(PG). Since FG is an F -vector space of dimension |G|,
dimF (FG

n) = n|G|. ¤
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Note. If H is a subgroup of a group G and R is a ring, there is an isomorphism
R⊗RH RG→ R(H\G) (the free R-module on {Hg | g ∈ G}), given by 1⊗ g 7→ Hg for
g ∈ G. The proof is analogous to that of Lemma 5.1. If M is an RG-module, define
MG = R⊗RGM . Then MG

∼= M/IGM (apply Remark 2.1 to the augmentation map).

Lemma 8.5. Let 1→ N → G
π→Q→ 1 be a group extension, R a ring. Let M be an

RG-module. Then the action of G induces an action of Q on MN , and as RQ-modules,

MN
∼= RQ⊗RGM.

Further, MG
∼= (MN)Q.

Proof. The Q-action is given by q(r ⊗m) = r ⊗ gm, (q ∈ Q, r ∈ R, m ∈ M) for any
g ∈ G such that π(g) = q. Now

RQ⊗RGM ∼= (R⊗RN RG)⊗RGM by the preceding note
∼= R⊗RN M =MN by associativity of tensor product

and this gives an RQ-isomorphism. Also,

MG
∼= M/IGM ∼=

M/INM

IGM/INM
∼= MN/IGMN =MN/IQMN

∼= (MN)Q

(or use associativity of tensor product and the first part). ¤

Note. The lemma remains true if M is replaced by a chain complex of RG-modules.

Definition. Let G be a group such that H(G,Z) is finitely generated. Then we define
χ̃(G) =

∑
i≥0

(−1)i rkZ(Hi(G,Z)).

This is consistent with the earlier definition of χ̃ on FP(Z), by Cor. 6.5. We now prove
a limited version of the index formula for χ̃.

Lemma 8.6. Let G be a group with cdZ(G) <∞. Suppose N is a normal subgroup of
finite index in G. If H(N,Z) is finitely generated, then so is H(G,Z), and

χ̃(N) = (G : N)χ̃(G).

Proof. By Theorem 5.1, there is an augmented ZG-projective resolution P → Z of finite
length. This is also a ZN -projective resolution (see the argument of Lemma 5.5). Let
Q = G/N and let C = PN , so C ∼= ZQ⊗ZG P , by Lemma 8.5. Thus C is a projective
ZQ-complex of finite length, and H(C) = H∗(N,Z). By Lemma 8.5, CQ = PG, so
H(CQ) = H∗(G,Z). The result follows by Lemma 8.4. ¤

We are not quite ready to discuss the Brown definition of an Euler characteristic. In
order to establish the extension formula, given a group extension 1→ N → G→ Q→
1, we need to relate H(G,Z) with H(N,Z) and H(Q,Z). This is not done directly,
but by means of a complex piece of machinery called a spectral sequence, which is the
subject of the next section.
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9. Spectral Sequences

Exact Couples. Spectral sequences are needed to discuss the behaviour of the Brown
characteristic relative to group extensions. One of the best ways of introducing them
is by means of exact couples.

Definition. An exact couple is an exact triangle

D
i // D

j~~~~
~~

~~
~

E
k

``@@@@@@@
of A-modules

(which may be graded by some abelian group), where A is a ring.

Given such an exact couple, d = jk is a differential on E (d2 = j(kj)k = 0). We can

form the derived couple: D′
i′ // D′

j′~~||
||

||
||

E ′
k′

``BBBBBBBB

where D′ = i(D), E ′ = H(E, d) =
Ker(d)

Im(d)
=
k−1(Ker(j))

jk(E)
=
k−1i(D)

ji−1(0)
,

i′ = i|D′ , k′ is induced by k and j ′ by ji−1. This is also an exact couple, and
iteration leads to the following: given an exact couple as in the definition, define
Dr = ir−1(D)
Zr = k−1ir−1(D)
Br = ji−r+1(0)

and Er = Zr/Br. Also, let ir : D
r → Dr

jr : D
r → Er

kr : E
r → Dr

be i|Dr

be the map induced by ji−r+1

be the map induced by k.

Lemma 9.1. For r ≥ 1,

Dr
ir // Dr

jr}}{{
{{

{{
{{

Er

kr

aaCCCCCCCC
is an exact couple (called the rth

derived couple of the original one) and if dr = jrkr then E
r+1 ∼= H(Er, dr).

Proof. It is routine calculation to verify exactness. Calculation also shows

Ker(dr) = k−1ir(D)/ji−r+1(0)= Zr+1/Br

Im(dr) = ji−r(0)/ji−r+1(0) = Br+1/Br

and the lemma follows. ¤

If the modules are graded, deg(ir) = deg(i), deg(kr) = deg(k) and deg(jr) = deg(j) −
(r − 1) deg(i), where deg means degree of the map, hence

deg(dr) = deg(k) + deg(j)− (r − 1) deg(i).
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Filtrations.

Definition. A filtration of a Z-graded module H is a sequence (FpH)p∈Z of graded
submodules FpH of H, with FpH a submodule of Fp+1H for all p ∈ Z. A filtration of
a chain complex C is a filtration FpC of C such that FpC is a subcomplex of C for all
p ∈ Z.

Given a filtration (FpC) of a chain complex C, there are exact homology sequences (see
Cor. 3.1)

(∗) . . . //Hn(Fp−1C)
i //Hn(FpC)

j //Hn(FpC,Fp−1C)
k //Hn−1(Fp−1C) . . .

(one for each p ∈ Z). Define Z-bigraded modules D, E by

Dpq = Hp+q(FpC)

Epq = Hp+q(FpC,Fp−1C).

(In this context, p is called the filtration degree, q the complementary degree and
n = p+ q the total degree.) The exact sequences (∗) then form an exact couple

(∗∗)
D

i // D

j~~~~
~~

~~
~

E
k

``@@@@@@@

with bidegree(i) = (1,−1), bidegree(j) = (0, 0) and bidegree(k) = (−1, 0). The derived
couples give bigraded modules and differentials (Er, dr)r≥1 with Er+1 ∼= H(Er, dr) and
the differential dr has bidegree

(−1, 0) + (0, 0)− (r − 1)(1,−1) = (−r, r − 1).

Definition. A k-homology spectral sequence over a ring A is a sequence (Er, dr)r≥k of
Z-bigraded A-modules Er and differentials dr : Er → Er of bidegree (−r, r − 1) such
that Er+1 ∼= H(Er, dr).

(We are now writing dr rather than dr since superscripts will no longer be needed for
products of maps, and subscripts will be used for the grading.) Thus a filtration of a
complex C determines a 1-spectral sequence with

E1
pq = Hp+q(FpC,Fp−1C).

(We shall only consider homology spectral sequences and so just write k-spectral se-
quence.) Given a k-spectral sequence (Er, dr), we can define submodules Br, Zr

of Er with Br ⊆ Br+1 ⊆ Zr+1 ⊆ Zr, for all r ≥ k, together with isomorphisms
λr : Zr/Br → Er, as follows: Zk = Ek, Bk = 0, λk = idEk . Assuming Zr, Br, λr
defined, let

Zr+1/Br = λ−1r (Ker(dr)), Br+1/Br = λ−1r (Im(dr))

and let λr+1 be the composite map:
Zr+1

Br+1

∼=−→ Ker(dr)

Im(dr)

∼=−→
given
isom.

Er. (This defines Zr+1,

Br+1 using the Correspondence Theorem.) We obtain

0 = Bk ⊆ . . . ⊆ Br ⊆ . . . ⊆ B∞ ⊆ Z∞ ⊆ . . . ⊆ Zr ⊆ . . . ⊆ Zk = Ek
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where

B∞pq =
∞⋃

r=k

Br
pq, Z∞pq =

∞⋂

r=k

Zr
pq.

Definition. The limit term of the spectral sequence is the Z-bigraded module E∞ =
Z∞/B∞.

Lemma 9.2. If (Er, dr) is the 1-spectral sequence derived from a filtration (FpC) of a
complex C as above, then

Zr
pq = Ker(Hp+q(FpC,Fp−1C) −→ Hp+q−1(Fp−1C,Fp−rC))

Br
pq = Im(Hp+q+1(Fp+r−1C,FpC) −→ Hp+q(FpC,Fp−1C))

(the maps come from the exact homology sequences of the triples (FpC,Fp−1C,Fp−rC)
and (Fp+r−1C,FpC,Fp−1C). See Cor. 3.2.

Proof. The spectral sequence is derived from the exact couple (∗∗), and from the proof
of Lemma 9.1, our notation is consistent with that for exact couples and

Zr = k−1ir−1(D)

Br = ji−r+1(0)

(and the λr are identity maps). There is a commutative diagram with exact bottom
row:

(1)

Hp+q(FpC,Fp−1C)
= //

k
²²

Hp+q(FpC,Fp−1C)

∂
²²

Hp+q−1(Fp−rC)
ir−1 // Hp+q−1(Fp−1C) // Hp+q−1(Fp−1C,Fp−rC)

The bottom row is part of the exact homology sequence of the pair (Fp−1C,Fp−rC)
(see Cor. 3.1), ∂ is the connecting homomorphism for the triple (FpC,Fp−1C,Fp−rC)
(see Cor. 3.2). The indicated mapping is ir−1 by functoriality of H, and the square is
commutative by naturality of ∂, that is, Theorem 3.2 applied to

0 // Fp−1C //

²²

FpC //

²²

FpC/Fp−1C //

=

²²

0

0 // Fp−1C/Fp−rC // FpC/Fp−rC // FpC/Fp−1C // 0.

Hence Zr
pq = Ker(∂). The claim about Br

pq comes from a similar diagram:

(2) Hp+q+1(Fp+r−1C,FpC)

=

²²

// Hp+q(FpC)
ir−1 //

j

²²

Hp+q(Fp+r−1C)

Hp+q+1(Fp+r−1C,FpC) // Hp+q(FpC,Fp−1C).

¤

Lemma 9.3. In Lemma 9.2, d1pq : Hp+q(FpC,Fp−1C) → Hp+q−1(Fp−1C,Fp−2C) is the
connecting homomorphism of the triple (FpC,Fp−1C,Fp−2C).
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Proof. In the case r = 2, the commutative square in (1) above gives a commutative
triangle

Hp+q(FpC,Fp−1C)

k
²²

∂

**UUUUUUUUUUUUUUUU

Hp+q−1(Fp−1C)
j // Hp+q−1(Fp−1C,Fp−2C)

and d1 = jk. ¤

Definition. A filtration (ΦpH) of a Z-graded module H is bounded if, for each n, there
exist integers s and t such that

ΦpHn = 0 for p < s

ΦpHn = Hn for p > t.

Definition. A k-spectral sequence (Er) converges to a Z-graded module H, written

Ek
pq =⇒

p
Hn,

if there are a bounded filtration (ΦpH) of H and isomorphisms E∞pq
∼= ΦpHn/Φp−1Hn

(where n = p+ q).

Theorem 9.1. Let (FpC) be a bounded filtration of a complex C and let (Er) be the
corresponding spectral sequence, viewed as a 2-spectral sequence by ignoring E1. Then:

(1) the sequence (ΦpH), where ΦpHn = Im(Hn(FpC)→ Hn(C)) (image of the map
induced by inclusion FpC ↪→ C) is a bounded filtration of H(C);

(2) for each pair p, q, E∞pq = Er
pq for all sufficiently large r;

(3) further, E2
pq =⇒

p
Hn(C).

Proof. By Lemma 9.2, for fixed p, q and all sufficiently large r,

Zr
pq = Z∞pq=Ker(Hp+q(FpC,Fp−1C)

α−→Hp+q−1(Fp−1C))

Br
pq = B∞pq=Im(Hp+q+1(C,FpC)−→Hp+q(FpC,Fp−1C))

=Ker(Hp+q(FpC,Fp−1C)
β−→Hp+q(C,Fp−1C))

(from the exact homology sequence of (C,FpC,Fp−1C)) and (2) follows. Using the exact
homology sequences of (C,FpC) and (C,Fp−1C),

ΦpHn = Ker(Hp+q(C)
γ−→Hp+q(C,FpC))

Φp−1Hn = Ker(Hp+q(C)
δ−→Hp+q(C,Fp−1C)) (n = p+ q)
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and boundedness of (ΦpH) follows. With the maps α, etc as indicated above, there is
a commutative diagram with exact rows and columns:

Hp+q(C)
γ // Hp+q(C,FpC) // Hp+q−1(FpC)

Hp+q(C)
δ // Hp+q(C,Fp−1C)

ε //

ζ

OO

Hp+q−1(Fp−1C)

OO

Hp+q(FpC,Fp−1C)

β

OO

Hp+q(FpC,Fp−1C).

α

OO

Now
ΦpHn

Φp−1Hn

=
Ker(γ)

Ker(δ)
=
δ−1(Ker(ζ))

δ−1(0)
∼= Im(δ) ∩ Ker(ζ) and symmetrically E∞pq =

Ker(α)

Ker(β)
∼= Im(β) ∩Ker(ε). By exactness, Im(β) = Ker(ζ) and Ker(ε) = Im(δ), and (3)

follows. ¤

Bicomplexes. A bicomplex is a Z-bigraded nodule C = (Cpq) with two differentials

d′ of bidegree (−1, 0)
d′′ of bidegree (0,−1)

such that d′d′′ + d′′d′ = 0.

Cp−1,q

d′′

²²

Cpq
d′oo

d′′

²²
Cp−1,q−1 Cp,q−1

d′
oo

The total complex (T (C), d) is the chain complex with T (C)n =
⊕

p+q=n

Cpq and d|Cpq =

d′pq + d′′pq.

Note. If instead of d′d′′ + d′′d′ = 0 one has d′d′′ = d′′d′, one can obtain a bicomplex by
replacing d′′ by e′′, where e′′pq = (−1)pd′′pq.

Example. Let (U, u), (V, v) be chain complexes over a ring A ((U, u) of right A-
modules). Define Cpq = Up ⊗A Vq, d′ = u ⊗ 1, d′′ = 1 ⊗ v, so d′, d′′ are differentials
with d′d′′ = d′′d′. Changing d′′ as in the note gives a bicomplex C. The tensor product
U ⊗A V is defined to be the total complex of C.

Given a bicomplex (C, d′, d′′), fix p, to get a chain complex

. . . Cp,q+1
d′′−→Cpq

d′′−→Cp,q−1 → . . . .

Denote its homology by H ′′p,∗(C), that is, H ′′pq(C) = Ker(d′′pq)/Im(d′′p,q+1). The map
d′pq : Cpq → Cp−1,q induces a differential

δ′pq : H
′′
pq(C)→ H ′′p−1,q(C) by δ′pq(c+ Im(d′′p,q+1)) = d′pq(c) + Im(d′′p−1,q+1)
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so for fixed q, (H ′′∗,q(C), δ′) is a chain complex; denote its homology by H ′∗(H
′′
∗,q(C)),

that is,

H ′p(H
′′
pq(C)) = Ker(δ′pq)/Im(δ′p+1,q).

Similarly define H ′pq(C) = Ker(d′pq)/Im(d′p+1,q). We obtain an induced differential δ′′pq :
H ′pq(C)→ H ′p,q−1(C) and homology modules H ′′q (H

′
pq(C)) = Ker(δ′′pq)/Im(δ′′p,q+1).

First Filtration. With (C, d′, d′′) as above, let T = T (C). We can define a filtration
on T by

(FpT )n =
⊕
i≤p

Ci,n−i.

Viewing the modules Cpq as situated at the lattice points (p, q) in the plane, (FpT ) is
obtained by replacing Cpq by 0 to the right of the line x = p.

-

6

d′′

d′

x+ y = n

x+ y = n− 1

x

y

x = p

¾

?

?

¾

(Tn is the direct sum of all modules on the line x+ y = n.)

Lemma 9.4. Let (Er) be the 1-spectral sequence obtained from the filtration (FpT ) just
defined. Then

E2
pq = H ′p(H

′′
pq(C)).

Proof. The quotient complex FpT/Fp−1T has (FpT/Fp−1T )n = Cp,n−p and differential
d′′ (column x = p in the picture), hence

E1
pq = Hp+q(FpT, Fp−1T ) = H ′′pq(C).
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By Lemma 9.3, the spectral sequence differential d1 is the connecting homomorphism,
∂, arising from the short exact sequence of chain complexes

0→ Fp−1T

Fp−2T
i−→ FpT

Fp−2T
π−→ FpT

Fp−1T
→ 0.

In total degrees n and n− 1 (with p+ q = n), this looks like:

0 // Cp−1,q+1
//

d′′

²²

Cp−1,q+1 ⊕ Cpq π //

(d′′,d′+d′′)
²²

Cpq //

d′′

²²

0

0 // Cp−1,q
i // Cp−1,q ⊕ Cp,q−1 // Cp,q−1 // 0.

Recall (Section 2) that, to define ∂, given z ∈ Cpq with d′′(z) = 0, we first choose
y ∈ Cp−1,q+1 ⊕ Cpq such that π(y) = z. We take y = (0, z). Then

∂(z + Im(d′′)) = i−1(d′′, d′ + d′′)(y) + Im(d′′) = i−1(d′(z), 0) + Im(d′′)

= d′(z) + Im(d′′)

(the choice of inverse image under i is immaterial, and we take it to be d′(z)). Hence
∂ = δ′ and the result follows. ¤

Second Filtration. This filtration is denoted by (GpT ). To obtain GpT , we replace
all Cpq above the line y = p by 0. Thus (GpT )n =

⊕
j≤p

Cn−j,j.

Note.

(1) A Z-bigraded module C is called first-quadrant if Cpq = 0 for p < 0 or q < 0,
and third-quadrant if Cpq = 0 for p > 0 or q > 0.

(2) If C is a bicomplex, then both filtrations of T are bounded if and only if, for all
n, there are only finitely many pairs (p, q) with p+ q = n and Cpq 6= 0.

(3) Hence, if C is first or third quadrant, both filtrations are bounded.

Theorem 9.2. Let C be a first or third quadrant bicomplex. Then there are two con-
vergent 2-spectral sequences arising from the first and second filtrations of T (C):

(1) E2
pq = H ′p(H

′′
pq(C))=⇒

p
Hn(T (C));

(2) E2
pq = H ′′p (H

′
qp(C))=⇒

p
Hn(T (C)).

Proof. (1) This is immediate from Theorem 9.1 and Lemma 9.4.

(2) This follows from (1) applied to the transpose of C, that is, the bicomplex (D, e′, e′′)
given by Dpq = Cqp, e

′
pq = d′′qp and e′′pq = d′qp, since T (D) = T (C) and the second

filtration for T (C) is the first filtration for T (D). ¤

Definition. Let M be a Z-bigraded module over a ring A with IBN . Suppose Mpq is
of type FL over A for all pairs p, q, and Mpq = 0 for all but finitely many pairs p, q.
Then put

rkA(M) =
∑

p,q

(−1)p+q rkA(Mpq).
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Proposition 9.1. Suppose A is a principal ideal domain, (Er, dr) is a k-spectral se-
quence over A and

Ek
pq =⇒

p
Hn.

If Ek
pq is finitely generated for all p, q, then Hn is finitely generated for all n. If also

Ek
pq = 0 for all but finitely many p, q, then Hn = 0 for all but finitely many n, and

rkA(E
k) =

∑

n∈Z
(−1)n rkA(Hn).

Proof. Suppose Ek
pq is finitely generated for all p, q. Since E∞pq is isomorphic to a section

(subquotient) of Ek
pq, E

∞
pq is finitely generated for all p, q. There is a bounded filtration

(ΦpH) of H such that (ΦpH)n/(Φp−1H)n ∼= E∞p,n−p and it follows that Hn is finitely

generated for all n. Now suppose also Ek
pq = 0 for all pairs (p, q) 6∈ I, where I is some

finite subset of Z× Z. Then for (p, q) 6∈ I and all r ≥ k, Er
pq = 0 = E∞pq (again because

they are sections of Ek
pq). Consequently, for each pair p, q, there exists l such that, for

r ≥ l, Er
p−r,q+r−1 = Er

p+r,q−r+1 = 0, so Ker(drpq) = Er
pq and Im(drp+r,q−r+1) = 0. Hence

El
pq
∼= El+1

pq
∼= . . . ∼= E∞pq . It follows that, for some r, Er ∼= E∞ as Z-bigraded module.

Using induction on r and the exact sequences

0→ Ker(drpq)→ Er
pq →

drpq−→ Im(drpq)→ 0

0→ Im(drp+r,q−r+1)→ Ker(drpq)→ Er+1
pq → 0

we see that rkA(E
r) = rkA(E

k) for all integers r ≥ k (see Lemma 6.12 and Cor. 6.5
for a similar argument). Hence rkA(E

k) = rkA(E
∞). Also, we can find s, t such that

E∞pq = 0 for |p| > s or |q| > t. Then for |n| > s + t, E∞p,n−p = 0 for all p, so Hn = 0.
Thus Hn = 0 for all but finitely many n. Since the filtration (ΦpH) is bounded,

rkA(Hn) =
∑

p∈Z
rkA

(
ΦpHn

Φp−1Hn

)
=
∑

p∈Z
rkA(E

∞
p,n−p).

Hence,
∑

n∈Z
(−1)n rkA(Hn) =

∑

p,n

(−1)n rkA(E∞p,n−p) = rkA(E
∞) = rkA(E

k).

¤

Remark 9.1. Let G be a group, R a commutative ring and M an RG-module. Then
as noted in Section 5, M is a right RG-module, via mg = g−1m (g ∈ G, m ∈ M). If
N is an RG-module, M ⊗RN is an RG-module with “diagonal” G-action: g(m⊗n) =
gm⊗gn. From the construction of tensor products, M⊗RGN is obtained from M⊗RN
by factoring out the RG-submodule generated by X = {m⊗ gn−mg ⊗ n | g ∈ G,m ∈
M,n ∈ N}. Now

X = {gm⊗ gn−m⊗ n | g ∈ G,m ∈M,n ∈ N} (replacing m by gm)

= {(g − 1)(m⊗ n) | g ∈ G,m ∈M,n ∈ N},

so this submodule is IG(M ⊗R N), hence M ⊗RG N ∼=
M ⊗R N

IG(M ⊗R N)
∼= (M ⊗R N)G.
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(Recall: if U is an RG-module, UG = R⊗RGU ∼= U/IGU-see the note preceding Lemma
8.5.) The usual isomorphism M⊗RN ∼= N⊗RM induces an isomorphism M⊗RGN ∼=
N ⊗RGM. Similar remarks apply when M, N are chain complexes.

Definition. Let R be a commutative ring, G a group. An RG-module U is called
H∗-acyclic if H∗(G,U) = 0 for all n > 0.

Theorem 9.3. Let R be a commutative ring, G a group, U a positive complex of RG-
modules with every Un H∗-acyclic. Then there is a convergent 2-spectral sequence

E2
pq = Hp(G,Hq(U)=⇒

p
Hn(UG).

Proof. Let V → R be an augmented RG-projective resolution. View U as a complex
of right RG-modules (see Remark 9.1: ug = g−1u for g ∈ G, u ∈ Un). Then (example
above) U ⊗RG V is the total complex of a bicomplex C with

Cpq = Up ⊗RG Vq.
Now C is first quadrant, so by Theorem 9.2, there are two spectral sequences converging
to H(U ⊗RG V ). Consider the first spectral sequence, with E2

pq = H ′p(H
′′
pq(C)). Now

(H ′′pq(C))q∈Z is the homology of the pth column of C:

Up ⊗ Vq
↓

Up ⊗ Vq−1
↓
...

which, up to sign of the differential, is Up ⊗RG V . Hence

H ′′pq(C) = Hq(G,Up) = 0 if q 6= 0.

For q = 0, the exact sequence V1 → V0 → R → 0 gives an exact sequence of chain
complexes

U ⊗RG V1 → U ⊗RG V0 → UG → 0

(UG ∼= U⊗RGR-see Remark 9.1 above). It follows that there is an isomorphism of chain
complexes

(H ′′p,0(C), δ′p,0)
∼= UG.

Thus

E2
pq =

{
0 if q 6= 0

Hp(UG) if q = 0.

Therefore all differentials dr are 0 for r ≥ 2 and E∞pq = E2
pq for all p, q. Also, puttingH =

H(U ⊗RG V ), there is a bounded filtration (ΦpH) of H such that (ΦpH)n/(Φp−1H)n ∼=
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E∞p,n−p. Hence

(ΦnH)n/(Φn−1H)n = Hn(UG)

(Φn−1H)n = (Φn−2H)n = . . . = 0

(ΦnH)n = (Φn+1H)n = . . . = Hn

and so Hn = Hn(UG). Now consider the second spectral sequence. First,

H ′pq(C) = Hp(U ⊗RG Vq) ∼= Hp(U)⊗RG Vq
since –⊗RG Vq is exact (details are left as an exercise). Moreover, this gives an isomor-
phism of chain complexes

(H ′p,∗(C), δ′′p,∗)
∼= Hp(U)⊗RG V

up to sign of the differential. Hence H ′′q (H
′
pq(C)) = Hq(G,Hp(U)). Thus the second

spectral sequence has E2
pq = Hp(G,Hq(U)), so this is the required spectral sequence. ¤

Recall that, if f : A → B is a ring homomorphism and M is an A-module, B ⊗A M
is called the B-module induced from M . The next result is about induced modules,
where H is a subgroup of a group G and f is the corresponding inclusion map of group
rings.

9.4 (Shapiro’s Lemma). Let G be a group, H a subgroup of G, R a commutative
ring, M an RH-module. Then for all n,

Hn(H,M) ∼= Hn(G,RG⊗RH M).

Proof. Let P → R be an augmented RG-projective resolution, so an RH-projective
resolution (Remark 5.2). Then

H∗(H,M) = H(M ⊗RH P )
∼= H(M ⊗RH (RG⊗RG P )) (see Remark 2.1)
∼= H((M ⊗RH RG)⊗RG P )
= H∗(G,RG⊗RH M).

(Some care is needed in using associativity of tensor product. We view M ⊗RH RG as
a right RG-module via (m⊗ g)g1 = m⊗ (gg1) (g, g1 ∈ G, m ∈M). But RG⊗RH M is
viewed as a rightRG-module via (g⊗m)g1 = g−11 (g⊗m) = (g−11 g)⊗m. The isomorphism
M ⊗RH RG→ RG⊗RH M used in the last step is given by m⊗ g 7→ g−1 ⊗m.) ¤

Taking H = 1 gives the following

Corollary 9.1. Induced modules RG⊗RM are H∗-acyclic.

Lemma 9.5. Let G be a group, R a commutative ring, M an RG-module. Let M0 be
the underlying R-module corresponding to M . Then RG⊗RM (with diagonal G-action)
is RG-isomorphic to RG⊗RM0 (as induced module).
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Proof. There are well-defined maps ϕ : RG⊗RM0 → RG⊗RM
g ⊗m 7→ g ⊗ gm

ψ : RG⊗RM → RG⊗RM0

g ⊗m 7→ g ⊗ g−1m

which are clearly inverse maps and RG-homomorphisms. ¤

Theorem 9.5 (Hochschild-Serre). Let 1→ N → G→ Q→ 1 be a group extension, R
a commutative ring, M an RG-module. Then there is a convergent 2-spectral sequence

E2
pq = Hp(Q,Hq(N,M))=⇒

p
Hn(G,M).

Proof. Let P → R be an augmented RG-projective resolution. Using Remark 9.1
preceding Theorem 9.3:

M ⊗RG P ∼= (M ⊗R P )G
∼= ((M ⊗R P )N)Q by Lemma 8.5
∼= (M ⊗RN P )Q.

Thus, putting U =M ⊗RN P ,
H∗(G,M) ∼= H(UQ)

H∗(N,M) ∼= H(U).

The theorem will follow from Theorem 9.3 provided each Up is H∗-acyclic (as RQ-
module). Summands and direct sums of H∗-acyclic modules are H∗-acyclic, since for
any collection {Mi} of RQ-modules, H∗(Q,

⊕
iMi) ∼=

⊕
iH∗(Q,Mi) (because tensor

product distributes over direct sum). Hence it is enough to show that M ⊗RN RG is
H∗-acyclic. Now

M ⊗RN RG ∼= (M ⊗R RG)N ∼= (RG⊗RM)N
∼= (RG⊗RM0)N (see Lemma 9.5)
∼= RQ⊗RG (RG⊗RM0) by Lemma 8.5
∼= RQ⊗RM0 (by associativity of tensor product)

which is H∗-acyclic by Cor. 9.1. ¤

10. The Brown Characteristic

We are now ready to give the second definition of an Euler characteristic and establish
its properties.

Definition. A group G is of finite homological type (written G ∈ FHT) if

(i) G has a subgroup H of finite index with cdZ(H) <∞;

(ii) for all ZG-modules M which are Z-finitely generated, Hn(G,M) is finitely gen-
erated for all n.

Proposition 10.1. Let G be a group, H a subgroup of G of finite index. Then G ∈ FHT
if and only if H ∈ FHT.
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Proof. Suppose G ∈ FHT and let K be a subgroup of finite index with cdZ(K) < ∞.
Then (H : H ∩ K) < ∞ and cdZ(H ∩ K) < ∞ by Lemma 5.5. If M is a Z-finitely
generated ZH-module, then by Lemma 9.4,

Hn(H,M) ∼= Hn(G,ZG⊗ZH M)

and ZG⊗ZH M is Z-finitely generated. For M is a quotient of Zm for some integer m,
hence ZG ⊗ZH M is a quotient of (ZG ⊗ZH Z)m, so of Z(G/H)m by Lemma 5.1, and
G/H is finite. It follows that Hn(H,M) is finitely generated, so H ∈ FHT. Suppose
H ∈ FHT. If K is a subgroup of H of finite index such that cdZ(K) < ∞, then
(G : K) < ∞, so (i) in the definition holds for G. Since

⋂
g∈G

gHg−1 has finite index in

H, it is in FHT by what has already been proved, and is normal in G. Thus we can
assume H £ G. Let Q = G/H, and let M be a Z-finitely generated ZG-module. By
Theorem 9.5, there is a spectral sequence

E2
pq = Hp(Q,Hq(H,M))=⇒

p
Hn(G,M)

and Hq(H,M) is finitely generated by assumption, hence so is E2
pq since Q is finite (this

is left as an exercise). By Prop. 9.1, Hn(G,M) is finitely generated for all n. ¤

Let C be the class of all G ∈ FHT with cdZ(G) <∞. Then for G ∈ C, χ̃(G) is defined
(recall that χ̃(G) =

∑
i(−1)i rkZ(Hi(G,Z)) -see the definition preceding Lemma 8.6).

Proposition 10.2. The map χ̃ is an Euler characteristic on C. That is, if G ∈ C and
H is a subgroup of G of finite index, then H ∈ C and χ̃(H) = (G : H)χ̃(G).

Proof. The class C is closed under taking subgroups of finite index by Prop. 10.1 and
Lemma 5.5. If G ∈ C and (G : H) <∞, let N =

⋂
g∈G

gHg−1. It is enough to show that

χ̃(N) = (G : N)χ̃(G) and χ̃(N) = (H : N)χ̃(H), so we can assume H £G. The result
then follows by Lemma 8.6. ¤

By Prop. 10.1, the class vC of finite extensions of groups in C is just FHT. We can
extend χ̃ to an Euler characteristic χ on FHT in the usual way. If G ∈ FHT, let H be
a subgroup of finite index in G with cdZ(H) <∞, and define

χ(G) =
1

(G : H)
χ̃(H).

Proposition 10.3. The map χ is an Euler characteristic on FHT. That is, if G ∈ FHT
and (G : H) <∞, then H ∈ FHT and χ(H) = (G : H)χ(G).

Proof. This follows easily from Prop. 10.2. ¤

Note.

(1) Clearly FP(Z) ⊆ C. Recall that, for G ∈ FP(Z), µ(G) = χG(1), while by Cor.
6.5, χ̃(G) = χ(G) =

∑
τ∈T (G)

χG(τ). It is not known whether µ(G) = χ(G) for all

G ∈ FP(Z). It is true if G ∈ FL(Z) (χG = µ(G)[1] for such G).
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(2) By Prop. 10.1, vFP(Z) ⊆ FHT and χ, µ agree on vFL(Z). It is false that
FP(Q) ⊆ FHT. There are groups in FP(Q) which are not virtually torsion-free.
An example will be given later in this section.

The Serre Extension Theorem. This is an important result relating the cohomolog-
ical dimension of a group with that of a subgroup of finite index. The next few lemmas
are needed in its proof. If f : A→ B is a ring homomorphism and M is an A-module,
as well as the induced module we can form the B-module coinduced from M . This is
HomA(B,M), with scalar multiplication bf(x) = f(xb) for b, x ∈ B, f ∈ HomA(B,M).
In Section 9 we proved Shapiro’s Lemma on homology of induced modules. There is a
version for cohomology of coinduced modules.

10.1 (Shapiro’s Lemma for Cohomology). Let G be a group, H a subgroup, R a
commutative ring, M an RH-module. Then

Hn(H,M) ∼= Hn(G,HomRH(RG,M)).

Proof. Let P → R be an augmented RG-projective resolution (so an RH-projective
resolution). The adjoint isomorphism ([98, Theorem 2.11]) gives an isomorphism of
cochain complexes

HomRH(P,M) ∼= HomRG(P,HomRH(RG,M))

and the result follows. ¤

For subgroups of finite index, coinduced and induced modules coincide.

Lemma 10.1. If H is a subgroup of finite index in a group G and R is a commutative
ring, then for any RH-module M, there is an RG-module isomorphism RG⊗RH M ∼=
HomRH(RG,M).

Proof. Using the fact that RG is R-free on G, define ϕ0 : M → HomRH(RG,M) by

ϕ0(m)(g) =

{
gm if g ∈ H
0 if g 6∈ H and ϕ : RG⊗RHM → HomRH(RG,M) by ϕ(g⊗m) =

gϕ0(m). It is easy to check that ϕ is an RG-homomorphism. Take a transversal T so
that G =

∐
t∈T

tH (disjoint union) and define ψ : HomRH(RG,M) → RG ⊗RH M by

ψ(f) =
∑
t∈T

t⊗ f(t−1), and check that ϕ, ψ are inverse maps. ¤

In the next two lemmas, R is a commutative ring.

Lemma 10.2. If n = cdR(G) < ∞, then there is a free RG-module F such that
Hn(G,F ) 6= 0.

Proof. There is an RG-moduleM such thatHn(G,M) 6= 0, and there is a free module F
mapping ontoM , hence a short exact sequence of RG-modules 0→ K → F →M → 0.
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The corresponding exact cohomology sequence (see the end of Section 3) is, in part:

. . .→ Hn(G,K)→ Hn(G,F )→ Hn(G,M)→ 0

since Hn+1(G,K) = 0. Therefore Hn(G,F ) 6= 0. ¤

Lemma 10.3. Suppose H ≤ G, (G : H) < ∞ and cdR(G) < ∞. Then cdR(G) =
cdR(H).

Proof. Let n = cdR(G). By Lemma 10.2, there is a free RG-module F such that
Hn(G,F ) 6= 0. Let F ′ be a free RH-module of the same rank as F . By Lemma 10.1,

HomRH(RG,F
′) ∼= F

and by Lemma 10.1 Hn(H,F ′) 6= 0. Hence cdR(H) ≥ n. But by Lemma 5.5, cdR(H) ≤
n. ¤

Definition. Let G be a group, R commutative ring. We say that G has no R-torsion
if the order of every finite subgroup of G is invertible in R.

By Cor. 5.2, if cdR(G) <∞ then G has no R-torsion. Before proving Serre’s theorem,
we need to discuss the tensor product of chain complexes, which was defined in the
discussion of bicomplexes in Section 9. Let A be a ring, f : C → E, g : D → F chain
maps (where C, E are chain complexes of right A-modules, D, F of A-modules). It is
easy to see that there is a chain map f⊗g : C⊗AD → E⊗AF , where (f⊗g)n(c⊗d) =
fp(c)⊗ gq(d), for c ∈ Cp, d ∈ Dq, where p+ q = n.

Lemma 10.4. Suppose f, f ′ : C → E, g, g′ : D → F are chain maps. If f ' f ′ and
g ' g′, then f ⊗ g ' f ′ ⊗ g′.

Proof. If f ' f ′ via s and g ' g′ via t, then f ⊗ g ' f ′ ⊗ g′ via u, where
u(c⊗ d) = s(c)⊗ g(d) + (−1)p(f ′(c)⊗ t(d)) (where c ∈ Cp, d ∈ Dq).

¤

Remark 10.1. Let A be a ring and let X be a positive chain complex of A-modules,
X

ε→M an augmented complex. Then the augmented complex splits if and only if there
is an A-homomorphism η : M → X0 such that εη = idM , and idX ' f, where fn =
0 (n 6= 0) and f0 = ηε. (If s is a chain homotopy from id to 0 on X

ε→M, let η = s−1,
etc.)

Let X, X ′ be positive complexes of A-modules (X of right modules), X
ε→M , X ′

ε′→M ′

augmented complexes. Then (X ⊗A X ′)0 = X0 ⊗A X ′0, and there is an augmented
complex

X ⊗A X ′ ε⊗ε
′

−→M ⊗AM ′.

Corollary 10.1. In these circumstances, if X
ε→M , X ′

ε′→M ′ are split, then so is

X ⊗A X ′ ε⊗ε
′

−→M ⊗AM ′.
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Proof. By Remark 10.1, there exist η : M → X0, η
′ : M ′ → X ′0 with idM = εη,

id′M = ε′η′, idX ' f , id′X ' f ′, where f ′ is defined in a similar way to f . By Lemma
10.4, idX⊗X′ ' f ⊗ f ′. Putting g = f ⊗ f ′, gn = 0 for n 6= 0 and g0 = (η ⊗ η′)(ε⊗ ε′).
Also, (ε⊗ ε′)(η ⊗ η′) = idM⊗M ′ , and the result follows by Remark 10.1. ¤

We are finally ready to prove the Serre Extension Theorem.

Theorem 10.2. Let G be a group, H a subgroup of finite index, R a commutative ring.
Suppose cdR(H) <∞ and G has no R-torsion. Then cdR(G) = cdR(H).

Proof. By Lemma 10.3, it suffices to show cdR(G) <∞. Let P → R be an augmented
RH-projective complex of finite length. Since R is commutative, we can iterate the
construction of tensor product of complexes (starting from the right), and define

Q = P ⊗R P ⊗R . . .⊗R P︸ ︷︷ ︸
n copies

where n = (G : H). Thus Qm =
⊕

Pr1⊗ . . .⊗Prn (sum over all sequences (r1, . . . , rn) of

non-negative integers such that
n∑
i=1

ri = m). If d is the differential on P , the differential

d′ on Q is given by

d′(x1 ⊗ . . .⊗ xn) =
n∑

k=1

(−1)ck(x1 ⊗ . . .⊗ d(xk)⊗ . . .⊗ xn)

where ck = i1 + . . .+ ik−1 and xi ∈ Pri . Note that Q is of finite length. By Lemma 3.3,
P → R is R-split, so by repeated use of Cor. 10.1, there is an augmented resolution
Q→ R which is an RH-resolution (the action is “diagonal”, obtained by repeated use
of Remark 9.1). We shall define an action of G on Q so that this becomes an RG-
projective resolution, which will prove the theorem.

Let {t1, . . . , tn} be a transversal for G/H, so G =
n⋃
i=1

tiH. This determines a homo-

morphism G→ Sn (where Sn is the symmetric group of degree n), denoted by g 7→ σg,
corresponding to the permutation representation of G on G/H. Thus, for g ∈ G, there
are elements h1, . . . , hn ∈ H such that, if σ = σg,

gti = tσ(i)hσ(i) (1 ≤ i ≤ n).

Define the action of G on Q by

g(x1 ⊗ . . .⊗ xn) = (−1)a(h1xσ−1(1) ⊗ . . .⊗ hnxσ−1(n))
where, if xi ∈ Pri ,

a =
∑

rirj (sum over all pairs (i, j) with i < j and σ(i) > σ(j)).

One can check this makes Q → R into an augmented RG-resolution. (For details see
[29, §1].)
To show Q is RG-projective, it suffices to show that, for any collection of RH-projective
modules {Pi}, the corresponding RG-module

⊕
m

Qm is RG-projective. If {P ′i} is another
such collection and P ′′i = Pi⊕P ′i , then

⊕
m

Qm is an RG-summand of the corresponding
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module
⊕
m

Q′′m, so we may assume all Pi are RH-free. Let X be the union of RH-bases

for the Pi. Then
⊕
m

Qm is R-free with basis

W = {h1x1 ⊗ . . .⊗ hnxn | xi ∈ X, hi ∈ H, 1 ≤ i ≤ n}.
Moreover, W ∪ (−W ) is invariant under the action of G. Let N = Ker(G → Sn) (the
homomorphism g 7→ σg above). If g ∈ N , then gti = hiti for 1 ≤ i ≤ n (where hi ∈ H).
If w = k1x1 ⊗ . . .⊗ knxn ∈W (where ki ∈ H), then

gw = h1k1x1 ⊗ . . .⊗ hnknxn
so g 6∈ Gw (the stabilizer of w in G) unless g = 1. Thus N ∩ Gw = 1 and Gw is
isomorphic to a subgroup of G/N , hence is finite. Let W0 be a set containing one
element from each (G×C2)-orbit of W ∪ (−W ) (where C2 is cyclic of order 2, with its
non-trivial element acting as multiplication by −1). Then

⊕
m

Qm =
⊕
w∈W0

RGw

so it is enough to show every RGw is RG-projective. Let Gw = {g ∈ G | gw = ±w},
so (Gw : Gw) ≤ 2 and Gw is finite. Let η : Gw → {±1} be the obvious homomorphism

with kernel Gw (so gw = η(g)w). Define e =
1

|Gw|
∑
g∈Gw

η(g)g, so e ∈ RG. Let π : RG→

RGw be the map defined by g 7→ gw. There is a split exact sequence of RG-modules

0 // Ker(π) //RG
π //RGw //
ϕ

kk db_\Z 0

where ϕ is given by gw 7→ ge for g ∈ G (well-defined since ge = η(g)e for g ∈ Gw).
Hence RGw is a summand of RG. ¤

It follows from Theorem 10.2 that the class C of groups in FHT with cdR(G) < ∞ is
precisely the class of torsion-free groups in FHT, hence the following corollary.

Corollary 10.2. If G ∈ FHT is torsion-free, then χ(G) = χ̃(G), so χ(G) ∈ Z.
Note.

(1) Let R be a commutative ring, G a group, M a trivial RG-module, flat as an
R-module. Let P → R be an augmented RG-projective resolution. Then by
associativity of tensor product,

M ⊗R (R⊗RG P ) ∼= M ⊗RG P
(the usual isomorphismM⊗RR ∼= M is an RG-isomorphism sinceM has trivial
G-action). Hence

H∗(G,M) ∼= H(M ⊗R (R⊗RG P ))
∼= M ⊗R H(R⊗RG P ) (since M is R-flat)
∼= M ⊗R H∗(G,R).
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(2) If G ∈ C, then χ(G) =
∑
i≥0

(−1)i dimFp(Hi(G,Fp)), where Fp = Z/pZ is the field

of p elements. For if P → Z is an augmented ZG-projective resolution of finite
length, then

χ(G) =
∑

i≥0
(−1)i rkZ(Hi(Z⊗ZG P ))

=
∑

i≥0
(−1)i dimFp(Hi(Fp ⊗Z (Z⊗ZG P ))) by Lemma 8.2

=
∑

i≥0
(−1)i dimFp(Hi(Fp ⊗ZG P )) as in (1)

=
∑

i≥0
(−1)i dimFp(Hi(G,Fp)).

Next we prove the Extension Theorem for the Brown characteristic.

Theorem 10.3. If 1→ N
i→G

π→Q→ 1 is a group extension, N, Q ∈ FHT and G is
virtually torsion-free, then G ∈ FHT, and χ(G) = χ(N)χ(Q).

Proof. We may assume i is an inclusion map. Let Q′, G′ be torsion-free subgroups of
finite index in Q, G respectively. Let G0 = π−1(Q′) ∩ G′, Q0 = π(G0), so Q0, G0 are
torsion-free and of finite index in Q, G respectively. Let N0 = N ∩G0, so (N : N0) <∞
and N0 is torsion-free. There is an exact sequence

1→ N0 → G0 → Q0 → 1.

Further,

(G : NG0) = (Q : Q0)

(NG0 : G0) = (N : N0)

Hence (G : G0) = (Q : Q0)(N : N0). Therefore by Prop. 10.3 we can replace G, N ,
Q by G0, N0, Q0, i.e. assume G, N , Q are torsion-free. By the observation preceding
Cor. 10.2, cdZ(N) < ∞ and cdZ(Q) < ∞, so cdZ(G) < ∞ by Prop. 5.1. By Theorem
9.5, for any RG-module M there is a spectral sequence

E2
pq = Hp(Q,Hq(N,M))=⇒

p
Hn(G,M),

and ifM is Z-finitely generated, then since N , Q ∈ FHT, E2
pq is finitely generated for all

p, q. Hence Hn(G,M) is finitely generated for all n by Prop. 9.1. This shows G ∈ FHT,
and being torsion-free, G ∈ C. Take M = F2. Then Hq(N,F2) is finite, and zero for all
but finitely many values of q, so there is a subgroup Q1 of Q with (Q : Q1) < ∞ such
that Q1 acts trivially on all Hq(N,F2) (the intersection of the stabilisers of all elements
of Hq(N,F2), for all q). Replacing Q by Q1 and G by π−1(Q1), we can assume Q acts
trivially on H∗(N,F2). Using Note (1) above,

E2
pq
∼= Hq((N,F2)⊗F2 Hp(Q,F2),
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so by Note (2) above,

χ(G) =
∑

n

(−1)n dimF2(Hn(G,F2))

= dimF2(E
2) by Prop. 9.1

=

(∑

q

(−1)q dimF2(Hq(N,F2))

)(∑

p

(−1)p dimF2(Hp(Q,F2))

)

= χ(N)χ(Q).

¤

Remark 10.2. Let H be a subgroup of a group G, R a commutative ring, M an RG-
module. Then

R(G/H)⊗RM is RG-isomorphic to RG⊗RH M
(diagonal G-action) (as induced module)

The proof is similar to that of Lemma 9.5 (the special case H = 1). There is also an
RG-isomorphism

σ : HomR(R(G/H),M)
∼=−→ HomRH(RG,M)

(“diagonal” action (gf)(γ) = g(f(g−1γ))) (as coinduced module)

where σ(f)(g) = g(f(g−1H)). The inverse τ is given by τ(u)(gH) = g(u(g−1)).

Now we consider free products with amalgamation and HNN-extensions.

Lemma 10.5. Suppose G = A ∗C B is a free product with amalgamation, R is a
commutative ring, M an RG-module. Then there are exact “Mayer-Vietoris sequences”

(1) . . . Hn(G,M)→ Hn(A,M)⊕Hn(B,M)→ Hn(C,M)→ Hn+1(G,M)→ . . .

(2) . . . Hn(C,M)→ Hn(A,M)⊕Hn(B,M)→ Hn(G,M)→ Hn−1(C,M)→ . . .

Proof. By Lemma 6.7 there is a short exact sequence

0→ R(G/C)
α−→R(G/A)⊕R(G/B)

β−→R→ 0.

This R-splits, so applying HomR(–,M) and – ⊗R M gives exact sequences. Using
Remark 10.2, these become exact sequences of RG-modules:

(3) 0←− HomRC(RG,M)←− HomRA(RG,M)⊕ HomRB(RG,M)←−M ←− 0

(4) 0 −→ RG⊗RC M −→ (RG⊗RAM)⊕ (RG⊗RB M) −→M −→ 0.

The Lemma follows by applying Lemma 5.3 and the exercise following it to (3) and (4),
then using both versions of Shapiro’s Lemma (9.4 and 10.1). ¤
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Note. For an HNN-extension G = 〈t, A | tCt−1 = D〉, there are corresponding
sequences

(1)′ . . . Hn(G,M)→ Hn(A,M)→ Hn(C,M)→ Hn+1(G,M)→ . . .

(2)′ . . . Hn(C,M)→ Hn(A,M)→ Hn(G,M)→ Hn−1(C,M)→ . . .

(see [13, Theorem 2.12]).

Lemma 10.6. If A, B, C ∈ C and G = A ∗C B, then G ∈ C and

χ̃(G) = χ̃(A) + χ̃(B)− χ̃(C).

Proof. Using the exact sequence (1) in Lemma 10.5 with R = Z, we see that cdZ(G) <
∞, and using sequence (2) we see that Hn(G,M) is finitely generated for all Z-finitely
generated ZG-modules M . Taking M = Z in (2), the formula for χ̃(G) follows using
Remark 8.1. ¤

Lemma 10.6′. If A, C ∈ C and G = 〈t, A | tCt−1 = D〉 is an HNN-extension, then
G ∈ C and

χ̃(G) = χ̃(A)− χ̃(C).

Proof. This is similar to that of Lemma 10.6 using sequences (1)′ and (2)′. ¤

Unfortunately, Lemmas 10.6 and 10.6′ are not sufficient to obtain the corresponding
result for FHT, because subgroups of free products and HNN-extensions are not nec-
essarily of the same form. They have a more complicated structure (as “fundamental
groups of a graph of groups”). This is best seen using the Bass-Serre theory of groups
acting on trees, and we shall have to assume the reader is familiar with this. It follows
by induction on the number of edges of X that, if (G, X) is a graph of groups, where
X is a finite graph, G is its fundamental group and all edge and vertex groups are in
C, then G ∈ C and

χ̃(G) =
∑

v∈V (X)

χ̃(Gv)−
∑

e∈E(X)

χ̃(Ge).

Here V (X) is the set of vertices and E(X) the set of unoriented edges of X; Gv is the
group associated to v and Ge that associated to e.

Theorem 10.4. If A, B, C ∈ FHT, G = A ∗C B and G is virtually torsion-free, then
G ∈ FHT and

χ(G) = χ(A) + χ(B)− χ(C).

Proof. Let H be a torsion-free subgroup of finite index in G. Then according to the
Bass-Serre theory, there is a tree on which G acts (see Theorem 7 and its proof in
[106, §4.1]). Then H acts by restriction, and H is the fundamental group of a graph
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of groups, say (H, X) (see [30, Ch.8, Theorem 27] or [106, §5.4]). There are one-to-one
correspondences:

V (X) ←→ (H\G/A)∐ (H\G/B) (disjoint union)

E(X) ←→ H\G/C
where H\G/A = {HgA | g ∈ G}, etc.

The vertex groups are gAg−1 ∩ H for g ∈ TA and gBg−1 ∩ H for g ∈ TB, where TA
is a transversal for H\G/A and TB is a transversal for H\G/B. The edge groups are
gCg−1 ∩H for g ∈ TC , where TC is a transversal for H\G/C. (See [30, Ch.8, Theorem
27].) Hence all edge and vertex groups are in C (gAg−1∩H is of finite index in gAg−1 and
is torsion-free, etc). By the observations preceding the theorem, H ∈ C (so G ∈ FHT)
and

χ̃(H) =
∑

g∈TA
χ̃(gAg−1 ∩H) +

∑

g∈TB
χ̃(gBg−1 ∩H)−

∑

g∈TC
χ̃(gCg−1 ∩H)

=
∑

g∈TA
χ(gAg−1)(gAg−1 : gAg−1 ∩H) +

∑

g∈TB
χ(gBg−1)(gBg−1 : gBg−1 ∩H)−

∑

g∈TC
χ(gCg−1)(gCg−1 : gCg−1 ∩H)

= χ(A)
∑

g∈TA
(A : A ∩ g−1Hg) + χ(B)

∑

g∈TB
(B : B ∩ g−1Hg)−

χ(C)
∑

g∈TC
(C : C ∩ g−1Hg)

= χ(A)(G : H) + χ(B)(G : H)− χ(C)(G : H).

Therefore χ(G) =
1

(G : H)
χ̃(H) = χ(A) + χ(B)− χ(C). ¤

Theorem 10.4′. If A, C ∈ FHT, G = 〈t, A | tCt−1 = D〉 is an HNN-extension and G
is virtually torsion-free, then G ∈ FHT and

χ(G) = χ(A)− χ(C).

Proof. This is similar to the proof of Theorem 10.4, using the tree on which G acts
given by the Bass-Serre theory. (see [106, Example 3, §5.1] ¤

Example. We give an example, due to H. R. Scheebeli, [103] to resolve several questions
arising from the results in this section. It is based on a famous group studied by G.
Higman [61]. Let

H = 〈a, b, c, d | aba−1 = b2, bcb−1 = c2, cdc−1 = d2, dad−1 = a2〉.
We list some properties of H and related groups. The proofs need some results on
homology and cohomology of groups which have not been discussed.

(1) H is infinite, torsion-free and has no proper subgroups of finite index. (See [61].)
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(2) cdZ(H) ≤ 2. (This follows from the way Higman constructs H by free products
with amalgamation and HNN-extensions, and the Mayer-Vietoris sequences in
Lemma 10.5 and the note following it.) In fact, by the Stallings-Swan Theorem
(note after Cor. 6.4), cdZ(H) = 2.

(3) H ∈ FP(Z). (This also follows from the construction of H, using Theorem 6.3
and the note following it.)

(4) H1(H,Z) = H2(H,Z) = 0. For by [98, Cor. 10.3], H1(H,Z) = H/H ′ = 0 (any
abelian group with generators a, b, c, d satisfying the relations of H is clearly
trivial). Also, 0 ≤ def(H) ≤ rkZ(H/H

′)− s, where s is the minimal number of
generators for H2(H,Z), so s = 0. (See [96, 14.1.5].) The deficiency of a finite
group presentation is the number of generators minus the number of relations,
and def(H) is the maximum deficiency of a finite presentation of H.)

(5) H2(H,Z) = H1(H,Z) = 0. For H2(H,Z) = 0 by (4) and the Universal Coef-
ficient Theorem (see [98, Theorem 8.26]). Also, the Universal Coefficient The-
orem gives H1(H,Z) ∼= Ext1Z(H0(H,Z),Z), and H0(H,Z) = ZH = Z (see [98,
Theorem 5.17]). Finally Ext1Z(Z,Z) = 0 by [98, Theorem 7.7].

Let C be an infinite cyclic subgroup of H, and define G = H ∗C H. Then
G also has no proper subgroups of finite index, and G ∈ FP(Z) by Theorem
6.3, so G ∈ FHT. The Mayer-Vietoris sequence (1) in Lemma 10.5 shows
that cdZ(G) ≤ 2, and that H2(G,Z) ∼= H1(C,Z). We calculate this from the
Universal Coefficient Theorem, which gives

H1(C,Z) ∼= HomZ(H1(C,Z),Z)⊕ Ext1Z(H0(C,Z),Z).

Now H1(C,Z) = Z by [98, Cor.10.3], H0(C,Z) = Z by [98, Theorem 5.17] and
as noted above, Ext1Z(Z,Z) = 0. Hence H1(C,Z) ∼= HomZ(Z,Z) ∼= Z. (The
isomorphism Z→ HomZ(Z,Z) is given by n 7→ fn, where fn(m) = mn.) Thus

(6) H2(G,Z) ∼= Z.
For any integer k, the short exact sequence (of trivial ZG-modules)

0→ Z k→Z→ Z/kZ→ 0

(where “k” is short for multiplication by k) gives by Lemma 5.3 an exact se-
quence

. . . H2(G,Z) k→H2(G,Z)→ H2(G,Z/kZ)→ 0 . . .

so

(7) H2(G,Z/kZ) ∼= Z/kZ.
(8) Similarly, H2(H,Z/kZ) = 0.

Fix an integer k > 1. Since H2(G,Z/kZ) 6= 0 and Z/kZ is a trivial ZG-module, there
is a non-split central extension

0→ Z/kZ→ X
π→G→ 1

(see [16, IV Theorem 3.12]). If U is a torsion-free subgroup of finite index in X, then
π(U) = G and π|U is injective. But this means the extension splits, a contradiction.
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Hence X is not virtually torsion-free, so X 6∈ FHT. Let Y1, Y2 be the inverse images
under π of the two copies of H and let Z = π−1(C). By restricting π we obtain central
extensions

0→ Z/kZ→ Yi→H → 1

0→ Z/kZ→ Z→C → 1

which split, by (7) and because C is a free group. Hence Y1, Y2 and Z are in vFP(Z),
so in FHT. Also, X = Y1 ∗Z Y2. Thus the virtually torsion-free hypothesis is needed in
Theorem 10.3 and Theorem 10.4. Further, by Theorem 6.2, X ∈ FP(Q).
We can also give an example of a group in FHT which is not in FP(Q). Let H be
as above, but now let G be the free product ∗

i∈I
Hi, where the index set I is infinite

and Hi = H for all i ∈ I. Then G inherits from H the property of having no proper
subgroups of finite index, and cdZ(G) = 2 (see the Corollary to Theorem 3, §8.6 in [55]).
Further, Hn(G,Z) = 0 for n > 0. If n > 1, this follows from the general Mayer-Vietoris
sequence in [16, §9, Ch. VII], using the usual graph of groups for a free product. (See
the examples after Prop.18, §8.3 in [30], or Example (c) in Ch.1, §4.4 (with A = 1)
in [106].) For n = 1, G′ ⊇ H ′i = Hi for all i, so G′ = G and H1(G,Z) = G/G′ = 0
(see (4) above). Also, H0(G,Z) = ZG = Z ([98, Theorem 5.17]). If M is a ZG-module
finitely generated as a Z-module, then G acts onM as Z-automorphisms, corresponding
to a homomorphism ϕ : G → AutZ(M). But M is a direct sum of cyclic groups, so
residually finite, hence AutZ(M) is residually finite (see [77, Theorem 4.8, Ch.IV]). Since
G has no non-trivial finite homomorphic images, ϕ(G) = {1}, that is,M is a trivial ZG-
module. Using the Universal Coefficient Theorem (remark after Theorem 10.22 in [98]),
Hn(G,M) ∼= TorZ1 (Hn−1(G,Z),M) = 0 for n > 0. (For n = 1, TorZ1 (Z,M) = 0 since Z is
projective-see [98, Theorem 8.4].) Again by [98, Theorem 5.17], H0(G,M) =MG =M .
Hence G ∈ FHT, but G 6∈ FP(Q) since G is not finitely generated (see Lemma 6.3).

11. Actions on CW-complexes

In the example preceding Prop. 6.1, we saw that, under certain circumstances, µ(G) =
χ(X), where X is a finite CW-complex and G is its fundamental group. This is in part
because G acts freely on the universal covering space of X. Here we use actions on
CW-complexes (not necessarily free) to obtain some interesting results on the Brown
characteristic. There is no analogue of these for the other Euler characteristic µ. We
shall have to assume that the reader is familiar with singular homology theory.

Notation. We put En = {x ∈ Rn | ‖x‖ ≤ 1}
Un = {x ∈ Rn | ‖x‖ < 1}
Sn−1 = {x ∈ Rn | ‖x‖ = 1}

where ‖ ‖ denotes the usual euclidean norm on Rn. Also, R denotes a principal ideal
domain. If X is a topological space and Y is a subspace, then Hn(X,Y ;R) denotes the
nth singular relative homology module, and Hn(X;R) means Hn(X, ∅;R).
Definition. Let X be a Hausdorff space and let A be a closed subspace of X. We say
X is obtained from X by adjoining n-cells if
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(a) the complement X \A is a disjoint union
∐

λ∈Λ eλ, where each eλ is open in X;

(b) for each λ ∈ Λ, there is a continuous map fλ : En → ēλ such that f |Un is a home-
omorphism onto eλ, and fλ(S

n−1) ⊆ A (the fλ are called “characteristic maps”);

(c) a subspace Y of X is closed if and only if Y ∩ A is closed and, for all λ ∈ Λ,
f−1λ (Y ) is closed.

Proposition 11.1. In this situation, Hq(X,A;R) = 0 for q 6= n. The maps Hn(fλ) :
Hn(E

n, Sn−1;R) → Hn(X,A;R) are injective and Hn(X,A;R) is isomorphic to the
direct sum of the image subgroups, so is isomorphic to ⊕

λ∈Λ
R.

Proof. See [83, Theorem IV.2.1] (the case R = Z is easily generalised). ¤

Definition. A CW-complex is a Hausdorff space X together with subspaces

{Xn | n ∈ Z, n ≥ 0}
such that X0 ⊆ X1 ⊆ X2 ⊆ . . ., X =

⋃
n≥0

Xn and:

(1) the subspace X0 is discrete;

(2) for all n ≥ 1, Xn is obtained from Xn−1 by adjoining n-cells;

(3) a subspace Y of X is closed if and only if Y ∩ ē is closed for all n-cells e and
n = 0, 1, 2, . . . .

(In (3), Y ∩ ē is closed if and only if f−1(Y ) is closed, where f is the characteristic
map corresponding to e.) The subspace Xn is called the n-skeleton of X.

Definition. A subcomplex of a CW-complex X is a subspace Y such that Y is a union
of cells of X, and for any cell e, e ⊆ Y implies ē ⊆ Y .

Defining Yn = Xn ∩ Y then gives Y the structure of a CW-complex.

Definition. A continuous map of CW-complexes, f : X → Y, is cellular if f(Xn) ⊆ Yn
for all n ≥ 0.

Products. If X, Y are CW-complexes, X × Y can be given the structure of a CW-
complex. Define the n-cells of X×Y to be the sets e1×e2, where e1 is a p-cell of X and
e2 is a q-cell of Y , for all p, q such that p+ q = n. (Characteristic maps can be defined
using a homeomorphism En → Ep × Eq.) We give X × Y the weak topology, that is,
U ⊆ X × Y is closed if and only if f−1λ (U) is closed for each cell eλ of X × Y . This
is finer that the product (Tychonoff) topology, and agrees with the product topology
if one of X, Y is locally compact, or if X, Y both have countably many cells ([84,
Theorem 7.3.16]).

Cellular Homology. Suppose X is a CW-complex and Y is a subcomplex. Define
Cn(X,Y ;R) = Hn(Xn ∪ Y,Xn−1 ∪ Y ;R), and define

dn : Cn(X,Y ;R)→ Cn−1(X,Y ;R)

to be the connecting homomorphism of the triple (Xn ∪ Y,Xn−1 ∪ Y,Xn−2 ∪ Y ).
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Proposition 11.2. The pair (C(X,Y ;R), d) is a chain complex over R, Cn(X,Y ;R)
is R-free with basis in one-to-one correspondence with the n-cells of X not in Y, and

Hn(C(X,Y ;R)) ∼= Hn(X,Y ;R).

Proof. The exact homology sequence of the pair (Xn ∪ Y,Xn−1 ∪ Y ) has the form
(suppressing R)

Hn(Xn ∪ Y )
j→Cn(X,Y )

∂→Hn−1(Xn−1 ∪ Y )→ . . . .

For each n there is a commutative diagram

Cn(X,Y )
∂ //

dn ''OOOOOOOOOOO
Hn−1(Xn−1 ∪ Y )

jvvlllllllllllll

Cn−1(X,Y )

by naturality of the connecting homomorphism. Thus d2 = j(∂j)∂ = 0. (This is
the argument of Lemma 9.3 applied to FpS(X), where S(X) is the singular chain
complex of X and FpS(X) = S(Xp ∪ Y ).) Now Xn ∪ Y is obtained from Xn−1 ∪ Y by
adjoining the n-cells of X not in Y , so Cn(X,Y ;R) is R-free as claimed, by Prop. 11.1.

There are maps Hn(X,Y )
k←−Hn(Xn ∪ Y, Y )

l−→Hn(Xn ∪ Y,Xn−1 ∪ Y ) = Cn(X,Y ),
where k and l are induced by inclusion maps. Further, lk−1 induces an isomorphism
Hn(X,Y )→ Hn(C(X,Y )) (see [83, Theorem IV.4.2]). ¤

Definition. If X is a CW-complex, put C(X;R) = C(X, ∅;R).

Lemma 11.1. Let X be a CW-complex, Y a subcomplex. Then there is a short exact
sequence of chain complexes

0 //C(Y ;R)
α //C(X;R)

β //C(X,Y ;R) //0.

Proof. Let αn : Cn(Y )→ Cn(X) be the map induced by the inclusion of pairs (Yn, Yn−1)→
(Xn, Xn−1) and let βn : Cn(X) → Cn(X,Y ) be that induced by (Xn, Xn−1) → (Xn ∪
Y,Xn−1 ∪ Y ) (again suppressing R). Then βnαn = 0 since Yn ⊆ Xn−1 ∪ Y . Let Λ index
the n-cells of X, and let M ⊆ Λ index those of Y . For λ ∈ Λ, there is a commutative
diagram

Cn(X)
βn // Cn(X,Y )

Hn(E
n, Sn−1)

vλ

ggNNNNNNNNNNN uλ

77nnnnnnnnnnn
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where uλ, vλ are induced by the corresponding characteristic map fλ. If also λ ∈ M ,
there is a commutative diagram

Cn(Y )
αn // Cn(X)

Hn(E
n, Sn−1)

wλ

ggNNNNNNNNNNN uλ

77ppppppppppp

where wλ is also induced by fλ. It follows from Prop. 11.1 that Cn(X) = ⊕λ∈ΛR, Cn(Y ) =
⊕λ∈MR, Cn(X,Y ) = ⊕λ∈Λ\MR, and αn, βn are the obvious inclusion and projection
maps, so

0 //Cn(Y ;R)
αn //Cn(X;R)

βn //Cn(X,Y ;R) //0.

is exact. Finally, α, β are chain maps by naturality of the connecting homomorphism.
¤

Proposition 11.3. Suppose A, B are subcomplexes of a CW-complex X. Then (A,B)
is an excisive couple, that is, the inclusion map (A,A ∩ B) → (A ∪ B,B) induces an
isomorphism in singuar homology. Hence, there is an exact Mayer-Vietoris sequence

. . . Hn(A ∩B;R)→ Hn(A;R)⊕Hn(B;R)→ Hn(A ∪B;R)→ Hn−1(A ∩B;R)→ . . .

Proof. See [75, Ch.V, Theorem 1.1]. ¤

Lemma 11.2. Let A1, . . . , Am be a collection of subcomplexes of a CW-complex, closed
under intersection. If H∗(Ai;R) is R-finitely generated for 1 ≤ i ≤ m, then H∗(

⋃k
i=1Ai;R)

is finitely generated for 1 ≤ k ≤ m.

Proof. The proof is by induction on k. Assume B = A1 ∪ . . . ∪ Ak has finitely gener-
ated homology (where k < m). Then A = Ak+1 has finitely generated homology by
assumption. Also,

A ∩B = (A1 ∩ Ak+1) ∪ . . . ∪ (Ak ∩ Ak+1) = Ai1 ∪ . . . ∪ Aik

by assumption, for some indices i1, . . . , ik. Applying the induction hypothesis to Ai1 ,Ai2
. . . , Aik , A∩B has finitely generated homology, hence so does A∪B by Prop. 11.3. ¤

Group Actions.

Definition. Let G be a group. A G-complex is a CW-complex X with an action of
G on X as cellular homeomorphisms (so G permutes the cells of X). A G-complex is
admissible if ge = e, where g ∈ G and e is a cell, implies gx = x for all x ∈ e. A
G-complex is free if ge = e, where g ∈ G and e is a cell, implies g = 1.

If X is a G-complex and Y is a G-invariant subcomplex, then (C(X,Y ;R), d) is an
RG-complex. If G freely permutes the cells of X \Y , then C(X,Y ;R) is RG-free, with
a basis in one-to-one correspondence with the set of G-orbits of n-cells in X \ Y . See
[16, I.3.1 and I.4].

Let K be a connected CW-complex, p : K̃ → K a regular covering map, G the group of
covering transformations. Then K̃ has the structure of a CW-complex, the cells being
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the components of p−1(e), where e is a cell of X. These cells are permuted freely and
transitively by G, and map homeomorphically onto e via p (See [104, III.6.9].) This
applies when K̃ is the universal covering space of K, so G ∼= π1(K). In this case, the
following are equivalent:

(1) πn(K) = 0 for n > 1;

(2) Hn(K̃) = 0 for n > 1;

(3) K̃ is contractible.

See Ch.1, §4 (between 4.1 and 4.2) in [16].

Definition. A CW-complex X is n-dimensional if X = Xn.

Theorem 11.1. Let G be a group, n = max{cdZ(G), 3}. Then there is an n-dimensional
contractible free G-complex.

Proof. This follows from [16, VIII 7.2] and the preceding remarks. ¤

The next result is a geometric version of the Serre Extension Theorem (Theorem 10.2).
The proof is due to K. S. Brown.

Theorem 11.2. Let G be a group, H a subgroup of finite index with cdZ(H) < ∞.
Then there is a finite dimensional contractible G-complex Y such that the stabilizer Ge

is finite, for all cells e of Y .

Proof. Using Theorem 11.1, let X be a finite dimensional contractible free H-complex.
Define Y = HomH(G,X), the set of all mappings f : G→ X of H-sets (where H acts
on G by left multiplication). Then G acts on Y by gf(g′) = f(gg′) (for g, g′ ∈ G,
f ∈ Y ). Choose a transversal t1, . . . , tn for H\G. Then there is a bijection

ϕ : Y →
n∏
i=1

X

given by ϕ(f) = (f(t1), . . . , f(tn)), which gives Y the structure of a CW-complex. This
is independent of the choice of transversal. For if t′i = hiti, where hi ∈ H for 1 ≤ i ≤ n,
and ϕ′ is the corresponding map, there is a commutative diagram

Y
ϕ

{{ww
ww

ww
ww

w
ϕ′

##GG
GG

GG
GG

G

∏n
i=1X ψ

//
∏n

i=1X

where ψ is the cellular homeomorphism
n∏
i=1

hi. Also, if t1, . . . , tn is replaced by tσ(1), . . . , tσ(n)

(where σ ∈ Sn), this clearly does not change the CW structure on Y . If g ∈ G and ϕ′
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is defined by ϕ′(f) = (f(t1g), . . . , f(tng)), then

Y
g //

ϕ′ ##GG
GG

GG
GG

G Y

ϕ
{{ww

ww
ww

ww
w

∏n
i=1X

is commutative. Hence Y is a G-complex, and is clearly finite dimensional. The map
Y → X, f 7→ f(1) maps cells to cells and is an H-map. Since H acts freely on the cells
of X, it acts freely on the cells of Y . Hence Ge ∩ H = 1 for all cells e of Y , so Ge is
finite. Finally, Y is contractible since

∏n
i=1X is. ¤

Note. The complex X in Theorem 11.2 can be taken to be an ordered simplicial complex,
and the resulting space Y is simplicial (see [16, Ch.VIII, 7.3 and 11.2]). Further, the
G-action is simplicial. Taking barycentric subdivision if necessary, we can assume Y is
ordered and G order-preserving. Then G acts admissibly on Y .

Euler Characteristics of Complexes. The idea of Euler characteristic of a complex
is well-known. We shall also use a relative version, for a CW-complex and a subcomplex.

Definition. Let X be a CW-complex, Y a subcomplex. Put

χ(X,Y ;R) = rkR(C(X,Y ;R)) =
∑

i≥0
(−1)i rkR(Hi(X,Y ;R)),

whenever this is defined, and put χ(X;R) = χ(X, ∅;R).
Lemma 11.3. The Euler characteristic satisfies:

(1) provided the right hand side is defined, χ(X,Y ;R) = χ(X;R)− χ(Y ;R);

(2) provided χ(X,Y ;R) is defined, χ(X,Y ;R) = χ(X,Y ;R/pR), for any prime el-
ement p ∈ R;

(3) if X is finite (i.e. has finitely many cells), then

χ(X;R) =
∑

i≥0
(−1)i(number of i-cells of X).

Proof. (1) follows from the exact sequence of Lemma 11.1 and the corresponding exact
homology sequence (Theorem 3.1).

(2) For each n, the map R⊗Z Hn(Xn ∪ Y,Xn−1 ∪ Y ;Z)→ Hn(Xn ∪ Y,Xn−1 ∪ Y ;R) in
the Universal Coefficient Theorem is an isomorphism by Prop. 11.1, and this gives an
isomorphism of chain complexes R⊗ZC(X,Y ;Z) ∼= C(X,Y ;R) (see [83, Ch.V, §§7,8]).
Hence

C(X,Y ;R/pR) ∼= R/pR⊗Z C(X,Y ;Z) ∼= R/pR⊗R (R⊗Z C(X,Y ;Z))
∼= R/pR⊗R C(X,Y ;R)

and the result follows by Lemma 8.2.

(3) This is immediate from Prop. 11.2 and Lemma 8.1. ¤
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If Y is a G-complex and H is a subgroup of G, define

Y H = {y ∈ Y | hy = y for all h ∈ H}.
If Y is an admissible G-complex, Y H is a subcomplex of Y .

Theorem 11.3. Let G be a finite group (R a principal ideal domain), Y a finite di-
mensional admissible G-complex, with H∗(Y H ;R) R-finitely generated for all subgroups
H of G. If k is an integer which divides the length of every G-orbit, then k|χ(Y ;R).

Proof. For H ≤ G, define YH = {y ∈ Y | Gy = H}, where Gy is the stabiliser of y in
G. Then

YH = Y H \ Y >H ,

where Y >H =
⋃

G≥H′ªH
Y H′ (a subcomplex of Y , so YH is a difference of subcomplexes).

Now {Y H′ | H ′ ª H} is closed under intersection (Y H1 ∩ Y H2 = Y 〈H1,H2〉), so by
Lemma 11.2, Y >H has finitely generated homology. Hence H∗(Y H , Y >H ;R) is finitely
generated (from the exact homology sequence of the pair (Y H , Y >H)). Let H1, . . . , Hn

be a list of the subgroups of G, ordered so that |Hi| ≥ |Hi+1|. Define subcomplexes
∅ = Y0 ⊆ Y1 ⊆ . . . ⊆ Yn = Y recursively by

Yi = Yi−1 ∪ Y Hi .

Then Yi−1 ∩ Y Hi = Y >Hi , and by Prop. 11.3, there is an isomorphism H∗(Yi, Yi−1) ∼=
H∗(Y Hi , Y >Hi) (suppressing R). Hence H∗(Yi, Yi−1) is finitely generated, and it follows
by induction, using the exact homology sequence for (Yi, Yi−1), that χ(Yi) is defined for
0 ≤ i ≤ n. Therefore by Lemma 11.3(1),

χ(Y ) =
n∑

i=1

χ(Yi, Yi−1)

=
n∑

i=1

χ(Y Hi , Y >Hi)

=
∑

H

χ(Y H , Y >H)

(sum over all subgroups H of G which are stabilisers of points in Y ). If H ′ = gHg−1

(g ∈ G), then Y H′ = gY H and Y >H′ = gY >H , hence χ(Y H , Y >H) = χ(Y H′ , Y >H′), so

χ(Y ) =
∑

H∈C

(G : NG(H))χ(Y H , Y >H)

where C is a set of representatives for the conjugacy classes of subgroups of G which oc-
cur as stabilisers. Now NG(H)/H acts freely on YH , so C(Y H , Y >H) is a chain complex
of freeR(NG(H)/H)-modules. By Lemma 8.4, (NG(H) : H) divides rkR(C(Y H , Y >H)) =
χ(Y H , Y >H). Thus (G : NG(H))χ(Y H , Y >H) is divisible by (G : H), which is the length
of an orbit (for H ∈ C), so is divisible by k. Hence k|χ(Y ). ¤

Lemma 11.4. Let G = 〈g〉 be cyclic of prime order p, A = FpG, γ = g − 1 ∈ IG (the
augmentation ideal of A). For 1 ≤ i ≤ p− 1 there is a short exact sequence

0→ γp−iA→ A
γi−→ γiA→ 0.
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Proof. (We are using γ to denote both g − 1 and multiplication by g − 1; it will be
clear from the context which is meant.) Recall that γA = IG (by Lemma 5.2) and IG
is Fp-free on {gi − 1 | 1 ≤ i ≤ p − 1}. Hence dim(γA) = p − 1, and dim(A) = p, so
dim(Ker(γ)) = 1. Also,

γp = gp − 1 = 0, so γp−1g = γp−1, which implies γp−1 =

p−1∑

i=0

gi.

There is an exact sequence

0→ γp−1A
j→A

γ→ γA→ 0

where j is the inclusion map (γp−1 corresponds to ν in the proof of Lemma 5.7). Hence
Ker(γ) = γp−1A ⊆ γiA for 1 ≤ i ≤ p− 1. Therefore there is an exact sequence

0→ Ker(γ)→ γiA
γ→ γi+1A→ 0

which implies dim(γiA) = dim(γi+1A)+dim(Ker(γ)) = dim(γi+1A)+1, and so dim(γiA) =
p − i. Consequently, dim(Ker(γi)) = dim(A) − dim(γiA) = i, for 1 ≤ i ≤ p − 1. Fi-
nally, γp = 0 implies γp−iA ⊆ Ker(γi), and the lemma follows since they have the same
dimension. ¤

Lemma 11.5. Let G be cyclic of prime order p, X a finite-dimensional admissible
G-complex, with H∗(X;Fp) finitely generated. Then H∗(XG;Fp) is finitely generated.

Proof. From the proof of Lemma 11.1, Cn(X) = Cn(X
G)⊕Bn, where Bn

∼= C(X,XG)
as FpG-modules (suppressing Fp). The stabiliser of a cell is either G or 1, so G freely
permutes the cells of X \XG, hence Bn is a free FpG-module. Putting γ = g−1, where
g is a generator of G, there is a map Cn(X)→ Cn(X), x 7→ γix, for 1 ≤ i ≤ p− 1, also
denoted by γi. It follows from Lemma 11.4 that Ker(γi|Bn) = γp−iBn, hence

Ker(γi) = Cn(X
G)⊕ γp−iBn = Cn(X

G)⊕ γp−iCn(X)

(because γiCn(X
G) = 0 for 1 ≤ i ≤ p − 1). Thus there is a short exact sequence of

chain complexes

0→ C(XG)⊕ γp−iC(X)→ C(X)→ γiC(X)→ 0.

The corresponding exact homology sequence (Theorem 3.1) is

. . . Hn+1(γ
iC(X))→ Hn(C(XG))⊕Hn(γ

p−iC(X))→ Hn(C(X))→ . . . . (∗)
Let

ai,n = dim(Hn(γ
iC(X)))

bn = dim(Hn(C(X))) = dim(Hn(X;Fp))
cn = dim(Hn(C(XG))) = dim(Hn(X

G;Fp)).
From (∗),

cn + ap−i,n ≤ ai,n+1 + bn (1 ≤ i ≤ p− 1).

If X has dimension d, then ai,n+1 = bn = cn = 0 for n > d (since Cn(X) = 0 by Prop.
11.2). Also, ai,d+1 = 0 and bd <∞, so by (∗), cd <∞ and ap−i,d <∞ for 1 ≤ i ≤ p− 1,
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that is, ai,d <∞ for 1 ≤ i ≤ p−1. Now take n = d−1 to see cd−1 <∞ and ai,d−1 <∞
for 1 ≤ i ≤ p− 1. Continuing in this way, all cn <∞. ¤

Lemma 11.6. Let P be a finite p-group, X a finite-dimensional admissible P -complex.
If H∗(X;Fp) is finitely generated, then H∗(XH ;Fp) is finitely generated, for all subgroups
H of G.

Proof. It suffices to show H∗(XP ;Fp) is finitely generated. The proof is by induction on
|P |, so assume H∗(XH ;Fp) is finitely generated for all H © P . Choose G ≤ P , central
and of order p. By Lemma 11.5, H∗(XG;Fp) is finitely generated. Also, the action of P
induces an admissible action of P/G on XG. By induction H∗((XG)P/G;Fp) is finitely
generated. But (XG)P/G = XP . ¤

Theorem 11.4. Let G be a finite group, Y a finite-dimensional admissible G-complex
with H∗(Y ;Z) finitely generated. If k is an integer which divides the length of every
G-orbit, then k|χ(Y ;Z).

Proof. It suffices to show: if pa is a prime power dividing k, then pa|χ(Y ;Z). Let P be
a p-Sylow subgroup of G. Since pa|(G : Gy) for y ∈ Y , pa|(G : Py) (where Py = Gy∩P ),
so pa|(P : Py). That is, pa divides the length of every P -orbit. Also, P clearly acts
admissibly. By Lemma 11.3(2), H∗(Y ;Fp) is finitely generated and χ(Y ;Z) = χ(Y ;Fp).
By Theorem 11.3 and Lemma 11.6, pa|χ(Y ;Fp). ¤

Note. Let X be a connected free G-complex. Any CW-complex is locally contractible
(see [84, Ch.7, Ex.14]). A similar argument shows that, for every x ∈ X, there is a
neighbourhood U of X such that gU ∩ U = ∅ for all g ∈ G with g 6= 1. It follows that
the projection p : X → X/G is a regular covering map with G as group of covering
transformations (see [82, Prop. 5.8.2]). Moreover, p induces the structure of a CW-
complex on X/G.

Theorem 11.5. Suppose G ∈ FHT and let m be the least common multiple of the
orders of the finite subgroups of G. Then mχ(G) ∈ Z. (So by the Sylow Theorems, if a
prime power pa divides the denominator of χ(G), then G has a subgroup of order pa).

Proof. There is a normal subgroup of finite index H of G such that cdZ(H) < ∞
(arguing as in Prop. 10.2), and H is torsion-free (Cor. 5.2). Thus any finite subgroup
of G projects isomorphically onto the quotient G/H, so has order dividing (G : H),
hence m is a well-defined positive integer and m|(G : H). By Theorem 11.2, there is a
finite dimensional contractible G-complex X such that Ge is finite, for all cells e of X,
and by the note following Theorem 11.2, we can assume X is admissible. Since H is
torsion-free it acts freely on X, and since X is contractible it is acyclic, so H0(X,Z) ∼= Z
and there is an augmented ZH-free resolution C(X)→ Z. By the note above, Y = X/H
is a CW-complex. Moreover,

C(Y ) ∼= Z⊗ZH C(X) (see [16, II.2.4]).

Therefore H∗(H,Z) ∼= H∗(C(Y )) ∼= H∗(Y ;Z), hence H∗(Y ;Z) is finitely generated

and χ̃(H) = rkZ(C(Y )) = χ(Y ;Z). Thus χ(G) =
χ(Y ;Z)
(G : H)

and we need to show that
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m

(G : H)
χ(Y ;Z) ∈ Z, that is, k|χ(Y ;Z), where k = (G : H)/m ∈ Z. Let Q = G/H. The

action of G on X induces a cellular action of Q on Y . Let p : X → Y be the quotient
map. If e is a cell of Y and ẽ is a cell in p−1(e), then Qe = π(Gẽ), where π : G → Q
is the quotient map. (For if π(g)e = e, where g ∈ G, then p(gẽ) = π(g)p(ẽ) = π(g)e =
e = p(ẽ), so hgẽ = ẽ for some h ∈ H, and π(hg) = π(g).) Hence Y is an admissible
Q-complex. Also, as already noted π maps Gẽ isomorphically onto Qe, so |Qe| = |Gẽ|
divides m. Therefore k = |Q|/m divides (Q : Qe), for all cells e of Y . The theorem now
follows by Theorem 11.4. ¤

An Application.

Corollary 11.1. Suppose 1 → N → G → Q → 1 is a group extension, where N ∈ C

(so torsion-free and in FHT) and Q is a finite p-group. If p does not divide χ(N), then
the extension splits.

Proof. By Prop. 10.3, χ(G) =
χ(N)

|Q| , which is a fraction in lowest terms, so by Theorem

11.5, G has a subgroup H with |H| = |Q|, and H maps isomorphically onto H since N
is torsion-free. Hence the extension splits. ¤

The method of proof of Theorem 11.5 can be used to give formulas relating χ(G) and
χ̃(G) in terms of torsion in G. See [14] and [16, IX, 11–14]. Concerning the Stallings
characteristic, the following is proved in [25], and is a simple generalisation of the
corresponding formula for groups of type FL(Z) in [105].

Theorem. Let X be an acyclic G-complex such that there are only finitely many G-
orbits of cells in X. Suppose Ge ∈ FP(R) for all cells e, where R is a commutative
ring. Then G ∈ FP(R) and

µ(G : R) =
∑

e∈Σ
(−1)dim(e)µ(Ge : R),

where σ is a set of representatives for the G-orbits of cells.

For further work on actions on CW-complexes, see [17].

12. Projectives over Group Algebras

Here we study arithmetic properties of the rank element rP of a finitely generated
projective module P , following [10] and [11]. Let A be a ring of prime characteristic
p, and let B be the polynomial ring in two non-commuting indeterminates x, y. (This
can be constructed in a similar way to a group ring, replacing the group by the free
monoid on {x, y}. See [31, §3.3].) Then

(x+ y)p = xp + yp +
∑

z1z2 . . . zp
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where the sum is over all sequences (z1, z2, . . . , zp) with zi ∈ {x, y} for 1 ≤ i ≤ p, not
all equal to x or all equal to y. The cyclic permutations

(z1, z2, . . . , zp), (z2, z3, . . . , zp, z1), . . . , ( zp, z1, z2, . . . , zp−1)

give products that are all congruent mod [B,B]:

(z1z2 . . . zp − z2z3 . . . zpz1 = [z1, z2z3 . . . zp], etc.).

Hence their sum is congruent to p z1z2 . . . zp, i.e. to 0, mod [B,B]. Since p is prime, these
cyclic permutations are not proper powers (in the free monoid on {x, y}), so are pairwise
distinct. (This is left as an exercise.) Hence (x + y)p = xp + yp + z with z ∈ [B,B].
Given a, b ∈ A, there is a unique ring homomorphism B → A which sends x to a, y to
b and is the identity map on A ([31, §3.3]). Hence
(1) For all a, b ∈ A, (a+ b)p = ap + bp + c with c ∈ [A,A].

Since p is either 2 or odd, (−a)p = −ap for a ∈ A, so by (1),

(ab− ba)p ≡ (ab)p − (ba)p mod [A,A]

= [a, (ba)p−1b]

≡ 0 mod [A,A]

Therefore, using (1) again,

(2) For all c ∈ A, c ∈ [A,A] implies cp ∈ [A,A].

It follows from (1) and (2) that there is a homomorphism F = FA : T (A) → T (A)
defined by F (TA(a)) = TA(a

p). (For if TA(a) = TA(b), then a = b+ c where c ∈ [A,A],
so ap ≡ bp + cp ≡ bp mod [A,A], hence F is well-defined, and is a homomorphism by
(1)). We call FA the Frobenius homomorphism of A. If A is an R-algebra, where R is a
commutative ring, then TA is R-linear, hence FA(ra) = TA(r

pap) = rpFA(a) for r ∈ R,
a ∈ A. Let L be a free A-module with basis e1, . . . , en and let B = EndA(L). Recall
that, if f ∈ B, TL/A(f) = TA (

∑n
i=1 aii), where (aij) is the matrix of f with respect to

e1, . . . , en and TL/A can be identified with TB (the universal trace function on B). (See
Remark (3) after Lemma 2.7.) Hence TL/A(f

p) = FB(TL/A(f)). Taking f to be the map

defined by

{
e1 7→ ae1

ei 7→ 0 (i > 1)
, where a ∈ A, we see that FB = FA. If P is a finitely

generated projective A-module, write P ⊕Q = L, where L is finitely generated free. If
f ∈ EndA(P ), then TP/A(f) = TL/A(f ⊕ 0) by Lemma 2.7 and (f ⊕ 0)p = f p ⊕ 0, hence
FA(TP (f)) = TP (f

p). Finally, if M is of type FP over A, P →M is a finite augmented

projective resolution and f ∈ EndA(M), take a lift f̃ : P → P of f . Then f̃ p is a lift of
f p, hence

FA(TM(f)) = FA

(∑
(−1)iTPi(f̃i)

)

=
∑

(−1)iFA(TPi(f̃i)) =
∑

(−1)iTPi(f̃ pi ) = TM(f p).

We have proved the following.

Lemma 12.1. If A is a ring of prime characteristic p, M is a module of type FP over
A and f ∈ EndA(M), then FA(TM(f)) = TM(f p).
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¤

Let R be a commutative ring of prime characteristic p, let G be a group, A = RG,
F = FA. If r =

∑
τ∈T (G)

r(τ)τ ∈ T (A), then F (r) =
∑

τ∈T (G)
r(τ)pF (τ) =

∑
τ∈T (G)

r(τ)p τ p,

where if τ = [g], τ p means [gp].

Lemma 12.2. In this situation suppose r =
∑

τ∈T (G)
r(τ)τ is fixed by some power Fm

(m > 0). If S = supp(r) = {τ ∈ T (G) | r(τ) 6= 0}, then
(a) Fm permutes S, r(τ p

m
) = r(τ)p

m
for τ ∈ S and r(1)p

m
= r(1);

(b) if s ∈ G and r(s) 6= 0, then s is conjugate in G to sp
mn

for some n ≤ |S|;
(c) for all τ, r(τ) is algebraic over Fp.

Proof. Since r = Fm(r) =
∑
τ

r(τ)p
m
Fm(τ), if σ ∈ S, then r(σ) = ∑

τ∈T (G)Fm(τ)=σ

r(τ)p
m
,

and σ = Fm(τ) = τ p
m

for at least one conjugacy class τ ∈ S. Hence S ⊆ Fm(S) and
since S is finite, Fm permutes S as claimed, and (a), (b) follow. If τ ∈ S and n is the
length of the orbit of τ under Fm, then r(τ)p

mn
= r(τ), so r(τ) is algebraic over Fp. ¤

Corollary 12.1. If M is an RG-module of type FP, the conclusions of Lemma 12.2,
with m = 1, apply to r = rM .

Proof. By Lemma 12.1, FA(rM) = rM , since rM = TM/A(idM) = TM/A(id
p
M). ¤

We shall apply Cor. 12.1 to study projective modules over CG. First, we quote some
results from commutative algebra.

12.1 (Noether Normalisation Lemma). Let K[x1, . . . , xn] be a finitely generated in-
tegral domain over a fieldK. Then there exist elements y1, . . . , yr (r ≥ 0) inK[x1, . . . , xn],
algebraically independent over K, such that K[x1, . . . , xn] is integral over K[y1, . . . , yr].

Proof. See [31, (11.10), Lemma 1]. ¤

Lemma 12.3. Suppose B is an integral domain which is integral over a subdomain A
and K is an algebraically closed field.Then any ring homomorphism ϕ : A→ K can be
extended to B.

Proof. Let p = Ker(ϕ). Then p is prime, so there is a prime ideal P of B with P∩A = p

(by the Cohen-Seidenberg Theorem; see [62, §7.6]). Then B/P is integral over A/p and
it is enough to extend the injective map A/p → K induced by ϕ to B/P, so we can
assume ϕ is injective. Then ϕ extends to the field of fractions A′ of A, and it is enough
to extend this map to the field of fractions B ′ of B. Thus we can assume B/A is
an algebraic field extension, and the result is then well-known (see [71, Ch.VII, §2,
Theorem 2]). ¤
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Lemma 12.4. Let R = Z[α1, . . . , αn] be a finitely generated integral domain and let
x ∈ R be transcendental over Q. Then for all but finitely many prime numbers p, there
are a field K of characteristic p and a homomorphism ϕ : R → K such that ϕ(x) is
transcendental over Fp.

Proof. Let L be the field Q(x). By Lemma 12.1, there exist y1, . . . , yr in L[α1, . . . , αn],
algebraically independent over L, such that L[α1, . . . , αn] is integral over L[y1, . . . , yr].
Let Y = {y1, . . . , yr} and let fi be a monic polynomial satisfied by αi over L[Y ]. The
coefficients of fi are polynomials in Y over L, that is, polynomials whose coefficients
are quotients of elements of Z[x]. Let Π be the finite set of primes of Z[x] appearing as
factors in the numerator or denominator of one of these quotients.

Let S = {a(x)/b(x) | a(x) ∈ Z[x], b(x) is a product of primes in Π}.
Then S is a subring of L and fi ∈ S[Y ], so each αi is integral over S[Y ]. All but finitely
many primes p ∈ Z do not divide the denominators of any of the polynomials in Π. For
such primes p, extend the canonical map Z→ Z/pZ = Fp to a homomorphism

ϕ : Z[x]→ Fp(t)

(where t is transcendental over Fp) by letting ϕ(x) = t. We can further extend to
ϕ : S → Fp(t) and then to ϕ : S[Y ]→ Fp(t) by sending each yi to 0. By Lemma 12.3, ϕ
then extends to a homomorphism from S[Y ][α1, . . . αn] to the algebraic closure of Fp(t),
and restricting to R gives the desired homomorphism. ¤

Let P be a finitely generated projective module over a group ring RG, where R is a
commutative ring. Then P ⊕Q = L for some Q and finitely generated free RG-module
F . If p : L→ P is the projection map, then p2 = p, so the matrix (eij) of P with respect
to a basis of L is idempotent. Further, if eij =

∑
g∈G

eij(g)g, then rP (τ) =
∑

1≤i≤ng∈τ

eii(g)

for τ ∈ T (G), where (eij) is an n × n matrix. (See Remark (1) after Lemma 2.7.)
Conversely, any idempotent in Mn(RG) determines a finitely generated projective RG-
module in this way.

Lemma 12.5. Let M be a module of type FP over a group ring KG, where K is a
field of characteristic 0. Then rM(τ) is algebraic over Q, for all τ ∈ T (G).

Proof. rM = rP − rQ for some finitely generated projective RG-modules P , Q. (If S →
M is a finite augmented projective resolution, let P = S0⊕S2⊕ . . ., Q = S1⊕S3⊕ . . .)
Thus we can assume M is projective. Let (eij)1≤i,j≤n be an idempotent matrix over
KG corresponding to M as above. Using the notation above, let

E = {eij(g) | 1 ≤ i, j ≤ n, g ∈ G}
(a finite set). Suppose rM(σ) is transcendental over Q. By Lemma 12.4, there is a
homomorphism

ϕ : Z[E]→ F,

where F is a field of characteristic p > 0, such that ϕ(rM(σ)) is transcendental over
Fp. We can extend ϕ to a homomorphism Z[E]G → FG of group rings (Remark
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5.1). Then (ϕ(eij))1≤i,j≤n is an idempotent matrix over FG, giving a finitely generated
FG-projective module N , with

rN =
∑

τ∈T (G)
ϕ(rM(τ))τ.

But then ϕ(rM(σ)) is algebraic over Fp by Cor. 12.1, a contradiction. ¤

Lemma 12.6. Let K be a field of characteristic 0, G a group, P a finitely generated
projective KG-module. Then there exist a field K ′, such that K ′/Q is a finite extension,
and a finitely generated projective K ′G-module Q such that rQ = rP .

Proof. As in Lemma 12.5, P corresponds to some idempotent matrix (eij)1≤i,j≤n over
KG. Again let

E = {eij(g) | 1 ≤ i, j ≤ n, g ∈ G}.
Let L = Q(rP (τ) | τ ∈ T (G)), so L/Q is finite by Lemma 12.5. Apply Lemma 12.1
to R, where R = L[E] ⊆ K: there is a set Y = {y1, . . . , yr} such that y1, . . . , yr are
algebraically independent over L and R is integral over L[Y ]. Let L be the algebraic
closure of L and let λ : L[Y ] → L be the homomorphism which is the identity map
on L and zero on Y . By Lemma 12.3, we can extend to a homomorphism λ : R → L,
with λ(L[Y ]) = L. Then, for e ∈ E, λ(e) is algebraic over L, so over Q. Let K ′ =
L(λ(e) | e ∈ E), so K ′/Q is a finite extension and λ maps R to K ′. Thus λ extends
to a homomorphism λ : RG → K ′G. The matrix (λ(eij)) over K

′G is an idempotent.
As in the proof of Lemma 12.5, there is a corresponding K ′G-projective module Q,
with rQ(τ) = λ(rP (τ)) for τ ∈ T (G). But λ restricted to L is the identity map, so
λ(rP (τ)) = rP (τ). ¤

We shall summarise some needed results from elementary algebraic number theory.
Thus from now on, primes in Z will be called rational primes. More generally, if K/Q
is a finite field extension, a prime of K means a prime ideal in O, its ring of integers. If
p is a prime of K, then p∩Z = Zp for some rational prime p, and we say that p divides
p. We recall that O is a Dedekind domain, in particular its non-zero prime ideals are
maximal (see [100, Theorem 1, §3.4]). Let K/Q be a finite Galois extension, p a prime
of K dividing the rational prime p. Let O be the ring of integers, Op the localisation
at p and mp its maximal ideal. The residue field F = Op/mp is isomorphic to O/p
(see [62, Prop.10.10]) and is a finite extension of Z/Zp ([100, Prop.2, §6.2]). The group
Γ = Gal(K/Q) permutes the primes of K dividing p (transitively-see [100, Prop.1,
§6.2]), the stabiliser Γp acts on F and there is a surjective map ψ : Γp → Gal(F/Fp)
([100, Prop.2, §6.2]). If p is unramified inK (i.e. ψ is one-to-one), Γp is cyclic, generated
by γ, where ψ(γ) is the Frobenius map x 7→ xp ([100, §6.3]). Denote γ by Frob(p). Thus

γ(x) ≡ xp mod mp for all x ∈ Op.

Theorem 12.2. For any γ ∈ Gal(K/Q), there are infinitely many rational primes p
such that there exist primes p of K dividing p such that Frob(p) = γm for some m with
〈γm〉 = 〈γ〉.

Proof. This follows easily from the Frobenius Density Theorem ([63, p.134]), using
equation (1) in [100, §6.3]. ¤
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Theorem 12.2 can be improved using the Tchebotarev Density Theorem ([72, 8.4, The-
orem 10]) and this slightly simplifies the arguments which follow. This is left to the
reader.

Theorem 12.3. Let M be a module of type FP over a group ring KG, where K is a
field of characteristic zero. Then

(1) (Zalesskii) rM(1) ∈ Q;
(2) (Bass) Q(rM(τ) | τ ∈ T (G)) is a finite Galois extension of Q with abelian Galois

group.

Proof. As in Lemma 12.5, write rM = rP1 − rP2 where P1, P2 are finitely generated
projective KG-modules. By Lemma 12.6, there are finite field extensions Ki/Q and
finitely generated projective KiG-modules P ′i such that rPi = rP ′i (for i = 1, 2). Let
L = K1K2 (we can view K1, K2 as subfields of C, and L is the subfield of C they
generate), so L/Q is finite. Let P = L ⊗K1 P ′1, Q = L ⊗K2 P ′2, so P , Q are finitely
generated LG-modules, and rM = rP − rQ. Let N be the normal closure of L/Q, and
let Γ = Gal(L/Q). As in Lemma 12.5, let (eij)1≤i,j≤n be an idempotent matrix over LG
corresponding to P , (fij)1≤i,j≤n one corresponding to Q, and define

E = {eij(g) | 1 ≤ i, j ≤ n, g ∈ G} ∪ {fij(g) | 1 ≤ i, j ≤ n, g ∈ G}.
If 0 6= x ∈ N , then x ∈ Op \mp for all but finitely many primes p of N (O is the ring of
integers of N , mp is the maximal ideal of Op). Hence, for all but finitely many primes
p of N , the following two conditions are satisfied:

(a) e ∈ Op for all e ∈ E, and e 6∈ mp if e 6= 0;

(b) for all γ ∈ Γ and all σ, τ ∈ T (G),

γrM(τ)− rM(τ) 6= 0 implies γrM(τ)− rM(τ) 6∈ mp.

We claim that:

(∗) for all γ ∈ Γ, there exists n = n(γ) such that γrM(τ) = rM(τn) for all τ ∈ T (G).

For let γ ∈ Γ. By Theorem 12.2, there is a prime p of N satisfying (a) and (b) and such
that Frob(p) = γm, for some m with 〈γm〉 = 〈γ〉. By (a), (eij), (fij) are idempotent
matrices over OpG, so (ēij), (f̄ij) are idempotent matrices over FG, where F = Op/mp

(and e 7→ ē denotes the canonical map OpG → FG). Let P̄ , Q̄ be the corresponding

projective FG-modules. Note that rP̄ (τ) = rP (τ) for all τ ∈ T (G) (as in Lemma 12.5).
Also, F has prime characteristic p, where p divides p, so by Cor. 12.1, rP̄ (τ

p) = rP̄ (τ)
p

for all τ ∈ T (G). Hence:

rP (τ) ≡ rP (τ
p) mod mp

Also γmrP (τ) ≡ rP (τ
p) mod mp (since γm = Frob(p))

so γmrP (τ) ≡ rP (τ
p) mod mp.

Similarly γmrQ(τ) ≡ rQ(τ
p) mod mp, so γ

mrM(τ) ≡ rM(τ p) mod mp, for all τ ∈ T (G).
By (b), γmrM(τ) = rM(τ p) for all τ ∈ T (G). Since 〈γm〉 = 〈γ〉, γ = γml for some

l > 0, hence γrM(τ) = rM(τ p
l
) for all τ ∈ T (G), proving (∗). Take τ = [ 1 ] to see

that γrM(1) = rM(1) for all γ ∈ Gal(N/Q). Since N/Q is Galois, rM(1) ∈ Q. Let
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A = {rM(τ) | τ ∈ T (G)}, B = Q(A). It follows from (∗) that γA ⊆ A, hence γB ⊆ B,
for all γ ∈ Γ. It follows that B/Q is Galois (see the proof of Theorem 2(b), §6.1 in
[100]). For γ, δ ∈ Γ, there exist n, n′ such that γrM(τ) = rM(τ)n, δrM(τ) = rM(τ)n

′

for all τ ∈ T (G). Then γδrM(τ) = rM(τnn
′
) = δγrM(τ). It follows that Γ′ = Gal(B/Q)

is abelian (the map Γ→ Γ′, γ 7→ γ|B is onto-again see the proof of Theorem 2(b), §6.1
in [100]). ¤

In Theorem 12.3, if B = Q(rM(τ) | τ ∈ T (G)), the Artin symbol
(
B/Q
p

)
is defined, for

any rational prime p which does not ramify in B. It equals Frob(q), for any prime q of
B dividing p. See [100, §6.3].
Lemma 12.7. In Theorem 12.3, let SM = supp(rM) = {τ ∈ T (G) | rM(τ) 6= 0}.
Then there exists a finite set Π of rational primes, including those that ramify in B =
Q(rM(τ) | τ ∈ T (G)), such that, for p 6∈ Π

(1) δrM(τ) = rM(τ p) for all τ ∈ T (G), where δ =
(
B/Q
p

)
;

(2) the map τ 7→ τ p is a permutation of SM .

Proof. Let Π be the set of rational primes which ramify in N or are such that, for some
prime p of N dividing p, condition (a) or (b) in the proof of Theorem 12.3 fails. Then
Π is finite (see [100, Theorem 1, §5.3] and the proof of Theorem 12.3). The argument
of Theorem 12.3 shows that, for p 6∈ Π, γrM(τ) = rM(τ p) for all τ ∈ T (G), where p is

a prime of N dividing p and γ = Frob(p), and (1) follows since γ|B =
(
B/Q
p

)
(see [100,

Prop.1(b), §6.3]). Further, SM ⊆ SP ∪ SQ and by Condition (a), SP = SP̄ , SQ = SQ̄
(with notation as in the proof of Theorem 12.3). By Cor. 12.1, the map τ 7→ τ p is a
permutation of SP̄ and of SQ̄, hence of SP ∪ SQ, and so of SM by Part (1). ¤

Note. In Lemma 12.7(2), if rM(g) 6= 0, it follows that g is conjugate to gp
u
for some

u > 0 with u ≤ |SM |.
Theorem 12.4. Under the hypotheses of Theorem 12.3,

(1) if g ∈ G has finite order m, and ω = e2πi/m, then rM(g) ∈ Q(ω), say rM(g) =
f(ω) (where f ∈ Q[x], the polynomial ring), and rM(gq) = f(ωq) for all q prime
to m;

(2) if g ∈ G has infinite order and rM(g) 6= 0, then g belongs to a subgroup H of
G isomorphic to the additive group of Z[1/p | p prime, p 6∈ Π] (with Π as in
Lemma 12.7).

Proof. (1) By the Kronecker-Weber Theorem ([63, Ch.V, Theorem 5.9]), we can embed
B = Q(rM(τ) | τ ∈ T (G)) in Q(z), where z is a primitive nth root of 1 for some
n. Then both B and Q(ω) embed in Q(ζ), where ζ is a primitive Nth root of 1 and
N = mn. By [100, Theorem 1, §6.4], there is an isomorphism (Z/NZ)∗ → Gal(Q(ζ)/Q)
induced by q 7→ σq, where (Z/NZ)∗ is the group of units of Z/NZ, and σq(ζ) = ζq for
integers q prime to N . In particular, if q = q1q2 then σq = σq1σq2 . Further, if q is prime,
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σq =
(
Q(ζ)/Q

q

)
. Since Q(ζ)/Q is Galois (Example 2, §6.1 in [100]), there is (from the

proof of Theorem 2(b), §6.1 in [100]) a short exact sequence

Gal(Q(ζ)/Q(ω)) // // Gal(Q(ζ)/Q) // // Gal(Q(ω)/Q).

(The right-hand map is restriction and corresponds to the usual projection map (Z/NZ)∗
→ (Z/mZ)∗.) Also, σq(ω) = ωq since ω is a power of ζ. Hence σq ∈ Gal(Q(ζ)/Q(ω)) if
and only if ωq = ω, if and only if ωq−1 = 1, i.e. q ≡ 1 mod m. Any element of (Z/NZ)∗
is represented by an integer q not divisible by any prime in Π. (For let p1, . . . , pk be
the elements of Π prime to N . Suppose (z,N) = 1. Then by the Chinese Remainder
Theorem, there is an integer q such that

q ≡ z mod N

q ≡ 1 mod pi (1 ≤ i ≤ k)

and q is not divisible by any prime in Π.) Writing such an integer q as a product of
primes, σq(rM(g)) = rM(gq) by repeated use of Lemma 12.7. (For primes p not in Π,

σp =
(
Q(ζ)/Q

p

)
restricted to B is

(
B/Q
p

)
, by [100, Prop.1(b), §6.3].) Thus rM(g) is fixed

by all σq with q ≡ 1 mod m, i.e. by Gal(Q(ζ)/Q(ω)). Hence rM(g) ∈ Q(ω), and (1)
follows since σq(ω) = ωq.

(2) By Lemma 12.7(2), the map ϕq : τ 7→ τ q is a permutation of SM , for any positive
integer q not divisible by any prime in Π. Then ϕq has order at most |SM |, so ϕNq = 1,

where N = |SM |!. Hence g is conjugate in G to gq
N

for all such q and g ∈ SM . Thus

g = tgq
N
t−1 for some t ∈ G, so g = uq

N
, where u = tgt−1, and T (u) = T (g) ∈ SM .

Assume g ∈ SM has infinite order. Enumerate the primes not in Π, say p1, p2, . . . and
put an = pN1 . . . p

N
n for n ≥ 1. Inductively we can find gn ∈ T (g) for n ≥ 0 such that

g0 = g and gann = gn−1 for n > 0. Let H be the subgroup of G generated by {g0, g1, . . .}.
An element of H has the form gkn for some n ≥ 0 and integer k. The map H → Z,
gkn 7→ k/(a1 . . . an) is easily seen to be well-defined and an injective homomorphism. Its
image is clearly Z[1/p | p prime, p 6∈ Π]. ¤

Linnell [73, Lemma (4.1)], using results of Cliff [27], has proved the following.

Theorem. Let G be a group.

(1) If p is a rational prime, Q is a finitely generated projective ZpG-module, and
g ∈ G is such that rQ(g) 6= 0, then [g] = [gp

n
] for some integer n > 0, and

rQ(g) = rQ(g
p);

(2) if P is a finitely generated ZG-module, g ∈ G and rP (g) 6= 0, then there are
subgroups C, H of G such that g ∈ C ≤ H ≤ G, C is isomorphic to the additive
group of Q, H is finitely generated, and the elements of C lie in finitely many
H-conjugacy classes. (So if g has finite order, rP (g) = 0.)

Conjectures. Let R be a subring of C such that R ∩Q = Z, let G be a group and P
a finitely generated projective RG-module.

(1) rP (1) =
∑

τ∈T (G)
rP (τ).
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(2) rP (g) = 0 for all g 6= 1 in G.

(3) P is stably free (i.e. there exist finitely generated free RG-modules F , L such
that P ⊕ L = F ).

Conjectures (1) and (2) are from [11], where (3) was posed as a question. Clearly
(3) ⇒ (2) ⇒ (1). Also, (1) (with R = Z) implies the Brown characteristic χ and µ
agree on FP(Z), so on vFP(Z) (see Cor. 6.5 and the note after Prop. 10.3). Using
Lemma 12.7(2), Bass [10] shows that rP (g) = 0 for all g of infinite order in G if G is
linear, so by Linnell’s Theorem, (2) is true for linear groups G (with R = Z).

Lemma 12.8. Let G be a group, M a ZG-module of type FP . If rM(g) 6= 0, then

g ∈ ⋂
p prime

Gp∞ ,

where, for integers n ≥ 1, Gn = {gn | g ∈ G} and Gp∞ =
⋂
j≥0

Gpj .

Proof. This follows easily from Part (1) of Linnell’s Theorem. ¤

Corollary 12.2. Conjecture 2, with R = Z, is true for residually finite groups G.

Proof. For residually finite groups G,
⋂

p prime

Gp∞ = 1, since this is true for finite

groups G. ¤

Conjecture (2) is true for residually finite groups G and arbitrary R (this was proved
by Moody1).

Further Conjectures.

(4) if G ∈ FP(Q), then χG(g) = 0 for g of infinite order in G (recall χG = rQ/QG).

(5) FL(Z) = FP(Z).

Conjecture (4) appears in [11], and (5) was asked as a question in [105]. Both (4) and
(5) imply that µ and χ agree on FP(Z), because groups in FP(Z) have cdZ(G) < ∞,
so are torsion-free (Cor. 5.2). Conjecture (5) is related to (3). For if g ∈ FP(Z), there
is an augmented projective resolution

0→ P → Fn−1 → . . .→ F0 → Z→ 0 (∗)
with P finitely generated ZG-projective and all Fi finitely generated ZG-free. For if

0→ Pn → Pn−1 → . . .→ P0 → Z→ 0 (∗)
is a finite augmented projective resolution, we can write P0 ⊕ Q0 = F0 where F0 is
finitely generated free. Put P ′1 = P1⊕Q0. Then there is an augmented finite projective
resolution

0→ Pn → Pn−1 → . . .→ P ′1
d′1−→F0 → Z→ 0

where, if d is the differential on P , d′1 = d1⊕ idQ0 . Clearly repetition of this trick leads
to a resolution of the form (∗). Further, G ∈ FL(Z) if and only if the projective module

1See Section 13.
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P in (∗) is stably free. For if it is stably free, we can repeat this trick one more time,
writing P ⊕ Fn+1 = Fn, where Fn, Fn+1 are finitely generated free, to obtain a finite
augmented free resolution

0→ Fn+1 → Fn → Fn−1 → . . .→ F0 → Z→ 0.

Conversely, if G ∈ FL(Z), we may take the Pi in (∗∗) to be free, and comparing (∗)
and (∗∗) using Cor. 3.3, P is stably free.

Further information on rank elements is provided by the following.

Theorem 12.5 (Kaplansky). Let P be a finitely generated projective KG-module, where
G is a group and K is a field of characteristic 0, corresponding to an n× n idempotent
matrix over KG. Then 0 ≤ rP (1) ≤ n, and rP (1) = 0 if and only if P = 0. (Recall
that rP (1) ∈ Q by Theorem 12.3.)

Proof. See [86], also [91, §22]. ¤

13. Update

This is a survey of progress since the course was given. It is not claimed to be compre-
hensive.

Conjecture (2) at the end of Section 12 is known as the Bass conjecture (or strong Bass
conjecture), and Conjecture (1) is called the weak Bass conjecture, often just for R = Z.
They are related to the idempotent conjecture, that if G is a torsion-free group, the
only idempotents in CG are 0 and 1. (It is obviously necessary to assume torsion-free;
see the idempotent in Lemma 5.6.) In fact, if e is an idempotent in CG, let re denote
rCGe. Then the following are equivalent:

(1) G satisfies the idempotent conjecture;

(2) for all idempotents e in CG, re(g) = 0 for all g 6= 1 in G;

(3) for all idempotents e in CG,
∑

τ∈T (G)
re(τ) = re(1).

Proof. Clearly (1) ⇒ (2) ⇒ (3). Assume (3) and let e be an idempotent in CG, say
e =

∑
g∈G egg, with eg ∈ C. By Example (2) after Lemma 2.6,

re = TCG(e) =
∑

g∈G
eg[g] =

∑

τ∈T (G)
re(τ)τ

so ε(e) =
∑

g∈G
eg =

∑

τ∈T (G)
re(τ) = re(1)

where ε is the augmentation map. Since ε(e) is an idempotent in C, it is 0 or 1. Assume
it is 0. By Theorem 12.5, CGe = 0, so e = 0. If ε(e) = 1, apply this argument to 1− e
to see e = 1. ¤

It was noted in [10] that the statement that finite groups satisfy the Bass Conjecture is
equivalent to Swan’s Theorem (Theorem 7.3). We survey progress on these conjectures.
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Formanek [53] showed that the idempotent conjecture is true for torsion-free Noetherian
groups. In particular it is true for polycyclic by finite groups. (Another proof of this
was given by Marciniak [81].) The Bass conjecture for polycyclic by finite groups was
established by Weiss [116]. Results on the coefficients rP (g), where P is a finitely
generated projective kG-module, k is a field and G is linear, were obtained by Cliff [28].
Moody’s work (mentioned after Cor. 12.2) was not published. However, the following
result appeared in [87]. Under suitable hypotheses on G and R, there are finite cyclic
subgroups C1, . . . , Cn and finitely generated RCi-projectives Pi for 1 ≤ i ≤ n such
that rP is a Q-linear combination of the rank elements rRG⊗RCi

Pi . The hypotheses are
that for g ∈ G of infinite order, the set of gm for which none of the prime divisors
of m are invertible in R never fall into finitely many conjugacy classes. Schafer [101]
proved a version of Linnell’s Theorem with Z replaced by the ring of integers in an
algebraic number field. Using this, he establishes the Bass conjecture for any subring
of the algebraic integers in C and any group which is residually of bounded exponent.
Schafer asked the following. If G is a finitely generated group having a subgroup A
isomorphic to the additive group of Q, such that A is contained in only finitely many
conjugacy classes in G, must G be of infinite cohomological dimension? An affirmative
answer would imply the Bass conjecture for all groups of finite cohomological dimension.
However, a counterexample was given by Linnell [74].

Burghelea [19] gave a decomposition of the cyclic homology of a group algebra, with
summands indexed by the conjugacy classes of G. Cyclic homology has proved useful in
attacking the Bass conjecture. Let G be a group of finite homological dimension n over
Q. For g ∈ G, CG(x) denotes the centralizer of g in G. Eckmann [41] proved that, if g is
an element of infinite order in G, then Hi(CG(g)/〈g〉,Q) = 0 for i ≥ n in the following
cases: (i) G is soluble of finite Hirsch rank, (ii) G is linear in characteristic 0 with finite
homological dimension over Q, and (iii) cdQ(G) ≤ 2 (this includes finite groups, by
Lemma 5.6.) Using Burghelea’s result, he shows that, for such groups G, if g is an
element of infinite order then rP (g) = 0 for finitely generated projective CG-modules
P . Eckmann’s results were extended by Cornick [32]. Also, Schafer [102] generalised
Burghelea’s result to relative cyclic homology using Marciniak’s algebraic proof of it
[80]. This is then used to show the following. Let G be a group and suppose g ∈ G has
infinite order in G/Gn, where Gn is the nth term of the lower central series of G. Then
for any finitely generated projective QG-module P , rP (g) = 0.

More recent work has identified some classes of groups for which the Bass conjecture is
true which have interesting closure properties. Let K be a field of characteristic zero.
Following Eckmann’s work, Chadha and Passi [22] defined the class E(K) as follows.
A group G is in class E(K) if

(1) hdK(G) <∞ and

(2) for all g ∈ G of infinite order, hdK(CG(g)/〈g〉) <∞,

where hd denotes homological dimension. Thus the groups in Eckmann’s result above
belong to E(Q). Chadha and Passi [22] (see also Ji [64]) proved that E(K) is closed
under subgroups, extensions and free products, and under unions of bounded homolog-
ical dimension over K. It follows that E(Q) contains the class of elementary amenable
groups of finite homological dimension over Q, and so the class of polycyclic by finite
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groups. Chadha and Passi note that groups in E(K) satisfy the Bass conjecture, and
deduce that groups residually in E(K) satisfy the weak Bass conjecture. In another pa-
per [21], Chadha shows that, if cdK(G) <∞ and G has a central free abelian subgroup
of rank cdK(G) − 1, then G ∈ E(K). Chadha and Passi [23] have also introduced the
class of groups having what is called the group trace property in connection with the
Bass conjecture.

More recently, Emmanouil [48] has introduced the class C(Q). To define this class, let
g be an element of infinite order in a group G. There is a central extension

1→ Z→ CG(g)→ N → 1

where N = CG(g)/〈g〉, the mapping Z→ CG(g) being n 7→ gn. Let α(g) be the element
of H2(N,Z) classifying this extension.

Definition. The group G is said to belong to C(Q) if, for all elements g ∈ G of infinite
order, the image of α(g) in the rational cohomology ring H∗(N,Q) is nilpotent.

Emmanouil shows that C(Q) is closed under subgroups, free products and finite direct
products, and under extensions whose cokernels have finite homological dimension over
Q. Also, C(Q) contains the class of abelian groups and the class E(Q). Consequently,
the class of extensions of a group in C(Q) by one in E(Q) is contained in C(Q). Fur-
ther, the class rC(Q) of groups residually in C(Q) satisfies Bass’ Strong Conjecture.
Denoting the class of torsion-free groups in C(Q) by C′(Q), it is further shown that a
group residually in C′(Q) satisfies the idempotent conjecture. In another paper [49],
Emmanouil considers the class S of all groups G, such that, if P is a projective CG-
module and PG = 0, then P = 0. (Recall, from the Note preceding Lemma 8.5, that
PG = C ⊗CG P = P/IGP .) The class S is closed under subgroups, extensions, direct
products and free products, and contains the class of torsion-free abelian groups. Em-
manouil shows that, if N is a normal subgroup of a group G, N ∈ S and G/N satisfies
the idempotent conjecture, then G satisfies the idempotent conjecture. The condition
defining S is a relaxation of one used by Strebel [109], who considered groups satisfy-
ing the following. If f : P → Q is a homomorphism of projective CG-modules and
1 ⊗ f : C ⊗CG P → C ⊗CG Q is injective, then f is injective. Any such group is in S.
(If PG = 0, apply this condition to the zero map f : P → 0 to see P = 0.) Strojnowski
[110] showed that the class of groups satisfying Strebel’s condition has the analogous
closure properties to S and and contains the class of locally indicable groups. Indeed,
one can replace C by an arbitrary ring R. Strojnowski also showed that all idempotents
of RG are contained in R if and only if all idempotents in R are central.

Strojnowski [111] considered a class of groups G satisfying a condition called WD: if H
is a finitely generated subgroup of G, h ∈ H, N is a positive integer and h is conjugate
in H to hp

N
for all primes p, then h = 1. Strojnowski shows that groups with property

WD satisfy the Bass conjecture, and gives several classes of groups satisfying WD.

Eckmann [43], [44] has considered various trace functions associated to a group, in-
cluding TCG, and the corresponding ranks. In an appendix to [44], using results of
Bass [10], he shows that torsion-free hyperbolic groups and CAT(0) groups G satisfy:
if P is a finitely generated projective CG-module, then rP (g) = 0 for all g 6= 1 in G.
In an addendum, he notes that this is true for the more general class of torsion-free
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semihyperbolic groups, by a simple argument of Bridson. The idempotent conjecture
for torsion-free hyperbolic groups was proved by Ji [64].

There are several other papers on idempotents in group rings, and we shall not survey
these, or papers on the existence of zero-divisors in group rings. We shall also not
comment on other applications of Hattori-Stallings rank, nor on Euler characteristics
for non-discrete groups.

There have been disappointingly few applications of the Euler characteristics we have
studied. Stallings original application (Gottlieb’s theorem) was generalised, first by Ros-
set [97], then by Dyer [40]. Dyer shows the following. Suppose 1→ L→ G → H → 1
is a group extension, H has a non-trivial torsion-free abelian normal subgroup and the
homology groups Hi(L,Z) are finitely generated. If G ∈ FL(Z) then µ(G) = 0. Both
Euler characteristics and the Hattori-Stallings rank are used in the proof that a group
is a Poincaré duality group of dimension 2 if and only if it is a surface group ([45]).
Euler characteristics has been used by Dicks and Leary in two papers [37], [38]. The
second has an algebraic proof of some results of Bestvina and Brady [12], which give an
example of a group of type FP(Z) which is not finitely presented. Other applications of
Euler characteristics are given in [51], [33] and [46]. In [35], it is shown inter alia that if
G is Poincaré duality group with χ(G) 6= 0, then G is co-Hopfian and (using Gottlieb’s
Theorem) has trivial centre. Kulkarni [67] has used Euler characteristics in studying
space forms, and mentions an application of Euler characteristics to free products in
[69]. Euler characteristics of certain free products are used in [88], where a special case
of Theorem 11.5 is encountered.

There have been some calculations of Euler characteristic. Serre [105] gave a recursive
formula for the Euler characteristic of a finitely generated Coxeter group. An explicit
formula was given by the author [26]. This has been used by Akita [5] and further
calculations for Coxeter groups have been made by Maxwell [85]. For other work on
Euler characteristics by Akita, see [3] and [4]. There is also a formula for the Euler
characteristic of a graph product (in a suitably defined sense) in [26], and results on the
Euler characteristic of Artin groups appear in [24]. Computations of Euler character-
istics for mapping class groups are made in [56] and [92]. Other calculations of Euler
characteristic appear in [50]. Euler characteristics of amenable groups are studied in
[42]; in particular, if G is an infinite amenable group admitting a finite K(G, 1), then
χ(G) = 0.

There are some ideas in Brown’s work that have been used by other authors. Firstly
there is the notion of equivariant Euler characteristic χG(S) for a group G acting on a
complex S and its relation to χ(G). Indeed, if S is the complex obtained in a standard
way from the poset of non-trivial finite subgroups of G, then χ(G)−χG(S) is an integer
(see [14], [16]). There is also a “local” version involving a prime p and the complex
Sp obtained from the poset of non-trivial finite p-subgroups of G; χ(G) − χG(Sp) is
p-integral (see [15], [16]). These posets have remained objects of study to the present
day. In particular, Sp, where G is finite and p divides the order of G has received
considerable attention. Quillen [94] conjectured that Sp is contractible and Webb [115]
conjectured that the quotient Sp/G for the action of G is contractible. Webb’s conjec-
ture has been established by Symonds [112]. Progress on Quillen’s conjecture has been
made in [59], [7] and [93]. For progress on the complex S obtained from the poset of
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non-trivial finite subgroups, we refer to [113] and [60]. These complexes were studied
from a different point of view by Kurzweil [70]. Brown’s work on equivariant Euler
characteristics has also been used by Kulkarni [68]. We also mention the work of Brown
and of Thevenaz on generalisations of one of the Sylow Theorems, and refer to [18] for
details. Brown’s result that, for a finite group G, χ(Sp) ≡ 1 modulo the p-part of |G|,
was also investigated by Gluck [54] and Yoshida [117]. The results of [15] and [18] have
been applied by Yoshida [118]. There are other interesting results in [14], [16].There is
a formula for the difference χ̃(G)−χ(G). This has been used by Adem [1], [2]. Finally,
there are some number-theoretic results on zeta functions which have been used by
other authors; we mention only a recent application by Byeon [20].

In the discussion preceding Remark 5.2, the geometric dimension of a group was defined,
and it was noted that this equals the cohomological dimension (over Z) except for the
possibility of a group with cohomological dimension 2 and geometric dimension 3. The
statement that no such group exists, i.e. that cohomological dimension always equals
geometric dimension, is known as the Eilenberg-Ganea conjecture ([47]). Bestvina and
Brady [12] have an example which either gives a counterexample to this conjecture,
or to the Whitehead asphericity conjecture. (This asserts that a subcomplex of an
aspherical 2-complex is aspherical.)
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Intersections of Magnus Subgroups of One-Relator Groups

by

D. J. Collins

1. Introduction

The idea of specifying a group by generators and relators has a long history and goes
back to around 1900 with the definition and study of the fundamental group of a
topological space and the study of groups of transformations of geometric objects,
notably tesselations of the hyperbolic plane. In this article we give an elementary
description of the basics of the theory of a group given by a set of generators and a
single relator and illustrate the use of this theory in proving a result - see Theorem 2
below - about intersections of what we call Magnus subgroups of such a group.

Following this introduction, in which we set out basic definitions and state our main
theorem, in Section 2 we sketch the classical approach to one-relator groups due to
Magnus [16, 17], which is the basis of our proof of Theorem 2. In Section 3 we give
a detailed illustration of how examples of what we call ’exceptional’ intersections of
Magnus subgroups can arise. In Section 4 we state briefly some results which extend
Theorem 2, and then, in Sections 5-7, we present the detailed proof.

To specify a group by generators and relators, one begins by defining the free group
F (X) on a basis X to consist of distinct strings of letters xε11 x

ε2
2 . . . x

εn
n where xi ∈

X, εi = ±1, which are reduced in the sense that (xi, εi) 6= (xi+1,−εi+1), 1 ≤ i ≤ n − 1.
Multiplication consists of concatenation of strings, followed by cancelling pairs of strings
xεx−ε to obtain a reduced string. Checking the associativity axiom is a little awkward
(in this version of the definition) but is not difficult and the result becomes a group
when one allows the empty word to serve as identity. One then selects a set R of
elements of F (X) and defines a group G, with notation G = 〈X | R〉, as the quotient of
F (X) defined by the normal closure N of R in F (X) - this process defines a canonical
epimorphism from F (X) to G with kernel N . When a group G can be specified in this
way, with R chosen to consist of a single element R, one calls G a one-relator group
and writes G = 〈X | R〉 (or sometimes G = 〈X | R = 1〉, indicating that the coset RN
of R defines the identity element of G). Normally R is chosen to be cyclically reduced,
that is, R is reduced but in addition the last and first letters of R are not inverse to one
another. One may also, at will, replace R by any cyclic permutation of R or its inverse
R−1, which of course consists of the letters of R in reverse order and with the opposite
signs.

The classical example of a one-relator group is the fundamental group

π1(Sg) = 〈a1, b1, . . . , ag, bg | [a1, b1][a2, b2] . . . [ag, bg]〉
(writing [a, b] for aba−1b−1) of a closed orientable surface of genus g, which appears in
the work [9] of Dehn early in 1900’s, and the general theory begins with the work of
Magnus [16] in 1930. While, overall, the theory of groups defined by generators and
relators is less than wholly tractable, the restriction to a single relator is sufficiently
restrictive that effort is rewarded and there is now a very substantial literature.
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The most famous theorem concerning one-relator groups is the Freiheitssatz, first proved
in [16] by Magnus, which asserts that if a proper subset of the generators omits a
generator that appears in the (cyclically reduced) defining relation, then this subset is a
free basis for the subgroup it generates. To make this statement precise, let G = 〈X | R〉
be a one-relator group, where R is a cyclically reduced (group) word on X; thus R is
a finite string xε11 x

ε2
2 . . . x

εn
n where xi ∈ X, εi = ±1, and (xi, εi) 6= (xi+1,−εi+1), with

subscripts taken modulo n. A subset Y ⊆ X is a Magnus subset if Y omits an essential
generator, that is one which appears in the relator R.

Theorem 1 (Freiheitssatz). Let G = 〈X | R〉 be a one-relator group and let π : F (X)→
G be the corresponding canonical epimorphism. Then the images {π(y), y ∈ Y } of a
Magnus subset Y of X are distinct elements of G and form a free basis of the subgroup
of G that they generate.

We call a subgroup M of G generated by the elements {π(y), y ∈ Y } of a Magnus
subset Y a Magnus subgroup. Since the elements {π(y), y ∈ Y } are all distinct, the
epimorphism π is usually suppressed and we shall follow this course henceforth. A
näıve view might regard the theorem as unsurprising, since one might suspect that any
possible relation among the elements of Y would have to be derived using the given
relator R and would therefore require the use of a generator that does not appear in
Y . While this idea can be verified in a number of varieties of algebras, non-trivial
arguments are usually required and this is the case for groups. What is interesting
about the classical argument used by Magnus, which is by induction on the length
of the relator R, is the way in which the inductive hypothesis provides a structural
understanding of the group G. The key technique is the use of amalgamated free
products in which Magnus subgroups of a group with a shorter defining relator appear
as the subgroups to be amalgamated - and since these are free all that is required to
check that the construction is well-founded is to ensure that the two Magnus subsets
which generate them have the same cardinality. Nowadays, following Moldavanskii
[23], the use of amalgamated free products is usually replaced by the use of its sister
construction, the still awkwardly named HNN-extension, and we shall describe this
approach in greater detail below.

The specific question we shall address is the nature of the intersection of two Magnus
subgroups of a given one-relator group G = 〈X | R〉. As a subgroup of a free group,
the intersection is, by the Nielsen-Schreier theorem [15], a free group and therefore
what is at issue is the rank of the intersection, that is the (uniquely defined) number
of elements in any basis. Let Y and Z therefore be distinct Magnus subsets of X and
let F (Y ) and F (Z) be the corresponding Magnus subgroups they generate. It is clear
that the intersection F (Y ) ∩ F (Z) must contain the Magnus subgroup F (Y ∩ Z) and
it is not difficult to show that there exists examples where F (Y ) ∩ F (Z) 6= F (Y ∩ Z).
The simplest example of the latter occurs when Y and Z are disjoint and the relator
R is of the form UV with U ∈ F (Y ) and V ∈ F (Z) - for example the surface group
displayed above with Y = {a1, b1} and Z = {a2, b2, . . . , ag, bg} (see the brief argument
after Theorem 2.1. We shall prove:
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Theorem 2. The intersection F (Y )∩F (Z) of two Magnus subgroups of the one-relator
group G is either F (Y ∩Z) or the free product of F (Y ∩Z) with an infinite cyclic group
and thus of rank |Y ∩ Z|+ 1.

When the latter alternative holds we say that the two Magnus subgroups involved have
exceptional intersection. A stronger form of this result has now been obtained by Howie1

[13] and we shall say something about this below. In a forthcoming paper [7] we prove
the following result concerning intersections of conjugates of Magnus subgroups of a
one-relator groups. Much of the argument for this relies on the results developed in
Section 6 of this article.

Theorem 3. Let G be a one-relator group and let M and N be Magnus subgroups of
G. For any g ∈ G, either gMg−1 ∩N is cyclic (possibly trivial) or g ∈ NM .

In this result we do not assume that M and N are distinct – however if M = N , the
result is due to Bagherzadeh [1]. The two questions that we have addressed above
are obvious and natural but have not, as far as we know, been fully answered before.
However some special results have been obtained; thus Brodskii [Br] has proved that if
S and T are disjoint Magnus subsets, then F (S) ∩ F (T ) is cyclic and, as just noted,
Bagherzadeh [Ba] has shown that if g /∈ F (S), then gF (S)g−1 ∩ F (S) is cyclic. Our
results generalise these. Newman [25] also considers simple intersections of Magnus
subgroups and obtains a number of results when r contains at least three distinct
generators and one of S and T contains at least two elements not in S ∩ T .
In the special case when the relator R is a proper power, much tighter conclusions can
be obtained. In particular there are no exceptional intersections of Magnus subgroups
and in Theorem 3 either gMg−1 ∩N is trivial or g ∈ NM . A special case of the latter
is the well-known result that in a one-relator group where the relator is a proper power,
Magnus subgroups are malnormal, i.e., if g /∈ M , then gMg−1 ∩M is trivial. All of
these results ultimately follow from the Spelling Lemma, first introduced in Newman
[25, 26] – see Theorem 2.5 and the subsequent material.

2. Group theoretic approaches

We begin by describing the classical approach to one-relator groups and sketch the
proofs of various standard results. Firstly, though, we need to describe some basic
constructions in combinatorial group theory and state some standard results that we
shall rely on. Necessarily our treatment is no more than a fairly detailed sketch and
the reader is recommended to consult [8] and, especially, [15] – our debt to the latter
is self-evident.

Much of combinatorial group theory is based on two ‘sister’ constructions, both of
which have their origins in topology. These are amalgamated free products and HNN-
extensions; both describe the form of the fundamental group arising from a topological

1It is a pleasure to ackowledge a stimulating exchange of ideas with Howie, including his suggestion
that Theorem 3 might hold.
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construction, the former dealing with a space which is formed from two spaces by identi-
fying homeomorphic subspaces, and the latter with a space which is formed by attaching
a handle to a given space identifying the two ends of the handle with homeomorphic
subspaces of the given space. Both group constructions are special cases of the more
general concept of the fundamental group of a graph of groups (see [29]) but in fact
constitute the basic building blocks thereof.

To construct an amalgamated free product, one must be given two groups H and
K (two copies of the same group is not excluded), say via two disjoint presentations
H = 〈X | R〉 and K = 〈Y | S〉, and an isomorphism ϕ between subgroups A and B of
H and K respectively. The group G required, written either as G = 〈H,K | A = B,ϕ〉
or as G = (H ∗K | A = B,ϕ), or variations and abbreviations thereof, is defined by the
presentation G = 〈X,Y |R,S, Ui = Vi, i ∈ I〉 where {Ui, i ∈ I}, {Vi, i ∈ I} are words
which define (some) sets of generators of A and B which correspond under ϕ. Taking
over the terminology of graphs of groups we call H and K the vertex groups and A and
B the edge groups.

To construct an HNN-extension, one needs a single group H, say specified by a presen-
tation H = 〈X | R〉, and an isomorphism ϕ between subgroups A and B of H. The
group G required, written as G = 〈H, t | tAt−1 = B,ϕ〉 or variations and abbrevia-
tions thereof, is defined by the presentation G = 〈X, t | R, tUit−1 = Vi, i ∈ I〉 where
{Ui, i ∈ I}, {Vi, i ∈ I} are words which define (some) sets of generators of A and B
which correspond under ϕ. Again taking over the terminology of graphs of groups we
call H the vertex group and A and B the edge groups. We note in passing that one can
obviously generalise the concept of amalgamated free product to the case of arbitrarily
many groups, all of which have a subgroup isomorphic to some fixed given group. In
the special case where the common subgroup is trivial, the result is known as the free
product (with ’trivial’ amalgamation).

The main results that we shall use for these two constructions are known as the normal
form theorems. We shall state these in the form we require, although this is not quite
the strongest possible form. Details of the strong form are to be found in [8, 15, 19]. To
begin with we observe that if G = (H ∗K | A = B,ϕ), then elements of G can clearly
be represented as strings g = w1w2 . . . wn where the wj are, alternately, non-empty
words in the respective generating sets X and Y . [Strictly one need not assume that
each wi is non-empty but there is no loss of generality in so doing since otherwise one
just concatenates the empty wi and its two neighbours into a single word in one of the
generating sets.]

Theorem 2.1. Let G = (H ∗K | A = B,ϕ) and let g = w1w2 . . . wn. If g represents
the identity element of G then either

(a) n = 1 and w1 represents the identity element of H or K as appropriate; or

(b) for some i, wi represents an element of A or B as appropriate.

Proof. What has now become accepted as the most satisfactory proof – known as the
van der Waerden argument – of the strong normal form theorem can be found in either
[8] or [15]. The result stated here follows easily from that. ¤
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Corollary 2.1. Each of the vertex groups H and K is embedded in the amalgamated
product G via the natural identity map on words.

Proof. This is immediate from part (a). ¤

We can use Theorem 2.1 to illustrate how Theorem 2 is satisfied in the case when

G = π1(S2) =
〈
a1, b1, a2, b2 | [a1, b1][a2, b2] = 1

〉

and Y = {a1, b1}, Z = {a2, b2}. For suppose that an equality u(a1, b1) = v(a2, b2)
holds. Now G is in fact the amalgamated free product 〈F (a1, b1)∗F (a2, b2) | 〈[a1, b1]〉 =
〈[a2, b2]−1〉〉 – the vertex groups are the two free groups on the generators indicated and
the edge groups are the infinite cyclic subgroups 〈[a1, b1]〉 and 〈[a2, b2]−1〉, where the
identification [a1, b1] = [a2, b2]

−1 of the respective generators is of course just an alterna-
tive form of the single relation for G. Theorem 2.1 applied to uv−1 yields the conclusion
that u ∈ 〈[a1, b1]〉 or v−1 ∈ 〈[a2, b2]−1〉 (in fact both hold) and F (Y )∩F (Z) is cyclic. (Of
course the same argument shows that in an amalgamated free product G = (H∗K | A =
B,ϕ), the intersection H ∩K is just A = B). When Y = {a1, b1, a2}, Z = {b1, a2, b2},
a similar argument can be applied to show that F (Y ) ∩ F (Z) has rank three whereas
F (Y ∩ Z) has rank two - but this time the amalgamated free product has the form
〈F (a1, b1, a2) ∗ F (b′1, a′2, b2) | 〈[a1, b1], b1, a2〉 = 〈[a2, b2]−1, b′1, a′2〉〉 and one has to use the
identification relations b1 = b′1, a2 = a′2 to eliminate the generators b′1 and a

′
2 and obtain

the original presentation.

IfG = 〈H, t | tAt−1 = B,ϕ〉, then its elements are expressible as strings w0t
ε1w1 . . . t

εnwn,
where the wi are (possibly empty) words in the generating set X and εi = ±1. [This
time it is more convenient to allow some of the wi to be empty – an alternative version
would allow the εi to be arbitrary non-zero integers and then one could require that
every wi be non-empty.]

Theorem 2.2. Let G = 〈H, t | tAt−1 = B,ϕ〉, and let g = w0t
ε1w1 . . . t

εnwn. If g
represents the identity element of G then either

(a) n = 0 and w0 represents the identity element of H; or

(b) for some i, g contains either twit
−1 where wi represents an element of A or

t−1wit where wi represents an element of B.

Proof. This too can be derived from a more precise version proved by the van der
Waerden argument. ¤

Corollary 2.2. (a) The vertex group H is embedded in the HNN-extension G via
the natural identity map on words.

(b) If g represents an element of the vertex group H then either n = 0 or for some
i, g contains twit

−1 where wi represents an element of A or t−1wit where wi
represents an element of B.

Proof. Part (a) is immediate from part (a) of the Theorem while (b) follows by applying
(b) of the Theorem to the expression WV −1 where V is a word in the generators of H
that represents the same element as W . ¤
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In 〈H, t | tAt−1 = B,ϕ〉, we shall call an expression g = w0t
ε1w1 . . . t

εnwn,where n ≥ 1,
reduced if it does not satisfy the conclusion of (b) - so (b) asserts that if such an
expression represents the identity element then it is not reduced. An easy inductive
argument shows that if two reduced expressions represent the same element of G, then
they contain the same number of occurrences of t and thus there is associated with an
element of G a well-defined notion of length – indeed one can say more, namely, that
the two sequences of exponents for the generator t must coincide, and we shall make
extensive use of this.

Two further important results follow from these normal form theorems. We do not
specifically require them for our problem concerning Magnus subgroups but it would be
wrong to pass on without at least very brief mention. The first concerns what is known
as solving the word problem and the second the determination of elements of finite order.
To solve the word problem for a group presentation, one must prove the existence of an
algorithm that will determine of any arbitrarily given word of the presentation whether
or not it defines the identity. It follows from the normal form theorems that to solve
the word problem for either an amalgamated free product or for an HNN-extension, one
has to be able to solve the word problem for the vertex group(s) and one must be able
to determine algorithmically whether or not an element of a vertex group lies in an edge
group (as appropriate) (and, when the edge groups are not finitely generated, one must
also know that the isomorphism ϕ is recursive, i.e., effectively calculable). The second
consequence is that elements of finite order in an amalgamated free product or an HNN-
extension are always just conjugates of elements of finite order of the (embedded copies
of the) vertex groups and the parallel statement is true of finite subgroups.

We are now ready to turn our attention to the classical theory of one-relator groups.
We begin, of course, with the Freiheitssatz.

Theorem 1 (Freiheitssatz). Let G = 〈X | R〉 be a one-relator group. Then a Magnus
subset Y of X is a free basis of the Magnus subgroup of G that it generates.

Proof. Let G = 〈X | R〉 be a one-relator group. If a generator a ∈ X has zero exponent
sum in R – and this is the key case – then G can be presented as an HNN-extension.
By way of illustration, let X = {a, b, c} and let R = b2ab2ac−2b3a−3c2ac2. Now R is
easily rewritten as a product of words of the form aiba−i and ajca−j with 0 ≤ i ≤ 2
and −1 ≤ j ≤ 2. Using Tietze transformations – see [8, 15, 19] for a justification – one
can therefore introduce generators b0 = b, b1 = aba−1, b2 = a2ba−2, cj = ajca−j where
the range of values of j can be all integers or any interval of integers that contains
{−1, 0, 1, 2} One then obtains a presentation

G =
〈
b0, b1, b2, cj, a | b20b21c−22 b32c

2
−1c

2
0, abia

−1 = bi+1, acja
−1 = cj+1

〉

where i = 0, 1 and j ranges over all integers in the chosen interval, except the largest if
such exists. It is important to emphasize that while we can choose the range of either
i or j to be infinite, we cannot do both and if we make the range of j infinite, then the
range of i must be restricted to the interval (in this example), consisting of {0, 1, 2}.
[When G has more than three generators, the subscript ranges can all be infinite save for
one which must be restricted to the integer interval whose upper and lower boundaries
are, respectively, the greatest and least subscripts occurring in the rewritten form R∗
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of R. ]

By assuming, inductively on the length of the relator, that the Freiheitssatz holds for
the group G∗ = 〈X∗ | R∗〉 = 〈b0, b1, b2, cj | b20b21c22b32c2−1c20〉, and hence that the subgroups
made conjugate by the element a are free of the same rank, we have described G as an
HNN-extension. The normal form theorem for HNN-extensions ensures G∗ is embedded
in G by the natural map and hence that the two element set {b, c} = {b0, c0} is a basis
for a free subgroup. To see that {a, c} is a basis of a free subgroup one need only
observe that a potential relation between these two elements must have exponent sum
zero in a and therefore lies in the free subgroup with basis cj (provided that the range
of j is chosen sufficiently large). The proof is completed in this case by exchanging the
roles of b and c.

The case when no element of X has zero exponent sum in R is reduced to the above
by a simple trick. Suppose that G = 〈a, b, c | R(a, b, c)〉 and that none of a, b, c has
zero exponent sum in R. Write α and β for the exponent sums of a and b respectively.
Define Ĝ = 〈x, y, c | R(xβ, yx−α, c)〉 - it is easy to check that the cyclically reduced form
of R(xβ, yx−α, c) has exponent sum zero in x and can be rewritten as an HNN-extension
over a group G∗ whose relator is shorter than R. Inductively, therefore x and y form a
basis of a free subgroup. However Ĝ is (isomorphic to) the amalgamated free product

〈G ∗ F (x) : a = xβ〉. Thus G is embedded in Ĝ in such a way that a and b lie in the
free group which has {x, y} as basis and so {a, b} is also a basis for a free group. This
completes the argument for the Freiheitssatz, save that we have ignored the initial step
when the length of R is small and the case when R contains only a single generator.
Both are easily dealt with, usually by making use of the normal form theorem for free
products. ¤

Before moving on to the next result relevant to our problem on Magnus subgroups we
pause to state two further classical results.

Theorem 2.3. [18] Let G = 〈X | R〉 be a one-relator group. Then the word problem
for G is solvable.

This is proved using the same inductive approach as the Freiheitssatz. From our remarks
about solving the word problem for an HNN-extension, it should be clear to the reader
that to push through the inductive argument, it is in fact necessary to prove a stronger
result, namely that for any one-relator group and any of its Magnus subgroups, there
is an algorithm to decide of an arbitrary word whether or not it represents an element
of the given Magnus subgroup.

Theorem 2.4. [10] Let G = 〈X | R〉 be a one-relator group. Then G has elements of
finite order if and only if R is a proper power in the free group F (X). In particular if
R = Sm in F (X) and S is not a proper power, then

(a) the element of G represented by S has order m;

(b) every element of G of finite order is conjugate to an element represented by a
power of S.
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Proof. The method of proof parallels that of the Freiheitsatz. The key observation is
that when rewriting G as an HNN extension, the relator of the vertex group G∗ is of
the form S∗m when R = Sm, so that the induction hypothesis applies. By way of illus-
tration, take S = b2ab2ac−2b3a−3c2ac2, which was our actual relator in our illustration
of the proof of the Freiheitssatz, and then take R = S3, say. It is easy to check that
when we pass to the vertex group G∗ = 〈X∗ | R∗〉, then R∗ is indeed of the form (S∗)3

where S∗ = b20b
2
1c
−2
2 b32c

2
−1c

2
0, and this holds generally (including the fact that if S is not

a proper power then neither is S∗). The result then follows from the basic proporties
of torsion in HNN-extensions referred to in the discussion following the statement of
Theorem 2.2. ¤

Our next theorem is the key result in the theory of one-relator groups with torsion. Its
original form is due to Newman [25, 26] but several authors have produced refinements,
including a version for relators which are not proper powers, which we shall use later
– see [11, 14, 21, 28]. Our account is based on [15] but obtains a slightly stronger
conclusion than stated there.

Theorem 2.5 (Spelling Lemma). Let G = 〈X | R〉 be a one-relator group and suppose
that R is of the form Sm for some element S of F (X), where m ≥ 2 and S is not a
proper power. Let M be a Magnus subgroup of G and let W be a freely reduced word
which contains an essential generator of G that is not in the canonical basis of M . If
W represents an element of M , then W contains a subword of the form Tm−1T1 where
T is a cyclic rearrangement of S±1 and T1 is a proper initial segment of T containing
all essential generators.

Given a wordW , we shall call a subword Tm−1T1 satisfying the conditions in the theorem
a Gurevich subword of W . The following, which is immediate, completely answers our
question about intersections of Magnus subgroups when the single relator is a proper
power.

Corollary 2.3. Let G = 〈X | R〉 be a one-relator group and suppose that R is of the
form Sm for some element S of F (X) with m ≥ 2. Then there are no exceptional
intersections among the Magnus subgroups of G.

Proof. If W and V are words in distinct Magnus subsets, and neither is a word in
the intersection of the two Magnus subsets, any equality W = V would immediately
contradict Theorem 2.5. ¤

Proof of Theorem 2.5. Once again we can employ the technique of induction on
the length of R, representing G as an HNN-extension when there exists a ∈ X of zero
exponent sum in R (and therefore also in S). As noted for Theorem 2.4, the form of
the vertex group G∗ when we express G as an HNN-extension permits the induction
hypothesis to be applied to G∗. Suppose then that we have an equation W = V where
V is an element of the Magnus subgroup F (Y ), Y ⊆ X. The key case is that where
the Magnus subgroup omits the generator a that has zero exponent sum in R. Let us
continue with our illustrative example from Theorem 2.4:

G =
〈
a, b, c | (b2ab2ac−2b3a−3c2ac2)3

〉
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so that we have W (a, b, c) = V (b, c), where W explicitly involves a. We can rewrite G
as an HNN-extension

G =
〈
G∗, a | aKa−1 = L

〉
where G∗ =

〈
b0, b1, b2, cj | (b20b21c−22 b32c

2
−1c

2
0)

3
〉

with K = F (b0, b1, cj) and L = F (b1, b2, cj), choosing, for convenience, the range of j to
be the whole of Z. When we rewrite V in the generators of the HNN-extension, all that
happens is that add the subscript 0 to each generator and hence the resulting word V ∗

lies in G∗. By contrast, since W involves a, the process of rewriting is more complex.
Since V omits a and WV −1 is a consequence of R, clearly W has zero exponent sum 0
in a. This means that W can be rewritten as a product of elements of the form aiba−i

and ajca−j. We can immediately rewrite the latter as cj but in general, however, the
range of exponents of a that are involved will exceed the range of exponents that arise
when R is rewritten as R∗ and, in our example, we have no generator b3 to represent
the element a3ba−3 should this expression arise. Instead we have to express a3ba−3 as
ab2a

−1 and leave it at that. More generally we express aiba−i as ai−2b2a−(i−2) when
i ≥ 3 and as aib0a

−i when i < 0, and reduce freely; let us call the result W ∗. In the
HNN-extension G = 〈G∗, a | aKa−1 = L〉 we then have an equationW ∗ = V ∗. We want
to apply the induction hypothesis and for this we need an equality of the appropriate
type; if we are lucky enough to find that W ∗ is a word in the generators of G∗ then
this will be the desired equality. For {b0, c0} is a Magnus subset in G∗ and, since W
was assumed to contain a, W ∗ will contain generators with non-zero subscript so that
the induction hypothesis will apply to yield a Gurevich subword T ∗2T ∗1 of W ∗. Let us
suppose that

T ∗2T ∗1 ≡ (c−22 b32c
2
−1c

2
0b

2
0b

2
1)

2c−22 b32c
2
−1c

2
0b

2
0b1.

When we reverse the rewriting process to recover W from W ∗, it is clear (after due
consideration) that we must see

(c−2b3a−3c2ac2b2ab2a)
2
c−2b3a−3c2ac2b2ab

which is clearly a Gurevich subword of W – note that we must begin our Gurevich
subword of W with c rather than with a2c since if c2 were to be proceeded in W ∗ by
another occurrence of c2, then we would not obtain a2c when recovering W . Similarly
we finish with b rather than ba−1. We also note that since T ∗1 , no matter what its form,
must contain generators of G∗ with different subscripts, we always obtain occurrences
of a within the corresponding subword of W .

The alternative possibility is that we are in a situation where W ∗ contains occurrences
of a but defines an element of the vertex group. It follows that W ∗ must contain,
say, aWia

−1 where Wi represents an element of K = F (b0, b1, cj) (continuing with our
illustrative example to keep the notation simple). Two possibilities occur; it might
happen that Wi already is a word in the generators {b0, b1, cj}. In this event the
relations defining the HNN-extension allow us to cancel the occurrences of a provided
that we increase each subscript by 1. A similar observation applies if we have a−1Wia
with Wi a word in {(b1, b2, cj)} and we reduce, rather than increase, the subscripts by
1. In either case we make the change and then start over again. If we can eliminate all
occurrences of a in this way then we are back to the situation where we can apply the
induction hypothesis. So the awkward case is when we eventually get stuck and still
have occurrences of a in what, by abuse of notation, we shall still call W ∗. This time
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we have, say, a subword aWia
−1 where Wi represents an element of K = F (b0, b1, cj)

but Wi involves the generator b2. But then in G∗ we have a equation Wi = Z, where Z
is a word of F (b0, b1, cj) and thus omits b2, and we are back in a situation to which the
induction hypothesis applies. As usual there are more cases to deal with – but these
reduce to the above in the standard manner ([15, IV5.5]) gives the full details, with only
minor amendments needed to ensure that we actually verify that we have a Gurevich
subword rather than just a word of the form Tm−1T1 with T1 non-empty,). ¤

Theorem 2.5 also yields an easy proof of the following special case of Theorem 3.

Proposition 2.1. Let G = 〈X | R〉 be a one-relator group and suppose that R is of the
form Sm for some element S of F (X) with m ≥ 2. If M and N are Magnus subgroups
of G and g ∈ G, then either gMg−1 ∩N is trivial or g ∈ NM .

Proof. Suppose firstly that N =M . If the conclusion is false then there exist g ∈ G and
non-trivial u, v ∈M such that gug−1 = v. Among all possible counterexamples, choose
one in which the word representing g is of minimal length - observe that this ensures
that gug−1 is freely reduced. In addition, by replacing u and v by large powers, we can
assume that the words in the generators of M that represent u and v are of length very
much greater than the length of R. Since g /∈M and v ∈M , Theorem 2.5 implies that
gug−1 must contain a Gurevich subword, say Tm−1T1. By choosing u and v to be very
long we have ensured that this must occur either within gu or within ug−1; suppose it
lies within gu. Since u omits an essential generator, a non-trivial initial part of T1 must
lie within g and so g contains Tm−1T ′1 where T ′1 is non-trivial. But there exists T ′2 such
that Tm−1T ′1T

′
2 is a cyclic permutation of R or R−1 and, if we replace Tm−1T ′1 by T

′
2
−1 we

obtain a representation of g by a word of shorter length, contradicting the minimality
of our choice. A similar argument applies when the Gurevich subword lies in ug−1.
The argument for the case when M and N are distinct is similar. We suppose that
there exist g /∈ NM and non-trivial u ∈ M, v ∈ N with gug−1 = v and make the same
assumptions about the lengths of the representatives of g, u and v. This time we apply
Theorem 2.5 to the equality gug−1v−1 = 1. Exactly the same considerations apply,
save that we have also to exclude the possibility that g−1v−1 contains the Gurevich
subword. ¤

The case when M = N is established in [25] – where the trick of taking high powers
of u and v is to be found – and is summarised by saying that Magnus subgroups are
malnormal. The simplicity of the argument reveals the strength of the conclusion that
a word representing the identity (or lying in a suitable Magnus subgroup) must contain
a Gurevich subword - as compared to merely containing a word of the form Tm−1T1
where T1 is a non-empty initial segment of T .

3. Two-generator groups with exceptional intersections

In this section we discuss two-generator one-relator groups, by which, leaving trivial ex-
ceptional cases aside, we mean groups with a presentation of the form 〈a, b | R(a, b) = 1〉,
where both a and b are assumed to occur in R. Such groups have only two Magnus



220 D. J. Collins

subgroups, name the two infinite cyclic groups F (a) and F (b) and their intersection is
clearly either infinite cyclic or trivial. Thus Theorem 2 is trivial in this case. However,
to demonstrate that even in this context there is rather more to the problem than im-
mediately meets the eye, we discuss some examples.

There are obvious examples of two-generator one-relator groups that have exceptional
intersections, namely the torus knot groups of the form 〈a, b | am = bn〉, which are an
amalgamated free product with the two Magnus subgroups as the vertex groups and
infinite cyclic edge groups generated by am and bn. Unfortunately there are also subtler
examples. The group G = 〈a, b | a2b−3a2b−3a2 = 1〉 has an exceptional intersection of
its two Magnus subgroups; for it is easy to see that the given relation has as conse-
quences b3 = (a2b−3)3 - just multiply both sides of the defining equality by b3 - and also
a2 = (a2b−3)−2. Then of course a2 and b3 commute since they are powers of the same
element and it follows that a6 = b6 in G.

To understand this example more clearly and to set it in perspective, we introduce an
additional generator t = a2b−3. Then, using Tietze transformations - see [8, 15, 19] - it
is not hard to see that we can also present G in the form G = 〈a, t, b | a2 = t2, t3 = b3〉.
In this form, the group is an example of what is usually known as a stem product of
groups; to construct such a stem product one is given a linearly ordered sequence of
groups Hi, i = 0, 1, 2, . . . n where Hi and Hi+1 have a common isomorphic subgroup.
One firstly forms G1 as an amalgamated free product of H0 and H1. Proceeding it-
eratively, one forms Gi+1 as an amalgamated free product of Gi and Hi+1 with the
stipulation that the edge subgroups are the two copies of the common isomorphic sub-
group of Hi and Hi+1, regarding the former as embedded in Gi. Repeated application
of Theorem 2.1 to our example shows that F (a) ∩ F (b) = 〈a6〉 = 〈b6〉.
A two-generator one-relator group with exceptional intersection of its two Magnus sub-
groups clearly has non-trivial centre and in our two examples it is not hard to see that
the centre is precisely the intersection of the two Magnus subgroups. This is an in-
stance of a more general phenomenon which is summarised by the following theorem of
Pietrowski.

Theorem 3.1. [27] If the two-generator one-relator group G, whose quotient by its
derived group is not free abelian of rank 2, has a non-trivial centre, then G has a stem
product presentation〈

x, t1, t2, . . . tn−1, y | xp1 = tq11 , t
p2
1 = tq22 , . . . , t

pn−1
n−2 = t

qn−1
n−1 , t

pn
n−1 = yqn

〉

where pi, qj are integers such that gcd(pi, qj) = 1 when i > j. Moreover the centre of G
is F (x) ∩ F (y) = 〈xp1...pn〉 = 〈yq1...qn〉.

It should, however, be noted that even if a two-generator one-relator group, whose quo-
tient by its derived group is not free abelian of rank 2, has a non-trivial centre, not
every two-generator presentation given by a single relator will have an exceptional in-
tersection. For example, 〈a, b | am = bn〉 also has presentation 〈a, c | am−1 = c(ac)n−1〉,
obtained by writing b = ac so that c = a−1b and it is easy to show that F (a) ∩ F (c) is
trivial.

Pietrowski’s theorem is oddly tantalising. It is clear that a group with such a pre-
sentation has non-trivial centre F (x) ∩ F (y) and the coprimeness conditions allow one
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to show that {x, y} is a set of generators. However it is not always the case that the
resulting group can be specified by a single relation in terms of x and y (although this
can always be done with two relations). The simplest example where two relations are
required seems to be 〈x, t1, t2, y | x2 = t21, t

5
1 = t52, t

3
2 = y3〉 - see [5]. There is still no

precise statement of the exact conditions under which a Pietrowski presentation will
yield a two-generator one-relator group – see [22, 5, 20]. There are two earlier results
concerning one-relator groups with centre that we must state for completeness.

Theorem 3.2. [24] If a one relator group has non-trivial centre then it is a two gener-
ator group (except for the trivial case when it has only one generator).

Theorem 3.3. [3] There is an algorithm to decide of an arbitrary two generator one-
relator group whether or not it has non-trivial centre.

Example 3.1. Let G = 〈a, b, c | ba2c2b−1a2c2 = 1〉. Then the intersection F (a, b) ∩
F (b, c) is exceptional.

Proof. Since conjugation by b (on the left) inverts a2c2, it follows that b2 commutes
with a2c2. Thus we have a relation b2a2c2 = a2c2b2 which can be rewritten as a−2b2a2 =
c2b2c−2 and the Magnus subgroups F (a, b) and F (b, c) have exceptional intersection.
Since this group is actually an HNN-extension, it is not hard to show that the intersec-
tion is the free subgroup of F (a, b) with basis {a−2b2a2, b}. ¤

Our study of examples has so far been confined to illustrating that there are subtleties
about the problems we are addressing that are not immediately apparent. To under-
stand their implication further we return to the example G = 〈a, b | a2b−3a2b−3a2 = 1〉.
Suppose we have a group presentation Ĝ whose generating set is the union of three
disjoint subsets A,B and C and which has a single relator of the form u2v−3u2v−3u2,
where u is a word of F (A,B) and v is a word of F (B,C), neither of which lies in F (B).

Then it follows that in Ĝ we have u6 = v6 (just copy the argument that shows that
a6 = b6 in G) and therefore the two Magnus subgroups F (A,B) and F (B,C) have
exceptional intersection since neither u6 nor v6 lies in F (B). Can we determine exactly
what the intersection is? The answer is that we can, based on the fact that we can
copy our procedure for exhibiting G as a stem product to exhibit Ĝ as a stem prod-
uct. If we introduce a generator t = u2v−3, then we can define Ĝ via the presentation
〈A,B,C, t | u2 = t2, t3 = v3〉. To see that this is a stem product we write H0 = F (A,B),
H1 = F (t, B′) and H2 = F (B′′, C) where B′ and B′′ are sets in one-to-one correspon-
dence with B. We then form, firstly, the amalgamated free product G1 from H0 and
H1 via the relations u2 = t2, B = B′ and then the amalgamated product G2 from G1

and H2 via the relations t3 = v3, B′ = B′′ - it is routine to check that the various edge
groups defined are isomorphic. The resulting presentation is obviously transformed into
〈A,B,C, t|u2 = t2, t3 = v3〉 by eliminating the sets B ′ and B” of generators. It is now a
routine exercise in the normal form theorem for amalgamated free products to show that
the intersection F (A,B)∩F (B,C) in Ĝ is just the free subgroup of F (A,B) with basis

{u6}∪B. In fact Ĝ can be written as a stem product in a different way - and this is more
important to us as we shall see later. We again take H0 = F (A,B) and H2 = F (B′′, C)
but we take H1 to be the the free product G′ = 〈a, b|a2b−3a2b−3a2 = 1〉 ∗ F (B′).
The two amalgamations are given, respectively by the relations u = a,B = B ′ and
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b = v,B′ = B′′. It is easy to check that this does define our group Ĝ and, via the
normal form theorem, that F (A,B) ∩ F (B,C) = (F (a) ∩ F (b)) ∗ F (B), which is what
is required. Moreover it is clear that if in any group given by 〈x, y | R(x, y) = 1〉 we
obtain a non-trivial equality of the form xm = yn, then these latter remarks apply to
any one-relator presentation of the form 〈A,B,C|R(u, v) = 1〉 where u lies in F (A,B),
v lies in F (B,C), neither lies in F (B) and R(u, v) is the result of substituting u for x
and v for y.

One might be tempted to conjecture that all one-relator presentations with an excep-
tional intersection of Magnus subgroups arise in this way from presentations

〈x, y|R(x, y) = 1〉
in which F (x) and F (y) have non-trivial intersection. However our example

G = 〈a, b, c|ba2c2b−1 = c−2a−2〉
shows that this is not the case – the reader may care to demonstrate that this group
is not one that can be obtained in this way – and this example, too, lends itself to
generalisation.

Suppose that in G0 = 〈x, y | R(x, y) = 1〉 a relation of the form xymx−1 = yn holds, with
m,n 6= 0. (Of course the latter is the famous Baumslag-Solitar relation [2] which, when
it is a defining relation, provides groups which have a fascinating range of properties –
see [6].) Now consider a group G = 〈A,B,C | R(vu, w) = 1〉 where u lies in F (A,B), v
lies in F (B,C), with neither in F (B), and w is a word of F (B). Then it follows that in
G the relation vuwmu−1v−1 = wn must hold and hence that uwmu−1 = v−1wnv, which
forces an exceptional intersection (since clearly uwmu−1 /∈ F (B)). Can we say anything
about the intersection F (A,B) ∩ F (B,C)? The answer is that we can because we can
also express G as a stem product. We describe the precise form in the next section.

4. Further Results

Here we summarise briefly some further results on intersections of Magnus subgroups
that can be obtained when techniques that have a more geometric and topological
flavour are brought to bear. In particular we describe results of Howie that will appear
in [13].

Theorem 4. [13] Let G = 〈A,B,C | R = 1〉 be such that the Magnus subgroups
F (A,B) and F (B,C) have exceptional intersection. Then there exists a two-generator
one-relator group G0 = 〈x, y | R0(x, y) = 1〉 such that one of the following hold.

(a) in G0, x
m = yn and R(A,B,C) is freely equal to R0(u, v), where u lies in

F (A,B), v lies in F (B,C) and neither lies in F (B);

(b) in G0, xy
mx−1 = yn and R(A,B,C) is freely equal to R0(vu, w) where u lies in

F (A,B), v lies in F (B,C), neither lies in F (B), and w is a word of F (B).

Theorem 2 can then be derived from this result, using Theorem 2.1, by observing that
the group G can then be built from the group G0 and free groups in the following ways.
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(a) Write Ĝ0 = 〈x, y | R0(x, y) = 1〉∗F (B). Then G is expressed as a stem product:

F (A ∪B)) ∗
〈u〉∗F (B)=〈x〉∗F (B)

Ĝ0 ∗
〈y〉∗F (B)=〈v〉∗F (B)

F (B ∪ C).

(b) Here G is expressible as the stem product

F (A ∪B)) ∗
〈u〉∗F (B)=〈x〉∗F (B)

Ĝ0 ∗
〈y〉∗F (B)=〈v〉∗F (B)

F (B ∪ C),

but this time Ĝ0 is of the form

(〈x, y | R0(x, y) = 1〉 ∗
〈y〉=〈w〉

F (B)) ∗ F (t).

Finally Theorem 4, in combination with Theorem 3.3 and Theorem 3.1, yields:

Theorem 4.1. Let G = 〈A ∪ B ∪ C | R = 1〉 be a one-relator group. Then it is
algorithmically decidable whether or not the intersection of F (A∪B) and F (B ∪C) in
G contains exceptional elements. If so, then the algorithm yields a word u such that
F (A ∪B) ∩ F (B ∪ C) = F (B) ∗ 〈u〉.

We also describe briefly how Theorem 2 can be strengthened in a different way. A
generalisation of the theory of one-relator groups has been developed, by various au-
thors, to what are called one-relator products. Given a family {Gi, i ∈ I} of groups
their free product G – introduced in Section 2 as the amalgamated free product with
trivial amalgamation – can be viewed as the set of all strings of the form w1w2 . . . wn
where each wj is a non-trivial element of some Gi and adjacent wj lie in distinct Gi.
Multiplication consists of concatenation (and then whatever cancellation and coales-
cence is possible within an individual Gi). A one-relator product is then the quotient
of G by the normal closure of a single element, cyclically reduced in the sense that w1

and wn lie in different Gi, of length n ≥ 2. By analogy a Magnus subset of the family
{Gi, i ∈ I} is a subset that omits a group which has an element explicitly appearing in
the ’relator’ which is factored out to define the one-relator product. The ’Freiheitssatz
for a one-relator product’ is then the statement that the subgroup generated by (the
images of) the groups in the Magnus subset is the free product of these groups.

It is far from the case that the Freiheitssatz is valid in general – the simplest counterex-
ample is when G is the free product of cyclic groups of orders two, three and infinity,
and the relator makes the two generators of the finite cyclic groups conjugate by the
generator of the infinite cyclic group. However there are situations where it does hold
– the relevant sufficient condition may be a restriction on the factors Gi or on the
relator. Among such situations we confine ourselves to the case when the factors are
locally indicable, i.e., every finitely generated subgroup has the infinite cyclic group as
a homomorphic image. This theory was introduced by Brodskii [4] and Howie [12], and
Brodskii has obtained results which include special cases of Theorem 2 and Theorem 3.
In particular, he showed that in a one-relator product 〈A∗B | r = 1〉 of locally indicable
groups, the intersections gAg−1 ∩A and gAg−1 ∩B are cyclic. Since A and B need not
be freely indecomposable, the former corresponds to the results of Bagherzadeh [1] and
the latter to the case in Theorem 2 when the two Magnus subsets are disjoint. The
following result in [13] generalises Theorem 2 to one-relator products of locally indicable
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groups (in a similar way, the restriction in the statement to three factors is not a loss
of generality).

Theorem 5. [13] In a one-relator product 〈A∗B∗C | r = 1〉 of locally indicable groups,
the intersection (A∗B)∩(B∗C) is either just B or the free product of B with an infinite
cyclic group.

5. Exceptional intersections, elements and equalities

We are now ready to begin the proof of Theorem 2. We shall employ the traditional ap-
proach to one-relator groups, using induction on the length of the relator, by expressing
a one-relator group as an HNN-extension when there is a generator of exponent sum
zero in the relator, using the standard trick when no generator has exponent sum zero
in r. We note at the outset that, by the Corollary to Proposition 2.5, we only have
to deal with the case when r is not a proper power. In one particular case we require
a detailed understanding and analysis of the intersections of Magnus subgroups of the
vertex group of the HNN-extension we construct and we turn first to an analysis of this
situation before we embark upon our formal inductive arguments. Example 3.1 above
is a paradigm for this case. The situation to be considered is as follows:

(a) G = 〈X : r = 1〉, where r is cyclically reduced;

(b) all generators in X appear in the relator r;

(c) X has been partitioned into three disjoint non-empty subsets A,B and C with
A = {a} and C = {c} singletons;

(d) neither a nor c has exponent sum zero in r;

(e) there exists b ∈ B which does have exponent sum zero in r.

The two Magnus subgroups that we wish to consider are F (A,B) and F (B,C) and
of course we shall be interested in when F (A,B) ∩ F (B,C) 6= F (B). The essence of
the inductive method is that when there exists a generator with exponent sum zero
in r, then G can be expressed as an HNN-extension over a vertex group G∗ with a
relator of shorter length. We have already described how there is a standard procedure
for this but also noted that minor variations are sometimes useful, depending on the
problem to hand. In our particular circumstances here we shall, in the usual manner,
write xi = bixb−i, for any x ∈ X, x 6= b. Since r has exponent sum zero in b, it can
be rewritten as a word r∗ in certain xi, with at least one such for every x ∈ X, x 6= b
(since we have assumed all elements of X appear in r) The element of choice lies in
the range of subscripts for which we include xi among the generators of G∗. We shall
take X∗ to consist of the generators {aκ, . . . , aλ, cµ, . . . , cν}∪{xi, i ∈ Z}, x 6= a, c, where
aκ, aλ, cµ, cν are the respective minimal and maximal generators in r∗ associated with a
and c, and otherwise the subscript range is infinite. To express G as an HNN-extension
over G∗ we then add b as a generating letter together with the relations bxib

−1 = xi+1

whenever this makes sense (including when x is a or c). The introduction of some
notation to make this precise is unavoidable.
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Definition. We write:

A∗ = {aκ, . . . , aλ}, A∗+ = {aκ+1, . . . , aλ}, A∗− = {aκ, . . . , aλ−1},
C∗ = {cµ, . . . , cν}, C∗+ = {cµ+1, . . . , cν}, C∗− = {cµ, . . . , cν−1},

and B∗ = {xi, x ∈ B′, i ∈ Z} where B ′ = B \ {b}.

We are not excluding the possibility that λ = κ so that A∗+ and A∗− are empty and
similarly for C∗+ and C∗−. We shall refer to the four generators aκ, aλ, cµ, cν as extremal
generators and will call a word ofG∗ intermediate if it omits all four extremal generators.
With this notation, G∗ is generated (disjointly) by A∗ ∪ B∗ ∪ C∗, and we define the
edge group L to have free basis A∗− ∪B∗ ∪C∗− and the edge group U to have free basis
A∗+ ∪ B∗ ∪ C∗+. These are, of course, Magnus subgroups - we shall frequently write
them as L = F (A∗−, B

∗, C∗−) and U = F (A∗+, B
∗, C∗+), and similarly for other Magnus

subgroups such as F (A∗, B∗). We can summarise our notation, with some loss of detail,
by writing

G = 〈A∗, B∗, C∗, b | r∗ = 1, bF (A∗−, B
∗, C∗−)b

−1 = F (A∗+, B
∗, C∗+)〉.

We shall apply the results of this section during the inductive step of the proof of
Theorem 2. Throughout this section, therefore we shall always assume:

Assumption 5.1. Theorem 2 is valid for G∗ in the situation described above.

Our interest is in exceptional equalities, that is equalities of the form h = k where h ∈
F (A,B), k ∈ F (B,C), h, k /∈ F (B) and will sometimes refer to h and k as exceptional
elements. It will be helpful if we point out now that our terminology and notation
will sometimes be ambiguous in that we shall not always distinguish between group
elements and words which represent them. This is common enough practice but already
above we have written h ∈ F (A,B), h /∈ F (B) to emphasise that h is a word in
A ∪ B which explicitly involves a – however since (the element represented by) h lies
in the intersection F (A,B) ∩ F (B,C) it would be legitimate to write h ∈ F (B,C). In
general, the reader must use the context to decide what is intended. We shall also, with
apologies, be somewhat inconsistent in using both the expressions v ≡ z and v = z to
mean that u and v are the same word - of course there is no ambiguity in the latter
when z and v are words of the same free group and normally we shall use the former
only for emphasis or to introduce notation. Again however the reader will need to refer
the context.

We firstly examine how elements h ∈ F (A,B), k ∈ F (B,C) are represented as elements
of the HNN-extension. To understand this we consider h ∈ F (A,B); suppose that h
has exponent sum σ in b so that h is freely equal to a word h∗bσ where h∗ has exponent
sum zero in b. Then we can write h∗ as an expression in biab−i and bixb−i, x ∈ B′

where, at this point, there is no restriction on the values of i. We then replace biab−i

by ai if κ ≤ i ≤ λ, by bi−κaκb−(i−κ) if i < κ and by bi−λaλb−(i−λ) if i > λ. For the
remaining terms bixb−i, x ∈ B′, we simply write xi. (The reader should recall the
proof of Theorem 2.5.) By adding bσ as a suffix to the expression just obtained we
have now expressed h as an element of the HNN-extension. An identical procedure
can be applied to an arbitrary k. However, we may not yet have obtained expressions
for h and k which are in reduced form relative to the HNN-extension – and we need
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this if we are to use Theorem 2.2. To achieve this for h, we clearly must eliminate
occurrences of subwords either of the form bhj(A

∗
−, B

∗)b−1 or b−1hj(A∗+, B
∗)b which we

can do by ’shifting subscripts’ in hj up or down one place as appropriate, and deleting
the occurrences of b. In what we hope is a suggestive notation, we thus replace bhjb

−1,

where hj is a word of F (A∗−, B
∗), by

−→
hj and b−1hjb, where hj is a word of F (A∗+, B

∗),

by
←−
hj and then freely reduce the whole result word. Let us call a word of F (A∗, B∗)

shift-reduced if no such ’shift’ operation can be performed. There is an obvious parallel
definition for F (B∗, C∗).

Lemma 5.1. A shift-reduced word of F (A∗, B∗) or of F (B∗, C∗) is in reduced form
relative to the HNN-extension.

Proof. Suppose not; then it must contain a subword, say bhjb
−1 where hj is equal in

G∗ to an element of the group L but must, as a word, contain occurrences of aλ, since
otherwise we could have applied a shift. We therefore have an equality of the form
hj = w where w is a word of F (A∗−, B

∗, C∗−). However neither side of this equality
involves the extremal generator cν and so the equality therefore must hold freely in
the Magnus subgroup F (A∗, B∗, C∗−), which is impossible as hj contains aλ and w does
not. ¤

Normal Form equalities. It follows from Lemma 5.1 that our analysis of an excep-
tional equality h = k will involve a sequence of equalities derived from an application
of Theorem 2.2 to an equality between reduced words of the form

h ≡ h0b
ε1h1 . . . b

εmhm = k0b
ε1k1 . . . b

εmkm ≡ k

where h0, . . . hm ∈ F (A∗, B∗) and k0, . . . km ∈ F (B∗, C∗). Such an equality will yield a
sequence of equalities

h0 = k0z0, z0h1 = k1z1, z1h2 = k2z2, . . . , zm−1hm = km

where the auxiliary terms z0, . . . zm−1 lie variously in L or U according as each of
ε1, . . . , εm is ±1 and zi−1 represents a ’downshift’ or ’upshift’ of subscripts according
as εi = ±1 (and will usually be written as ←−−zi−1 or −−→zi−1 accordingly). An elementary
argument shows that we can always assume that the terms zi in the Normal Form
equalities are of type (A∗ : C∗), that is, when zi is non-trivial, its initial generating
letter lies in A∗ and its terminal generating letter lies in C∗. (Strictly these initial
letters will lie in either A∗+ or A∗− according to whether we are considering an element
of U or L, but we shall usually leave the context to clarify which it is.) For clarity
we shall, sometimes but not always, denote an auxiliary term by wi when the element
in question lies in L, leaving zi for use when a term lies in U . We illustrate what is
involved.

Example 5.1. Suppose that we have

h ≡ h0bh1bh2b
−1h3bh4 = bk1bk2b

−1k3bk4 ≡ k.

Then we can write

h = h∗0bh
∗
1bh
∗
2b
−1h∗3bh

∗
4 = bk∗1bk

∗
2b
−1k∗3bk

∗
4 = k
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so that the auxiliary terms in the normal form sequence for the latter are of type
(A∗ : C∗).

Proof. By Theorem 2.2 applied to h = k, we obtain the sequence

h0 = k0z0,
←−z0h1 = k1z1,

←−z1h2 = k2w2,
−→w2h3 = k3z3,

←−z3h4 = k4.

Now we can write z0 ≡ y0z
∗
0x0 where y0 ∈ F (B∗, C∗+), x0 ∈ F (A∗+, B

∗) (either may
be trivial) and z∗0 is either trivial or of type (A∗ : C∗); further we can obtain similar
expressions for z1, w2, z3. If we define h∗0 ≡ h0x

−1
0 , k∗0 = y0k0, h

∗
1 ≡ ←−x0h1x−11 , k∗1 ≡←−y0−1h1y1, h∗2 ≡ ←−x1h1x−12 , k∗2 ≡ ←−y1

−1
k2y2, h

∗
3 ≡ −→x2h3x−13 , k∗3 ≡ −→y2

−1
k3y3 and h∗4 ≡←−x2h3x−13 , k∗4 ≡ ←−y2

−1
k3y3 then it is easy to see that

h∗0 = k∗0z
∗
0 ,
←−
z∗0h

∗
1 = k∗1z

∗
1 ,
←−
z∗1h

∗
2 = k∗2w

∗
2,
−→
w∗2h

∗
3 = k∗3z

∗
3 ,
←−
z∗3h

∗
4 = k∗4

and hence that

h = h∗0bh
∗
1bh
∗
2b
−1h∗3bh

∗
4g
−1 = bk∗1bk

∗
2b
−1k∗3bk

∗
4 = k.

¤

We shall always assume that we have made such a transformation and will refer to
the latter expression and its associated equalities as being in standardised form. Ex-
ample 5.1 reveals how certain intersections of Magnus subgroups arise in our analy-
sis. Our first normal form equality is h0 = k0z0, which clearly defines an element
F (A∗, B∗) ∩ F (A∗+, B∗, C∗), and our last equality is ←−z3h4 = k4 which defines an ele-
ment F (A∗, B∗, C∗−) ∩ F (B∗, C∗). Moreover the inequality ←−z1h2 = k2w2 when rewrit-
ten as ←−z1h2w−12 = k2 also defines an element F (A∗, B∗, C∗−) ∩ F (B∗, C∗) and, finally,←−z0h1 = k1z1 and −→w2h3 = k3z3 define elements of F (A∗, B∗, C∗−) ∩ F (A∗+, B∗, C∗).
There are obvious connections among the intersections we have introduced since both
F (A∗, B∗) ∩ F (A∗+, B∗, C∗) and F (A∗, B∗, C∗−) ∩ F (B∗, C∗) are subgroups of

F (A∗, B∗, C∗−) ∩ F (A∗+, B∗, C∗),
and our first steps are to show how these intersections (and others) are intimately
interlinked. As usual, let G∗ = 〈X∗ : r∗ = 1〉 and let D ⊂ X∗; we say a (reduced) word
in X∗ is D-special if both its initial and terminal generating letters belong to D ∪D−1.
If D = {d} is a singleton we shall write d-special. Given a word t in X ∗ and subset
D of X∗ such that t contains occurrences of elements of D, we define the d-core of t
to be the maximal subword of t that is D-special. The propositions following form the
underlying basis of our argument.

Proposition 5.1. Let F (A∗, B∗) ∩ F (A∗+, B∗, C∗) = 〈v〉 ∗ F (A∗+, B∗) be an exceptional
intersection, where v ∈ F (A∗+, B∗, C∗) and v is C∗-special.

(1) Suppose that we are given elements k ∈ F (B∗, C∗), z ∈ U = F (A∗+, B
∗, C∗+) such

that
(i) kz ∈ 〈v〉 ∗ F (A∗+, B∗);
(ii) k /∈ F (B∗, C∗+) and k has initial generator in C∗;
(iii) if z is non-trivial, then z is of type (A∗ : C∗).
If v ∈ F (B∗, C∗), then z is trivial while if v /∈ F (B∗, C∗), then z is non-trivial
and v (or v−1) can be written as v0v

∗ where v0 ≡ k ∈ F (B∗, C∗) and v∗ ≡ z ∈ U .
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(2) Suppose that we are given elements k ∈ F (B∗, C∗), z1, z2 ∈ U = F (A∗+, B
∗, C∗+)

such that
(i) z−11 kz2 ∈ 〈v〉 ∗ F (A∗+, B∗);
(ii) k /∈ F (B∗, C∗+);
(iii) z1, z2 are non-trivial of type (A∗ : C∗).
Then v /∈ F (B∗, C∗) and one of the following holds:
(a) v (or v−1) can be written in the form v0v

∗ with z1 = v∗ = z2 and k = v−10 βv0,
where β ∈ F (B∗), in particular z−11 kz2 = v∗−1v−10 βv0v

∗.
(b) v (or v−1) can be written in the form v−11 v0v2 with z1 = v1, z2 = v2, v0 ∈

F (B∗, C∗) with k = vl0, where l = ±1 except perhaps when z1 = v1 = v2 =
z2.

Corollary 5.1. Statements exactly parallel to Proposition 5.1 hold for each of the in-
tersections F (A∗, B∗)∩F (A∗−, B∗, C∗), F (A∗, B∗, C∗+)∩F (B∗, C∗) and F (A∗, B∗, C∗−)∩
F (B∗, C∗).

Proof of 5.1. (1) We have to consider an equality of the form

kz = α0v
i1α1 . . . v

ieαe

where α0, α1, . . . , αe ∈ F (A∗+, B∗). The left hand side is clearly (freely) reduced as writ-
ten. This is not quite true of the right hand side as there may be limited cancellations
within powers of v if v is not cyclically reduced but these are the only possible cancel-
lations. Since k /∈ U , the left hand side must contain occurrences of cµ and therefore
cµ occurs on the right hand side so that v and every reduced power of v must contain
occurrences of cµ. However, in the left hand side every occurrence of cµ lies to the left
of every possible occurrence of a generator from A∗+ and we can use this to obtain infor-
mation about the right hand side. Suppose that v ∈ F (B∗, C∗). Then the only possible
location within the right hand side for occurrences of generators from A∗+ is within αe.
However, if z is non-trivial the left-hand side ends with a generator from C∗ and this
is contradictory. Hence z = 1. If, on the other hand, v /∈ F (B∗, C∗) then any reduced
power of v must contain occurrences of generators from A∗+ and hence the right hand
side must contain occurrences of generators from A∗+ - and hence z is non-trivial. Since
reduced powers of v also contain cµ, it follows that the equality must collapse to just
kz = α0v

i1α1 with α0, α1 ∈ F (B∗) - but our assumptions on k and z give α0 = α1 = 1.
To complete the argument we have to show |i1| = 1. When v is cyclically reduced one
can see immediately that if |i1| ≥ 2, then there would be occurrences of cµ in distinct
powers of v separated by occurrences of elements of A∗+ which contradicts the position-
ing implied by our analysis of kz and the desired conclusion follows. If v = v̂v̄v̂−1 with
v̄ cyclically reduced, then one first eliminates the possibility that cµ lies in v̂ and then
argues as in the previous case.

(2) This time we analyse an equality z−11 kz2 = α0v
i1α1 . . . v

ieαe where α0, α1, . . . , αe ∈
F (A∗+, B

∗). The left hand side is reduced as written, must contain cµ and no occur-
rences of cµ (if there is more than one) can enclose between them any generators of A∗+.
The same therefore applies to the (reduced form of) the right hand side. Since z1, z2
are non-trivial, the left hand side does contain occurrences of generators from A∗+ and
therefore so does the right hand side. These cannot occur in α1, . . . , αe−1 (if e > 1)
since then they would be enclosed by occurrences of cµ. Since the left hand side is
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C∗-special, we must have α0 = 1 = αe. The only place for occurrences of generators of
A∗+ is therefore within v and so v /∈ F (B∗, C∗). In addition, if e ≥ 3, then occurrences
of cµ in vi1 and vi3 enclose occurrences of generators from A∗+ in vi2 which is impossible.
Hence e ≤ 2, and, if e = 2 then α1 ∈ F (B∗). Arguing as in (i) we can show that
|i1| = 1 (= |i2| when e = 2) except when e = 1 and z1 = z2. The desired conclusion
now follows by a simple inspection of the possibilities. ¤

Proposition 5.2. Let F (A∗, B∗) ∩ F (B∗, C∗) = 〈u〉 ∗ F (B∗) = 〈v0〉 ∗ F (B∗) be an
exceptional intersection, where u ∈ F (A∗, B∗), v0 ∈ F (B∗, C∗) and u = v0. Then u
involves both extremal generators of A∗, v0 involves both extremal generators of C∗ and
the four intersections

F (A∗, B∗) ∩ F (A∗+, B∗, C∗), F (A∗, B∗) ∩ F (A∗−, B∗, C∗),
F (A∗, B∗, C∗+) ∩ F (B∗, C∗), F (A∗, B∗, C∗−) ∩ F (B∗, C∗),

are also exceptional. In particular

F (A∗, B∗) ∩ F (A∗+, B∗, C∗) = 〈u〉 ∗ F (A∗+, B∗) = 〈v0〉 ∗ F (A∗+, B∗)
and similar expressions hold in the remaining cases.

Proof. If any of the four extremal generators are omitted, the equality u = v0 holds
freely which is impossible. Then u = v0 is an exceptional equality for each of the
four intersections and, for example, we can write F (A∗, B∗) ∩ F (A∗+, B∗, C∗) = 〈v̂〉 ∗
F (A∗+, B

∗) for some C∗-special v̂ ∈ F (A∗+, B∗, C∗). Clearly v0 ∈ 〈v̂〉 ∗ F (A∗+, B∗) and,
since this occurs within F (A∗+, B

∗, C∗), it follows that v̂ ∈ F (B∗, C∗) and v0 ∈ 〈v̂〉 ∗
F (B∗). However we also know that v̂ defines an element of F (A∗, B∗) and so v̂ ∈
〈v0〉 ∗ F (B∗) and the desired conclusion follows. ¤

Proposition 5.3. Let F (A∗, B∗)∩F (A∗+, B∗, C∗) = 〈u〉 ∗F (A∗+, B∗) = 〈v〉 ∗F (A∗+, B∗)
be an exceptional intersection, where u = v, u ∈ F (A∗, B∗), v ∈ F (A∗+, B

∗, C∗), v /∈
F (B∗, C∗) and v is C∗-special of the form v−11 v0v2, with v0 ∈ F (B∗, C∗) and v1, v2,∈
F (A∗+, B

∗, C∗+) of type (A
∗ : C∗) (one but not both may be trivial). Then u and v together

contain occurrences of the four extremal generators and, in particular, aκ appears only
in u and cµ occurs only in v0. Furthermore

(a) the intersection F (A∗, B∗, C∗+) ∩ F (B∗, C∗) is also exceptional and equals

〈v1uv−12 〉 ∗ F (B∗, C∗+);
(b) both F (A∗, B∗, C∗−)∩F (A∗+, B∗, C∗) and F (A∗, B∗, C∗+)∩F (A∗−, B∗, C∗) are ex-

ceptional and

F (A∗, B∗, C∗−) ∩ F (A∗+, B∗, C∗) = 〈u〉 ∗ F (A∗+, B∗, C∗−) = 〈v−11 v0v2〉 ∗ F (A∗+, B∗, C∗−)
and

F (A∗, B∗, C∗+) ∩ F (A∗−, B∗, C∗) = 〈v1uv−12 〉 ∗ F (A∗+, B∗, C∗−) = 〈v0〉 ∗ F (A∗+, B∗, C∗−).

Proof. If any extremal generator is omitted the equality would have to hold freely which
is impossible. The positioning of the occurrences of aκ and cµ is immediate from the
definitions of the sets of generators involved. (Without further information, we can say
nothing about where the (necessary) occurrences of aλ and cν are located – for example
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aλ may occur in one or more of u, v−11 , v2.)

To prove (a) we begin by noting that F (A∗, B∗, C∗+) ∩ F (B∗, C∗) is exceptional since
we have the equality v1uv

−1
2 = v0. We use Proposition 5.1 (in the form arising when

A∗ and C∗ exchange roles). To do this we need to check that we have the appropriate
hypotheses. We can write F (A∗, B∗, C∗+) ∩ F (B∗, C∗) = 〈û〉 ∗ F (B∗, C∗+) where û ∈
F (A∗, B∗, C∗+) and is A∗-special. Then, with minor adjustments such as inversion or
transferring a word of F (B∗) from one side to the other if either of v1 or v2 is trivial,
the equality v1uv

−1
2 = v0 gives the necessary hypothesis to apply either the analogue of

(2)(a) or 2(b) of Proposition 5.1. There is, however, one point that needs to be checked,
namely that only the analogue of 2(b) can apply when both v1 and v2 are non-trivial.
However if we had û = û0û1, with û0 ∈ F (A∗, B∗) and û1 ∈ F (A∗+, B∗, C∗+), then there
would exist an equality û0û1 = v̂0 yielding an exceptional equality û0 = v̂0û

−1
1 . Possibly

after transferring a word of F (B∗) to the left hand side, we could then apply (1) of
Proposition 5.1 to obtain a contradiction and thereby obtain (a).

For (b) it is immediate that F (A∗, B∗, C∗−) ∩ F (A∗+, B∗, C∗) is exceptional since u = v
defines an exceptional element. Hence the intersection can thus be written as 〈û〉 ∗
F (A∗+, B

∗, C∗−) where û is an aκ-special element of F (A∗, B∗, C∗−). Clearly u ∈ 〈û〉 ∗
F (A∗+, B

∗, C∗−), say

u = α0û
i1α1 . . . û

ieαe,

where αj ∈ F (A∗+, B∗, C∗−), and this holds in F (A∗, B∗, C∗−). Since û is aκ-special, the
right hand side is essentially reduced as written (only inessential cancellations within
powers of û can occur) and therefore, since u ∈ F (A∗, B∗), it follows that û ∈ F (A∗, B∗)
and u ∈ 〈û〉 ∗ F (A∗+, B∗). Then, however, û ∈ F (A∗, B∗) ∩ F (A∗+, B∗, C∗) and so
û ∈ 〈u〉 ∗ F (A∗+, B∗). This gives 〈u〉 ∗ F (A∗+, B∗) = 〈û〉 ∗ F (A∗+, B∗) and hence 〈u〉 ∗
F (A∗+, B

∗, C∗−) = 〈û〉 ∗ F (A∗+, B∗, C∗−) as required. ¤

The next proposition parallels Proposition 5.3, but with the roles of A∗ and C∗ switched,
and is proved in a parallel manner.

Proposition 5.4. Let F (A∗, B∗, C∗−)∩F (B∗, C∗) = 〈p〉∗F (B∗, C∗−) = 〈q〉∗F (B∗, C∗−) be
an exceptional intersection, where p = q, p = p1p0p

−1
2 is A∗-special, with p0 ∈ F (A∗, B∗,

p1, p2 ∈ F (A∗−, B∗, C∗−) of type (A∗ : C∗) (not both trivial) and q ∈ F (B∗, C∗). Then p
and q together contain occurrences of the four extremal generators and, in particular,
aλ appears only in p0 and cν occurs only in q. Furthermore

(a) the intersection F (A∗, B∗) ∩ F (A∗−, B∗, C∗) is also exceptional and equals

〈p−11 qp2〉 ∗ F (B∗, C∗+);
(b) both F (A∗, B∗, C∗−)∩F (A∗+, B∗, C∗) and F (A∗, B∗, C∗+)∩F (A∗−, B∗, C∗) are ex-

ceptional and

F (A∗, B∗, C∗−) ∩ F (A∗+, B∗, C∗) = 〈p1p0p−12 〉 ∗ F (A∗+, B∗, C∗−) = 〈q〉 ∗ F (A∗+, B∗, C∗−)
and

F (A∗, B∗, C∗+) ∩ F (A∗−, B∗, C∗) = 〈p0〉 ∗ F (A∗+, B∗, C∗−) = 〈p−11 qp2〉 ∗ F (A∗+, B∗, C∗−).

These propositions indicate that one of three basic situations will occur:
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(1) F (A∗, B∗) ∩ F (B∗, C∗) is exceptional;
(2) either F (A∗, B∗) ∩ F (A∗+, B∗, C∗) or F (A∗, B∗, C∗−) ∩ F (B∗, C∗) is exceptional;
(3) both F (A∗, B∗)∩F (A∗+, B∗, C∗) and F (A∗, B∗, C∗−)∩F (B∗, C∗) are exceptional.

We look particularly at the situation when (2) or (3) occurs. Before doing so, we step
back briefly from the specific situation under consideration to introduce some further
terminology. Suppose that we are given two Magnus subgroups F (W,Y ) and F (Y, Z)
of a one-relator group - assuming, as the notation implies that W,Y, Z are disjoint. If
F (W,Y )∩F (Y, Z) = 〈u〉 ∗F (Y ) = 〈v〉 ∗F (Y ), with u = v, there is not a unique choice
for the generator of the exceptional infinite cyclic factor. However there are, up to
inversion, two canonical choices defined by requiring that either u is chosen W -special
or that v is chosen Z-special. We then have two equalities, say ū = v̄ where ū is W -
special and û = v̂ where v̂ is Z-special. When this happens then ū is the W -core of û
and v̂ is the Z-core of v̄.

We firstly examine Proposition 5.3 to see what the canonical choices are for the various
intersections under consideration. When we have F (A∗, B∗) ∩ F (A∗+, B∗, C∗) = 〈u〉 ∗
F (A∗+, B

∗) = 〈v〉 ∗ F (A∗+, B∗), where u = v, then one canonical generator is aκ-special
and the other is C∗-special. For Proposition 5.3, our hypotheses stipulate that the given
v is the C∗-special canonical generator. The other canonical generator will be aκ-special
and hence is the aκ-core of u. We therefore write u ≡ u1su2 where u1, u2 ∈ F (A∗+, B∗)
and s is the aκ-core of u.

If we now turn to the intersection F (A∗, B∗, C∗−)∩ F (A∗+, B∗, C∗), Proposition 5.3 tells
us that s is the canonical aκ-special generator of this intersection. The companion
canonical generator is (represented by) a cν-special element of F (A∗+, B

∗, C∗) which
must be the cν-core of t ≡ u−11 vu−12 - let us denote it by t̄ and write t ≡ t1t̄t2. For
the companion intersection F (A∗, B∗, C∗+) ∩ F (A∗−, B∗, C∗) we have the exceptional
equality v1uv

−1
2 = v0. We therefore obtain a canonical cµ-special generator as the cµ-

core τ of v0 - if we write v0 ≡ v01τv02 then we have an exceptional equality σ = τ where
σ ≡ v−101 v1uv

−1
2 v−102 and the aλ-core of σ is the companion aλ-special canonical generator.

When the hypothesis of Proposition 5.4 holds, the aλ-core p̄0 of p0 and the cν-core q̄
of q must be the canonical exceptional generators for the intersection F (A∗, B∗, C∗−) ∩
F (A∗+, B

∗, C∗). We write p0 ≡ p01p̄0p02 and q ≡ q1q̄q2. There are, of course, also
canonical exceptional generators for F (A∗, B∗, C∗+) ∩ F (A∗−, B∗, C∗) - they are the aκ-
core of q−11 p1p0p

−1
2 q−12 and the cµ-core p−101 p

−1
1 qp2p

−1
01 . For reasons that will appear

below, we do not require a separate notation for these. Our final result Proposition
5.5 in this section draws together all the threads of the analysis we have undertaken
by determining what happens when both Proposition 5.3 and Proposition 5.4 can be
applied. We shall see how this means that all the intersections that are discussed in
these two propositions are exceptional and that there is a single ’common exceptional’
equality which can expressed in the way appropriate to each intersection.

Proposition 5.5. Let

F (A∗, B∗) ∩ F (A∗+, B∗, C∗) = 〈u〉 ∗ F (A∗+, B∗) = 〈v−11 v0v2〉 ∗ F (A∗+, B∗)
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be an exceptional intersection, where u, v−11 v0v2 are as in 5.3 and

F (A∗, B∗, C∗−) ∩ F (B∗, C∗) = 〈p1p0p−12 〉 ∗ F (B∗, C∗−) = 〈q〉 ∗ F (B∗, C∗−)
where p1p0p

−1
2 , q are as in 5.4. Then, in the notation introduced above,

(a) up to inversion, the aκ-cores of u, σ and p ≡ p1p0p
−1
2 coincide;

(b) up to inversion, the cµ-cores of v0, t and p1qp
−1
2 coincide;

(c) up to inversion, the aλ-cores of p0, σ and v1uv
−1
2 coincide;

(d) up to inversion, the cν-cores of q, t and v ≡ v−11 v0v2 coincide.

In particular

(a’) the aκ-core of p1p0p
−1
2 lies in F (A∗, B∗);

(b’) the cµ-core of p1qp
−1
2 lies in F (B∗, C∗);

(c’) the aλ-core of v1uv
−1
2 lies in F (A∗, B∗);

(d’) the cν-core of v ≡ v−11 v0v2 lies in F (B∗, C∗).

Proof. To obtain (a) and (d), we simply have to observe that it follows from Propositions
5.3 and 5.4, and the subsequent discussion, that the equalities u = v, s = t, σ = τ
and p = q can all be used to define the two canonical generators of F (A∗, B∗, C∗−) ∩
F (A∗+, B

∗, C∗). A similar obervation applies to (b) and (c). ¤

We need one further remark on notation. When we encounter F (A∗, B∗)∩F (A∗+, B∗, C∗)
as an exceptional intersection for which the hypotheses of 5.3 are satisfied, we shall
have drawn this inference from a sequence of Normal Form equalities for one or more
equalities which define elements of F (A,B) ∩ F (B,C). To maintain consistency with
the notation for the Normal Form equalities, we have to make a choice to distin-
guish the canonical C∗-special generator from its inverse and therefore fix the nota-
tion u = v−11 v0v2 relative to the notation for the Normal Form equalities. If, instead,
we first encounter F (A∗, B∗, C∗−) ∩ F (B∗, C∗), rather than F (A∗, B∗) ∩ F (A∗+, B∗, C∗),
and Proposition 5.4 applies, then we make a choice between inverses to define the
notation p1p0p

−1
2 = q. In many situations, however, we shall in fact encounter both

F (A∗, B∗, C∗−)∩ F (B∗, C∗) and F (A∗, B∗)∩ F (A∗+, B∗, C∗) simultaneously, where both
Proposition 5.3 and Proposition 5.4 apply and hence, by Proposition 5.5 the aκ-core of
u and the aκ-core of p1p0p

−1
2 coincide up to inversion. In such circumstances it is useful

to choose our notation so that they in fact coincide, although this does mean that if
we specify u = v−11 v0v2 from a sequence of Normal Form equalities, we no longer have
a free choice for p1p0p

−1
2 = q. Finally, before moving on to the next section we need

one more definition which is conveniently located here. When we have a word of, for
example F (A∗+, B

∗, C∗), we then have a well-defined notion of syllable length, namely
the standard length function associated to the representation of F (A∗+, B

∗, C∗) as the
amalgamated free product F (A∗+, B

∗) ∗F (B∗) F (B∗, C∗). The syllable length of a freely
reduced word of F (A∗+, B

∗, C∗) is also the number of syllables, that is, distinct subwords
that

(i) lie in either F (A∗+, B
∗) or F (B∗, C∗);
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(ii) do not lie in F (B∗);

(iii) are maximal with respect to (i) and (ii).

Using this terminology, we shall refer to (a’) – (d’) of Proposition 5.5 as the single
syllable criterion.

6. The equality wh = kz in F (A∗, B∗, C∗−) ∩ F (A∗+, B∗, C∗).

In the previous section we have examined the way in which the existence of ‘small’
exceptional intersections, i.e., those in which one of the two factors is either F (A∗, B∗)
or F (B∗, C∗), determines the nature of ‘large’ intersections such as F (A∗, B∗, C∗−) ∩
F (A∗+, B

∗, C∗). Small intersections arise from initial and final Normal Form equalities,
so that the results of the previous section apply – they also arise from equalities where
there is a change of sign in the occurrences of b and we shall need to use this. To exploit
our Normal Form equalities to the full, however, it is also necessary to undertake an
analysis of those equalities that are derived from successive occurences of b with the
same sign. A standardised Normal Form equality that defines an exceptional element
F (A∗, B∗, C∗−) ∩ F (A∗+, B∗, C∗) takes the form wh = kz where w is an element of
F (A∗−, B

∗, C∗−) of type (A∗ : C∗), z is an element of F (A∗+, B
∗, C∗+) of type (A∗ : C∗),

h ∈ F (A∗, B∗) and k ∈ F (B∗, C∗). In the equalities we now examine, w and z will be
assumed non-trivial (otherwise our equality defines a ‘small’ intersection) but we must
explicitly allow h and k to be trivial.

We begin by returning to our analysis in Section 5, assuming that

F (A∗, B∗) ∩ F (A∗+, B∗, C∗) = 〈u〉 ∗ F (A∗+, B∗) = 〈v〉 ∗ F (A∗+, B∗),
where u = v−11 v0v2, so that in turn

F (A∗, B∗, C∗−) ∩ F (A∗+, B∗, C∗) = 〈s〉 ∗ F (A∗+, B∗, C∗−) = 〈t〉 ∗ F (A∗+, B∗, C∗−)
with s ∈ F (A∗, B∗) aκ-special, t = t1t̄t2 where t̄ is the cν-core of t and s = t in G∗.
There is a parallel situation, which we regard as being dealt with tacitly, if we know
that

F (A∗, B∗, C∗−) ∩ F (B∗, C∗) = 〈p〉 ∗ F (B∗, C∗−) = 〈q〉 ∗ F (B∗, C∗−).
Now any exceptional element of

F (A∗, B∗, C∗−) ∩ F (A∗+, B∗, C∗)
can be written, as a reduced word in F (A∗, B∗, C∗−), in the form α0s

i1α1 . . . s
ieαe where

the words α0, α1, . . . , αe ∈ F (A∗+, B
∗, C∗−) and a power si denotes the reduced form

obtained when s is not cyclically reduced. To express this as a reduced word in
F (A∗+, B

∗, C∗) one must substitute t for s in the given expression and then freely reduce
the result which will, necessarily, be an expression of the form β0t̄

j1β1 . . . t̄
ieβe, where

β0, β1 . . . , βf ∈ F (A∗+, B
∗, C∗−), since it is clear that any element of the intersection

F (A∗, B∗, C∗−) ∩ F (A∗+, B∗, C∗) has such a representation as a word of F (A∗+, B
∗, C∗).

This means that any equality between a word g̃ of F (A∗, B∗, C∗−) and a word ĝ of
F (A∗+, B

∗, C∗) which defines an element of their intersection is a consequence in the
free group F (A∗, B∗, C∗) of the relation s = t, that is g̃−1ĝ actually lies in the normal
closure in F (A∗, B∗, C∗) of s−1t (and not merely in the normal closure of the defining
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relation r∗ of G∗.) It follows therefore that if we wish to analyse how an equality of the
form wh = kz can be obtained we can treat s−1t as if it were the defining relation of
G∗ and bring to bear the following result which is a strong form of Theorem 2.5. Our
aim is to show, in all the cases we need consider, that the equality either holds freely,
which means that h = k = 1 and w ≡ z as words of F (A∗+, B

∗, C∗−), or that the possible
forms of wh = kz are restricted to simple explicit cases.

Proposition 6.1. [28] Let G = 〈X : r = 1〉, where r is cyclically reduced, be a one-
relator group and let ω be a cyclically reduced consequence of r.

(a) If r ≡ sm where m ≥ 1 and s is not a proper power, then either ω is simply a
cyclic conjugate of r±1 or ω contains, cyclically, two disjoint subwords pm−1p1
and qm−1q1 where p and q are cyclic permutations of s or s−1 and p1, q1 are ini-
tial segments of p and q, respectively, each containing all the generating letters
that appear in r.

(b) In particular if m = 1 so that r is not a proper power, then either ω is simply
a cyclic conjugate of r±1 or ω contains, cyclically, two disjoint subwords which
are, cyclically, subwords of r or r−1, each containing all the generating letters
that appear in r.

We extend our definition of Gurevich subword to cover the case when r is not a proper
power – (b) then asserts that ω contains two disjoint Gurevich subwords. We now apply
Proposition 6.1 to the equality wh = kz. We need to do this only under additional
assumptions which we set out below. There is a range of possibilities for wh = kz,
depending on whether or not h or k is non-trivial and we examine these to see how,
if at all, the cyclically reduced form of h−1w−1kz can contain Gurevich subwords. We
shall concentrate on what we shall refer to as extremal Gurevich subwords, that is words
which are, cyclically, subwords of both h−1w−1kz and (u−1v−11 v0v2)

±1 which contain
occurrences of all four extremal generators aκ, aλ, cµ, cν – clearly any Gurevich subword
must contain an extremal Gurevich subword. The additional assumptions we make are:

(i) Both F (A∗, B∗)∩F (A∗+, B∗, C∗) and F (A∗, B∗, C∗−)∩F (B∗, C∗) are exceptional
with the common basic relator expressed as u−1v−11 v0v2 or p2p

−1
0 p−11 q as appro-

priate;

(ii) One of v1, v2 is intermediate (possibly trivial) but the other is not – and hence
is non-trivial.

Suppose, for example, that v1 is intermediate. Then, using the single syllable criterion,
we see that the following possible forms for u−1v−11 v0v2 occur:

(1) u(aκ, aλ)
−1v−11 v0(cµ)v21q(cν)v22;

(2) u(aκ)
−1v−11 v0(cµ, cν)v21p0(aλ)

−1v22

(3) u(aκ)
−1v−11 v0(cµ)v21p0(aλ)

−1v22q(cν)v23;

(4) u(aκ)
−1v−11 v0(cµ)v21p0(aλ)

−1v22q(cν)v23.
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In the above, the notation u(aκ, aλ) indicates that u contains both aκ and aλ and the
notation u(aκ) indicates that u contains aκ but not aλ, and so on. Also v21, v22, v23
are necessarily intermediate. By expressing the relator in the form p2p

−1
0 p−11 q, it fol-

lows routinely in each case that one of p1, p2 is intermediate (possibly trivial) and
the other is not. In case (1), for example, u(aκ, aλ)

−1v−11 v0(cµ)v21q(cν)v22 becomes
v22u(aκ, aλ)

−1v−11 v0(cµ)v21q(cν) with p0 ≡ u(aκ, aλ) so that p2 ≡ v22 is intermediate
whereas p−11 ≡ v−11 v0(cµ)v21 is not. In this setting we define d(aκ, cµ) to be the syllable
length of whichever of v1, v2 is intermediate and d(aλ, cν) to be the syllable length of
whichever of p1, p2 is intermediate.

Lemma 6.1. Assume the hypotheses and notation described above.

(a) Let h−1w−1kz be a cyclically reduced word, where h ∈ F (A∗, B∗), k ∈ F (B∗, C∗)
are non-trivial, w ∈ L, z ∈ U are non-trivial and are of type (A∗ : C∗). If
L(w) ≤ d(aκ, cµ) or L(z) ≤ d(aλ, cν), then h

−1w−1kz does not contain two dis-
joint Gurevich subwords.

(b) Let h−1w−1h′z and k′−1w−1kz be cyclically reduced words, where h, h′ ∈ F (A∗, B∗)
and k, k′ ∈ F (B∗, C∗) are all non-trivial, w ∈ L, z ∈ U are non-trivial and
are of type (C∗ : C∗) in h−1w−1h′z and type (A∗ : A∗) in k′−1w−1kz. If
L(w) ≤ d(aκ, cµ) or L(z) ≤ d(aλ, cν), then neither h−1w−1h′z nor k′−1w−1kz
contains two disjoint Gurevich subwords.

Proof. Without loss of generality we can assume v1 is intermediate and v2 is not. Then,
by inspection, d(aλ, cν) is either L(v21) or L(v22) and hence d(aλ, cν) < L(v2).

To prove (a), we suppose we have two disjoint Gurevich subwords of h−1w−1kz; then
there are two disjoint extremal Gurevich subwords. Now neither extremal Gurevich
subword can be a subword of any of h−1w−1, w−1k, kz, zh−1 - for each of these omits an
essential generator. Moreover, neither extremal Gurevich subword can contain any of
h−1w−1, w−1k, kz, zh−1 for then one of h−1w−1, w−1k, kz, zh−1 would contain its com-
panion extremal Gurevich subword. It follows, therefore that an extremal Gurevich
subword must take one of the four forms

h−11 w−1k1, w
−1
1 kz1, k2zh

−1
2 , z2h

−1w−12 ,

where w1, w2 denote proper, non-trivial, initial and terminal segments of w and similarly
for h, k and z, and that a pair must be either {h−11 w−1k1, k2zh

−1
2 } or {w−11 kz1, z2h

−1w−12 }.
We consider a pair of the first type. Suppose that L(w) ≤ d(aκ, cµ) = L(v1); notice that
then v1 is non-trivial. In h−11 w−1k1 we can position aκ, which must come from u±1, in
h−11 or w−1 and cµ, which must come from v±10 , in w−1 or k1. Between such occurrences
we have to position either v±11 or v±12 . Clearly it cannot be the latter since this is not
intermediate and we deduce, using the length condition, that w ≡ v±11 . But then both
aκ and aλ would have to lie in h−11 , and thus in u, and both cµ and cν would have
to lie in k1 and hence in v0. This implies v2 is intermediate, which is a contradiction.
Alternatively, if L(z) ≤ d(aλ, cν), then in k2zh

−1
2 we have to position aλ from p±10 in h−12

or z and cµ from q±1 in k2 or z. Between these we have to position whichever of p±11

or p±12 is intermediate. However the length condition implies whichever it is constitutes
the whole of z and in the same way as the previous case we deduce that both p1 and
p2 are intermediate which is contradictory. Now we consider the second possible pair.
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Suppose that L(w) ≤ d(aκ, cµ); in w
−1
1 kz1 we have to place aκ in w−11 and cµ in w−11 or

k. Again we have to fit either v±11 or v±12 between these. However the length condition
rules out the former and the fact that it is not intermediate rules out the latter. So
suppose that L(z) ≤ d(aλ, cν); in z2h

−1w−12 we can place cν only in z2 and aλ in either
h−1 or z2. However the length condition means that we cannot place whichever of p1,p2
is intermediate between these; but the other is not intermediate and so this too is ruled
out.

(b) It suffices to consider h−1w−1h′z. Inspection shows that the possible pairs must
be of the form {h−11 w−1h′1, h

′
2zh

−1
2 } and {w−11 h′z1, z2h−1w

−1
2 }. Suppose that L(w) ≤

d(aκ, cµ) = L(v1). In h−11 w−1h′1 we have to position cµ in w−1. While it appears that
we can place aκ anywhere, all the possibilities are promptly ruled out by the length
condition and the fact that v2 is not intermediate. If L(z) ≤ d(aλ, cν), then we can
apply a similar argument to h′2zh

−1
2 and so the first pair is ruled out. When we turn

to the second pair, we see that in w−11 h′z1 we can position cµ only in w−11 and aκ in
w−11 h′. Similarly we can place cν only in z1 and aλ in h′ or z1. Using the appropriate
length condition in combination with the non-intermediacy of the appropriate elements
of {v1, v2, p1, p2} yields the necessary contradiction. ¤

Proposition 6.2. . Assume the hypotheses and notation prior to Lemma 6.1. Let the
equality wh = kz, where w ∈ L and z ∈ U are both non-trivial of type (A∗ : C∗) and
h ∈ F (A∗, B∗), k ∈ F (B∗, C∗), define an element of F (A∗, B∗, C∗−) ∩ F (A∗+, B∗, C∗). If
L(w) ≤ d(aκ, cµ) or L(z) ≤ d(aλ, cν), then one of the following holds:

(a) the element defined by wh = hz is non-exceptional and the equality holds freely
– in particular, h = k = 1 and w ≡ z is intermediate.

(b) h−1w−1kz is a cycle of (u−1v−11 v0v2)
±1. In particular one of the following two

possibilities occurs:
(i) L(w) ≤ d(aκ, cµ) and either v1 is intermediate so that d(aκ, cµ) = L(v1), in

which case wh = kz is v1u = v0v2 (that is w ≡ v1, z ≡ v2, h = u, k = v0), or
v2 is intermediate so that d(aκ, cµ) = L(v2) and wh = kz is v2u

−1 = v−10 v1.
(ii) L(z) ≤ d(aλ, cν) and either p1 is intermediate so that d(aλ, cν) = L(p1),

in which case wh = kz is p2p
−1
0 = q−1p1, or p2 is intermediate so that

d(aλ, cν) = L(p2) and wh = kz is p1p0 = qp2.

Proof. Suppose the equality does not hold freely. The all four extremal generators must
appear and, since aκ can appear only in wh and cν only in kz, the equality must be
exceptional for F (A∗, B∗, C∗−) ∩ F (A∗+, B∗, C∗).
(i) Suppose, firstly, that h, k 6= 1 so that h−1w−1kz is cyclically reduced. Then by
Lemma 6.1 h−1w−1kz is a cycle of (u−1v−11 v0v2)

±1. Suppose, for example, that v1 is
intermediate and that L(w) ≤ L(v1) = d(aκ, cµ). We again look at the placing of aκ
and cν . The former can occur within h−1 or w−1 and the latter within w−1 or k and
the intervening subword between the two syllables where aκ and cν appear is either
the whole of w−1 or a proper subword of w−1. Now this intervening subword must be
v±11 or v±12 . The fact that v−12 is not intermediate rules it out and the only possiblity
consistent with the length inequality is that the intervening subword is the whole of
w−1 and that it is v±11 . It follows that h−1w−1k ≡ u−1v−11 v0 and hence that wh = kz is
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v1u = v0v2. A similar argument gives the desired conclusion if v2 is intermediate. If on
the other hand L(z) ≤ d(aλ, cν), then a similar argument – or a simple appeal to upper
and lower symmetry – provides what is required.

(ii) Suppose that h = 1 and k 6= 1; again the equality cannot hold freely and we shall
show that it cannot in fact occur. We have to examine the cyclically reduced form of
kzw−1. This is obtained by cancelling a common terminal segment of w and z that must
be intermediate (in the sense that it contains no extremal generators). In particular,
the occurrences of aκ and aλ, which necessarily appear in w and z respectively, will
not be cancelled. Then, depending on the exact nature of common terminal segment
cancelled, the resulting cyclically reduced word will be either of the form kz ′h′−1w′−1

with w′, z′ also both of type (A∗ : C∗), or kz′k′−1w′−1, with w′, z′ both of type (A∗ : A∗),
and h′, respectively k′, non-trivial. Suppose that we get kz ′h′−1w′−1; since k, h′ 6= 1
this is cyclically reduced. Now L(w′) < L(w), since the final syllable of w must have
been completely cancelled, so that if L(w) ≤ d(aκ, cµ) then also L(w′) ≤ d(aκ, cµ.
By repeating the argument for Case (i), we deduce that either v1 is intermediate and
w′ ≡ v1 or v2 is intermediate and w′ ≡ v2. But now we have, for example,

L(v1) = L(w′) < L(w) = d(aκ, cµ) = L(v1)

which is impossible. Similar arguments apply when v2 is intermediate and when L(z) ≤
d(aλ, cν). Suppose, alternatively, we obtain kz

′k′−1w′−1. By way of illustration, assume
that v1 is intermediate and L(w) ≤ d(aκ, cµ) = L(v1). Since aκ can occur only in w′−1

and cµ only in k or k′−1, we are forced, by the kind of arguments previously used,
to the conclusion that v1 is a proper subword of w′−1. However, we then have the
contradictory inequalities L(v1) < L(w′) ≤ L(v1). A similar argument works in the
other possibilities. We are left to deal with the case when h 6= 1 and k = 1 and the case
when h = k = 1. These are dealt with similarly. In the former we may have cancellation
between intermediate initial segments of w and z and in the latter cancellation of both
initial and terminal intermediate segments. However, the same basic approach always
leads to a contradiction. ¤

7. The Intersection Theorem

Here we prove our main result.

Theorem 7.1. Let G = 〈X : r = 1〉, where r is cyclically reduced, be a one-relator
group and F (S), F (T ) Magnus subgroups of G. Then either F (S) ∩ F (T ) = F (S ∩ T )
or there are words u = u(S) and v = v(T ) such that

F (S) ∩ F (T ) = 〈u〉 ∗ F (S ∩ T ) = 〈v〉 ∗ F (S ∩ T ),
where we may choose u = v in G. In particular,

rank(F (S ∩ T )) ≤ rank(F (S) ∩ F (T )) ≤ rank(F (S ∩ T )) + 1

.

The argument will proceed by induction on the length |r| of the relator r, noting that
for small values of |r|, the result is elementary by inspection. By use of the normal form
theorem for free products, the general case follows from the case when S∪T = Supp(r)
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and so we can always assume the latter. Also when |Supp(r)| = 2, the conclusion
is immediate, so that we can also assume that |Supp(r)| ≥ 3. As already noted we
write B = S ∩ T and then can choose A and C disjoint so that S = A ∪ B and
T = B ∪ C. We make one further mild simplification before proceeding – it is easy
to check that the general case reduces to the case when A and C are singletons, say
A = {a} and C = {c}. To start the proof proper, let us suppose, then, that we
have an equality h(A,B) = k(B,C) defining an exceptional element of the intersection
F (A,B) ∩ F (B,C). Clearly all elements of X = Supp(r) must appear in h or k since
otherwise the equality holds freely which is obviously contradictory.

Case Assumption 7.1. Either a or c has exponent sum zero in r.

Without loss of generality we may assume it is the former. We may further assume,
by replacing r by a cyclic permutation if necessary, that c±1 is the initial letter of
r. In the standard manner we can express G as an HNN-extension of the form G =
〈G∗, a | aLa−1 = U〉 where L and U are Magnus subgroups of the vertex group G∗. To
do this we define C∗ = {cµ, . . . , cν} and B∗ = {bi, i ∈ Z, b ∈ B} where, as usual, bi
and ci denote the conjugates aiba−i and aica−i with µ and ν respectively the mimimal
and maximal subscripts attached to c that appear when we rewrite r as a word r∗ in
B∗ ∪ C∗. With this notation G∗ = 〈B∗, C∗ | r∗ = 1〉 and the two edge groups are
L = F (B∗, C∗−), U = F (B∗, C∗+), in the notation carried over from Section 5. We note
that by requiring that r begins with c±1 we have ensured that µ ≤ 0 ≤ ν. Now we can
transform our equality h(A,B) = k(B,C) into one expressed in the generators of G as
HNN-extension. Since k omits a, it follows that h has zero exponent sum in a and thus
we obtain an equality h∗(B∗) = k∗(B∗0 , c0) where B

∗
0 = {b0, b ∈ B} (and k∗ is literally

the same word expression as k). This equality defines an element of the intersection of
F (B∗)∩F (B∗0 , c0) and since c0 is explicitly involved, the element defined is exceptional.
By the induction hypothesis, we obtain words u∗(B∗) and v∗(B0, c0) such that

F (B∗) ∩ F (B∗0 , c0) = 〈u∗〉 ∗ F (B∗0) = 〈v∗〉 ∗ F (B∗0).
Since our original equality defined an arbitrary exceptional element of F (A,B)∩F (B,C),
clearly F (A,B) ∩ F (B,C) = F (B∗) ∩ F (B∗0 , c0) and we have completed the proof for
Case 7.1 when we obtain the desired u and v by rewriting u∗ and v∗ in terms of the
original generators.

Case Assumption 7.2. There exists some generator b ∈ B with exponent sum zero
in r. (Of course we are also assuming that Case 7.1 does not apply).

The simplicity of the argument in Case 7.1 is deceptive; the case to hand is distinctly
harder to deal with as should already be apparent from our analysis in Section 5.
However before dealing with it, we dispose of the remaining case when there are no
generators that have exponent sum zero in r. This is achieved by reducing it to Case
7.2. Fortunately, the argument is as easy as that for Case 7.1.

So we are in a situation where no generator has exponent sum zero in r. Pick some
generator b ∈ B and a ∈ A (or c ∈ C). Let a and b have exponent sums α and β in

r. In the usual way, form the amalgamated free product Ĝ = 〈G ∗ F (x) | b = yα〉,
where y is a new generator. Introduce a further new generator x and eliminate a via
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a = xy−β. (The reader accustomed to this trick should note that the notation has been
switched (deliberately) from the usual version in which one sets a = xβ and then puts

b = yx−α.) Now Ĝ is defined by a single relator r̂ which has exponent sum zero in y
– there is a contribution of αβ derived from occurrences of b in r which is cancelled
by a contribution of −αβ from occurrences of a – and G is naturally embedded in Ĝ.
Moreover – and this explains our particular procedure – if Â and B̂ denote the sets
of generators obtained by replacing a and b by x and y in A and B, then F (A,B)

is embedded in F (Â, B̂) and F (B,C) is embedded in F (B̂, C) The point of the trick

is that the one-relator group Ĝ can be expressed as an HNN-extension in the usual
way over a vertex group which has a relator that is of shorter length than the original
relator r of G. Assuming that we have inductively established our theorem for both
Case 7.1 and Case 7.2, then we know it holds for Ĝ. The exceptional intersection
F (A,B) ∩ F (B,C) is embedded in the intersection F (Â, B̂) ∩ F (B̂, C), which is then

necessarily exceptional and therefore expressible as 〈v̂〉 ∗ F (B̂) where v̂ is a word of

F (B̂, C) that can be assumed to be C-special. So if h = k is an exceptional equality
for F (A,B) ∩ F (B,C) it follows that k, expressed as a word in {yβ, B′}, is equal to

a reduced word of the form d0v̂
i1d1 . . . v̂

iede where the dj ∈ F (B̂). It follows that all
occurrences of y in this expression occur in powers of yβ and hence that, in F (B,C),
k ∈ 〈v〉 ∗ F (B,C) where v is the word obtained from v̂ by replacing each occurrence of
yβ by b. This completes the reduction and we can now begin to deal with Case 7.2. We
adopt all the notation set out in Sections 5 – 6.

Case Assumption 7.3. G∗ contains an exceptional element of F (A,B) ∩ F (B,C).

It follows from Lemma 5.1 that G∗ ∩F (A,B) = F (A∗, B∗), G∗ ∩F (B,C) = F (B∗, C∗)
and so an exceptional element of F (A,B) ∩ F (B,C) that lies in G∗ is an exceptional
element of F (A∗, B∗) ∩ F (B∗, C∗). By the induction hypothesis, there exist elements
u∗ ∈ F (A∗, B∗) and v∗ ∈ F (B∗, C∗) such that

F (A∗, B∗) ∩ F (B∗, C∗) = 〈u∗〉 ∗ F (B∗) = 〈v∗〉 ∗ F (B∗)
with u∗ = v∗ in G∗.

Claim 7.1. F (A,B) ∩ F (B,C) = 〈u〉 ∗ F (B) = 〈v〉 ∗ F (B) where u and v are simply
u∗ and v∗ rewritten as words in F (A,B) and F (B,C).

Proof. It suffices to show that an arbitrary exceptional element of F (A,B) ∩ F (B,C)
lies in 〈u〉 ∗ F (B) = 〈v〉 ∗ F (B). We consider such an element

h0b
ε1h1 . . . b

εnhn = k0b
ε1k1 . . . b

εnkn

of F (A,B) ∩ F (B,C), which we can take to be standardised form as in Example 5.1,
and argue by induction on n. If n = 0 we have just observed that our given element
lies in 〈u∗〉 ∗ F (B∗) = 〈v∗〉 ∗ F (B∗) and hence in 〈u〉 ∗ F (B) = 〈v〉 ∗ F (B). So we may
suppose n > 0. By ’upper and lower’ symmetry we can assume ε1 = 1. Thus we obtain
an equality h0 = k0z0, where z0 ∈ U = F (A∗+, B

∗, C∗+) and is of type (A∗ : C∗), which
clearly defines an element of F (A∗, B∗) ∩ F (A∗+, B∗, C∗). Now h0 ∈ U if and only if
k0 ∈ U and if both lie in U , then h ∈ F (A∗+, B∗) and k ∈ F (B∗, C∗+). In this event, we
can pass b from right to left across both and cancel; the resulting equality still defines
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an exceptional element and so by the induction on n, lies in 〈u∗〉 ∗ F (B) = 〈v∗〉 ∗ F (B)
whence of course the same is true of our original element. We can thus reduce to
the case when h0 /∈ F (A∗+, B∗), k0 /∈ F (B∗, C∗+) and h0 = k0z0 defines an exceptional
element of F (A∗, B∗) ∩ F (A∗+, B∗, C∗). By Proposition 5.2,

F (A∗, B∗) ∩ F (A∗+, B∗, C∗) = 〈u∗〉 ∗ F (A∗+, B∗) = 〈v∗〉 ∗ F (A∗+, B∗)
and hence k0z0 ∈ 〈v∗〉 ∗ F (A∗+, B∗). Since v∗ does not contain any occurrences of
elements of A∗+, it follows from Proposition 5.2 that z0 is trivial and hence h0 = k0.
Now h0 /∈ F (B), since h has zero exponent sum in b and h /∈ F (A∗, B∗), and similarly
k0 /∈ F (B). Therefore h0 = k0 defines an exceptional element of F (A,B) ∩ F (B,C, )
and, by induction on n, lies in 〈u〉 ∗ F (B) = 〈v〉 ∗ F (B). Cancelling h0b = k0b yields

h1b
ε2 . . . bεnhn = k1b

ε2 . . . bεnkn.

Either this defines an element of F (B), in which case there is nothing further to prove,
or we have an exceptional element of F (A,B) ∩ F (B,C). Again we can appeal to
induction on n and the proof is complete in Case 7.3. ¤

Case Assumption 7.4. There are no exceptional elements of F (A,B) ∩ F (B,C) in
G∗.

We consider equalities of the form

h0b
ε1h1 . . . b

εmhm = k0b
ε1k1 . . . b

εmkm,

which define exceptional elements of F (A,B) ∩ F (B,C). By our Case Assumption,
m > 0 in all instances.

Lemma 7.1. Any exceptional equality

h0b
ε1h1 . . . b

εmhm = k0b
ε1k1 . . . b

εmkm,

of minimal length in b contains at most one sign change in its signature pattern
(ε1, ε2, . . . , εm).

Proof. Let us suppose that there are least two such changes. As usual we can assume
ε1 = 1. The (standardised) system of normal form equalities must then contain h0 =
k0z0,

←−−zi−1hi = kiwi and
−−→wj−1hj = kjzj where i < j and z0, zi−1, zj ∈ U , wi, wj−1 ∈ L.

Now, by an argument we have already used, h0 = k0z0 must define an exceptional
element of F (A∗, B∗) ∩ F (A∗+, B∗, C∗) since otherwise h0 = k0 and we can contradict
minimality. Also hj =

−−→wj−1−1kjzj must define an exceptional element of F (A∗, B∗) ∩
F (A∗+, B

∗, C∗) since otherwise we have not expressed h and k in reduced form. It then
follows from Proposition 5.1 that −−→wj−1 ≡ z0 ≡ zj and hence that zj = k−10 h0. However
we know that

h0bh1 . . . bhib
−1 . . . b−1hj = k0bk1 . . . bkib

−1 . . . b−1kjzj

and hence that

h0bh1 . . . bhib
−1 . . . b−1hjh

−1
0 = k0bk1 . . . bkib

−1 . . . b−1kjk
−1
0

and

h0bhj+1b
εj+1 . . . bεmhm = k0bkj+1b

εj+1 . . . bεmkm.
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By the minimality of m, neither is exceptional and hence their product is not excep-
tional, which is a contradiction. ¤

We can strengthen Lemma 7.1.

Lemma 7.2. Any exceptional equality

h0b
ε1h1 . . . b

εmhm = k0b
ε1k1 . . . b

εmkm,

of minimal length in b contains no sign changes in its signature pattern.

Proof. Suppose, to the contrary, that there is one sign change. Making a choice of initial
sign for b we can write this as h0bh1 . . . bhib

−1 . . . b−1hm = k0bk1 . . . bkib
−1 . . . b−1km. This

time we observe that the equalities h0 = k0z0 and ←−−zi−1hiw−1i = ki in the Normal Form
system define exceptional elements of F (A∗, B∗) ∩ F (A∗+, B∗, C∗) and F (A∗, B∗, C∗−) ∩
F (B∗, C∗) respectively. By Proposition 5.1, the first gives us a basic exceptional equal-
ity of the form h0 ≡ u = v0v2 ≡ k0z0 ∈ F (A∗, B∗) ∩ F (A∗+, B∗, C∗) (where we make a
choice between inverses). For the second, the dual of Proposition 5.1 gives us a basic
exceptional equality of the form p1p0p

−1
2 = q, where one (but not both - otherwise we

are back in Case 7.1) of p1, p2 may be trivial. If p2 is trivial, then the basic exceptional
relation is p1p0 = q and we have ←−−zi−1hiw−1i ≡ p1p0βp

−1
0 p−11 , where β ∈ F (B∗). In

particular wi ≡ p1 and the Normal Form equalities yield h0bh1 . . . bhi = k0bk1 . . . bkiwi
and hence h0bh1 . . . bhip0 = k0bk1 . . . bkiq. As in the previous lemma, this decomposes
the equality h = k into two equalities which are of shorter b-length and yields a contra-
diction. A similar argument can be applied if p1 is trivial.

The position is more complicated if p1, p2 are non-trivial. Since u = v0v2 and p1p0p
−1
2 =

q are versions of our basic exceptional equality, it is simple to check that one of p1, p2
is intermediate and the other is not. In particular, p1, p2 are distinct and ←−−zi−1hiw−1i ≡
(p1p0p

−1
2 )±1. Therefore one of ←−−zi−1, wi is intermediate. Suppose that ←−−zi−1 is intermedi-

ate, and for definiteness, that it is p2 which is intermediate so that ←−−zi−1 ≡ p2. Then,
of course, L(←−−zi−1) = d(aλ, cν) and therefore L(zi−1) = d(aλ, cν). Applying this to the
equality ←−−zi−2hi−1 = ki−1zi−1, we deduce from Proposition 6.2 that either this equality
holds freely, in which case←−−zi−2 ≡ zi−1 and hence L(zi−2) = L(←−−zi−2) = L(zi−1) = d(aλ, cν)
or it is of the form p1p0 = qp2. If the latter holds then we have zi−1 ≡ p2 ≡ ←−−zi−1 which
implies that p2 is trivial. Therefore only the former holds. If i > 1 we can iterate this
argument to obtain L(z0) = d(aλ, cν), which we would also obtain directly if i = 1.
However it is straightforward to check that d(aλ, cν) < L(v2) = L(z0) and hence we
have a contradiction. A similar argument applies if ←−−zi−1 ≡ p1. If, on the other hand,
it turns out that wi is intermediate, then we argue in a similar manner but this time
we work towards the equality −→wm−1hm = km, which must be the same as v2u

−1 = v−10 ,
giving a similar contradiction. ¤

We are now at the final step of Case Assumption 7.4 and hence the completion of Case
7.2. As always we know we have the exceptional intersection F (A,B) ∩ F (B,C). Let
h = k be an exceptional equality of minimal b-length m; by our Case Assumption
m > 0. We claim that

F (A,B) ∩ F (B,C) = 〈h〉 ∗ F (B) = 〈k〉 ∗ F (B).
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Let us suppose that the claim is false; then there must exist an exceptional equality
h′ = k′ of b-length n ≥ m such that h′ /∈ 〈h〉 ∗ F (B). We choose h′ = k′ so that n is
minimal among all such possible equalities. We show firstly that h′ = k′ has uniform
signature pattern. Without loss of generalitry, we can assume, from Lemma 7.2, that
h = k has signature pattern (1, 1, . . . , 1). Suppose that the signature pattern for h′ = k′

has a sign change of the form (. . . ,−1, 1, . . .). The argument of Lemma 7.1, using the
equalities h0 = k0z0 and w

′
i−1h

′
i = k′iz

′
i from the two systems of Normal Form equalities,

then shows that h′ = k′ can be decomposed as h′1 = k′1, h
′
2 = k′2 where both are of b-

length less than n. Then of course h′1, h
′
2 ∈ 〈h〉∗F (B) and hence h′ = h′1h

′
2 ∈ 〈h〉∗F (B).

If h′ = k′ only contains a sign change (. . . , 1,−1, . . .), then invert h = k to h−1 = k−1

and proceed in parallel fashion. We are therefore reduced to the case where we have

h0bh1 . . . bhm = k0bk1 . . . bkm and h′0bh
′
1 . . . bh

′
n = k′0bk

′
1 . . . bk

′
n.

From the respective systems of Normal Form equalities we obtain h0 = k0z0 and h′0 =
k′0z
′
0; however these are both instances of the defining equality u = v0v2 for F (A

∗, B∗)∩
F (A∗+, B

∗, C∗) and, since the Normal Form equalities were standardised, we obtain h′0 =
h0, k

′
0 = k0 and z0 ≡ z′0. If m = 1, then we form h−1h′ = k−1k′ which, after cancellation,

has b-length n − 1. Hence h−1h′ ∈ 〈h〉 ∗ F (B) (if n = 1 we use Case Assumption 7.4)
whence h′ ∈ 〈h〉 ∗F (B). If m > 1, our second pair of Normal Form equalities is ←−z0h1 =
k1z1 and ←−z0h′1 = k′1z

′
1, since z0 ≡ z′0. Eliminating ←−z0 yields k1z1h

−1
1 = k′1z

′
1h
′
1
−1 which

we can rewrite as z−11 k−11 k′1z
′
1 = h−11 h′1. If the reduced form of k−11 k′1 omits cµ, then this

holds freely yielding h′1 = h1, k
′
1 = k1 and z′1 ≡ z1. Otherwise Proposition 5.1(2) must

apply and we obtain z1 ≡ v2 = v−10 u - but then h0bh1 = k0bk1z1 = k0bk1v2 = k0bk1v
−1
0 u

and hence h0bh1u
−1 = k0bk1v

−1
0 . Again we have a decomposition argument giving us

a contradiction and so only the case when we have h′1 = h1, k
′
1 = k1 and z′1 ≡ z1.

occurs. We can iterate this argument to obtain h′0 = h0, h
′
1 = h1, . . . h

′
m−1 = hm−1 and

k′0 = k0, k
′
1 = k1, . . . k

′
m−1 = km−1. Then (after cancellation), either h−1h′ = k−1k′ lies

in F (B) or is exceptional with b-length less than n. Either way, h−1h′ ∈ 〈h〉 ∗ F (B)
whence the same is true of h. This contradiction completes Case 7.4, and hence the
whole proof of 7.1 is complete.
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[9] M. Dehn, Über diskontinuierliche Gruppen, Math. Ann. 71 (1912), 116 – 144.
[10] J. Fischer, A. Karrass, and D. Solitar, On one-relator groups having elements of finite order, Proc.

Amer. Math. Soc. 33 (1972), 297 – 301.
[11] G. A. Gurevich, On the conjugacy problem for groups with a single defining relation, Proc. Steklov

Inst. Math. 133 (1977), 108 – 120.
[12] J. Howie, On pairs of 2-complexes and systems of equations over groups, J. Reine u. Angew. Math.

324 (1981), 165 – 174.
[13] J. Howie, Intersections of Magnus subgroups of one-relator products, in preparation.
[14] J. Howie and S. J. Pride, A spelling theorem for staggered generalized 2-complexes, with applica-

tions, Invent. Math. 76 (1984), 55 – 74.
[15] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer, Berlin-Heidelberg-New

York, 1977.
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A Minimality Property of Certain Branch Groups

by

R. I. Grigorchuk and J. S. Wilson

1. Introduction

In 1979, S. Pride [15] introduced a concept of ‘largeness’ for groups, which depends on
a certain pre-order ¹ on the class of groups (whose precise definition we recall below).
The finitely generated groups which are ‘largest’ in Pride’s sense are the ones having
a subgroup of finite index which can be mapped onto the free group of rank 2, and so
a number of important results can be reformulated as statements that certain groups
are ‘as large as’ the free group of rank 2 (cf. for example [2], [10], [13], [14]). At the
other extreme, the groups G satisfying G ¹ 1 are just the finite groups. Here we are
concerned with the groups which are as small as possible with respect to being infinite,
in the sense of Pride’s pre-order: thus they are infinite groups G such that if H is infinite
and H ¹ G then G ¹ H. These groups are called atomic (or minimal) groups. There
is a strong connection between atomic groups and just infinite groups. Question 5 of
[15] was answered negatively, independently by the first author [6] and P. M. Neumann
[16], by the construction of finitely generated just infinite groups with infinitely many
commensurability classes of subnormal subgroups. We shall explain below how the
theory of just infinite groups developed by the second author [19], [20] leads directly
to the question of determining which finitely generated branch groups are atomic. We
shall establish a sufficient condition for certain branch groups to be atomic, and using
it we shall prove that some of the best known examples of branch groups are atomic.

2. Passage to branch groups

The pre-order on groups introduced by Pride [15] was modified slightly in [4], and it is
the latter version of the definition that we adopt. Let G, H be groups. Then we write
H ¹ G if there exist

(i) a subgroup G◦ of finite index in G;

(ii) a subgroup H◦ of finite index in H and a finite normal subgroup Y of H◦;

(iii) an epimorphism from G◦ to H◦/Y .

We write H ∼ G if H ¹ G and G ¹ H and we write [G] for the equivalence class
of G. The relation ¹ induces a partial order (also denoted by ¹) on the collection of
equivalence classes. A group G is called atomic if [G] 6= [1] and if there is no class lying
strictly between [G], [1]. Easy examples of atomic groups are provided by (a) direct
products of countably many copies of a finite simple group and (b) groups in the class
[Z] of virtually infinite cyclic groups. The atomic groups which are finitely generated
are perhaps of greatest interest. Proposition 1 in Section 3 gives a criterion for certain
finitely generated groups to be atomic.

244
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Let G be a finitely generated atomic group. Then (as was known to Baer at least fifty
years ago; see [1, §1, Lemma 1]) G has a normal subgroup N maximal with respect to
having infinite index, and clearly G/N ¹ G, so that [G] contains the just infinite group
G/N . Thus each class [G] of finitely generated atomic groups contains a representative
which is just infinite. By the trichotomy for just infinite groups in [19], [20], each just
infinite group G is of one of the following types:

(1) a finite extension of a free abelian group (of rank n, say);

(2) a finite extension of a direct product of n copies of an infinite group all of whose
non-trivial subnormal subgroups have finite index, for some integer n;

(3) a just infinite group whose ‘structure lattice’ is infinite.

Now the groups of types (1), (2) are clearly atomic if and only if n = 1; thus the infinite
cyclic and dihedral groups are two representatives of the class [Z] of atomic groups,
and there is a class of atomic groups corresponding to each commensurability class of
infinite groups all of whose non-trivial subnormal subgroups have finite index. It is
known that not all just infinite groups of the type (3) are atomic; see [16, Comment
5.4].

It was shown in [20] that the groups in (3) have faithful actions as branch groups; we
recall the definition. Let (ln)n>0 be a sequence of integers with ln > 2 for each n. The
spherically homogeneous rooted tree of type (ln) is a tree T with a vertex v0 (called the
root vertex) of valency l0, such that every vertex at distance n > 1 from v0 has valency
ln + 1. The distance from v0 to a vertex v is called the level of v. We picture the tree
with v0 at the top, with ln edges descending from each vertex of level n. Each vertex
v of level m is the root of a spherically homogeneous subtree Tv of type (ln)n>m. Let
G be a group which acts faithfully as a group of automorphisms of T . For each v, let
rstG(v) be the subgroup of G consisting of automorphisms which fix all vertices of T
outside Tv, and for each n let rstG(n) be the group generated by the subgroups rstG(v)
with v of level n. The group G is called a branch group if for each n > 1 the following
two conditions hold:

(i) G acts transitively on the vertices of level n;

(ii) rstG(n) has finite index in G.

For each choice of the sequence (ln) there are finitely generated branch groups G on the
tree T (see [7]). In the examples that we shall consider, the sequence (ln) is constant,
so that T is a regular rooted tree. We fix d > 2 and write T for the regular tree of
degree d. Let K be a subgroup of the automorphism group Aut T of T and let v be a
vertex of T . Then there is a canonical isomorphism from T to the subtree Tv with root
v, and we write v∗K for the subgroup of Aut T which fixes all vertices outside Tv and
whose action on Tv is induced by the isomorphism from T to Tv.

Definition 1. A group G is said to be a d-regular branch group over the subgroup K
if G acts faithfully on the d-regular tree T , if condition (i) above holds, if K has finite
index, and if the product K1 of the groups v∗K over all vertices v of level 1 is a subgroup
of finite index in K.
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Theorem 1. Let G be a d-regular branch group over the subgroup K, and for each
m > 1 let Km be the product of the groups v∗K over all vertices v of level m. Suppose
that K ′ > Km for some m and that K is a subdirect product of finitely many just infinite
groups Γ1, . . . ,Γk, each of which is commensurable with G. Then G is atomic.

The theorem will be proved in Section 3; it will be used in Section 4 to show that some
well-known examples of branch groups are atomic and it will be clear that it can be
applied to many related groups. However it does not apply to all of the p-groups Gω

introduced in [6], which are parametrized by certain sequences ω ∈ {0, 1, 2, . . . , p}N. It
seems likely that if ω is not eventually periodic then Gω has infinite height with respect
to the pre-order ¹ of Edjvet and Pride [4].

3. Proofs

We begin with a criterion for certain finitely generated groups to be atomic. We write
H 6f G to indicate that H is a subgroup of finite index in G.

Proposition 1. Let G be a finitely generated group which has no non-trivial finite
normal subgroups. Then the following are equivalent:

(a) G is atomic;

(b) G has a descending chain (Gn) of subgroups of finite index with the following
properties:
(1) every subgroup of G of finite index contains some Gn;
(2) whenever Q is a just infinite image of one of the groups Gn, there is an

epimorphism from a subgroup of finite index in Q to a subgroup of finite
index in G.

Proof. Suppose first that G is atomic. Choose any chain (Gn) satisfying (1); this is
possible since G has only countably many subgroups of finite index. Suppose that Gn/L
is just infinite; consideration of the quotient map Gn → Gn/L shows that Gn/L ¹ Gn,
and so as G is atomic we must have Gn ¹ Gn/L. Therefore there are H◦ 6f Gn/L,
G◦ 6f G, X finite with X / G◦ and an epimorphism H◦ → G◦/X. The normal
subgroup 〈XG〉 is generated by finitely many torsion elements each having finitely many
conjugates, and so it is finite by Dicman’s Lemma (see [17, (14.5.7)]), and hence trivial.
Thus X is trivial, and we obtain an epimorphism H◦ → G◦, and (2) holds.

Now suppose instead that G is a group having a chain (Gn) satisfying (1), (2). Suppose
that H is an infinite group such that H ¹ G. Then there are subgroups G◦ 6f G,
H◦ 6f H, and Y finite with Y / H◦, and an epimorphism ϕ : G◦ → H◦/Y . We claim
that there is an epimorphism ψ from a subgroup of finite index in H◦ to a subgroup of
finite index in G◦. From this it clearly follows that G is atomic. Because of condition
(1), we can restrict attention to the case when G◦ = Gn for some n. Let ω : H◦/Y → Q
be an epimorphism to a just infinite group Q, and let M be the kernel of the composite
of ϕ and ω. Thus Gn/M is isomorphic to Q, and so by (2) there is an epimorphism ε
from a subgroup Q◦ of finite index in Q to a subgroup G◦◦ of finite index in G. Let
H◦◦ be the preimage of Q◦ under ω; thus H◦◦ has finite image in H, and we obtain an
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epimorphism from H◦◦ to G◦◦ by composing the the quotient map H◦◦ → H◦◦/Y , the
restriction of ω to H◦◦/Y , and ε. This completes the proof of Proposition 1. ¤

Proposition 2. (a) Let G be a branch group. Then every non-trivial normal sub-
group contains rstG(n)

′ for some n.

(b) Let G be a regular branch group of degree d over the subgroup K, and for each
m > 1 let Km denote the product of the subgroups v∗K over all vertices v of
level m. If the derived group K ′ of K contains Km for some m, then every
subgroup of finite index in G contains Kn for some n.

Proof. (a) This is Theorem 4 in [7].

(b) Since every subgroup of finite index contains a normal subgroup of finite index, it
suffices by (a) to prove that each subgroup rstG(r)

′ contains Kn for some n. However
since Km 6 K

′ we have
v∗Km 6 v∗K ′ 6 (rstG(r))

′

for each vertex v of level r, and hence Km+r 6 (rstG(r))
′. ¤

Proposition 3. Let G be a group having normal subgroups N1, . . . , Nr such that each
quotient group G/Ni is just infinite and not virtually abelian and such that

⋂r
i=1Ni = 1.

Let M /G and suppose that G/M is just infinite. Then M = Ni for some i.

Proof. We argue by induction on r. The result holds clearly for r = 1 and so we
suppose that r > 1. Let V =

⋂
i<rNi. If M > V , the result follows by induction.

Otherwise, VM/M is a non-trivial normal subgroup of G/M and so it has finite index
and therefore V/(V ∩M) is infinite. Now V ∩ Nr = 1, and so (by the isomorphism
theorem for G-operator groups [17, p. 29]), V is isomorphic as a G-operator group
to V Nr/Nr, so that all non-trivial normal subgroups of G contained in V have finite
index in V . We conclude that V ∩M = 1. Hence [V,M ] = 1, and [V Nr,MNr] 6 Nr.
Suppose that V Nr/Nr and MNr/Nr are both non-trivial; then each has finite index
in G/Nr and hence their intersection is an abelian normal subgroup of finite index in
G/Nr, a contradiction. Therefore either V 6 Nr or M 6 Nr; in the first case we have⋂r
i=1Ni =

⋂r−1
i=1 Ni and the result follows by induction, and in the second case, since

both G/M and G/Nr are just infinite, we have M = Nr. ¤

Proof of the Theorem. Suppose that G is as in the statement of Theorem 1. Since G is
not virtually abelian (see for example [9, Lemma 2]), none of the groups Γi is virtually
abelian. Now each term in the chain of subgroups (Km) has finite index in G, and
by Proposition 2, each subgroup of finite index in G contains some term of this chain.
Therefore by Proposition 1 it suffices to verify that each just infinite image of each
group Km is commensurable with G. However each Km is isomorphic to a direct power
of K, and so the result follows from Proposition 3.

4. Examples

In this section we shall prove that certain d-regular branch groups (where d > 2) are
atomic. Let T be the d-regular rooted tree. We regard the vertices of T as finite strings
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of elements from the set {0, . . . , d − 1}; the root vertex is ∅, the vertices of level n
are the strings of length n and the edges descending from a vertex v of level n lead
to the d vertices of level (n + 1) which begin with the string v. Let L be the set of
vertices of level 1. We define a to be the automorphism of T which acts as the d-cycle
(0, 1, . . . , d− 1) on L and which leaves untouched the remaining entries of strings; thus
a permutes cyclically the trees T0, . . . , Td−1 with roots 0, . . . , d−1. Let G be a subgroup
of AutT . We write stG(1) for the kernel of the action of G on L and ψ for the injective
map from stG(1) to

∏
v∈LAutT induced by the restrictions of automorphisms to their

actions on the trees with roots in L. As in Section 3, for K 6 G we denote by Km the
product of the groups v∗H with v of level m. By Theorem 1, if G is a regular branch
group over K, then G is atomic if

(1) Km 6 K
′ for some m, and

(2) K is a subdirect product of just infinite groups commensurable with G.

We write ×nG to denote the direct product of n copies of a group G. If L is a subgroup
of ×nG, we refer to the images of L under the n projection maps from ×nG to G as
the projections of L.

Example 1. Let d = 2. Let b, c, d be the automorphisms of T which fix the vertices
0, 1 and are defined recursively by

ψ(b) = (a, c), ψ(c) = (a, d), ψ(d) = (1, b).

Let G = 〈a, b, c, d〉. This group G is the first of the two 2-groups introduced by the first
author in [5]; for recent accounts of its properties, see [7], [8], [12]. Let K = 〈(ab)2〉.
Then G is a 2-regular branch group over K and Km 6 K ′; see [12, Proposition 30, p.
230]. Therefore to prove that G is atomic it suffices to prove that K is a subdirect prod-
uct of just infinite groups commensurable with G. Now K = 〈(ab)2, (abad)2, (bada)2〉
(see [12, Proposition 30, p. 230]), so that K fixes the vertices 0, 1, and ψ maps the
three generators of K to ((ac)−1, ac), (1, (ab)2), ((ab)2). To show that G is atomic it will
therefore now suffice to prove the following result.

Proposition 4. The group Γ = 〈ac, (ab)2〉 is a just infinite branch group of finite index
in G.

Proof. The finiteness of index follows since

ψ(K) 6 G×G
and since |G : K| is finite and |G × G : imψ| = 8; see [12, Theorem 28]. Assume for
the moment that Γ is known to act transitively on the vertices of level m for each m.
Since Γ 6f G and K ′ 6f G and G is a 2-regular branch group there are integers r,
s such that Kn 6f Γ for all n > r and Ks 6f K

′; clearly then Γ is a regular branch
group over Kr and the derived group of Kr contains Kr+s, so that Γ is just infinite by
Proposition 2 (a). (In fact, Γ is a normal subgroup of index 4 in G and it contains K,
from [3].) It remains to prove that Γ acts transitively on the set of vertices of level m
for each m > 1. Clearly it acts transitively on the set L of vertices of level 1. Consider

stΓ(1) = 〈(ab)2, (ab)2ac, (ac)2〉.
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The map ψ sends the three generators to (ac, ca), (ac, dab) and (ad, da), and hence each
projection of ψ(stΓ(1)) equals Ω where Ω = 〈b, ac〉. It now suffices to prove that Ω acts
transitively on the set of vertices of level m for each m > 1. Clearly it acts transitively
on L, and we have stΩ(1) = 〈b, (ac)2, bac〉. The images of the three generators under ψ
are (a, c), (da, ad) and (aca, dad), and so each projection of Ω is equal to G, which does
act transitively on the set of vertices of level m for each m. This concludes the proof
that Γ is a branch group. ¤

Example 2. Now let d = 4 and let G be the second 2-group introduced in [5]. This
group is generated by a, b, where a is as described above and b is defined recursively
by ψ(b) = (a, 1, a, b). To show that G is atomic it suffices to prove the following result,
in which we write K = G′ to simplify the notation.

Lemma 1. (a) All of the projections of stG(1) and of ψ(K) are equal to G.

(b) G is a 4-regular branch group over K.

(c) K2 6 K
′.

(d) G is just infinite.

Proof. (a) The subgroup stG(1) is generated by the conjugates of b under the elements
of 〈a〉, and K contains the conjugates of [a, b] inder the elements of 〈a〉. Therefore
the result follows since ψ([a, b]) = (ba, a, a, b) and since the images under ψ of these
conjugates of b, [a, b] are obtained by permuting co-ordinates cyclically.

(b) We have
ψ(ba) = (b, a, 1, a), ψ([b, ba]) = ([a, b], 1, 1, 1);

therefore ψ(G′) contains the latter element and its conjugates under the first projection
of stG(1), which is G by (a). Hence K2 6 K = G′, and the index in G of the latter is
finite as G/G′ is finite. It remains to prove that G acts transitively on the vertices of
level m, for each m. We prove this by induction, the result being clear for m = 1. If G
is transitive on the vertices of level m it follows from (a) that stG(1) has four orbits on
the vertices of level m+1, and since these are permuted transitively by 〈a〉 we conclude
that G has one orbit on the vertices of length m+ 1.

(c) The subgroup K ′ = G′′ contains both

[[b, ba], [a, b]a
2

] and [[b, ba], [a, b]a],

whose images under ψ are

([[a, b], a], 1, 1, 1) and ([[a, b], b], 1, 1, 1).

We conclude from (a) that ×4γ3(G) 6 ψ(K ′). Next, ψ(γ3(G)) contains ψ([[a, b]a, b]) =
([b, a], 1, 1, 1), and hence contains ×4K. The result follows.

(d) This now follows from Proposition 2. ¤

Example 3. Let p be an odd prime. Define an automorphism b recursively by setting
ψ(b) = (a, a−1, 1, . . . , 1, b). The group G = 〈a, b〉 is the Gupta–Sidki p-group, introduced
in [11]. Note that ap = bp = 1, so that |G : G′| = p2. Again, to simplify the notation,
we write K = G′. It is known from [18] that G is a p-regular branch group over K and
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that each of the p projections of ψ(K) is equal to G. Indeed, the inclusion ×pK 6 ψ(G)
comes easily from the observation that

ψ(ba) = (b, a, a−1, 1, . . . , 1)

and

ψ([bi, (bj)a]) = ([ai, bj], 1 . . . , 1). (∗)
To show that G is atomic the following observation suffices.

Lemma 2. The inclusion K2 6 K
′ holds.

Proof. Consider the commutator of the element in (∗) and the image under ψ of
([a, b]k)a

s
for suitable values of s: we find that ψ(G′′) contains

([[ai, bj], ak], 1 . . . , 1) and ([[ai, bj], bk], 1 . . . , 1),

and we deduce easily that ×pγ3(G) 6 ψ(G′′). But ψ maps the element [b, [a, b]a
2
] of

γ3(G) to (1, [a−1, b], . . . ), and hence ×pG′ 6 ψ3(G). The assertion follows. ¤
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Lattices with Non-Integral Character

by

H. Helling∗

1. Introduction

Hyperbolic lattices in dimension three, i.e., discrete cofinite subgroups of SL(2,C),
show a preference for having integrally valued character functions, see, e.g., [2], [3].
The first (and only) publicly known lattice with non-integral character seems to be
the one presented by Vinberg at the very end of his fundamental paper [4] where it
plays the rôle of an example for reflection groups. We in this paper first present a very
geometric version of this example and then discuss a series of lattices which contains,
most probably, infinitely many with no integer valued character. The main difference
when compared to Vinberg’s case is that the lattices exhibited here are cocompact.
They appear as the result of Dehn surgery along the figure eight knot with parameter
(±4n, n); all other Dehn surgery results are, as soon as they are hyperbolic, integrally
valued on their character. We do not know of any geometric significance of this excep-
tional behaviour, yet. The construction hints where to look for more peculiarities of
this type.

2. Vinberg’s example

This is a lattice in three-dimensional hyperbolic space generated by reflections. Let P
be the solid in H3 described combinatorially as a prism with two opposite triangular
and three planar quadrangular faces as shown in figure 1.

5

3

 

  

5

3

↑1

← t2→

Figure 1

We number the faces in the following way:

1: the bottom triangle,

2: the left hidden quadrangle,

3: the front quadrangle,

∗Partially supported by the Emmy Noether Institute for Mathematics and the Minverva Foundation.
252
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4: the right hidden quadrangle,

5: the top triangle.

This labelling is also used as a labelling of the reflections performed on the faces. Com-
positions of reflections should be read from right to left, so 21 indicates the orientation
preserving isometry which is created by first reflecting in face number 1 and then in face
number 2. We use symbols as 1 ∩ 2 = 2 ∩ 1 for the edge of P where 1 and 2 intersect,
1∩2∩3 in any ordering for the vertex where 1, 2, and 3 intersect, and ∠12 = ∠21 for the
spatial angle enclosed by the faces 1 and 2. Vinberg shows in [4] that the combinatorial
object P may be given the following geometrical realization in H3:

(1) angular conditions:

∠12 = ∠13 = ∠34 = ∠25 = ∠35 = ∠45 = π/2,

∠14 = π/3,

∠23 = ∠24 = π/6;

(2) vertex locations:

All vertices which are visible in figure 1 are inside hyperbolic space; the hidden vertex
1 ∩ 2 ∩ 4 is at infinity.

Theorem (Vinberg [4]). The group Γ generated by reflections on the faces of P is a
cofinite but not cocompact lattice in hyperbolic space H3. It is not arithmetic.

The discreteness and cofiniteness of Γ comes from the very general discussion in [4] of
reflection groups where Γ plays the rôle of an example. The non-arithmeticity comes
from the observation that in order to describe Γ as a matrix group in O(3, 1) matrices
with no longer integral traces are needed: the denominators of the traces pick up powers
of the prime 2 with exponent unbounded. We, using Poincaré’s model of hyperbolic
geometry in dimension 3, reprove non-arithmeticity and, as a complement to [4], deter-
mine the trace field of Γ.

Let Γ+ be the index 2 subgroup of Γ consisting of all orientation preserving isometries
of Γ. The elements σ1 = 21, σ2 = 25, τ1 = 23, τ2 = 24 of Γ are contained in Γ+, already.
They allow the following presentation of Γ+:

Generators: σ1, σ2, τ1, τ2,

Relators:

(1) σ21 = σ22 = (σ1τ1)
2 = (σ2τ1)

2 = (σ2τ2)
2 = (τ−12 τ1)

2 = identity,

(2) (σ1τ2)
3 = identity,

(3) τ 61 = τ 62 = identity.

In order to not overload the discussion with additional notation we interpret the letters
σ1, σ2, τ1, τ2 as elements of SL(2,C) instead of PSL(2,C) ∼= Iso+(H3); consequently
Γ+ is now a subgroup of SL(2,C). In rows (1) and (2) we then have to interpret the
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identity as

(
−1 0
0 −1

)
, and we may and shall do so in row (3), as well. Let now

s : Γ+ −→ C

be the character of the lattice Γ+ as a subgroup of SL(2,C). Then lines (1), (2) and
(3) translate to

(1’) s(σ1) = s(σ2) = s(σ1τ1) = s(σ2τ1) = s(σ2τ2) = s(τ−12 τ1) = 0,

(2’) s(σ1τ2) = 1,

(3’) s(τ1) = s(τ2) =
√
3.

Here the value 1 for s(σ1τ2) comes from (σ1τ2)
3 =

(
−1 0
0 −1

)
; the choice of the value

√
3 for s(τ1) and s(τ2) instead of −

√
3 is compatible with lines (1’) and (2’). We mention

s(τ2τ1) = 3,

which comes from

s(τ2τ1) + s(τ−12 τ1) = s(τ2τ1) + 0 = s(τ2)s(τ1) = 3.

Secondly,

s(σ1τ
3
2 ) = (

√
3
2 − 1)s(σ1τ2)−

√
3s(σ1) = 2 = s(τ2σ1τ

2
2 ) = s(τ 22σ1τ2).

So the elements σ1τ
3
2 , τ2σ1τ

2
2 , and τ

2
2σ1τ2 are parabolic elements with fixed point 1∩2∩4

from figure 1 which is a cusp. It is also easy to see that these three elements generate
the torsion free part of the stabilizer of this cusp. Some general character formalism
(see [2]) allows to calculate s2(σ1τ1τ2) and s

2(σ2τ1τ2) and then also s(σ1σ2):

4
(
s(σ1τ1τ2)− s(σ1τ2τ1)

)2
+ det



−4 0 2
0 −1 3
2 3 −1


 = 0

yields (
2s(σ1τ1τ2)−

√
3
)2

= −9,
so

s2(σ1τ1τ2) = 3
(1 +

√
−3

2

)2
.

Similarly,

4
(
s(σ2τ1τ2)− s(σ2τ2τ1)

)2
+ det



−4 0 0
0 −1 3
0 3 −1


 = 0

results in
s2(σ2τ1τ2) = −2.

Furthermore

4
(
s(σ1τ1τ2)− s(σ1τ2τ1)

)(
s(σ2τ1τ2)− s(σ2τ2τ1)

)

+det




2s(σ1σ2) 0 2
0 −1 3
0 3 −1


 = 0
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leads to
s2(σ1σ2) = 9/2,

which is not integral any more. Some more computations along these lines result in
explicit values of the character s, e.g., on σ1σ2τ1 and σ1σ2τ2. We collect everything in
the following result.

Theorem. The lattice Γ+ has trace field equal to Q(
√
−3), the field of cube roots of

unity. Its character values (squared) are unbounded at the non-archimedian valuation at
the prime 2 and integral at all other non-archimedian places. It is cofinite with exactly
one cusp.

We end this paragraph by drawing a fundamental domain for Γ+ in hyperbolic space.
The cusp we locate at infinity. It is then easy to see that the matrix solution with
character values (1’), (2’), (3’) is, up to conjugacy by the stabilizer of the cusp:

σ1 =

( −i 3√
2
i

0 i

)
, σ2 =

(
0 i
i 0

)
,

τ1 =

( √
3−3i
2

i
√
2

−i
√
2

√
3+3i
2

)
, τ2 =

( √
3+i
2

0

0
√
3−i
2

)
.

Q

V

R

S

U

P

O

Q

V

R

S

U

P

O

Figure 2

Figure 2 shows a Ford fundamental domain of Γ+, viewed from the cusp at infinity. It is
a triangular prism with three faces lying on the vertical Euclidian halfplains containing
{∞, O, V }, {∞, O, U}, and{∞.U,V}, respectively. The floor is composed by pieces of
three isometric spheres:

{O,P,R,Q} lies on the isometric sphere of σ2,
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{P,U, S,R} lies on the isometric sphere of τ1, and

{R,S, V,Q} lies on the isometric sphere of τ−11 .

The coordinates of these points are:

O= (0, 1),

P= (
√
3−i√
6
, 1√

3
),

Q= (
√
3+i√
6
, 1√

3
),

U=(3−i
√
3

2
√
2
, 1√

2
),

V=(3+i
√
3

2
√
2
, 1√

2
),

S= ( 3
2
√
2
, 1
2
√
2
),

R= (2
√
2

3
, 1
3
).

The above generators identify the faces of the prism in the following way:

σ1 :

∞
U
S
V

−→
∞
V
S
U

, σ2 :

O
P
R
Q

−→
O
Q
R
P

,

τ1 :

P
U
S
R

−→
Q
V
S
R

, τ2 :

∞
O
P
U

−→
∞
O
Q
V

.

The orbifold Γ+ rH3 obviously allows an orientation reversing isometry, realized, e.g.,
by the reflection of the fundamental domain in figure 2 through the hyperbolic plane
above the real axis.

3. Figure eight knot Dehn surgery

We recall the presentation of the fundamental group π1(S
3r41) of the figure eight knot

complement in the 3-sphere in terms of an HNN-extension:

π1(S
3 r 41) ∼=

〈
ξ, η, µ | µξµ−1 = ηξ, µηµ−1 = ηξη

〉
. (4)

This group has a faithful lattice representation in PSL(2,C), which is the group
Iso+(H3) of orientation preserving isometries of hyperbolic space. As it is (two-)torsion
free one can lift this representation to a representation in SL(2,C), and it is easy to see
that it is legitimate to interpret the above presentation as the presentation of a lattice
Γ in SL(2,C). The character variety of Γ ∼= π1(S

3r 41), i.e., the space of deformations
of the character of Γ in SL(2,C) is the affine algebraic curve

t2 =
x2 + x− 1

x− 1
(5)
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with the point x = 1 removed, see [2]. This means the following: let s : Γ −→ C be any
character on Γ which results from a deformation of the lattice character of Γ. Then s is
determined by its values s(ξ) = x and s(µ) = t, and these values are related by equation
(5). In this paragraph we replace x by x = q + 1 which has the effect that formulae
and notation become much more transparent respectively simplified. Equation (5) now
reads

t2 =
q2 + 3q + 1

q
= q + q−1 + 3. (5’)

It reveals the fact that the elliptic curve (5) allows two holomorphic involutions: t 7→ −t
and q 7→ q−1. We may rewrite (5’) as

q2 − (t2 − 3)q + 1 = 0. (5”)

So if t is an algebraic integer, then so is q; it then is even a unit. We collect some
information about s, see [2]:

s(ξ) = x = q + 1, s(η) = y =
x

x− 1
= 1 + q−1, s(ηξ) = x = q + 1,

s(µ) = s(µ−1ξ) = s(µ−1η) = s(µ−1ηξ) = t.

Note that the character s restricted to the rank 2 free subgroup of π1(S
3r41) generated

by ξ and η is determined by s(ξ) = x and s(η) = y, which are related by xy = x + y,
equivalently, (x− 1)(y − 1) = 1. We set λ = η−1ξ−1ηξ and compute

s(λ) =x2 + y2 + z2 − xyz − 2

=
1

q2
(q4 + q3 − 2q2 + q + 1) =

(
q +

1

q

)2
+
(
q +

1

q

)
− 4 = t4 − 5t2 + 2. (6)

We also need s(µ−1λ) and s(µλ) in terms of character coordinates:

s(µ−1λ) = s
(
(ξµ−1)(η−1ξ−1)η

)

= −s
(
(η−1ξ−1)(ξµ−1η)

)
− s(ξµ−1)s(η−1ξ−1)s(η)

+s(ξµ−1)s
(
(η−1ξ−1)η

)
+ s(η−1ξ−1)s

(
(ξµ−1)η

)
+ s(η)s(ξµ−1η−1ξ−1).

We use

s(µ−1η−1) = −s(µ−1η) + s(µ)s(η) = −t+ t
(
1 +

1

q

)
=
t

q

and get

s(µ−1λ) = t
q3 − q2 + 1

q2
. (7)

From this follows

s(µλ) = t
q3 − q + 1

q
. (8)

We observe that s(µ−1λ) and s(µλ) are related to each other via the automorphism
q 7→ q−1 of the curve (5’). To perform Dehn surgery at the knot 41 means to add a
relator of the form λm = εµn to the presentation (4) of Γ < SL(2,C); here m and n are
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integers not simultaneously 0 and ε is central. In terms of character values we have, in
this situation

s(λm) = ±s(µn). (9)

Remember that s(γk) is a monic polynomial with integer coefficients in s(γ) of degree
|k|, for γ ∈ Γ and k ∈ Z. We have seen in (6) that s(λ) is a degree 4 polynomial in
terms of s(µ) = t, so if |n| 6= 4|m|, equation (7) defines s(µ) = t as an algebraic integer.
In this case we see from (5”) that q is an algebraic integer, even a unit, and so all values
s(γ), γ ∈ Γ are algebraically integral. We shall deal with the case |n| = 4|m| separately
but first collect all information in the following result.

Theorem. Let m,n be integers such that the orbifold created by Dehn surgery λm =
εµn along the figure eight knot in S3 is hyperbolic, and let Γm,n < SL(2,C) be the
corresponding lattice. Then the character s on Γm,n is algebraically integer valued if

(1) |n| 6= 4|m| or
(2) n = ±4m and m not a power of a prime number.

In case m = ±pk, n = ±4pk with p a prime number and k ≥ 1 the situation is as

follows: Define cm = 2+2 cos π
m

=
(
2 cos π

2m

)2
, and fm(z) to be the degree 4 polynomial

fm(z) = z4 + 3z3 + z2 + cm.

Then the character s on Γm,n is algebraically integer valued if and only if fm splits over
the field Q(cm) into two factors one of which has the form z2 + az + b with b a unit in
that field and discriminant a2 − 4b negative.

What is left to prove is a detailed study of the situation n = ±4m. We assume m
positive which does not mean any loss; requiring hyperbolicity means m ≥ 2. First

n = −4m. We have, from λm = εµ−4m: (µ4λ)m = ε = ±
(

1 0
0 1

)
as λ and µ

commute. So s(µ4λ) = −2 cos π
m
. Here the negative sign is mandatory for odd m:

the group Γm,−4m, regarded as a group of isometries of hyperbolic space, has no 2-
torsion and so may be lifted to a matrix group; omitting the negative sign would create

(µ4λ)m =

(
−1 0
0 −1

)
. For even m the negative sign is expected as, for m → ∞,

this value should converge to −2, which is the character value on λ in the complete
hyperbolic case where λ and µ are parabolic. We derive from equations (6) and (7):

s(µ−4λ) = (t3 − 2t)s(µ−1λ)− (t2 − 1)s(λ)

= t2(t2 − 2)
q3 − q2 + 1

q2
− (t2 − 1)(t4 − 5t2 + 2).

We express, using (5’), t2 in terms of q and get

s(µ−4λ) =
1

q4
(2q4 + q2 + 3q + 1).

So

s(µ4λ) = −s(µ−4λ) + s(µ4)s(λ) = q4 + 3q3 + q2 + 2.
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Thus, the algebraic equation for q is

q4 + 3q3 + q2 + cm = 0 if(µ4λ)m = identity,

cmq
4 + q2 + 3q + 1 = 0 if(µ−4λ)m = identity.

Remember that both q and q−1 enter into character values. So if a lattice character is
integer valued, it is necessary (and sufficient) that q be an algebraic unit which is not
real (as otherwise the trace field would be real).

Proposition. The number cm = 2 + 2 cos π
m

= (2 cos π
2m

)2 is, for m ≥ 2, an algebraic

integer. It is a unit if and only if m is not a prime power; if m = pk with p a prime,
k ≥ 1, then it is a prime in the ring of integers in Q(cm) with degree 1. Its norm as an
element of this field is p.

We sketch the proof which is presumably in the literature: let gm(z) be the minimal

polynomial of the primitive (2m)th root of unity e
πi
m :

gm(z) =
∏

0<d|2m

(
zd − 1

)µ( 2m
d
)

with µ the Möbius function. Its degree is ϕ(2m), which is an even natural number; ϕ
is of course Euler’s totient function. Its constant term is

gm(0) =
(
− 1
)∑

0<d|2m µ( 2m
d
)

= 1.

The rational function gm(z)/z
ϕ(2m)/2 is invariant under change from z to z−1. This

means that it may be written as a monic polynomial g̃m with integer coefficients in
terms of z + 2 + z−1:

1

zϕ(2m)/2
gm(z) = g̃m(z + 2 + z−1).

gm(z) is, of course, the minimal polynomial of cm. We have, in order to compute the
norm of cm to compute its constant coefficient:

g̃m(0) =
1

zϕ(2m)/2
gm(z)|z=−1 = (−1)ϕ(2m)/2gm(−1).

We have

gm(−1) =
∏

d|2m
d odd

(
− 2
)µ( 2m

d
) ∏

d|2m
d even

lim
z→1

(zd − 1

z − 1

)µ( 2m
d
)

lim
z→1

∏

d|2m
d even

(
z − 1

)µ( 2m
d
)

.

The first and the third product are easily seen to be 1, and the second is

∏

d|2m
d even

dµ(
2m
d
) = 2

∑
d|m µ(m

d
)
∏

d|m
dµ(

m
d
) =

{
p m = pk

1 otherwise
.

This is the statement of the proposition.

The polynomial fm(z) = z4 + 3z3 + z2 + cm is easily seen to have 2 real and one pair
of complex conjugate roots. Let m be a prime power, so cm not a unit. If first fm is
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irreducible over the field Q(cm), then no root is an algebraic unit. If fm splits over
this field into a cubic and a linear factor one sees at once that the cubic factor cannot
have a unit as its constant term (and, of course, the zero of the linear factor being real
cannot lead to a lattice character). So in this case no character can be integer valued.
There remains the case that fm decomposes into two quadratic factors one having two
real roots and constant term a unit times cm and the other one having constant term
a unit and two complex conjugates as the roots. It is undecided to which extent this
situation has to be expected.

4. Examples

Form = 2, 3, 4, and 5 we have cm = 2, 3, 2+
√
2, and 5+

√
5

2
, respectively. The polynomial

fm(z) = z4 + 3z3 + z2 + cm

is in all cases seen to be irreducible over Q(cm). So the lattices Γm,±4m, for these values
of m, have trace fields which are degree 4 extensions of Q(cm). Their character is not
integer valued; its values have denominators which are powers of the prime number cm.
If m goes to infinity, the polynomial fm becomes

f∞(z) = z4 + 3z3 + z2 + 4 = (z + 2)2(z2 − z + 1).

The root of the quadratic factor defines the lattice representation of the fundamental
group of S3 r 41, again.

We briefly sketch a situation where the figure eight knot complement is replaced by the
manifold M with fundamental group

π1(M) ∼=
〈
ξ, η, µ | µξµ−1 = ηξ, µηµ−1 = (ηξ)3η

〉
.

This is another standard hyperbolic manifold. It fibers over the circle with fibre the
once punctured torus. Again, 〈ξ, η〉 is the (free) fundamental group of the fibre and µ
represents the pseudo-Anosov on the level of 〈ξ, η〉. The character variety of π1(M) is
a hyperelliptic curve:

t2 = (z − 1)2
z3 + z2 − 2z − 1

z2 − z − 1
,

see [2]. Here the point (z, t) on this curve serves as a coordinate for the character s on
π1(M) determined by

s(ξ) = z, s(η) = z
z − 1

z2 − z − 1
= 1 +

1

z2 − z − 1
, s(ηξ) = z,

s(µ) = t, s(µ−1ξ) =
1

z − 1
t, s(µ−1η) = t, s(µ−1ηξ) =

1

z − 1
t.

In this case, Dehn surgery leads to lattices with non-integral character in case µ3 =
λ±4, and the algebraic equation for its character is, in analogy to the figure eight
knot situation, s(µ±3λ4) = −2 cos π

m
for m sufficiently large in order to guarantee

hyperbolicity. The resulting polynomial which replaces fm has degree 16.
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Some Applications of Probability in Group Theory

by

A. Mann

My aim in this article is to show how simple probabilistic arguments can be applied
to prove group theoretical results. While some of these results are formulated in prob-
abilistic language, some have purely group theoretical formulations (see Theorems 4
and 5). I am going to give only a sample of such results, referring to [Sh] for a more
exhaustive survey. Not all of the results here occur in [Sh], though, and Propositions 2
and 3 have not been published before.

Our subject apparently begins with E.Netto, who, more than a century ago, wrote: “If
we arbitrarily select two or more substitutions of n elements, it is to be regarded as
extremely probable that the group of lowest order which contains these is the symmet-
ric group, or at least the alternating group” [N1, p.76]. Later, in the English version
of his book, he added: “In the case of two substitutions the probability in favour of
the symmetric group may be as about 3/4, and in favour of the alternating, but not
symmetric, group as about 1/4” [N2, p.90]. These statements were made precise by
J. D. Dixon [D], who proved that, as n → ∞, the probability that two elements of Sn
generate either Sn or An tends to 1. Dixon made then a generalized conjecture: let us
write P (G, k) for the probability that k random elements generate the group G, then
Dixon conjectured that, letting S range over all finite simple groups, P (S, 2) → 1, as
|S| → ∞. Applying the classification of the finite simple groups, that latter conjecture
was proved by W. M. Kantor–A. Lubotzky [KL] for the classical and small exceptional
groups, and by M. Liebeck–A. Shalev [LS] for the remaining ones.

Whereas for finite groups it is clear what we mean by probability, we simply count the
number of elements, this is not so for infinite groups. Nevertheless, given any finitely
generated group G, we would like to ask: what is the probability that a random finite
subset generates G? Guided by Hilbert’s dictum that one should start with the sim-
plest examples, let us start with G = Z, the infinite cyclic group. This group can be
generated by one element, but as only two of its infinitely many elements are such gen-
erators, the probability that one element generates Z seems to be 0. So let p = P (Z, 2)
be the probability that two elements generate Z. Choosing two integers at random,
they generate some subgroup nZ. Again, the probabilty that n = 0 seems to be 0, so
with probability 1 our pair of integers generates a non-trivial subgroup. They lie in
nZ with probability 1/n2, and, once we know that they lie there, then, recalling that
nZ ∼= Z, they generate nZ with the same probability p. This yields

p(
∞∑

n=1

1/n2) = 1,

and thus p = 1/ζ(2) = 6/π2. In the same way we see that P (Z, k) = 1/ζ(k). We can
even apply this argument for k = 1, getting a “proof” that the harmonic series diverges.

Another route to the same result is the following: two integers generate Z if and only if
they are relatively prime. Given a prime q, the probability that at least one of them is
not divisible by q is 1−1/q2, and since this non-divisibility assumption has to be satisfied

262
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for all primes, we have p = Πq(1−1/q2) = 1/ζ(2). Again a similar consideration applies
for each k. The case k = 1 yielding this time that the product Π(1 − 1/q) diverges,
hence so does the series

∑
1/q. We seem also to have derived the Euler factorization of

the ζ-function. This, however, depends on our representing P (Z, k) as a product over
primes, and to justify this we have to assume that divisibilities by distinct primes are
independent events. This hypothesis is equivalent to unique factorization, which, in
turn, is equivalent to the Euler factorization.

I assume that by now the readers have both their eyebrows raised: just how are my
probabilities defined? Before answering this question, let me work out a slightly more
complicated example, still proceeding naively. Take G = Z2, a free abelian group
of rank 2. As this group is countable, and all its subgroups are finitely generated, it
contains only countably many subgroups. The probability of a random k-tuple to lie in a
subgroup of infinite index is then 0, so with probability 1 it generates a subgroup of finite
index. Like Z, our group has the property of being isomorphic to all of its finite index
subgroups, so a similar argument to the one above yields P (Z2, k) = (

∑
an(Z

2)/nk)−1,
where an(G) denotes the number of subgroups of G of index n. The problem is that
we do not know what an(Z

2) is. So let us try the other route. A k-tuple generates
Z2 if and only if it does not lie in any maximal subgroup. All maximal subgroups
have prime indices, and for index q there are exactly q + 1 subgroups of that index,
corresponding to subgroups of order q of Z2/qZ2, an elementary abelian group of order
q2. It is easy to count the number of generating k-tuples of the latter group, which
shows that the probability of generating it is (1 − 1/qk)(1 − 1/qk−1). Now a k-tuple
generates Z2 if it generates it (mod qZ2) for all q, so we obtain P (Z2, k) = Π(1 −
1/qk)(1− 1/qk−1) = 1/ζ(k)ζ(k− 1). Comparing the two expressions for our probability
we have

∑
an(Z

2)/nk = ζ(k)ζ(k− 1). This is an equality between two Dirichlet series.
Subgroups of index n correspond to subgroups of Z2/nZ2, and since the latter group
has order n2 and all its subgroups can be generated by two elements, the number of
these subgroups is at most the number of pairs of elements, so an(Z

2) ≤ n4. Thus both
the series

∑
an(Z

2)/nk, and the series for ζ(k)ζ(k − 1) converge for large enough k,
and for these k’s they have the same value. That means that the two Dirichlet series
are identical: they have the same coefficients. Writing this in the form

∑
an(Z

2)/nk =
(
∑

1/nk)(
∑
n/nk) and comparing coefficients, we obtain

an(Z
2) =

∑

m|n
m.

Similarly we obtain for each integer d that
∑
an(Z

d)/nk = 1/ζ(k)ζ(k−1)...ζ(k−d+1),
and we can derive the value of an(Z

d) from that.

The readers may have been patient with me as long as all that I did was to offer a new
way of looking at some well known facts such as that the sum of the prime reciprocals
diverges, but now that I seem to be using these considerations in order to derive some
less familiar results, they would, or at least should, ask for justification. Indeed, my
arguments need a probability measure defined on Z that is both translation invariant
and countably additive, and it is easy to see that such measures do not exist. But
they exist on compact groups, known there as Haar measures. More precisely, I will
be considering profinite groups, i.e., inverse limits of finite groups. The inverse limit
structure endows such groups with a natural compact topology, and hence with a finite
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Haar measure, which we always normalize so that our group G has measure 1, and can
be considered as a probability space. To justify considerations such as those that were
applied above to Z, we pass from an arbitrary group G to its profinite completion, the
inverse limit of the system G/N , where N ranges over all normal subgroups of G of finite
index. If G is residually finite, i.e., the intersection of all the above N ’s is trivial, then G
is embedded into its profinite completion. When talking about generators of a profinite
group, we mean generators as a topological group, i.e., X generates G means that G is
the minimal closed subgroup of G containing X. The closure of an arbitrary subset X
is X̄ = ∩XN , with N ranging over all open subgroups of G (since G is compact, all
open subgroups have finite index, and they constitute a basis for the neighbourhoods
of the identity). It follows that X generates G if and only if each finite factor group
G/N is generated by XN/N . Thus G is finitely generated, by d elements, say, if and
only if each finite factor group G/N can be generated by d elements. Moreover, X
generates G if and only if X is not contained in any proper open subgroup, so the set of
k-tuples generating G is the complement in Gk of ∪Hk, where H ranges over all proper
open subgroups. Therefore the set of k-tuples generating G is closed, and in particular
measurable. Also, P (G, k) is the infimum of P (G/N, k), for N as above.

To make the considerations above about Z and Zd precise, we first pass from these

groups to their profinite completions, say Ẑd. Then we note that an(Ẑd) = an(Z
d), and

that, by an argument like the one for Z2 above, these numbers grow polynomially. We
quote the following well known probabilistic result [R, pp. 389-392].

Borell-Cantelli Lemma. Let Ai be events in a probability space, with probabilities pi.

(1) If
∑
pi converges, then with probability 1 only finitely many of the events Ai

happen.

(2) If
∑
pi diverges, and the Ai are pairwise independent, then with probability 1

infinitely many of the Ai happen.

Taking as our events “belonging to a given finite index subgroup”, we see by part 1 that

k elements in Ẑd , for large enough k, almost surely belong only to finitely many such
subgroups. By the expression above for the closure of a subset, this means that these
k elements generate a subgroup of finite index with probability 1. Given that fact, all
the considerations above work. We now make the following definition.

Definition 1. A profinite group G is positively finitely generated (PFG) if P (G, k) >
0, for some k.

Thus our arguments above show that Ẑd is PFG. Moreover, it can be shown that

P (Ẑd, k) > 0 whenever k > d, but that P (Ẑd, d) = 0. Thus, even though d elements
suffice for generating this group, they do so, as it were, by chance only, while if we pick
out random (d+1)-tuples one after the other, we are virtually certain to find sooner or
later a set of generators. On the other hand, it is shown in [KL], that a free profinite
group of rank not 1 is not PFG. If G is a finitely generated pro-p group (an inverse
limit of finite p-groups) then its Frattini subgroup Φ(G) is of finite index, and a k-tuple
of elements generates G if and only if their images generate the finite factor group
G/Φ(G). From this it is obvious that G is a PFG group, and in this case the minimal
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number required to generate G and to generate it with positive probability coincide. It
was also shown in [KL] that if G is pro-nilpotent and generated by d elements, then it
is PFG, and d+ 1 elements suffice to generate it with positive probability.

Now if some set of elements fails to generate G, they are contained in some open
maximal subgroup of G (in a profinite group each proper closed subgroup is contained
in a maximal one, and the latter is open, hence of finite index). So it seems that if G
has only a few maximal subgroups, then a random subset stands a good chance not to
belong to any one of these maximals, and thus generates G. We have learned in recent
years from the computer science people that “a few” is to be interpreted as “at most
polynomial”. So let us write mn(G) for the number of maximal subgroups of G of index
n, and let us make the following definition.

Definition 2. A group G is termed a polynomial maximal subgroup growth (PMSG)
group if there exist two constants C and s, such that, for all n,

mn(G) ≤ Cns.

Here G is either an abstract or a profinite group, and in the latter case we consider, as
usual, only closed subgroups. It may be somewhat surprising that our vague remarks
above about “standing a good chance” and “few” are made precise by the following
result.

Theorem 1 (A.Mann - A.Shalev [MS]). A profinite group is PFG if and only if it is
PMSG.

The proof of one direction is easy, [M1]. Let G be a PMSG group, as defined above.
If a k-tuple does not generate G, it lies in some open maximal subgroup M , and the
probability of that happening is 1/|G :M |k. Thus the probability of a random k-tuple
to lie in some maximal subgroup is at most

∑
n>1mn(G)/nk = s(k), say, and by our

assumption on mn(G) we see that s(k) < 1, if k be large enough. For such k we have
P (G, k) ≥ 1− s(k) > 0, so G is PFG.

The proof of the reverse direction is much deeper. We first apply the classification of
the finite simple groups, and the various results obtained following that classification
about the subgroup structure of these groups, to show that there exists a constant c
such that for any finite simple group S we have mn(S) ≤ cn2. (Actually the exponent is
a little better than 2, and has been improved since, but is still far from the conjectured
1 + o(1).) From this we deduce: there exists a function s(d), such that in any finite
d-generated group, the number of maximal subgroups of index n and trivial core is at
most ns(d). Indeed s(d) = max(d, r), for some constant r. So far it is all finite group
theory. But the final stage needs probability theory. Let G be a PFG group. Let H
and K be two maximal subgroups with distinct cores, say N = Core(H) ≤ K. Then
HK = NK = G. This means that belonging to H and K are independent events in G.
Say that two maximal subgroups are equivalent if they have the same core, and choose
one representative from each equivalence class. If the number of equivalence classes of
maximals of index n is not polynomial, then the second part of the Borel-Cantelli lemma
shows that with probability 1 a random k-tuple (for any k) lies in infinitely many of
these representatives. Such a k-tuple cannot generate G, contradicting G being PFG.
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Thus for some t the number of equivalence classes of maximals of index n is at most nt,
and then the italicised claim above shows that the number of all maximal subgroups of
index n is at most nt+s(d).

This criterion certainly implies that finitely generated pro-nilpotent groups are PFG,
because in a d-generated such group all maximal subgroups are normal of prime index,
and the number of those of index p is less than pd. In [M1] the criterion is used to show
that a finitely generated prosoluble group is PFG. A much more general theorem was
proved in [BPS]. It is shown there that if X is any finite group, and if G is a finitely
generated profinite group that does not involve X as an upper section, i.e., it does not
contain open subgroups H and K, with K / H, such that X ∼= H/K, then G is PFG.
We term such a group X-deficient, and we term it deficient, if it is X-deficient for
some X. That assumption on G is equivalent to requiring that the variety of profinite
groups generated by it is not the variety of all profinite groups. Knowing that free
profinite groups are not PFG, it was tempting to think that deficiency characterizes
PFG groups, but this is not the case. Consider the Cartesian product of infinitely many
non-isomorphic finite simple non-abelian groups. It can be shown that as a profinite
group this product is generated by two elements with positive probability. Indeed we
can allow also isomorphic copies of the same group, as long as for each n we have only
polynomially many simple factors with subgroups of index n. That ensures that our
group is a PMSG one. Obviously we can choose our set of simple groups so that
they involve each finite group. Another construction was found independently in [B],
where M. Bhattacharjee shows that the inverse limit of iterated wreath products of
simple alternating groups can be positively generated by two elements. A structural
characterization of PFG groups is still missing. I want to draw your attention also to
the following property, which was proved in [M] for prosoluble groups and was extended
in [BPS] to all finitely generated deficient groups: the subgroup growth is exponential.
This means that an(G) ≤ cn, for some c. This is a genuine restriction: in free groups
the number of subgroups grows faster than exponential. The relationship between this
ESP (Exponential Subgroup Property) and PFG is not known.

The proofs regarding Cartesian products above, as well as the proofs in [B], are by
direct computation. An alternative approach, which was noted by A. Shalev, can be
extended to the following result.

Proposition 1. Let G be a finitely generated profinite group. Suppose that, for all
numbers n, the number of open normal subgroups of G of index at most n is at most
(log n)s, for some s. Then G is a PFG group.

Proof. Let G be generated by d elements, and let M be a maximal subgroup of G of
index n. Then |G : Core(M)| ≤ n!, so by assumption Core(M) is one of at most n2s

normal subgroups. By the italicised claim in the proof of the theorem above, for each
possible core we have at most ns(d) maximal subgroups of index n with that core. It
follows that G is a PMSG group. ¤

The growth assumption in this proposition is very strong. However, we cannot do much
better. It is easy to construct 2-generated profinite groups in which the number of nor-
mal subgroups of index at most n is less than nε, for any ε, that are not PFG (see
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Example 2 on p. 457 of [M1]).

While both the Cartesian products above and Bhattacharjee’s wreath products obvi-
ously satisfy the growth condition of the last proposition, for the latter it is not clear
that proving that they are finitely generated is easier than proving directly that they
are PFG. But D. Segal has recently proved that iterated wreath products of finite sim-
ple non-abelian groups, relative to any faithful primitive actions of these groups, are
generated by three elements [Se]. Let us note also the following result.

Proposition 2. Let {Si} be a sequence of finite simple non-abelian groups, let G1 = S1,
let Gi be the standard wreath product of Si by Gi−1, and let G be the inverse limit of
Gi. Then G is a PFG group.

Proof. Let N be the base group of Gi. Then N is a minimal normal subgroup of Gi.
Let H be a complement of N in Gi. Then H permutes regularly the direct factors
isomorphic to Si of N . Therefore H normalizes some “diagonal” subgroup D of N , so
H < HD, and H is not maximal in Gi. Now the proof in [MS] of the italicized claim
above shows that the number of maximal subgroups of G of index n with a given core
is at most nc, for some constant c. Since the number of cores is restricted as in the
previous proposition, our claim follows. ¤

We conjecture that a result similar to Proposition 3 holds also if the wreath product is
not necessarily the standard one, but is taken with respect to any faithful permutation
action of Gi. Note that the proposition implies that all the groups Gi can be generated
by a bounded number of elements. A similar remark applies to the results of [B] and
[Se].

We now come to the applications that do not mention probability in their formulation.
These follow from essentially one simple computation. Let G be a PFG group. We ask
what is the probability Q(G, k) that k random elements of G generate a subgroup of
finite index. We remark parenthetically that while it is easy to see that if H is open in
G and H is PFG, then so is G, the reverse implication was not proved yet. Be that as it
may, our question above makes sense, and since G has only countably many finite index
subgroups, we have Q(G, k) =

∑
H≤fG

P (H, k). Now suppose that G is deficient. Let F

be the free group of rank d in the profinite variety generated by G. Then we know that
F is PFG, so P (F, k) = C > 0, for some k. It follows that all d-generated groups in
the same variety are generated by k elements with probability at least C. In calculating
Q(G, k), let us consider only the contribution of subgroups that can be generated by
d elements, and let us write an,d(G) for the number of such subgroups of index n. We
have then that k random elements of G generate a d-generated subgroup of finite index
with probability at least C(

∑
an,d(G)/nk). Being a probability, the last sum is at most

1, so we see that
∑
an,d(G)/nk < 1/C, and in particular, the sum converges. Thus we

have the following.

Theorem 2. Let G be a deficient profinite group. Then for each d there exists some
k, depending only on d and the variety generated by G, such that

an,d(G) = o(nk).
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E.g. for pro-p groups we obtain an,d(G) = o(nd) and for prosoluble groups an,d(G) =
o(n(13/4)d+4).

Next, we count normal subgroups in a similar manner. For this we have to restrict
ourselves to pro-p groups. Let G a finitely generated pro-p group, and let N be a
normal subgroup. We ask what is the probability that N is the normal closure in G of
k elements. The subgroup [N,G]N p is a proper subgroup of N which is easily seen to
be the intersection of all the maximal subgroups of N that are normal in G. Therefore
a k-tuple generates N normally if and only if it generates N/[N,G]N p normally. But
the latter group is central in G/[N,G]N p, so our k-tuple generates it normally if and
only if it generates it in the usual sense, so our probability is simply the probability
that k elements of G generate N/[N,G]N p. Again, this k-tuple has first to lie in N , the
probability of this being 1/|G : N |k. If the elementary abelian group N/[N,G]N p has
rank k, then the probability of a k-tuple to generate it is (1 − 1/p)...(1 − 1/pk) = Ck,
say, while if the rank is smaller than k the probability is even bigger, and for bigger
rank the probability is 0. Let us write now tn,r(G) for the number of normal subgroups
of G of index n that are the normal closure of r elements. Then the above remarks
show that the probability that r elements of G generate normally a subgroup of finite
index is at least Cr(

∑
tn,r(G)/nr). As above, we deduce that the sum converges, and

that tn,r(G) = o(nr). In particular, let F be a free pro-p group of finite rank d ≤ r.
Then each p-group P of order pn that can be generated by d elements is a factor group
of F , and if P can be defined by r relations, then the kernel N is generated normally
by these relations. Recalling that if a finite group can be defined by r relations, then it
can also be generated by the same number of elements, we obtain the following.

Theorem 3. Let h(n, r) be the number of groups of order n that can be defined by r
relations. Then, as k →∞,

h(pk, r) = o(pkr).

We conjecture that in general h(n, r) = o(nr). From the theorem above one can deduce
this for nilpotent groups, but for finite groups in general we know only that h(n, r) =
O(nr logn), [M2].
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Parity Patterns in Hecke Groups and Fermat Primes

by

T. W. Müller∗

For Wilfried Imrich on the occasion of his sixtieth birthday

1. Introduction

For a group G denote by sn(G) the number of subgroups of index n in G. If G is finitely
generated or of finite (subgroup) rank, then sn(G) is finite for all n. The present paper
is concerned with the behaviour modulo 2 of the function sn(G) and another arithmetic
function counting free subgroups of finite index in the case when G is a Hecke group.
Rather surprisingly, it turns out that Fermat primes play an important special role
in this context, a phenomenon hitherto unobserved in the arithmetic theory of Hecke
groups, and, as a byproduct of our investigation, several new characterizations of Fermat
primes are obtained.

The natural framework for our research is the theory of subgroup growth of finitely
generated virtually free groups. The notion of subgroup growth, which has evolved
over the last two decades in the work of Grunewald, Lubotzky, Mann, Segal, and
others including the present author, brings together under a common conceptual roof
investigations concerning arithmetic properties of the sequence {sn(G)}n≥1 or related
subgroup counting functions and their connection with the algebraic structure of the
group G. The original motivation for these studies comes from three sources: the notion
of word growth and, more specifically, Gromov’s characterization in [12] of finitely
generated groups with polynomial word growth, the theory of rings of algebraic integers
and their zeta functions, and the work of M. Hall and T. Radó in the late 1940’s on
Schreier systems and their associated subgroups in free groups; cf. [13], [14], and [15].
Most of the major developments up to 1992 are described in Lubotzky’s Galway notes
[19], [20], and the literature cited therein. More recent contributions include [7], [22],
[21], [26], [27], [28], [30], [31], and [8].

Whereas for instance the growth behaviour and the asymptotics of the function sn(G)
tend to react fairly smoothly to variation of G, say, over a commensurability class,
divisibility properties of sn(G) are usually severely deformed if not completely destroyed
in this process. The latter type of arithmetic structure appears to be rather subtle
and peculiar to the particular group under investigation. This tendency (apart from
considerable technical difficulties) may account for the fact that very little is known
concerning divisibility properties of subgroup counting functions. Indeed, the only
published results of major interest in the present context seem to be Stothers’ formulae
for the modular group. Before stating his results let us introduce some general notation.
For a finitely generated group G define

Π(G) :=
{
n ∈ N : sn(G) ≡ 1 mod 2

}
.

∗Research supported by the Deutsche Forschungsgemeinschaft through a Heisenberg Fellowship.
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Moreover, for G a finitely generated virtually free group, let

Π∗(G) :=
{
λ ∈ N : bλ(G) ≡ 1 mod 2

}
.

Here, bλ(G) is the number of free subgroups in G of index λmG, and mG denotes the
least common multiple of the orders of the finite subgroups in G. We call Π(G) and
Π∗(G) the parity pattern respectively the free parity pattern of the group G. In this
notation the main result of Stothers [39] is that

Π(PSL(2,Z)) =
{
2σ+1 − 3

}
σ≥1 ∪ 2

{
2σ+1 − 3

}
σ≥1. (1)

This striking result, which had been conjectured for some time on the basis of numerical
evidence, has, for more than 20 years, stood out as an indication that a fascinating
chapter of subgroup arithmetic might still be awaiting its discovery. In the course of
his proof Stothers also shows that

Π∗(PSL(2,Z)) =
{
2σ − 1

}
σ≥1. (2)

The latter pattern has been shown to occur for a larger class of virtually free groups of
free rank 2, including free products G = G1∗SG2 of two finite groups Gi with an amalga-
mated subgroup S of odd cardinality, whose indices (Gi : S) satisfy
{(G1 : S), (G2 : S)} = {2, 3} or = {2, 4}; cf. [25, Prop. 6]. 1

For an integer q ≥ 3 let H(q) be the Hecke group corresponding to q, i.e., the group
of linear fractional transformations generated by the transformations τ ′ = −1/τ and
τ ′ = τ + 2 cos(π/q). We have H(3) = PSL(2,Z), and in general H(q) is a subgroup
of PSL(2, R), where R is the ring of integers of the cyclotomic field Q(ζq + ζ−1q ) with

ζq = eiπ/q. The precise structure of the matrices entering into this representation of
H(q) is not in general known. As an abstract group, H(q) is the free product of a cyclic
group of order 2 and a cyclic group of order q; in particular, H(q) is virtually free. The
purpose of this paper is to investigate the parity patterns Π(H(q)) and Π∗(H(q)) for
q ≥ 3.

There are several a priori reasons to suspect that Hecke groups might prove to be an
interesting and fruitful class of groups to study with regard to their parity patterns and
similar number-theoretic properties: (i) The groups H(q) form what is probably the
most natural generalization of the modular group, sharing the latter’s central position
in large parts of mathematics, in particular its close ties with number theory. (ii) In
1998, building on results obtained in [23], an analogue of Stothers’ formula (1) for q = 5
was discovered by the author, namely

Π(H(5)) =

{
22σ+1 − 5

3

}

σ≥1
∪ 2

{
22σ+1 − 5

3

}

σ≥1
; (3)

cf. [32]. (iii) According to a result of Grady and Newman a free product G of finitely
many cyclic groups of prime order containing at least four copies of the cyclic group of
order 2 in its free decompositon satisfies Π(G) = N; cf. [11, Theorem 1]. In the same
paper, Grady and Newman conjecture that two free factors C2 should already suffice to
ensure the same conclusion. This conjecture, if true, would place Hecke groups within

1The free rank µ(G) of a finitely generated virtually free group G is defined as the rank of a free
subgroup of index mG in G. See Section 2.1 below.
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a tight borderline region, which might well deserve further study. The more specific
conjecture made in [10] to the effect that a free product of two or more copies of the
cyclic group of order 2 should have all its subgroup numbers odd, follows immediately
from one of our results (see Proposition G below). (iv) So far, parity patterns have only
been studied for groups of free rank at most 3, and there are some indications that for
fixed free rank only a very small number of non-trivial patterns arise. The fact that
the free rank µ(H(q)) becomes unbounded as q → ∞, while accounting for technical
difficulties well beyond the scope of any previously known method of investigation, adds
considerably to the interest of Hecke groups as a class of “test samples” with regard to
this type of arithmetic structure.

We now turn to the main results of this paper. Somewhat surprisingly, formulae (1)
– (3) do not generalize to all Hecke groups. Instead, there exist canonical (and maxi-
mal) generalizations of Stothers’ formulae (1) and (2), each characterizing a particular
subclass of Hecke groups (see Theorems A and B below). Moreover, both these sub-
classes essentially correspond to certain “arithmetic singularities”, outside of which the
subgroup counting function under investigation displays a peculiar type of fractal be-
haviour, thus ruling out the possibility of describing the associated parity pattern by a
closed formula à la Stothers. For an integer q ≥ 3 define

Λ∗q :=

{
µσq − 1

µq − 1
: σ = 1, 2, . . .

}
,

i.e., Λ∗q is the set of partial sums of the geometric series generated by the free rank
µq := µ(H(q)) of H(q). Our first main result characterizes those Hecke groups whose
free parity pattern canonically generalizes the pattern found by Stothers for the mod-
ular group.

Theorem A. Let q ≥ 3 be an integer. Then the following assertions are equivalent:

(i) Π∗(H(q)) = Λ∗q.

(ii) bλ(H(q)) ≡ 0 (2) for 2 ≤ λ ≤ µq.

(iii) q or q − 1 is a 2-power.

As is well known, Fermat primes, i.e., prime numbers of the form 22
λ
+ 1 with λ ≥ 0,

satisfy (or can even be characterized by) a number of curious regularity conditions; for
instance, according to Gauss, 2 a regular p-gon (p > 2 a prime) can be constructed by
compass and ruler if and only if p is a Fermat prime. By specializing Theorem A to the
case when q is a prime number we obtain a new such characterization.

Corollary A′. Let q > 2 be a prime. Then q is a Fermat prime if and only if
Π∗(H(q)) = Λ∗q.

The connection with Fermat primes becomes even more striking when turning to the
patterns Π(H(q)). For q ≥ 3 define

Λq :=

{
2(q − 1)σ − q

q − 2
: σ = 1, 2, . . .

}
,

2Disquisitiones arithmeticae, § 366.
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i.e., Λq is the set of partial sums of the series 1 + 2
∑

σ≥1(q − 1)σ.

Theorem B. (a) For even q > 2 we have Π(H(q)) = N.
(b) Let q ≥ 3 be an odd integer. Then the following assertions are equivalent:

(i) Π(H(q)) = Λq ∪ 2Λq.

(ii) sn(H(q)) ≡ 0 (2) for n ∈ ([2q (q − 1)]− {1, 2q − 1}) ∩ (N− 2N).
(iii) q is a Fermat prime.

We also establish certain general properties of Π∗(H(q)) and Π(H(q)), a number of which
are summarized in the next two results.

Theorem C. (a) Let q1, q2 ≥ 3 be integers. Then we have Π∗(H(q1)) = Π∗(H(q2)) if
and only if µq1 = µq2.

(b) Every entry of Π∗(H(q)) is congruent to 1 modulo 2ν2(µq).3

(c) The first two entries of Π∗(H(q)) are 1 and 2ν2(µq)+1; in particular, given an integer
α∗ ≥ 2, the set {1, α∗} can be extended to a free parity pattern of some Hecke group if
and only if α∗ − 1 is a 2-power.

(d) The series 1+
∑

λ≥1 bλ(H(q))zλ is never rational over GF (2); in particular, the set
Π∗(H(q)) is always infinite.

Theorem D. (a) Let q1, q2 ≥ 3 be odd integers, and suppose that Π(H(q1)) = Π(H(q2)).
Then we have q1 = q2.

(b) If q ≥ 3 is odd, then

(i) Π(H(q)) ⊆ (1 + 4N0) ∪ (2 + 8N0),

(ii) the first entries of Π(H(q)) are 1, 2, and 2p(q)−1, where p(q) denotes the small-
est prime divisor of q,

(iii) the series
∑

n≥0 sn+1(H(q))zn is not rational over GF (2); in particular, the set
Π(H(q)) is infinite.

Furthermore, we obtain fairly explicit descriptions of the patterns Π∗(H(q)) and Π(H(q))
for arbitrary q.

Theorem E. For every q ≥ 3,

Π∗(H(q)) =
{
λ ∈ N : s(λ) + s((µq − 1)λ+ 1)− s(µqλ) = 1

}
.

Here s(x) denotes the sum of digits in the binary representation of x. The corresponding
result for the patterns Π(H(q)) is somewhat more involved. For an odd integer q ≥ 3
let 1 = d0 < d1 < · · · < dr = q be the set of divisors of q in increasing order, and let

dq :=
(d1 − 1

2
,
d2 − 1

2
, . . . ,

dr − 1

2

)
∈ Nr0.

As usual, define the norm of a vector v = (v1, . . . , vr) ∈ Nr0 as ||v|| = ∑r
j=1 vj, and if

u = (u1, . . . , ur) and v = (v1, . . . , vr) are two such vectors, then their scalar product is
given by u · v =

∑r
j=1 uj vj.

3For a positive integer n, ν2(n) denotes the 2-adic norm of n, i.e., the exponent of 2 in the prime
decomposition of n.
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Theorem F. Let q ≥ 3 be an odd integer. Then we have

Πq = Θq ∪ 2Θq,

where Θq consists of all positive integers n ≡ 1 (4) such that the set

{
n ∈ Nr0 : dq · n =

n− 1

4
and

r∑

j=1

s(nj) + s(
n+ 1

2
− ||n||) − s(

n− 1

2
) = 1

}

has odd cardinality.

The description of the parity pattern Πq for q odd given in the last theorem simplifies
considerably if q is a prime number.

Corollary F′. Let q > 2 be a prime. Then Πq = Θq ∪ 2Θq, where

Θq =
{
2(q − 1)n+ 1 : n ∈ N0 and s(n) + s((q − 2)n+ 1) − s((q − 1)n) = 1

}
.

Sections 2 – 4 of the present paper are concerned with the free parity patterns Π∗(H(q)).
In Section 2, building on results of [25], we derive a new recurrence relation for the
function bλ(G), which is not of Hall type, and is, at least in principle, fairly well adapted
for studying divisibility properties, but rather complicated and awkward to handle.
However, a careful analysis of this recursion, undertaken in Section 3, leads to the
much simpler identity

X∗q (z) = 1 + z
(
X∗q (z)

)µq
(4)

for the mod 2 projectionX∗q (z) ∈ GF (2)[[z]] of the generating function 1+
∑∞

λ=1 bλ(H(q))zλ,
and our results for the patterns Π∗(H(q)) follow from a thorough discussion of (4). The
analysis of the patterns Π(H(q)) is considerably more involved. Instead of working

directly with H(q) we first consider the group H̃(q) := Cq ∗Cq which embeds in the cor-
responding Hecke group as a subgroup of index 2. Indeed, if H(q) = 〈σ, τ |σ2 = τ q = 1〉,
then the subgroup generated by τ and τ σ is isomorphic to H̃(q) with transversal {1, σ},
so that H(q) is in fact a split extension of the group H̃(q) by C2. The connection between
the parity patterns of these two groups is given by the following general observation.

Proposition G. Let G be a group containing only finitely many subgroups of index n
for every positive integer n, and let H be a subgroup of index 2 in G. Then

Π
(
G
)
=
(
Π
(
H
)
∩
(
N− 2N

))
∪ 2Π

(
H
)
. (5)

This rather surprising relationship allows us in particular to translate results concerning

the parity patterns of the groups H̃(q) into results for the patterns Π(H(q)). It also bears
on the conjecture of Grady and Newman concerning groups of the form G = C2∗ . . .∗C2

mentioned earlier in this introduction. At first sight, replacing the investigation of the

parity pattern Π(H(q)) by the corresponding problem for the group H̃(q) might not
strike one as a particularly promising reduction, since for q > 5 both groups have so
far entirely resisted all attempts at such an analysis, due to the enormous complexity
of the arithmetic functions involved, which becomes uncontrollable as q → ∞. A

breakthrough for the groups H̃(q) – and hence via (5) for Hecke groups – is made
possible by (i) divising an approach concentrating the main complexity of the problem
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in the series

Rµ,ν
q (z) :=

dν

dzν

{ ∞∑

n=0

hn(q)hn+µ(q)z
n/n!

}/{ ∞∑

n=0

h2n(q)z
n/n!

}
,

where hn(q) := |Hom(Cq, Sn)|, (ii) showing that for q ≥ 3, µ ≥ 1, and ν ≥ 0 the
series Rµ,ν

q (z) are in fact integral power series, and (iii) the fact that in the critical

equation (44) governing the generating function
∑∞

n=0 sn+1(H̃(q))zn the series Rµ,ν
q (z),

apart from shift factors, always occur with even coefficient, and thus, given (ii), can

be ignored modulo 2 (this is the advantage of working with the groups H̃(q)). It is
remarkable that, while an exact computation of the remainder terms Rµ,ν

q (z) (which all
previous attempts have, at least implicitly, aimed at) appears entirely out of reach for
large q, their mere integrality can, by a fairly subtle argument occupying the whole of
Section 7, be established for arbitrary q. As a consequence of these developments we
obtain the differential equation

X̃q(z) =
∑

d|q

∑

µ≥0
z2d−3

(
X̃ ′q(z)

)µ (
X̃q(z)

)d−2(µ+1)
[(
d− 1

2µ

)
z X̃q(z) + (d− 1)

(
d− 2

2µ

)]

(6)

for the mod 2 projection X̃q(z) of the generating function
∑∞

n=0 sn+1(H̃(q))zn. A de-
tailed analysis of equation (6) then leads to a rather complete set of results for the parity

patterns Π(H̃(q)), which are translated into results concerning the patterns Π(H(q)) in
Section 8, following the proof of Proposition G.

Acknowledgement. I would like to thank Christian Krattenthaler for a number of
valuable remarks and comments concerning an earlier version of this paper.

2. Some preliminaries concerning virtually free groups

2.1. The structure theorem and some invariants. Let G be a finitely generated
virtually free group and denote by mG the least common multiple of the orders of the
finite subgroups in G. By Stallings’ structure theorem on groups with infinitely many
ends and the subsequent work of Karrass, Pietrowski, and Solitar, G can be presented
as the fundamental group of a finite graph of groups (G(−), Y ) in the sense of Bass and
Serre with finite vertex groups G(v); cf. [37] and [17], or [5, Sect. IV.1.9]. The fact that,
conversely, the fundamental group of a finite graph of finite groups is always virtually
free of finite rank is more elementary, and can be found for instance in [35, Sect. II.2.6].
It follows in particular from this characterization and the universal covering construction
in the category of graphs of groups that a torsion-free subgroup of a finitely generated
virtually free group is in fact free (which was the original contribution of Stallings’ work
to the structure theory of virtually free groups).

If F is a free subgroup of finite index in G then, following an idea of Wall, one defines
the rational Euler characteristic χ(G) of G as

χ(G) = −rk(F)− 1

(G : F)
. (7)
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This is well-defined in view of Schreier’s theorem [34], and if G ∼= π1(G(−), Y ) is a
decomposition of G in terms of a graph of groups, then we have

χ(G) =
∑

v∈V (Y )

1

|G(v)| −
∑

e∈E(Y )

1

|G(e)| , (8)

where V (Y ) and E(Y ) denote respectively the set of vertices and (geometric) edges of
Y .The latter formula reflects the fact that in our situation the Euler characteristic in
the sense of Wall coincides with the equivariant Euler characteristic χT (G) of G relative
to the tree T canonically associated with G in the sense of Bass and Serre; cf. [1, Chap.
IX, Prop. 7.3] or [36, Prop. 14]. Define the (free) rank µ(G) of G to be the rank
of a free subgroup of index mG in G. The existence of such a subgroup follows from
[35, Lemmas 8 and 10] or formulae (11) and (12) below. Observe that, in view of (7),
µ(G) is connected with the Euler characteristic of G via

µ(G) + mGχ(G) = 1, (9)

which shows in particular that µ(G) is well-defined.

The type τ(G) of a finitely generated virtually free group G ∼= π1(G(−), Y ) is defined
as the tuple

τ(G) =
(
mG; ζ1(G), . . . , ζκ(G), . . . , ζmG

(G)
)
,

where the ζκ(G) are integers indexed by the divisors of mG, given by

ζκ(G) =
∣∣∣
{
e ∈ E(Y ) : |G(e)|

∣∣∣κ
}∣∣∣ −

∣∣∣
{
v ∈ V (Y ) : |G(v)|

∣∣∣κ
}∣∣∣.

It can be shown that the type τ(G) is in fact an invariant of the group G, i.e., indepen-
dent of the particular decomposition of G in terms of a graph of groups (G(−), Y ), and
that two virtually free groups G1 and G2 contain the same number of free subgroups
of index n for each n ∈ N if and only if τ(G1) = τ(G2); cf. [25, Theorem 2]. Note that
as a consequence of (8) the Euler characteristic of G can be expressed in terms of the
type τ(G) via

χ(G) = −m−1G

∑

κ|mG

ϕ(mG/κ) ζκ(G), (10)

where ϕ is Euler’s totient function. It follows in particular that if two virtually free
groups have the same number of free index n subgroups for every n, then their Euler
characteristics must coincide.

2.2. The functions aλ(G) and bλ(G). The total information on the number of free
subgroups of given finite index in a finitely generated virtually free group G is concen-
trated in the constant mG and the function b(G) : N→ N given by

bλ(G) = number of free subgroups of index λmG in G.

Our approach to the function bλ(G) is to relate it to another arithmetic function aλ(G)
which turns out to be easier to compute. Define a torsion-free G-action on a set Ω to
be a G-action on Ω which is free when restricted to finite subgroups. For a finite set
Ω to admit a torsion-free G-action it is necessary and sufficient that |Ω| be divisible by
mG. For λ ∈ N0 define aλ(G) by the condition that

(λmG)!aλ(G) = number of torsion-free G-actions on a set with λmG elements,
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in particular, a0(G) = 1. Then the arithmetic functions aλ(G) and bλ(G) are related
via the transformation formula4

λ∑

µ=1

aλ−µ(G) bµ(G) = mGλaλ(G), λ ≥ 1. (11)

Moreover, a careful analysis of the universal mapping property associated with the
presentation G ∼= π1(G(−), Y ) of G in terms of a graph of groups (G(−), Y ) leads to
the explicit formula

aλ(G) =

∏

e∈E(Y )

[
(λmG/|G(e)|)! |G(e)|λmG/|G(e)|

]

∏

v∈V (Y )

[
(λmG/|G(v)|)! |G(v)|λmG/|G(v)|

] , λ ≥ 0 (12)

for aλ(G); compare [25, Prop. 3]. From this formula it can be deduced that the
sequence aλ(G) is of hypergeometric type and that the generating function αG(z) :=∑∞

λ=0 aλ(G)zλ satisfies a homogeneous linear differential equation

A0(G)αG(z) + (A1(G) z −mG)α
′
G(z) +

µ(G)∑

µ=2

Aµ(G) zµα
(µ)
G (z) = 0 (13)

of order µ(G) with integral coefficients

Aµ(G) =
1

µ!

µ∑

j=0

(−1)µ−j
(
µ

j

)
mG (j + 1)

∏

κ|mG

∏

1≤k≤mG

(mG,k)=κ

(jmG + k)ζκ(G), 0 ≤ µ ≤ µ(G);

(14)
cf. [25, Prop. 5].

2.3. A recurrence relation for bλ(G). Inserting formula (12) into (11) yields a re-
cursive description of the arithmetic function bλ(G) attached to a finitely generated
virtually free group G. However, formulae obtained in this way (referred to as being
of Hall type) usually turn out to be quite unsatisfactory when dealing with number-
theoretic aspects of the sequence bλ(G) such as divisibility properties. Instead, we will
derive a recurrence relation for bλ(G) which differs considerably in form from (11) and
is rather well adapted for studying divisibility properties of the function bλ(G). The
following result will be the starting point of our present investigations.

4See for instance [25, Cor. 1].
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Proposition 1. Let G be a finitely generated virtually free group. Then the function
bλ(G) satisfies the recursion

bλ+1(G) =

µ(G)∑

µ=1

∑

λ1,...,λµ>0

λ1+···+λµ=λ

(µ!mµ
G)
−1 B(G)

µ (λ1, . . . , λµ)

µ∏

j=1

bλj(G)

(λ ≥ 1, b1(G) = A0(G))

(15)

with coefficients

B(G)
µ (λ1, . . . , λµ) :=

µ(G)∑

ν=µ

Aν(G)Bµ,ν(λ1, . . . , λµ),

where

Bµ,ν(λ1, . . . , λµ) := ν!
∑

ν1,...,νµ≥0
ν1+···+νµ=ν−µ

µ∏

j=1

[(
λj − 1

νj

)/
(νj + 1)

]

and Aν(G) is as in (14).

Proof. Introduce the generating function

βG(z) :=
∞∑

λ=0

bλ+1(G)zλ.

Then, in view of equation (11), βG(z) is related to αG(z) via the identity

βG(z) = mG

d

dz

(
log αG(z)

)
. (16)

We will use Bell’s formula5

dµ

dzµ
f(g(z)) =

∑

π`µ

µ!∏∞
j=1 πj!

[ ∞∏

j=1

(
g(j)(z)

j!

)πj]
f (||π||)(g(z)) (17)

for the derivatives of a composite function to compute the higher derivatives of αG(z) =
exp(m−1G

∫
βG(z) dz). Applying (17) with f(t) = et and g(z) = m−1G

∫
βG(z) dz we find

after some routine manipulations that

α
(µ)
G (z) = µ! αG(z)

µ∑

ν=1

∑

µ1,...,µν>0
µ1+···+µν=µ

(ν!mν
G)
−1

ν∏

j=1

β
(µj−1)
G (z)

µj!
, µ ≥ 1.

5By a partition π we mean any sequence π = {πj}j≥1 of non-negative integers, such that πj = 0
for all but finitely many j. The integer |π| = ∑∞

j=1 j πj is called the weight of π, and ||π|| = ∑∞
j=1 πj

is the norm or length of the partition π. If |π| = 0, π is called the empty partition, otherwise π is
non-empty. As usual, we also write π ` µ for |π| = µ, and say that π is a partition of µ.
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Combining these identities for 1 ≤ µ ≤ µ(G) with (13) we obtain for βG(z) the differ-
ential equation

βG(z) = A0(G) +

µ(G)∑

µ=1

µ∑

ν=1

∑

µ1,...,µν>0
µ1+···+µν=µ

(
µ

µ1, . . . , µν

)
(ν!mν

G)
−1 Aµ(G) zµ

ν∏

j=1

β
(µj−1)
G (z)

(18)
with Aµ(G) as in (14). Our claim (15) follows now by comparing coefficients in (18). ¤

Remark 1. Since the numbers Aν(G) as well as the Bµ,ν(λ1, . . . , λµ) are integral, so

are the numbers B(G)
µ (λ1, . . . , λµ), and the recursion (15) comes rather close to having

all its coefficients (µ!mµ
G)
−1B(G)

µ (λ1, . . . , λµ) in Z. However, if G = Fr is the free group
of rank r, then mG = 1, and Aν(G) = S(r+1, ν +1) is a Stirling number of the second
kind; and if r ≥ 2, the coefficient for µ = r − 1 turns out to be

(
(r − 1)!

)−1 B(Fr)r−1 (λ1, . . . , λr−1) =
r(λ+ 2)

2
,

which is not in general integral. Also, for G = F4, the coefficients for µ = 2 are

B(F4)2 (λ1, λ2)

2
= 2(λ+ 1)(λ+ 2)− (λ1 + 1)(λ2 + 1) + 5,

which depends on the variables λ1 and λ2, and not only on their sum λ.

3. A recursive description of the function χ∗q(λ)

Write χ∗q(λ) for bq(λ) := bλ(H(q)) considered modulo 2, so that χ∗q is nothing but the
characteristic function of the set Π∗q := Π∗(H(q)) ⊆ N. The purpose of this section is
to establish a recursive description of the function χ∗q(λ), which in turn will be used in
the next section to prove our main results concerning the parity patterns Π∗q.

3.1. Some computations and a lemma. Concerning the invariants considered in
the last section we find for G = H(q) the following.

mq := mH(q) =

{
q, q even

2q, q odd;
(19)

in particular, mq is always even. Indeed, if G is any finitely generated virtually free
group and (G(−), Y ) is a Stallings decomposition for G, then we have

mG =
[
|G(v)| : v ∈ V (Y )

]
,

i.e., mG coincides with the least common multiple of the orders of the vertex groups in
this decomposition. This follows from the universal covering construction and the fact
that a finite group has to fix a vertex when acting on a tree.

For κ | mq,

ζ(q)κ := ζκ(H(q)) =





1, 2 - κ and κ < q

−1, κ = mq

0, otherwise.

(20)
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By (8), (9), and (19) we have

χ(H(q)) = − q − 2

2q

and

µq := µ(H(q)) =

{
q − 1, q odd

q/2, q even.

Write A
(q)
µ for Aµ(H(q)). The following result describes an important divisibility prop-

erty of the numbers A
(q)
µ .

Lemma 1. For 0 ≤ µ ≤ µq the integer A
(q)
µ is divisible by mµ

q , and

m−µq A(q)
µ ≡

(
µq
µ

)
mod 2.

Proof. Denote by Kq the set of all integers k satisfying 1 ≤ k ≤ mq and 2 - (k,mq) < q.
This set has ∑

κ|q
2-κ<q

ϕ(mq/κ) = µq

elements. Here, we have used (20) plus equations (9) and (10) to evaluate the left-hand
sum. We have

A(q)
µ =

1

µ!

µ∑

j=0

(−1)µ−j
(
µ

j

) ∏

k∈Kq

(k + j mq) (21)

and

∏

k∈Kq

(k + j mq) =
∏

k∈Kq

k +

µq∑

ν=1

(j mq)
ν

( ∏

k∈Kq

k

)( ∑

k1,...,kν∈Kq

k1<...<kν

1

k1 . . . kν

)
. (22)

Since

A
(q)
0 =

∏

k∈Kq

k ≡ 1 mod 2,

we may assume that µ > 0. Inserting (22) into (21) and using the facts that

µ∑

j=0

(−1)µ−j
(
µ

j

)
= 0 (µ > 0),

and that

1

µ!

µ∑

j=1

(−1)µ−j
(
µ

j

)
jν = S(ν, µ) (µ, ν > 0)

is a Stirling number of the second kind, we find that for µ > 0
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A(q)
µ = mµ

q

[( ∏

k∈Kq

k

)( ∑

k1,...,kµ∈Kq

k1<...<kµ

1

k1 . . . kµ

)
+

µq∑

ν=µ+1

mν−µ
q S(ν, µ)

( ∏

k∈Kq

k

)( ∑

k1,...,kν∈Kq

k1<...<kν

1

k1 . . . kν

)]
.

This shows that A
(q)
µ is divisible by mµ

q for all µ with 0 < µ ≤ µq, and that for each
such µ

m−µq A(q)
µ ≡

( ∏

k∈Kq

k

)( ∑

k1,...,kµ∈Kq

k1<...<kµ

1

k1 . . . kµ

)
mod 2.

The right-hand side of the latter congruence is a sum of
(
µq
µ

)
odd integers, whence the

lemma. ¤

3.2. The function χ∗q(λ). We shall require one further piece of preparation.

Lemma 2. Let π = {πj}j≥1 be a partition. Then we have

ν2

(∏

j≥1
jπj
)
≤ ν2

(
(2(|π| − ||π||))!

)
(23)

with equality occurring if and only if |π| ≤ ||π||+ 1.

Proof. We may assume that ||π|| > 0, i.e., that π is a non-empty partition. Write
|π| = ||π|| + m with some integer m ≥ 0. By the inequality relating arithmetic and
geometric mean, we have

2ν2(
∏

j≥1 j
πj ) ≤

∏

j≥1
jπj ≤

(
1 +

m

||π||
)||π||

.

On the other hand,

ν2
(
(2(|π| − ||π||))!

)
≥ m +

m− 1

2
+
m− 3

4
=

7m− 5

4
.

Since the sequence {(1+ m
`
)`}`≥1 is increasing for each fixed m ≥ 0 and converges to em,

validity of the inequality e4m < 27m−5 for some m implies (23) with strict inequality for
all partitions π such that |π| − ||π|| = m with this particular m. The latter inequality
holds for all

m >
5 log(2)

7 log(2)− 4
≈ 4.0676207,

and a check of the remaining cases where |π| − ||π|| ≤ 4 completes the proof. ¤
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We can now proceed with our analysis of the function χ∗q(λ). In Proposition 1 put

G = H(q), and write B(q)
µ (λ1, . . . , λµ) for B(H(q))

µ (λ1, . . . , λµ). Multiply both sides of (15)
by a sufficiently large odd number B depending only on q to obtain

B bq(λ+ 1) =

µq∑

µ=1

2−(ν2(µ!)+µν2(mq))
∑

λ1,...,λµ>0

λ1+···+λµ=λ

B̃(q)µ (λ1, . . . , λµ)

µ∏

j=1

bq(λj), λ ≥ 1, (24)

with integers B̃(q)µ (λ1, . . . , λµ) satisfying

ν2
(
B̃(q)µ (λ1, . . . , λµ)

)
= ν2

(
B(q)µ (λ1, . . . , λµ)

)
.

Decompose B(q)µ (λ1, . . . , λµ) as

B(q)µ (λ1, . . . , λµ) = µ!A(q)
µ + Θ(q)

µ (λ) + R(q)
µ (λ1, . . . , λµ),

where

Θ(q)
µ (λ) :=

{
(µ+ 1)! (λ− µ)A(q)

µ+1/2, µ < µq

0, µ = µq

and

R(q)
µ (λ1, . . . , λµ) :=

µq∑

ν=µ+2

∑

ν1,...,νµ≥0
ν1+···+νµ=ν−µ

A(q)
ν

ν!

(ν1 + 1) . . . (νµ + 1)

(
λ1 − 1

ν1

)
. . .

(
λµ − 1

νµ

)
.

By Lemmas 1 and 2 we have for ν ≥ µ ≥ 1

ν2

( ν!A
(q)
ν

(ν1 + 1) . . . (νµ + 1)

)
≥ ν2(ν!) + ν ν2(mq) − ν2((2(ν − µ))!)

with equality occurring at most in the cases when ν−µ ≤ 1. It follows that for ν ≥ µ+2

ν2

( 2−(ν2(µ!)+µν2(mq)) ν!A
(q)
ν

(ν1 + 1) . . . (νµ + 1)

)
> ν ν2(mq) + ν2(ν!)− ν2((2(ν − µ))!)− ν2(µ!)− µν2(mq)

≥ ν − µ + ν2(ν!) − ν2(µ!) − ν2((2(ν − µ))!)

= ν2

((2ν
2µ

))
≥ 0.

Hence, for each µ ∈ [µq], the term R
(q)
µ (λ1, . . . , λµ) is divisible by 2ν2(µ!)+µν2(mq), and

R(q)
µ (λ1, . . . , λµ)/2

ν2(µ!)+µν2(mq)

is even. Furthermore, we claim that Θ
(q)
µ (λ) is also divisible by 2ν2(µ!)+µν2(mq) for all

µ ∈ [µq], and that

Θ(q)
µ (λ)/2ν2(µ!)+µν2(mq) ≡

{(
q/2
µ+1

)
λ, µ ≡ 0 (2) and ν2(q) = 1

0, otherwise
mod 2. (25)

This is certainly true if µ = µq. Hence, we may suppose that µ < µq and consider

divisibility of (µ + 1)!A
(q)
µ+1 by 21+ν2(µ!)+µν2(mq). Now, if µ is odd, then ν2((µ + 1)!) >

ν2(µ!), and our claim follows from the fact that, by Lemma 1, 2(µ+1)ν2(mq) divides A
(q)
µ+1.
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If, on the other hand, µ is even, then ν2((µ+ 1)!) = ν2(µ!), and Lemma 1 tells us that

(µ+ 1)!A
(q)
µ+1 is divisible by 21+ν2(µ!)+µν2(mq), and that

(µ+ 1)!A
(q)
µ+1/2

1+ν2(µ!)+µν2(mq) ≡ 2ν2(mq)−1
(

µq
µ+ 1

)
mod 2. (26)

For ν2(q) > 1 the right-hand side of (26) vanishes modulo 2. Similarly, if q is odd, then
µq = q−1 is even, and

(
µq
µ+1

)
≡ 0 (2). However, if ν2(q) = 1, then mq = q, and µq = q/2

is odd. Thus, our claim (25) is proved. Finally, again by Lemma 1, 2ν2(µ!)+µν2(mq) divides

µ!A
(q)
µ for every µ ∈ [µq], and

µ!A(q)
µ /2ν2(µ!)+µν2(mq) ≡

(
µq
µ

)
mod 2.

We conclude that B̃(q)µ (λ1, . . . , λµ) is divisible by 2ν2(µ!)+µν2(mq) and that

B̃(q)µ (λ1, . . . , λµ)/2
ν2(µ!)+µν2(mq) ≡

{
0, ν2(q) = 1&µ ≡ 0(2)&λ ≡ 1(2)
(
µq
µ

)
, otherwise

mod 2.

(27)
Evaluating (24) modulo 2 in the light of (27) we find for the function χ∗q(λ) the GF (2)-
recurrence relation

χ∗q(λ+ 1) =

µq∑

µ=1

∑

λ1,...,λµ>0

λ1+···+λµ=λ

[
1 + (1 + µ)λδ1,ν2(q)

](µq
µ

)
χ∗q(λ1) . . . χ

∗
q(λµ)

(λ ≥ 1, χ∗q(1) = 1).

(28)

Introduce the generating series

X∗q (z) := 1 +
∞∑

λ=1

χ∗q(λ) z
λ ∈ GF (2)[[z]].

Multiplying both sides of (28) by zλ and summing over λ ≥ 1, the left-hand side
becomes

∞∑

λ=1

χ∗q(λ+ 1) zλ = z−1
[
1 + z +X∗q (z)

]
,

while the corresponding right-hand side is the sum of

Σ1 :=
∞∑

λ=1

µq∑

µ=1

∑

λ1,...,λµ>0

λ1+···+λµ=λ

(
µq
µ

)
χ∗q(λ1) . . . χ

∗
q(λµ) z

λ

and

Σ2 :=
∞∑

λ=1

µq∑

µ=1

∑

λ1,...,λµ>0

λ1+···+λµ=λ

(1 + µ)λδ1,ν2(q)

(
µq
µ

)
χ∗q(λ1) . . . χ

∗
q(λµ) z

λ.
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By the binomial law in the ring GF (2)[[z]]

Σ1 =

µq∑

µ=1

(
µq
µ

)(
1 +X∗q (z)

)µ
= 1 +

(
X∗q (z)

)µq
.

Also,

Σ2 = δ1,ν2(q) z

µq∑

µ=1

(1 + µ)

(
µq
µ

)[(
1 +X∗q (z)

)µ]′
= 0.

Summarizing the preceding discussion we have the following result.

Proposition 2. For every integer q ≥ 3 the generating function X∗q (z) satisfies the
identity

X∗q (z) = 1 + z
(
X∗q (z)

)µq
. (29)

Equivalently, for every q ≥ 3 the characteristic function χ∗q(λ) satisfies the GF (2)-
recursion

χ∗q(λ+ 1) =
∑

π`λ
||π||≤µq

(
µq
||π||

) ||π||!∏∞
j=1 πj!

∞∏

j=1

(
χ∗q(j)

)πj , λ ≥ 1 (30)

starting from χ∗q(1) = 1.

Identity (29) can be interpreted as providing a recursive reconstruction of the set Π∗q.
Define Π∗q(λ) := Π∗q ∩ [λ]. Rewriting (29) in the form

∑

λ∈Π∗q

zλ = z

[
1 +

∑

λ∈Π∗q

zλ
]µq

and comparing coefficients we find that Π∗q(1) = {1}, and, assuming Π∗q(λ) to be known
for some λ ≥ 1, we see that Π∗q(λ + 1) is determined by the condition that λ + 1 ∈ Π∗q
if and only if the number of representations of λ in the form λ = λ1 + · · · + λµq with
λj ∈ Π∗q(λ) ∪ {0} is odd.

4. The free parity pattern of a Hecke group

4.1. The results. In this section we will exploit the identity (29) to obtain results
concerning the parity patterns Π∗q. Equation (30) tells us in particular that Π∗q is
already determined by the free rank µq, and the question arises whether, conversely,
the parity pattern Π∗q also determines µq, or whether there exist Hecke groups having
different free ranks while exhibiting the same free parity pattern. Our first result shows
that the latter situation cannot arise.

Theorem 1. Let q1, q2 ≥ 3 be integers. Then we have Π∗q1 = Π∗q2 if and only if
µq1 = µq2.

Proof. We observed already that µq1 = µq2 implies Π∗q1 = Π∗q2 . Conversely, let q1, q2 ≥ 3
be integers with Π∗q1 = Π∗q2 =: Π∗. Then X∗q1(z) = X∗q2(z) =: X∗(z), and (29) implies
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that (X∗(z))µq1 = (X∗(z))µq2 . Suppose without loss of generality that µq1 ≤ µq2 , and
rewrite the last equation as

(X∗(z))µq1
[
(X∗(z))ϑ − 1

]
= 0, (31)

where ϑ := µq2 − µq1 ≥ 0. Since X∗(z) 6= 0 and GF (2)[[z]] has no zero divisors, we find
from the binomial law in GF (2)[[z]] the GF (2)-relation

1 = (X∗(z))ϑ =
ϑ∑

ν=0

(
ϑ

ν

)( ∑

λ∈Π∗
zλ
)ν
. (32)

Using the fact that χ∗q(1) = 1 for every q ≥ 3 and comparing coefficients we deduce

that
(
ϑ
ν

)
≡ 0 (2) for all ν ∈ [ϑ], which is impossible for ϑ > 0. Hence, we must have

ϑ = 0. ¤

Next, we prove that the series X∗q (z) is never rational over GF (2). This implies in
particular that the sets Π∗q are always infinite, and that certain infinite sets of positive
integers – for instance the sets Cm = 1+mN0 with m ∈ N – cannot occur as free parity
pattern of a Hecke group. Moreover, we determine the second entry α∗q := minλ∈Π∗q\{1} λ

of Π∗q, and we show that Π∗q ⊆ 1 + 2ν2(µq)N0.

Theorem 2. Let q ≥ 3 be an integer. Then we have the following.

(i) Every entry of Π∗q is congruent to 1 modulo 2ν2(µq).

(ii) The series X∗q (z) is not rational over GF (2); in particular, the set Π∗q is infinite.

(iii) We have α∗q = 2ν2(µq) + 1; in particular, given an integer α∗ ≥ 2, the set {1, α∗}
can be extended to a free parity pattern of some Hecke group if and only if α∗−1
is a 2-power.

Proof. (i) Let ` := ν2(µq). We establish the implication

χ∗q(λ+ 1) = 1⇒ λ ≡ 0 mod 2` (33)

for all λ ∈ N0 by induction on λ. The implication (33) holds trivially if λ = 0. Suppose
that (33) holds for all non-negative integers λ < L with some integer L ≥ 1, and that
χ∗q(L+ 1) = 1. By (30) and our inductive hypothesis,

χ∗q(L+ 1) =
∑

π`L
πj>0⇒ j≡1 (2`)
( µq
||π||)≡1 (2)

||π||!∏
j≥1 πj!

∏

j≥1

(
χ∗q(j)

)πj .

If the right-hand side of the latter equation is to be non-zero, then in particular there
must exist a partition π of L all of whose parts are congruent to 1 modulo 2`, and such
that

(
µq
||π||
)
is odd. The first of these conditions implies that L ≡ ||π|| mod 2`, while

the second condition, in view of Lucas’ formula,6 forces ||π|| to be divisible by 2`, hence
L ≡ 0 (2`) as claimed.

(ii) LetX∗q (z) = ϕ∗(z)/ψ∗(z) with relatively prime polynomials ϕ∗(z), ψ∗(z) ∈ GF (2)[z],
6See formula (35) below.
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and let v = deg(ϕ∗(z)) − deg(ψ∗(z)) be the (total) degree of X∗q (z). Multiplying both
sides by (ψ∗(z))µq , equation (29) takes the form

ϕ∗(z)
(
ψ∗(z)

)µq−1
=
(
ψ∗(z)

)µq
+ z

(
ϕ∗(z)

)µq
. (34)

Since µq ≥ 2, ψ∗(z) must divide the right-hand side of (34), as it divides the left-hand
side, hence ψ∗(z) | z (ϕ∗(z))µq . Thus, as (ϕ∗(z), ψ∗(z)) = 1, it follows that ψ∗(z) | z, and
hence that ψ∗(z) = 1, since ψ∗(z) must have a non-zero constant term; in particular,
v = deg(ϕ∗(z)) ≥ 0. Comparing degrees on both sides of (29) now gives

(µq − 1)v + 1 = 0,

which is impossible for v ≥ 0.

(iii) Let ν2(µq) = `, i.e., µq = 2`m with some odd integer m. Recall that if p is a prime

and a =
∑

j≥0 a
(p)
j pj and b =

∑
j≥0 b

(p)
j pj are non-negative integers written in base p,

then, by Lucas’ Theorem7

(
a

b

)
≡
∏

j≥0

(
a
(p)
j

b
(p)
j

)
mod p; (35)

in particular,
(
a
b

)
≡ 1 (2) if and only if a

(2)
j ≥ b

(2)
j for all j ≥ 0. Write m =

∑
j≥0mj 2

j

with mj ∈ {0, 1} and m0 = 1. Then

µq = 2`m = 2` +
∑

j>0

mj 2
`+j,

and Lucas’ Theorem implies that the summation in (30) can be restricted to partitions
π ` λ such that 2` ≤ ||π|| ≤ µq. This observation yields in particular that χ∗q(2) = · · · =
χ∗q(2

`) = 0. On the other hand, we see that χ∗q(2
` + 1) = χ∗q(1) = 1, hence α∗q = 2` + 1

as claimed. ¤

We shall now obtain a more explicit description of the parity patterns Π∗q. Using the
recurrence relation (30), viewed over Z, define an integral sequence χ̂∗q(λ) starting from

χ̂∗q(1) = 1, and let X̂∗q (z) := 1 +
∑

λ≥1 χ̂
∗
q(λ)z

λ ∈ Z[[z]]. Then X̂∗q (z) ≡ X∗q (z) mod 2,

and the series X̂∗q (z) satisfies the functional equation

X̂∗q (z) = 1 + z
(
X̂∗q (z)

)µq
. (36)

Let X̂∗q (z) = 1 + F̂ (z). Then equation (36) takes the form

F̂ (z) = zΦ
(
F̂ (z)

)
,

where

Φ(ζ) := (1 + ζ)µq .

7Cf. for instance [2, Theorem 3.4.1].
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By Lagrange inversion,
〈
zλ, F̂ (z)

〉
=

1

λ

〈
ζλ−1,

(
Φ(ζ)

)λ〉

=
1

µqλ+ 1

(
µqλ+ 1

λ

)
,

i.e.,

X̂∗q (z) =
∑

λ≥0

1

µqλ+ 1

(
µqλ+ 1

λ

)
zλ. (37)

By Kummer’s formula8 for the p-adic norm of binomial coefficients we have

ν2

(
a

b

)
= s(b) + s(a− b)− s(a),

where s(x) denotes the sum of digits in the binary representation of x. Hence,

ν2

( 1

µqλ+ 1

(
µqλ+ 1

λ

))
= ν2

(1
λ

(
µqλ

λ− 1

))
= s(λ) + s((µq − 1)λ+ 1)− s(µqλ)− 1,

and we obtain the following explicit description of the patterns Π∗q.

Theorem 3. For every q ≥ 3,

Π∗q =
{
λ ∈ N : s(λ) + s((µq − 1)λ+ 1)− s(µqλ) = 1

}
.

As is apparent from Theorem 3, the parity patterns Π∗q will not in general lend them-
selves to a straightforward explicit characterization as in the case of the modular group;
instead, Π∗q generically tends to inherit the well-known kind of fractal behaviour ob-
served in Pascal’s triangle when evaluated modulo 2. There is however one special case
where we can describe the patterns Π∗q in a completely explicit way, namely when µq
is a 2-power. Hence, while a canonical generalization of the free parity pattern met in
the modular group H(3) and in H(4) to all Hecke groups does not exist, this type of
pattern precisely characterizes two infinite series of Hecke groups. For an integer q ≥ 3
define

Λ∗q :=

{
µσq − 1

µq − 1
: σ = 1, 2, . . .

}
,

i.e., Λ∗q is the set of partial sums of the geometric series
∑

σ≥0 µ
σ
q generated by the free

rank µq of H(q).

Theorem 4. Let q ≥ 3 be an integer. Then the following assertions are equivalent:

(i) Π∗q = Λ∗q.

(ii) χ∗q(λ) = 0 for 2 ≤ λ ≤ µq.

(iii) q or q − 1 is a 2-power.

8Cf. [18, pp. 115 – 116].
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Proof. Since (i) clearly implies (ii), it suffices to prove the implications (ii) ⇒ (iii) and
(iii) ⇒ (i). Suppose first that neither q nor q − 1 is a 2-power. Then µq is not a
2-power, i.e., µq = 2`m with ` ≥ 0 and some odd integer m > 1, and, by the third part
of Theorem 2,

2 ≤ α∗q = 2` + 1 ≤ µq,

contradicting (ii). This proves the implication (ii) ⇒ (iii). Now suppose that q or
q − 1 is a 2-power. Then µq is a 2-power, say µq = 2` with some ` ≥ 1. But then
s(µqλ) = s(λ), and the condition on λ in Theorem 3 simplifies to

s((µq − 1)λ+ 1) = 1,

that is,

λ =
2α − 1

2` − 1
with ` | α and α ≥ 1.

Assertion (i) follows now from Theorem 3, and the proof of Theorem 4 is complete. ¤

By specializing Theorem 4 to the case when q is a prime number, we obtain a charac-
terization of Fermat primes among the set of all odd primes.

Corollary 1. Let q > 2 be a prime. Then the following assertions are equivalent:

(i) Π∗q = Λ∗q =

{
(q − 1)σ − 1

q − 2
: σ = 1, 2, . . .

}
.

(ii) χ∗q(λ) = 0 for 2 ≤ λ ≤ q − 1.

(iii) q is a Fermat prime.

4.2. An example. If q is such that µq is not a 2-power, then we are outside of the scope
of Theorem 4, and cannot hope to describe the parity pattern Π∗q by means of a closed
formula of Stothers’ type. Nevertheless, Theorem 3 still provides a useful and fairly
explicit description of Π∗q. As an example, consider the groups H(q) with q = 2(2ρ + 1)
and ρ ≥ 1. These are the Hecke groups for which µq − 1 is a 2-power. For such q,
equation (29) gives the relation

X∗q (z) =
1

1 + zX∗q (z
2ρ)
. (38)

Putting β := 2ρ and iterating (38), we find for the generating function X∗q (z) the
expansion

X∗q (z) =
1

1 + z

1 +
zβ

1 +
zβ

2

1 + . . .

(39)

as a continued fraction over GF (2), which exhibits X∗q (z) as the quotient X∗q (z) =
A(z)/B(z) of two formal power series A(z) = limν→∞Aν(z) and B(z) = limν→∞Bν(z),
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where Aν(z) and Bν(z) are the approximands of numerator and denominator in (39).
These approximands are given by the recursions

Aν+1(z) = Aν(z) + zβ
ν−1

Aν−1(z) (ν ≥ 1; A0 = 0, A1 = 1)

respectively

Bν+1(z) = Bν(z) + zβ
ν−1

Bν−1(z) (ν ≥ 1; B0 = B1 = 1),

which in turn are equivalent to the functional equations

F (x, z) + F (xβ, z) + F (xβ
2

z, z) + xβ = 0

respectively

G(x, z) +G(xβ, z) +G(xβ
2

z, z) + x = 0

for the generating functions

F (x, z) :=
∞∑

ν=0

Aν(z)x
βν and G(x, z) :=

∞∑

ν=0

Bν(z)x
βν .

The reader may find it instructive to try to use these functional equations to obtain
an explicit formula for the power series F (x, z) and G(x, z), and hence for the series
A(z) and B(z). Equation (39) is an interesting and, in a sense, explicit (though not
particularly illuminating) description of the patterns Π∗2(2ρ+1). Turning to Theorem 3,
we see that

s((µq − 1)λ+ 1) = s(2ρλ+ 1) = s(λ) + 1,

and our condition on λ becomes

2 s(λ) = s(2ρλ+ λ).

The latter condition holds if and only if the binary representations λ =
∑

j≥0 λj 2
j of λ

respectively 2ρλ =
∑

j≥0 λj 2
j+ρ of 2ρλ do not overlap, i.e., if and only if λj = 1 always

implies λj+ρ = 0. Hence, we find from Theorem 3 that

Π∗2(2ρ+1) =

{
λ =

∑

j≥0
λj 2

j ∈ N : λj = 1⇒ λj+ρ = 0 for all j ≥ 0

}
, ρ ≥ 1. (40)

This is a much more useful description of Π∗q for these q; in particular, we immediately
infer from (40) that

Π∗2(2ρ+1) ∩ [2ρ + 1] = [2ρ], ρ ≥ 1.

5. The parity patterns of the groups H̃(q)

For an integer q ≥ 3 let H̃(q) := Cq ∗ Cq, and denote by χ̃q(n) the number sn(H̃(q)) of

index n subgroups in H̃(q) evaluated modulo 2, so that χ̃q is simply the characteristic

function of the set Π̃q := Π(H̃(q)) ⊆ N. The purpose of this section is to establish a

differential equation for the generating function X̃q(z) :=
∑

n≥0 χ̃q(n + 1)zn, and to

exploit this identity to investigate the parity patterns Π̃q. The results of this section
depend upon certain properties of the infinite rectangular array(

|Hom(Cq, Sµ)| · |Hom(Cq, Sν)|
)
µ,ν≥0

,
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which will be established in Section 7.

5.1. A functional equation for X̃q(z). Put hn(q) := |Hom(Cq, Sn)| with the con-
vention that h0(q) = 1 and hn(q) = 0 for n < 0. Our starting point is the recurrence
relation9

hn(q) =
∑

d|q
(n− 1)d−1 hn−d(q), (n ≥ 1, h0(q) = 1), (41)

which follows from the identity
∞∑

n=0

hn(q)z
n/n! = exp

(∑

d|q
zd/d

)
(42)

due to Chowla, Herstein, and Scott [3] by differentiating and comparing coefficients.10

Squaring (41), multiplying both sides by zn−1/(n− 1)!, and summing over n ≥ 1 gives

∞∑

n=1

h2n(q) z
n−1/ (n− 1)! =

∞∑

n=1

∑

d|q
(n− 1)2d−1 h

2
n−d(q) z

n−1/ (n− 1)!

+ 2
∞∑

n=1

∑

d1,d2|q
d1<d2

(n− 1)d1−1 (n− 1)d2−1 hn−d1(q)hn−d2(q) z
n−1/ (n− 1)!.

Interchanging the summations over n and d, respectively n and the pairs (d1, d2), in-
troducing the series

H̃q(z) =
∞∑

n=0

h2n(q) z
n/n! =

∞∑

n=0

|Hom(H̃(q), Sn)| zn/n!,

and rewriting the individual terms occurring in the last equation, we obtain the relation

H̃ ′q(z) =
∑

d|q
zd−1

(
zd−1H̃q(z)

)(d−1)
+2

∑

d1,d2|q
d1<d2

zd1−1
(
zd2−1

∞∑

n=0

hn(q)hn+d2−d1(q)z
n/n!

)(d1−1)
.

Applying Leibniz’s formula for the higher derivatives of a product function to the latter

equation, dividing both sides of the resulting identity by H̃q(z), and using the fact that,
by Dey’s formula [4, Theorem 6.10],

S̃q(z) :=
∞∑

n=0

sn+1(H̃(q)) zn = H̃ ′q(z)/H̃q(z), (43)

9For a ring R with identity element 1, an element r ∈ R, and an integer k, we set (r)k :=
∏k−1
ν=0 (r−ν),

with the usual convention that an empty product should equal 1. This is the falling factorial r of order

k. Its analogue 〈r〉k =
∏k−1
ν=0 (r+ν), the rising factorial r of order k, is sometimes called a Pochhammer

symbol.
10More general results concerning the enumeration of permutation representations respectively

wreath product representations of (arbitrary) groups, which contain formulae (11), (42), and (43)
below as special cases, can be found in [6] and [29].
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we find that

S̃q(z) =
∑

d|q

d−1∑

ν=0

(
d− 1

ν

)
(d− 1)d−ν−1 z

d+ν−1 H̃(ν)
q (z)/H̃q(z)

+ 2
∑

d1,d2|q
d1<d2

d1−1∑

ν=0

(
d1 − 1

ν

)
(d2 − 1)d1−ν−1 z

d2+ν−1Rd2−d1,ν
q (z),

(44)

where, for q ≥ 3, µ > 0, and ν ≥ 0

Rµ,ν
q (z) :=

(∑

n≥0
hn(q)hn+µ(q) z

n/n!

)(ν)/
H̃q(z).

We now make use of the facts, to be proved among other things in Section 7, that the

series H̃
(ν)
q (z)/H̃q(z) is an integral power series for every ν ≥ 0, and that

H̃(ν)
q (z)/H̃q(z) ≡

bν/2c∑

µ=0

(
ν

2µ

)(
S̃ ′q(z)

)µ(
S̃q(z)

)ν−2µ
mod 2, ν ≥ 0. (45)

Also, at this stage the following result comes into play.

For every q ≥ 3, each 0 < µ < q, and every 0 ≤ ν ≤ q − 2, the series Rµ,ν
q (z),

viewed as a power series, has integral coefficients.
(46)

Again, this will be established in Section 7. Taking into account (44), (45), and (46),

we find for the series X̃q(z) the differential equation

X̃q(z) =
∑

d|q

∑

µ≥0
z2d−3

(
X̃ ′q(z)

)µ (
X̃q(z)

)d−2(µ+1)
[(
d− 1

2µ

)
z X̃q(z) + (d− 1)

(
d− 2

2µ

)]

(47)

overGF (2). Equation (47), which describes the dynamics of the parity pattern Π̃q, is the

counterpart, for the group H̃(q) and the arithmetic function sn(H̃(q)), of the algebraic
identity (29) governing the series X∗q (z). Comparing coefficients in (47), one obtains
a recurrence relation for the function χ̃q(n), which we do not bother to write down
explicitly, but whose existence serves to show that equation (47) uniquely determines

its solution X̃q(z). The first conclusion to be drawn from equation (47) is that for q odd

we have X̃ ′q(z) = 0, i.e., the parity pattern Π̃q consists only of odd numbers. Hence, for
such q, equation (47) degenerates to the algebraic identity

X̃q(z) =
∑

d|q
z2(d−1)

(
X̃q(z)

)d−1
, (48)
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and the corresponding recurrence relation for the characteristic function χ̃q(n) is given
by

χ̃q(n+ 1) =
∑

1<d|q

∑

π`n−2(d−1)
||π||≤d−1

(
d− 1

||π||

) ||π||!∏∞
j=1 πj!

∞∏

j=1

(
χ̃q(j + 1)

)πj

(n ≥ 1, χ̃q(1) = 1, q odd). (49)

An immediate consequence of (49) is that for q odd we have

χ̃q(2) = χ̃q(3) = · · · = χ̃q(2(p(q)− 1)) = 0 and χ̃q(2p(q)− 1) = 1,

where p(q) denotes the smallest prime divisor of q.

5.2. The parity patterns Π̃q. Here we exploit the differential equation (47) to obtain

results concerning the parity patterns of the groups H̃(q). We begin by settling the case
when q is even, after which we can dispose of (47) in favour of the simpler identity (48).

Theorem 5. If q > 2 is even, then Π̃q = N.

Proof. In (47) put X̃q(z) = (1+ z)−1. Upon multiplication with (1+ z)q−1 the resulting
equation becomes

(1 + z)q−2 =
∑

(d,µ)

z2d−3 (1 + z)q−d
[
dz + d− 1

]
, (50)

where the right-hand sum extends over all pairs of non-negative integers (d, µ) such
that d | q and

(
d−1
2µ

)
≡ 1 (2). As the terms of this sum are independent of µ, we can

simplify (50) by determining for which divisors d of q the number of integers µ with
µ ≥ 0 and

(
d−1
2µ

)
≡ 1 (2) is odd. Using (35) we find that if d is odd this happens exactly

for d = 1, whereas if d is even, we must have d = 2. Thus, since q is even, equation

(50) (and hence (47) with X̃q(z) = (1 + z)−1) is equivalent to the GF (2)-relation

(1 + z)q−2 = (1 + z)q−1 + z(1 + z)q−2,

which obviously holds. Since the differential equation (47) has a unique solution, we

conclude that for q even indeed Π̃q = N as claimed. ¤

As we have seen in Section 4, the free parity pattern Π∗q determines the free rank µq
of the associated Hecke group H(q), and hence determines the structure of H(q) up to
finitely many (in fact at most two) isomorphism types. The corresponding statement

for the parity patterns Π̃q fails to hold in the light of Theorem 5. However, if we restrict
attention to the case when q is odd, then the following analogue of Theorem 1 holds.

Theorem 6. Let q1, q2 ≥ 3 be odd integers, and suppose that Π̃q1 = Π̃q2. Then we have
q1 = q2.
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Proof. Put X̃q1(z) = X̃q2(z) =: X̃(z), and consider the equation
∑

d∈D(q1)∆D(q2)

z2(d−1)
(
X̃(z)

)d−1
= 0, (51)

which follows from (48). Here, D(q) is the set of divisors of a positive integer q, and ∆
denotes the symmetric difference of sets. For q1 6= q2 the left-hand side Σ of (51) would
be of order ord(Σ) = 2(d1 − 1), where d1 := mind∈D(q1)∆D(q2) d, in particular we would
have Σ 6= 0. Hence, we must have q1 = q2. ¤

For an integer q ≥ 3 define α̃q := minn∈Π̃q\{1} n, and as before let p(q) be the smallest

prime divisor of q. Our next result, which is an analogue of Theorem 2, summarizes

some general properties of the parity patterns Π̃q in the case where q is odd.

Theorem 7. Let q ≥ 3 be an odd integer. Then we have the following.

(i) Every member of the set Π̃q is congruent to 1 modulo 4.

(ii) The generating function X̃q(z) is not rational over GF (2); in particular, the set

Π̃q is infinite.

(iii) We have α̃q = 2p(q) − 1.

Proof. Property (iii) has already been observed (cf. the remark following equation (49)).

(i) We prove the implication

χ̃q(n+ 1) = 1⇒ n ≡ 0 mod 4 (52)

for all n ∈ N0 by induction on n. This implication holds trivially if n = 0. Suppose
that (52) holds for all non-negative integers n < N with some integer N ≥ 1, and that
χ̃q(N + 1) = 1. By (49) and our inductive hypothesis,

χ̃q(N + 1) =
∑

1<d|q

∑

π`N−2(d−1)
πj>0⇒j≡0(4)

(
d− 1

||π||

) ||π||!∏
j≥1 πj!

∏

j≥1

(
χ̃q(j + 1)

)πj ,

and if the right-hand side of the latter equation is to be non-zero, then in particular
there must exist a divisor 1 < d | q and a partition π of N − 2(d− 1) all of whose parts
are divisible by 4. Since q is odd, these conditions force N to be divisible by 4.

(ii) Suppose that X̃q(z) = ϕ̃(z)/ψ̃(z) with relatively prime polynomials ϕ̃(z), ψ̃(z) ∈
GF (2)[z], and let v = deg(ϕ̃(z))− deg(ψ̃(z)) be the total degree of X̃q(z). Multiplying

both sides by (ψ̃(z))q−1, equation (48) takes the form

ϕ̃(z)
(
ψ̃(z)

)q−2
=
∑

d|q
z2(d−1)

(
ϕ̃(z)

)d−1 (
ψ̃(z)

)q−d
. (53)

Since q > 2, ψ̃(z) must divide the right-hand side of (53), as it divides the left-hand

side , and, as in the proof of Theorem 2 (ii), we conclude that ψ̃(z) = 1. This implies in
particular, that v = deg(ϕ̃(z)) ≥ 0, and comparing degrees on both sides of (48) gives

v = (v + 2)(q − 1),

which is impossible. ¤
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The parity patterns Π̃q also admit of an analogue of Theorem 3, which we describe
next. For an odd integer q ≥ 3, let 1 = d0 < d1 < · · · < dr = q be the set of divisors of
q in increasing order, and let

dq :=
(d1 − 1

2
,
d2 − 1

2
, . . . ,

dr − 1

2

)
∈ Nr0.

As usual, we define the norm of a vector v = (v1, . . . , vr) ∈ Nr0 as ||v|| = ∑r
j=1 vj,

and if u = (u1, . . . , ur) and v = (v1, . . . , vr) are two such vectors, then their scalar
product is given by u · v =

∑r
j=1 ujvj. Using the recurrence relation (49), viewed

as a Z-relation, define an integral sequence ̂̃χq(n) starting from ̂̃χq(1) = 1, and let
̂̃
Xq(z) :=

∑
n≥0

̂̃χq(n+ 1)zn. Then

(i)
̂̃
Xq(z) ≡ X̃q(z) mod 2,

(ii) the series
̂̃
Xq(z) satisfies the functional equation

̂̃
Xq(z) =

∑

d|q
z2(d−1)

( ̂̃
Xq(z)

)d−1
,

(iii) ̂̃χq(n+ 1) = 0 for all n ≥ 0 such that 4 - n.

The first two assertions are clear, the third follows by an argument similar to the proof
of Theorem 7 (i). By assertion (iii),

z2
̂̃
Xq(z) =

∑

µ≥0

̂̃χq(4µ+ 1) z4µ+2

= F (z2),

where F (t) :=
∑

µ≥0
̂̃χq(4µ+ 1) t2µ+1. Writing

̂̃
Xq(z) as

̂̃
Xq(z) = z−2 F (z2) and substi-

tuting t = z2, the functional equation in (ii) becomes

F (t) = t Φ(F (t)),

where
Φ(ζ) :=

∑

d|q
ζd−1.

By Lagrange inversion, we have for n ≥ 1
〈
tn, F (t)

〉
=

1

n

〈
ζn−1,

(
Φ(ζ)

)n〉

=
1

n

∑

n∈Nr0
dq ·n=n−1

2

(
n

n, n− ||n||

)
,

and hence

̂̃
Xq(z) =

∑

µ≥0

[
1

2µ+ 1

∑

n∈Nr0
dq ·n=µ

(
2µ+ 1

n, 2µ+ 1− ||n||

)]
z4µ. (54)
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Taking into account the first part of Theorem 7, assertion (i), equation (54), and the
fact that the 2-adic norm of a multinomial coefficient is given by11

ν2

(
n

n1, . . . , nr

)
=

r∑

j=1

s(nj) − s(n),

we now obtain the following explicit description of the parity patterns Π̃q in the case
where q is odd.

Theorem 8. Let q ≥ 3 be an odd integer. Then

(i) Π̃q ⊆ 1 + 4N0,

(ii) given an integer µ ≥ 0 we have 1 + 4µ ∈ Π̃q if and only if the set
{
n ∈ Nr0 : dq · n = µ and

r∑

j=1

s(nj) + s(2µ+ 1− ||n||)− s(2µ) = 1

}

has odd cardinality.

The description of the parity pattern Π̃q given in Theorem 8 simplifies considerably if
q is a prime number.

Corollary 2. Let q > 2 be a prime. Then

Π̃q =
{
2(q − 1)n+ 1 : n ∈ N0 and s(n) + s((q − 2)n+ 1)− s((q − 1)n) = 1

}
.

Our next result records some consequences of Corollary 2.

Corollary 3. Let q > 2 be a prime. Then

(i) Π̃q\{1} ⊆ 1 + 2(q − 1) + 4(q − 1)N0,

(ii) we have 1 + 2(q − 1)(2α + 1) ∈ Π̃q for some α ∈ N if and only if aα = 1, where

q − 1 =
∑

j≥1 aj 2
j with aj ∈ {0, 1}.

Proof. (i) Let n =
∑

j≥0 nj 2
j with nj ∈ {0, 1}, and suppose that n0 = 0 and that(

(q−1)n+1
n

)
≡ 1 (2). Assuming inductively that nj = 0 for all j with 0 ≤ j < J and some

J ∈ N, we find that

1 + (q − 1)n = 1 +
∑

j≥J

q − 1

2
nj 2

j+1,

in particular nJ = 0 by Lucas’ Theorem. Hence, we must have n = 0, and our claim
follows from Corollary 2.

(ii) Write q − 1 =
∑

j≥1 aj 2
j with aj ∈ {0, 1}, and put n = 2α + 1 with some α ≥ 1.

Then
1 + (q − 1)n = 1 +

∑

1≤j≤α
aj 2

j +
∑

j>α

(aj + aj−α) 2
j,

11This follows immediately from Legendre’s formula for the p-adic norm of factorials.
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hence, by Lucas’ Theorem,
(
(q − 1)n+ 1

n

)
≡ 1 (2) ⇔ aα = 1.

Our claim follows now from Corollary 2. ¤

As is apparent from Theorem 8 and Corollary 2, the parity patterns Π̃q with q odd
can in general not be expected to admit of a characterization in terms of closed formu-
lae. Instead, they generically tend to exhibit the type of fractal behaviour peculiar to
parametrized binomial or multinomial coefficients when evaluated modulo 2. Indeed,
the only exception occurs when q is a Fermat prime. For an integer q ≥ 3 define

Λq :=

{
2(q − 1)σ − q

q − 2
: σ = 1, 2, . . .

}
,

i.e., Λq is the set of partial sums of the series 1 + 2
∑

σ≥1(q − 1)σ.

Theorem 9. Let q ≥ 3 be an odd integer. Then the following assertions are equivalent:

(i) Π̃q = Λq.

(ii) χ̃q(n) = 0 for n ∈ ([2q (q − 1)]− {1, 2q − 1}) ∩ (N− 2N).
(iii) q is a Fermat prime.

Proof. Since (i) clearly implies (ii), it suffices to prove the implications (ii)⇒(iii) and
(iii)⇒(i). Assume first that q is not a Fermat prime. If q is not a prime, then 2 ≤
2p(q) − 1 < 2q − 1, and, by the third part of Theorem 7, we have χ̃q(2p(q) − 1) = 1.
Suppose on the other hand that q is a prime, and let

ν0 := min

{
k ∈ [q − 1] :

(
q − 1

k

)
≡ 1 (2)

}
.

Since q is not a Fermat prime, we certainly have 1 ≤ ν0 < q − 1. Define n0 :=
2(ν0 + 1)(q − 1). Then 2q − 1 < n0 + 1 ≤ 2q(q − 1), and from (49), the fact that
χ̃q(2) = · · · = χ̃q(2(q − 1)) = 0, and the definition of ν0 we find that

χ̃q(n0 + 1) =
∑

π`2ν0(q−1)
ν0≤||π||≤q−1

πj>0⇒j≥2(q−1)

(
q − 1

||π||

) ||π||!∏∞
j=1 πj!

∞∏

j=1

(
χ̃q(j + 1)

)πj = χ̃q(2q − 1) = 1.

In both cases we obtain a contradiction to (ii), thus proving the implication (ii)⇒(iii).

Now suppose that q is a Fermat prime, say q = 22
λ
+ 1. Then s((q − 1)n) = s(n), and

the condition on n in Corollary 2 becomes

s((22
λ − 1)n + 1) = 1,

that is,

n =
2α − 1

22λ − 1
with 2λ | α and α ≥ 0.

Assertion (i) follows now from Corollary 2, and the proof of Theorem 9 is complete. ¤
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Remark 2. Let q ≥ 3 be an odd integer, but not a Fermat prime. Then, by the

previous theorem, we have Π̃q 6= Λq and, more precisely, there exists a deviation of Π̃q

from the pattern Λq within the set of integers [2q(q − 1)] − {1, 2q − 1}. In fact, our
proof of the implication (ii)⇒(iii) of Theorem 9 yields a slightly sharper result. Let

nq := minn∈Π̃q∆Λq
n, i.e., nq is the smallest integer for which Π̃q and Λq differ as to

their containing or not containing this number. Then we have

nq =

{
2(2ν2(q−1) + 1) (q − 1) + 1, q a prime

2p(q)− 1, otherwise.
(55)

Furthermore, in the first case, i.e., q a prime but not a Fermat prime, we have
2 ≤ 2ν2(q−1) ≤ q−1

3
, which when combined with (55) yields the estimate

6q − 5 ≤ nq ≤
2

3
(q − 1) (q + 2) + 1 (56)

in terms of q alone. For q = 7 both these bounds are sharp.

6. Some combinatorial interpretations of the series X̂∗q (z) and
̂̃
Xq(z)

In Section 4.1 we associated, for every integer q ≥ 3, a canonical lifting X̂∗q (z) ∈ Z[[z]]
to the GF (2)-series X∗q (z) = 1 +

∑
λ∈Π∗q z

λ. Similarly, in Section 5.2, a lifting
̂̃
Xq(z)

of the GF (2)-series X̃q(z) =
∑

n∈Π̃q
zn−1 was defined and explicitly computed for every

odd integer q > 1. Here, we shall describe a number of combinatorial interpretations

for the coefficients of these liftings X̂∗q (z) and
̂̃
Xq(z). Let S ⊆ N be a set of positive

integers. By a plane S-tree we mean a plane tree with the property that every non-
terminal vertex has (outer) degree an element of S. Given S ⊆ N and non-negative
integers m,n, we denote by TS(m,n) the number of plane S-trees having m terminal
vertices and a total of n vertices. Let

US = US(t, z) :=
∑

n≥0

∑

m≥0
TS(m,n) t

m zn.

Then US satisfies the functional equation12

US = t z + z
∑

σ∈S
Uσ
S . (57)

In order to establish a connection with the series X̂∗q (z), put S = {µq} and t = 1/z.
Then equation (57) becomes

U{µq}(1/z, z) = 1 + z
(
U{µq}(1/z, z)

)µq
,

and, in view of (36), we must have U{µq}(1/z, z) = X̂∗q (z). Consequently, for q ≥ 3 and
λ ≥ 0,

1

µqλ+ 1

(
µqλ+ 1

λ

)
=
〈
zλ, X̂∗q (z)

〉
=
〈
zλ, U{µq}(1/z, z)

〉

equals

12Cf. [38, Prop. 6.2.4].
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(a) the number of plane trees with exactly λ non-terminal vertices, each of which
having (outer) degree precisely µq.

These tree numbers in turn can be reinterpreted in terms of other combinatorial objects.

For λ ≥ 0, the coefficient
〈
zλ, X̂∗q (z)

〉
equals

(b) the number of sequences i1 i2, . . . iλµq with ij ∈ {−1, µq − 1} for all j ∈ [λµq],
such that (i) there are a total of (µq − 1)λ values of j for which ij = −1, and
(ii) we have i1 + i2 + · · ·+ ij ≥ 0 for all j,

(c) the number of bracketings of a word of length λ(µq − 1) + 1 subject to λ µq-ary
operations,

(d) the number of paths p in the (x, y)-plane starting in the origin (0, 0) and termi-
nating in the point (λµq, 0), using steps (1, σ) with σ ∈ {−1, µq − 1}, such that
p never passes below the x-axis,

(e) the number of paths p in the (x, y)-plane from (0, 0) to ((µq − 1)λ, (µq − 1)λ),
using steps (µq − 1, 0) or (0, 1), such that p never passes above the line x = y,

(f) the number of ways of dissecting a convex (λ(µq − 1) + 2)-gon into λ convex
(µq + 1)-gons, by drawing diagonals which do not intersect in their interiors;

cf. [38, Prop. 6.2.1]. If we deform the (x, y)-plane by means of the transformation

x′ = (µq − 1)λ− y, y′ = λ− x

µq − 1
,

then we find from (e) that
〈
zλ, X̂∗q (z)

〉
also equals

(g) the number of lattice paths p in the 2-dimensional integral lattice Z2 starting
in the origin (0, 0) and terminating in the lattice point ((µq − 1)λ, λ), such that
(i) p consists only of positive horizontal and vertical unit steps, and (ii) p never
passes above the line x = (µq − 1)y.13

Let q ≥ 3 be an odd integer. Putting S = {d− 1 : 1 < d | q} and t = 1, equation (57)
becomes

US(1, z) = z
∑

d|q

(
US(1, z)

)d−1
,

which is precisely the kind of equation determining the series F (z) occurring in Section
5.2. Proceeding as before, we find that for µ ≥ 0

1

2µ+ 1

∑

n∈Nr0
dq ·n=µ

(
2µ+ 1

n, 2µ+ 1− ||n||

)
=
〈
z4µ,

̂̃
Xq(z)

〉
=
〈
z2µ+1, F (z)

〉
=
〈
z2µ+1, US(1, z)

〉

equals

13Cf. [24, pp. 8 – 9]. See also [33, Chap. I] for related results concerning the enumeration of lattice
paths.
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(a) the number of plane trees on 2µ+1 vertices, such that every non-terminal vertex
has (outer) degree an element of the set S = {d− 1 : 1 < d | q},

(b) the number of sequences i1 i2 . . . i2µ, where ij ∈ {d − 2 : d | q} for all j ∈ [2µ],
such that i1 + i2 + · · ·+ ij ≥ 0 for all j, and i1 + i2 + · · ·+ i2µ = 0,

(c) the number of bracketings of a word of some length m, 1 ≤ m ≤ 2µ+1, subject
to 2µ−m+ 1 σ-ary operations, where σ ∈ {d− 1 : 1 < d | q},

(d) the number of paths p in the (x, y)-plane from (0, 0) to (2µ, 0) using steps
(1, d− 2), where d | q, such that p never passes below the x-axis,

(e) the number of paths p in the (x, y)-plane from (0, 0) to (m− 1,m− 1) for some
m, 1 ≤ m ≤ 2µ+1, using steps (d− 2, 0) or (0, 1) with 1 < d | q, having a total
of 2µ steps, such that p never passes above the line x = y,

(f) the number of dissections of a convex (m+1)-gon for some m, 1 ≤ m ≤ 2µ+1,
into 2µ −m + 1 regions, each a convex d-gon with some 1 < d | q, by drawing
diagonals which do not intersect in their interiors.

7. Square decomposition of subdiagonals and the series Rµ,ν
q (z)

The proof of formula (47) – and hence that of its consequences Theorems 5 – 9 – given
in Section 5 rests on two statements of a rather technical nature, left unproven at that
stage so as not to disrupt the discussion too much. These statements are: (i) formula

(45) computing the quotients H̃
(ν)
q (z)/H̃q(z) modulo 2 in terms of the series S̃q(z), and

(ii) assumption (46) concerning the integrality of the series Rµ,ν
q (z). The purpose of this

section is to establish these two facts, in this way completing the proofs of the results
in Section 5. We begin by showing the following.

Lemma 3. For every ν ∈ N0 the series H̃
(ν)
q (z)/H̃q(z) is an integral power series, and

satisfies the congruence (45).

Proof. Rewrite (43) in the form H̃q(z) = exp
( ∫

S̃q(z) dz
)
and apply Bell’s formula (17)

to obtain

H̃(ν)
q (z)/H̃q(z) =

∑

π`ν

ν!∏∞
j=1(j!)

πj πj!

∞∏

j=1

(
S̃(j−1)
q (z)

)πj
, ν ≥ 0. (58)

The coefficients occurring in (58) have a natural combinatorial interpretation. For a
partition π consider the setM(π) of all maps [||π||] → 2[|π|], denoted by i 7→ Ni, such
that

(i) Ni ∩Nj = ∅ for 1 ≤ i, j ≤ ||π|| and i 6= j,

(ii)
⋃||π||
i=1 Ni = [|π|],

(iii) |Nij | = j for ij ∈ [πj] +
∑j−1

k=1 πk and all j ≥ 1.

We have
|M(π)| = |π|!/∏∞j=1(j!)

πj .
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Let G(π) be the permutation group consisting of all permutations of S||π|| leaving in-
variant the decomposition

[||π||] =
∐

j≥1

(
[πj] +

∑j−1
k=1πk

)

of [||π||], and let G(π) act (from the right say) on M(π) in the natural way. Clearly,
this action of G(π) onM(π) is free, and G(π) ∼=

∏
j≥1 Sπj . Hence,

|π|!∏
j≥1 (j!)

πj πj!
= |M(π)/G(π)|;

in particular these numbers are integers. Since the series S̃q(z) is integral, our first

claim follows from (58). Moreover, using the fact that S̃
(µ)
q (z) ≡ 0 (2) for µ ≥ 2, we

have modulo 2

H̃(ν)
q (z)/H̃q(z) ≡

∑

π`ν
πj=0 (j>2)

ν!∏
j≥1 (j!)

πj πj!

∏

j≥1

(
S̃(j−1)
q (z)

)πj

≡
bν/2c∑

µ=0

(
ν

2µ

)(
S̃ ′q(z)

)µ(
S̃q(z)

)ν−2µ
,

which is (45). ¤

We now come to the main topic of this section, namely the verification of assumption
(46) concerning the integrality of the series Rµ,ν

q (z). Given any q ≥ 3, define a system

of polynomials p`,µq (t) ∈ Z[t] indexed by two extra parameters ` ∈ Z and µ ∈ N0 via the
equations

p`,0q (t) = δ`,0 (` ∈ Z), (59)

p`,µq (t) = 0 (` < 0, µ > 0), (60)

p`,µq (t) =
∑

d|q
d≤µ

(t+ µ− 1)d−1 p`,µ−dq (t) +
∑

d|q
d>µ

(t+ µ− 1)µ−1 p`+µ−d,d−µq (t+ µ− d)

(` ≥ 0, µ > 0).

(61)

An immediate induction on `, followed by induction on µ, shows that (59) – (61)
uniquely define a system

{
p`,µq (t)

}
(q,`,µ)

of integral polynomials parametrized by the

triples

(q, `, µ) ∈
(
N− {1, 2}

)
× Z× N0.

As our next result shows, these polynomials p`,µq (t), for every q ≥ 3, relate the sub-

diagonals of the array
(
hµ(q)hν(q)

)
µ,ν≥0 to the terms of its main diagonal. It is this

important observation which underlies our proof of hypothesis (46).



Parity Patterns in Hecke Groups 301

Lemma 4. For every q ≥ 3, µ ≥ 0, and n ≥ 0, and with p`,µq (t) as defined above, we
have

hn(q)hn+µ(q) =
n∑

`=0

p`,µq (n) (n)` h
2
n−`(q). (62)

Proof. We will fix q ≥ 3, and prove (62) for all µ, n ≥ 0 by induction on n, followed by
induction on µ. Suppose first that n = 0. In this case we have to show that

hµ(q) = p0,µq (0), µ ≥ 0. (63)

This holds for µ = 0 in view of (59). Fix an integer M > 0, and assume that (63) holds
for all µ such that 0 ≤ µ < M . Then, by (41), our inductive hypothesis, (60), and (61)
with µ =M and ` = t = 0,

hM(q) =
∑

d|q
d≤M

(M − 1)d−1 hM−d(q) =
∑

d|q
d≤M

(M − 1)d−1 p0,M−dq (0) = p0,Mq (0).

Hence, (62) holds for n = 0, all µ ≥ 0, and q ≥ 3 as fixed above. Now let N > 0 be an
integer, and suppose that (62) holds for all n with 0 ≤ n < N , all µ ≥ 0, and our fixed
value of q. In order to complete the induction step for our induction on n, we have to
show that

hN(q)hN+µ(q) =
N∑

`=0

p`,µq (N) (N)` h
2
N−`(q) (64)

holds for all µ ≥ 0. To see this, we proceed again by induction on µ. In view of (59),
(64) is true for µ = 0. Suppose then that (64) holds true for all µ with 0 ≤ µ < M and
some positive integer M . Then, by (41), the inductive hypotheses, (60), and (61) with
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µ =M and t = N ,

hN(q)hN+M(q) =
∑

d|q
(N +M − 1)d−1 hN(q) hN+M−d(q)

=
∑

d|q
d≤M

(N +M − 1)d−1

N∑

`=0

p`,M−dq (N) (N)` h
2
N−`(q)

+
∑

d|q
M<d≤N+M

(N +M − 1)d−1

N+M−d∑

`=0

p`,d−Mq (N +M − d) (N +M − d)` h2N+M−d−`(q)

=
N∑

`=0

[∑

d|q
d≤M

(N +M − 1)d−1 p`,M−dq (N)

+
∑

d|q
d>M

(N +M − 1)M−1 p`+M−d,d−Mq (N +M − d)
]
(N)` h

2
N−`(q)

=
N∑

`=0

p`,Mq (N) (N)` h
2
N−`(q).

This completes the proof of (64), and hence of the lemma. ¤

We now come to the main result of this section.

Proposition 3. For every (q, µ, ν) ∈ (N − {1, 2}) × N × N0, the series Rµ,ν
q (z) is an

integral power series; in particular, assumption (46) holds true.

Proof. With the convention that the zero polynomial has degree −1, decompose each
p`,µq (t) according to [25, Lemma 5] in the form

p`,µq (t) =

d`,µq∑

κ=0

a`,µq (κ) (t)κ, (q, `, µ) ∈ (N− {1, 2})× Z× N0, (65)
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where deg
(
p`,µq (t)

)
= d`,µq , and with a`,µq (κ) ∈ Z for all q, `, µ, and κ. Then, by Lemma 4

and (65), we have for q ≥ 3 and µ > 0 that

∞∑

n=0

hn(q)hn+µ(q) z
n/n! =

∞∑

n=0

n∑

`=0

d`,µq∑

κ=0

a`,µq (κ) (n)κ (n)` h
2
n−`(q) z

n/n!

=
∞∑

`=0

d`,µq∑

κ=0

a`,µq (κ)
∞∑

n=0

(n+ `)κ h
2
n(q) z

n+`/n!

=
∞∑

`=0

d`,µq∑

κ=0

a`,µq (κ) zκ
(
z` H̃q(z)

)(κ)
.

Invoking Leibniz’s formula and introducing the numbers

Aq,µ`,i :=

d`,µq∑

κ=0

(
κ

i

)
(`)κ−i a

`,µ
q (κ)

this becomes
∞∑

n=0

hn(q)hn+µ(q) z
n/n! =

∞∑

`=0

∞∑

i=0

Aq,µ`,i z
`+i H̃(i)

q (z).

Taking the ν-th derivative, applying Leibniz’s formula again, and dividing throughout

by the series H̃q(z) then gives

Rµ,ν
q (z) =

∞∑

`=0

∞∑

i=0

∞∑

j=0

(
ν

j

)
(`+ i)ν−j A

q,µ
`,i z

`+i+j−ν H̃(i+j)
q (z)/H̃q(z).

Since the coefficients Aq,µ
`,i are well-defined integers, the family of series

{(
ν

j

)
(`+ i)ν−j A

q,µ
`,i z

`+i+j−ν H̃(i+j)
q (z)/H̃q(z)

}

`,i,j

is summable (because of the factor z`+i+j−ν), and the series H̃
(i+j)
q (z)/H̃q(z) are integral

for all i, j ≥ 0 by Lemma 3, we conclude that for every q ≥ 3, µ > 0, and ν ≥ 0 the
remainder series Rµ,ν

q (z) is indeed integral, as claimed. ¤

With Lemma 3 and Proposition 3 in hand, the proof of formula (47), and hence of the
results in Section 5.2 is complete.

8. The parity pattern of a Hecke group

In this final section we establish a relationship between the parity pattern of an arbitrary
group and that of one of its index 2 subgroups. Once established, this relationship will

allow us in particular to translate the results obtained for the patterns Π̃q into results
concerning the parity patterns of Hecke groups.
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8.1. Index 2 descent. As a rule, divisibility properties of subgroup counting functions
(unlike their growth behaviour) tend to react extremely sensitively to movements within
a commensurability class; in particular, when passing from a group to one of its finite
index subgroups, arithmetic structure of this kind is usually severely deformed if not
completely destroyed. The following result is a non-trivial exception to this rule.

Proposition 4. Let G be a group containing only finitely many subgroups of index n
for every positive integer n, and let H be a subgroup of index 2 in G. Then

Π
(
G
)
=
(
Π
(
H
)
∩
(
N− 2N

))
∪ 2Π

(
H
)
. (66)

Proof. Every subgroup G′ of index n in G, which is not contained in H, intersects H

in a subgroup H′ with (H : H′) = n. Hence, each such G′ is contained in the set⋃
(H:H′)=n S(H′), where

S(H′) :=
{

G′ ≤ G : G′ ∩ H = H′ and G′H = G
}
,

and, conversely, each G′ ∈ ⋃(H:H′)=n S(H′) is of index n in G and not contained in H.
It follows that

sn(G) =
∑

(H:H′)=n

|S(H′)| +
{
sn/2(H), 2 | n
0, 2 - n.

(67)

Fix an element ζ with G = 〈H, ζ〉. Given a subgroup H′ of index n in H and a right
transversal 1 = h1, h2, . . . , hn for H′ in H, then the elements gµ,ν := hµζ

ν with (µ, ν) ∈
[n]× {0, 1} form a right transversal for H′ in G. A subgroup G′ ∈ S(H′) must contain
H′ as a subgroup of index 2, and an element gµ,1 for some µ. Hence, the sets

G′µ := H′ ∪ H′gµ,1, µ ∈ [n]

exhaust all possibilities for a subgroup G′ ∈ S(H′). Clearly, such a set G′µ is contained
in S(H′) if and only if G′µ is a subgroup of G. The necessary and sufficient condition
for the latter to hold is that gµ,1H

′gµ,1 = H′, i.e., gµ,1 has to represent an involution
in the group NG(H

′)/H′. By a well-known theorem of Frobenius [9],14 if d divides the
order of a finite group G, then the number of solutions in G of the equation xd = 1
is divisible by d. Applying this result with d = 2 to the group NG(H

′)/H′ we see that
|NG(H

′)/H′| is congruent modulo 2 to the number of solutions in NG(H
′)/H′ of the

equation x2 = 1. Those among these solutions which are represented by elements gµ,0
constitute the totality of solutions of this equation in the subgroup NH(H

′)/H′; hence,
applying Frobenius’ result again, their number is congruent modulo 2 to |NH(H

′)/H′|.
Thus,

|NG(H
′)/H′| ≡ |NH(H

′)/H′| + |S(H′)| mod 2. (68)

It follows from (68) that |S(H′)| is odd if and only if (NG(H
′) : H′) ≡ 0 (2) and

(NH(H
′) : H′) ≡ 1 (2). Consequently, in view of this and equation (67),

sn(G) ≡ |Ωn| +
{
sn/2(H), 2 | n
0, 2 - n

mod 2, (69)

14See also [16].
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where

Ωn :=
{

H′ ≤ H : (H : H′) = n, (NH(H
′) : H′) ≡ 1 (2), and (NG(H

′) : H′) ≡ 0 (2)
}
.

Denote by Un(H) the set of all index n subgroups in H. Since H is normal in G, G acts
on Un(H) by conjugation, and this action restricts to an action of G (and hence of H)
on the set Ωn. Therefore, if n is even and H′ ∈ Ωn, then (H : NH(H

′)) ≡ 0 (2), and Ωn

decomposes into classes of even length under H. Hence, in this case |Ωn| ≡ 0 (2), and,
by (69),

sn(G) ≡ sn/2(H) mod 2, 2 | n. (70)

Suppose on the other hand that n is odd, and consider the action of G on the set

Un(H)− Ωn =
{

H′ ≤ H : (H : H′) = n and (NG(H
′) : H′) ≡ 1 (2)

}
.

Then, if H′ ∈ Un(H)− Ωn, we have (G : NG(H
′)) ≡ 0 (2), i.e., Un(H)− Ωn decomposes

into classes of even length under the action of G. Hence in this case

sn(H) = |Un(H)| ≡ |Ωn| mod 2,

and by (69)

sn(G) ≡ sn(H) mod 2, 2 - n. (71)

Statements (70) and (71) can be rephrased as

Π(G) ∩ 2N = 2Π(H) (72)

respectively

Π(G) ∩ (N− 2N) = Π(H) ∩ (N− 2N). (73)

Taking the union of (72) and (73) yields (66). ¤

As an illustration, let G = C∗r2 be the free product of r ≥ 2 copies of the cyclic group
of order 2. Then we have mG = 2 and µ(G) = r − 1, hence G contains an index 2
subgroup which is free of rank r − 1. Since a finitely generated infinite free group has
all its subgroup numbers odd,15 we find from Proposition 4 that Π(G) = N, i.e., sn(G)
is odd for all n ≥ 1. This had been conjectured in [10], and proved for the case when
r ≥ 4 in a subsequent paper; cf. [11, Theorem 1].

8.2. The parity patterns Πq. Denote by χq(n) the number sn(H(q)) of index n sub-
groups in the Hecke group H(q) evaluated modulo 2, so that χq is nothing but the char-
acteristic function of the set Πq := Π(H(q)) ⊆ N, and let Xq(z) :=

∑∞
n=0 χq(n+1)zn be

the associated generating function. Note that for every q ≥ 3 the group H(q) is a split

extension of H̃(q) by C2; indeed, if H(q) = 〈σ, τ |σ2 = τ q = 1〉, then the subgroup gen-

erated by τ and τσ is isomorphic to H̃(q) with transversal {1, σ}. Hence, Proposition 4
applies to the effect that (i) for q even, Πq = N (by Theorem 5), and (ii) for q odd,

Πq = Π̃q ∪ 2Π̃q (making use of Theorem 7 (i)). Given the latter equation our results

concerning the groups H̃(q) for q odd translate into results for Hecke groups, and we
find the following.

15This follows immediately from M. Hall’s recursion formula [14, Theorem 5.2].
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Theorem 10. Let q ≥ 3 be an integer.

(a) If q is even, then Πq = N.
(b) If q is odd, then

(i) Πq ⊆ (1 + 4N0) ∪ (2 + 8N0),

(ii) the series Xq(z) is not rational over GF (2); in particular, the set Πq is
infinite,

(iii) the first entries of Πq are 1, 2, and 2p(q)− 1,

(iv) we have Xq(z) = X̃q(z) + z X̃q(z
2).

Proof. Assertion (a) has already been observed, parts (i), (iii), and (iv) of (b) are
immediate from parts (i) and (iii) of Theorem 7 and the relationship between the

patterns Πq and Π̃q. To prove the second part of (b), note that

zX ′q(z) =
∑

n∈Πq∩2N
zn−1,

and hence that
Xq(z) + zX ′q(z) =

∑

n∈Πq∩(N−2N)
zn−1 = X̃q(z).

Consequently, if Xq(z) were rational over GF (2), so would be X̃q(z), contradicting
Theorem 7 (ii). ¤

Theorem 11. Let q1, q2 ≥ 3 be odd integers, and suppose that Πq1 = Πq2. Then we
have q1 = q2.

This is an immediate consequence of Theorem 6. Furthermore, the explicit characteri-

zation of the patterns Π̃q given in Theorem 8 translates into the following description
of the parity patterns Πq.

Theorem 12. Let q ≥ 3 be odd, let r + 1 = σ0(q) be the number of divisors of q, and
let dq be as in Theorem 8. Then we have16

Πq = Θq ∪ 2Θq,

where Θq consists of all positive integers n ≡ 1 (4) such that the set
{
n ∈ Nr0 : dq · n =

n− 1

4
and

r∑

j=1

s(nj) + s(
n+ 1

2
− ||n||) − s(

n− 1

2
) = 1

}

has odd cardinality.

The description of the parity pattern Πq given in Theorem 12 simplifies considerably if
q is a prime number.

Corollary 4. Let q > 2 be a prime. Then Πq = Θq ∪ 2Θq, where

Θq =
{
2(q − 1)n+ 1 : n ∈ N0 and s(n) + s((q − 2)n+ 1) − s((q − 1)n) = 1

}
.

16We use the notation of Theorem 8.
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Our next result is the analogue of Corollary 3 for the patterns Πq.

Corollary 5. Let q > 2 be a prime. Then

(a) Πq\{1, 2} ⊆ 1 + 2(q − 1) + 4(q − 1)N0 ∪ 2 + 4(q − 1) + 8(q − 1)N0,

(b) for every α ∈ N the following assertions are equivalent:

(i) 1 + 2(q − 1)(2α + 1) ∈ Πq,

(ii) 2 + 4(q − 1)(2α + 1) ∈ Πq,

(iii) aα = 1,

where q − 1 =
∑

j≥1 aj 2
j with aj ∈ {0, 1}.

Just as in the case of the patterns Π̃q we can, in general, not expect the parity patterns
Πq to admit of a characterization in terms of closed formulae. Again, the only exception
occurs when q is a Fermat prime.

Theorem 13. Let q ≥ 3 be an odd integer. Then the following assertions are equivalent:

(i) Πq = Λq ∪ 2Λq.

(ii) χq(n) = 0 for n ∈ ([2q (q − 1)]− {1, 2q − 1}) ∩ (N− 2N).
(iii) q is a Fermat prime.

If we restrict Theorem 13 to the case when q is a prime, then, in view of Remark 2, we
can be slightly more precise.

Corollary 6. Let q > 2 be a prime. Then the following assertions are equivalent:

(i) Πq = Λq ∪ 2Λq.

(ii) χq(n) = 0 for n = 2(2ν + 1)(q − 1) + 1 and 1 ≤ ν ≤ log2(
q−1
3
).

(iii) q is a Fermat prime.
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Automorphisms of the Binary Tree: State-Closed Subgroups
and Dynamics of 1/2-Endomorphisms

by

V. Nekrashevych and S. Sidki∗

1. Introduction

Automorphisms of regular 1-rooted trees of finite valency have been the subject of
vigorous investigations in recent years as a source of remarkable groups which reflect
the recursiveness of these trees (see [S1], [G2]). It is not surprising that the recur-
siveness could be interpreted in terms of automata. Indeed, the automorphisms of the
tree have a natural interpretation as input-output automata where the states, finite
or infinite in number, are themselves automorphisms of the tree. On the other hand
input-output automata having the same input and output alphabets can be seen as
endomorphisms of a 1-rooted tree indexed by finite sequences from this alphabet. It
is to be noted that the set of automorphisms having a finite number of states and
thus corresponding to finite automata, form an enumerable group called the group of
finite-state automorphisms. The calculation of the product of two automorphisms of
the tree involve calculating products between their states which are not necessarily el-
ements of the group generated by the two automorphisms. In order to remain within
the same domain of calculation we have defined a group G as state-closed provided the
states of its elements are also elements of G [S2]. Among the outstanding examples of
state-closed groups are the classes of self-reproducing (fractal-like) groups constructed
in [G1, GS, BSV] which are actually generated by automorphisms with finite number
of states, or equivalently, generated by finite automata. The state-closed condition has
allowed the use of induction on the length function to prove detailed properties of these
groups. Of course, if the group is not state-closed one may take its state-closure. In
doing so, properties such as finite generation, may not be conserved. At any rate, state-
closed groups which are finitely generated yet not necessarily finite-state are subgroups
of another enumerable group called the group of functionally recursive automorphisms
[BS1].

An important set of examples of state-closed groups of classical nature are the m-
dimensional affine groups Zm · GL(m,Z). It was shown in [BS2] that for every m the
corresponding affine group is faithfully represented as a state-closed group of automor-
phisms of the 2m-ary tree. The purpose of the present paper is to investigate state-closed
groups of automorphisms of the 2-tree with emphasis on subgroups of m-dimensional
affine groups.

Given an abstract group G with a subgroup H of index 2, we call a homomorphism
ρ : H → G a 1/2-endomorphism of G. The ρ−core(H) is the maximal subgroup K of H
which is normal in G and is ρ-invariant (that is, ρ(K) ≤ K), and ρ is called simple pro-
vided ρ−core(H) is trivial. The concept of 1/2-endomorphism is intimately related to
that state-closed group. For if G is a non-trivial state-closed group, then the stabilizer

∗The second author acknowledges support from FAPDF of Brazil.
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subgroup G1 of the first level vertices of the tree is of index 2 in G and the restriction
of the action of elements of G1 to one of the two maximal subtrees provides us with
such a map. On the other hand, as we will show, a group G with a 1/2-endomorphism
ρ : H → G admits representations into the automorphism group of the binary tree as a
state-closed group. These representations are faithful if and only if ρ is simple. Certain
classes of groups which have faithful representations as groups of automorphisms of the
binary tree fail to have a faithful representation as a state-closed groups. One instance
of this breakdown occurs in finitely generated torsion-free non-abelian nilpotent groups.
We show that these groups cannot admit a faithful state-closed representation on the
binary tree. The situation for torsion-free non-abelian polycyclic groups is mixed and
the problem of describing the polycyclic state-closed groups is open. Another open
problem in this context concerns the existence of non-cyclic state-closed free groups. It
is to be noted that homomorphisms ρ : H → G where H is a subgroup of finite index
in G (so called virtual endomorphisms of G) have been the subject of recent studies
(see [GM] and [Nek]). These works as well as ours represent first explorations of a new
topic in combinatorial group theory.

We call torsion-free abelian groups of finite rank m which are state-closed subgroups
of the automorphism group of the binary tree m-dimensional (binary) lattices. A large
part of our work is devoted to the classification of these lattices. We prove that the
1/2-endomorphism associated to each such group is the restriction of an irreducible
linear transformation defined on a rational vector space of dimension m. When the
lattice is generated by finite-state automorphisms of the tree, we prove that its corre-
sponding linear transformation is necessarily a contracting map, in the sense that the
roots of the characteristic polynomial has absolute value less than 1. A classification
of these polynomials having degree less than 6 reveal the surprising fact that the class
number corresponding to each is 1. The connection between the finite-state condition
for the lattice with the dynamical behavior of the associated linear transformation and
the number theoretic observations about the characteristic polynomials of these trans-
formations confirms the wide scope of interaction between these notions about tree
automorphisms and other topics in mathematics. In particular, the relationship with
dynamical systems as expounded in [B] is strongly enhanced.

A state-closed group G whose associated 1/2-endomorphism is onto is called recurrent.
We describe the topological closure of a recurrent lattice G in terms of a ring of certain
infinite series which generalize the ring of dyadic integers. Here, the group of automor-
phisms of the tree is considered as a profinite topological group with respect to the pro-2
topology; in this setting, the topological closure of an abelian subgroup is again abelian.
We also prove that the elements of the group G act on such series as generalized adding
machines. This action may be viewed as numeration systems for abelian groups. In
the case of rank 1 we get usual dyadic numeration system (or “nega-dyadic”). For rank
2 we get numeration systems similar to the numeration systems for complex numbers.
Fore more on numeration systems one can read in [K] and [Sa].

One of the nice properties of recurrent lattices is that they are topologically determined
by their 1/2-endomorphisms. Indeed, we prove that any two recurrent lattices with the
same associated 1/2-endomorphism have equal topological closures.
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One special class of m-dimensional recurrent lattices admits for every m a “large” lin-
ear group normalizer within the finite-state group of automorphisms of the binary tree.
More precisely, let Zm denote them-dimensional lattice, ς : GL(m,Z)→ GL(m,Z2) the
natural “modulo 2” epimorphism and B(m,Z) the pre-image of the Borel subgroup of
GL(m,Z2). We prove that the affine group Zm ·B(m,Z) admits a faithful representation
as a state-closed, finite-state group of automorphisms of the binary tree. This result is
optimal in the sense that [GL(m,Z) : B(m,Z)] = (2m − 1)(2m−1 − 1) · · · (22 − 1) is the
maximal odd factor of |GL(m,Z2)| and B(m,Z) is a maximal subgroup of GL(m,Z)
with respect to avoiding having elements of odd order. It also puts in perspective the
main result in [BS2] that the affine group Zm · GL(m,Z) has a faithful, finite-state,
state-closed representation on a 2m-ary tree. One needs exponentially high valency for
the tree since the minimum degree of a transitive representation of GL(m,Z2) is 2

m−1
for m > 4 [KL].

The paper was developed during a visit of the first author to Universidade de Brasilia
in February of 1999. He is very grateful for the hospitality and fruitful collaboration.

2. Tree automorphisms, automata

We present below definitions and preliminary notions about the binary tree, its auto-
morphisms and their interpretation as automata. The one-rooted regular binary tree T2
may be identified with the monoidM freely generated by a set Y = {0, 1} and ordered
by the relation

v ≤ u if and only if u is a prefix of v;

the identity element ofM is the empty sequence ∅ (the root of the tree).

Figure 1. Binary tree

Let A = Aut(T2) be the automorphism group of the tree. The group of permutations
P (Y ) is the cyclic group of order 2 generated by the transposition σ = (0, 1). This
permutation is extended “rigidly” to an automorphism of A by

(y · u)σ = yσ · u,∀y ∈ Y,∀u ∈M.
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An automorphism α ∈ A induces σi∅ where i∅ = 0, 1, on the set Y ⊂ M. Therefore
the automorphism affords the representation α = α′σi∅ , where α′ fixes Y point-wise.
Furthermore, α′ induces for each y ∈ Y an automorphism α′y of the subtree whose
vertices form the set y · M. On using the canonical isomorphism yu 7→ u between this
subtree and the tree T , we may consider (or, renormalize) α′ as a function from Y into
A; in notational form, α′ ∈ F(Y,A). Thus, α = (α0, α1)σ

i∅ and the group A is an
infinitely iterated wreath product

A = A o 〈σ〉.
It is convenient to denote α by α∅ and α′y by αy. In order to describe αy we use the
same procedure as in the case of α. Successive applications produce the set

Σ(α) = {σiu | u ∈M}
of permutations of Y which describes faithfully the automorphism α. Another by-
product of the procedure is the set states of α,

Q(α) = {αu | u ∈M}.
The definition of the product of automorphisms implies the following important prop-
erties of the function Q

Q(α−1) = Q(α)−1,

Q(αβ) ⊆ Q(α)Q(β),∀α, β ∈ A.
If Q(α) is finite then α is said to be a finite-state automorphism. The set of finite-state
automorphisms form the enumerable subgroup F of A. The notion of finite-state au-
tomorphism is a special case of the more general functionally recursive automorphism.
A finite set of automorphisms S is functionally recursive provided for each γ ∈ S, its
states γ0, γ1 are group words in the elements of S. An automorphism α is functionally
recursive provided α is an element of some functionally recursive set. The set of func-
tionally recursive automorphisms form an enumerable group R.
The interpretation of α as an automaton proceeds as follows: the input and output al-
phabets are the same set Y = {0, 1}; the set of states is Q(α); the initial state is α; let
y ∈ Y, αu ∈ Q(α) and z the image of y under σiu , then the state-transition function is
y : αu 7→ αuy and the output function is αu : y 7→ z. Thus, a finite-state automorphism
corresponds to a finite automaton. A finite automaton is usually depicted by a directed
graph called the Moore diagram. The vertices of the diagram correspond to the states
of the automaton; and the arrows correspond to the transitions. For every y ∈ Y and
every state αu we draw an arrows from αu to αuy and label it by (y|z), where z = yσ

iu
as

above. Then the arrows correspond to the transitions while the labels show the output.
The set of infinite sequences c = (c0, c1, c2, . . .) with ci ∈ {0, 1} correspond to ends or
boundary points of the tree. The action of an automorphism extends naturally to the
boundary. Let c = (c0, c1, c2, . . .). For α = (α0, α1)σ, we have

cα =

{
(1, (c1, c2, . . .)

α0), if c0 = 0,
(0, (c1, c2, . . .)

α1), if c0 = 1

and for α = (α0, α1),

cα =

{
(0, (c1, c2, . . .)

α0), if c0 = 0,
(1, (c1, c2, . . .)

α1), if c0 = 1.
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The boundary points c = (c0, c1, c2, . . .) also correspond to a dyadic integer ξ = c0+c12+
c22

2+ · · ·+ ci2i+ · · · and the action of the tree automorphism α can thus be translated
to an action on the ring of dyadic integers. For example, consider the automorphism
τ = (e, τ)σ. Then

cτ =

{
(1, c1, c2, . . .), if c0 = 0,
(0, (c1, c2, . . .)

τ ), if c0 = 1,

which translates to the binary addition

ξτ = 1 + ξ,

and this fact justifies referring to τ as the binary adding machine. The diagram of the
automaton corresponding to the binary adding machine is shown in Figure 2.

Figure 2. Adding machine

We have developed sufficient language to give the definition of three examples of self
reproducing groups.

(i) Let α = (e, α1) where α1 = (σ, α11) and α11 = (σ, α). The group 〈α, α1, α11, σ〉 is a
state-closed infinite 2-group of intermediate growth [G1].

(ii) Let α = (α0, α), α0 = (α00, e), α00 = (σ, σ). Then the group 〈α, α0, α00, σ〉 is a
state-closed infinite 2-group [S2].

(iii) Let τ = (e, τ)σ, µ = (e, µ−1)σ. Then 〈τ, µ〉 is state-closed, torsion-free, and is
just-nonsolvable [BSV].

3. State-closed groups

Let G be a non-trivial state-closed group. Since G is non-trivial, some of states of
its elements are active, and so the state-closed condition implies that there exists an
element of G that is active; that is, G is transitive on the first level of the binary tree.
The first level stabilizer G1 is a subgroup of index 2 in the group G and G = G1 ∪G1a
for some choice a ∈ G \ G1. Then in the action of G on the tree, a = (a0, a1)σ and
h = (h0, h1) for all h ∈ G1. Since G is state-closed, a0, a1 ∈ G, and likewise, h0, h1 ∈ G
for all h ∈ G1. Therefore the projections π0, π1 of G1 on its first and second coordinates
are 1/2-endomorphisms from the subgroup G1 into the group G. We note that in case
G is recurrent, π0(G1) = G and therefore G is transitive on all levels of the binary tree.
Now, since a2 = (a0a1, a1a0) ∈ G1 we have a1 = a−10 π0(a

2). Also, we have for every
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h ∈ G1, h
a = σ(a−10 , a−11 )(h0, h1)(a0, a1)σ = (ha11 , h

a0
0 ); thus π1(h

a) = ha00 = π0(h)
a0 .

Hence, the projections π0, π1 satisfy the following conditions

a1 = a−10 π0(a
2), π1(h) = π0(h

a−1)a0 .

In case G is abelian, the second condition simplifies to π1(h) = π0(h) for all h ∈ G1.

Examples. (1) Define the following sequence of elements of Aut(T2), σ0 = σ, σ1 =
(e, σ0) and for i ≥ 1, σi = (e, σi−1). Define also for 0 ≤ n ≤ ∞ the subgroups Pn = 〈σi |
0 ≤ i ≤ n〉. Then Pn is isomorphic to the wreath product, iterated n times, of cyclic
groups of order 2. It is easy to see from the definition of the generators σi that Pn is
state-closed and moreover, P∞ is recurrent.

(2) Let τ = (e, τ)σ be the binary adding machine. Define τ0 = τ and τi = (e, τi−1) for
i ≥ 1. Define also the subgroups Υn = 〈τi | 0 ≤ i ≤ n〉. Then Υn is state-closed. When
n is finite this group factors as Υn = N · Pn−1, where N is the normal closure of 〈τn〉
in Υn and is free abelian group of rank n + 1. We note that Υ0, . . . ,Υ∞ are recurrent
groups.

Proposition 3.1. Let G be a group of automorphisms of the binary tree, generated by
a finite set S. Then, G is state-closed if and only if S is functionally recursive.

Proof. Let S = {α, β, . . . , γ}. Suppose G is state-closed. Then as α0 ∈ G, it is a word
α0 = α0(α, β, . . . , γ) in the elements of S, and so every state of every element in S is
also a word in the elements of S. Thus, S is functionally recursive. On the other hand,
if S is functionally recursive, then by definition, every state δ of every element of S is
some word δ = δ(α, β, . . . , γ) in the elements of S; therefore, δ ∈ G. ¤

Lemma 3.1. Let G be a state-closed group and Ĝ its topological closure. Then Ĝ is
also state-closed.

Proof. An automorphism ω ∈ A belongs to Ĝ if and only if for every n ∈ N, the action
of ω on the first n levels of the tree coincides with an action of some g ∈ G on these
levels (g depends on n). If ω = (ω0, ω1)σ

i, i ∈ {0, 1} then g = (g0, g1)σ
i for some

g0, g1 ∈ G and then the action of ω0 on first n− 1 levels of the tree coincides with the
action of g0; the same is true for ω1 and g1 respectively. Thus the action of ω0 and ω1

on any finite number of levels coincides with actions of some elements of G, thus they

belong to Ĝ. ¤

Definition 1. Let qNA(G) = {α ∈ A | Gα ≤ G} denote the semi-normalizer of G in
the group A of automorphisms of the tree and let CA(G) denote the centralizer of G
in A. For any element α ∈ A we denote (α, α) by α(1) and inductively, for any n ≥ 0,
(α(n), α(n)) by α(n+1).

We are able to produce information about the form of elements of the semi-normalizer
and centralizer of a recurrent group.

Proposition 3.2. Let G be a recurrent group, Ĝ its topological closure and a an active
element of G.
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(i) Given α ∈ qNA(G), there exist i ∈ {0, 1}, β ∈ qNA(G), u ∈ G such that

α = β(1)(e, u)ai and (aβ0ua
−1
0 , u−1aβ1a

−1
1 ) ∈ G.

(ii) Suppose G is also abelian. Then u in the above formula satisfies

u2 =
(
a−10 a1

)−1 (
a−10 a1

)β
.

In addition, CA(G) coincides with Ĝ.

Proof. (i) Let a = (a0, a1)σ ∈ G, h = (h0, h1) ∈ G1, α ∈ qNA(G). There exists a unique
i ∈ {0, 1} such that α′ = αa−i is inactive; clearly, α′ ∈ qNA(G). Thus we may assume
α = (α0, α1). Now, aα = (α−10 a0α1, α

−1
1 a1α0)σ ∈ G, hα = (hα00 , h

α1
1 ) ∈ G1. Since G

is state-closed, α−10 a0α1 = k, α−11 a1α0 = k′ ∈ G and also hα00 , h
α1
1 ∈ G. Since G is

recurrent, h0 can be equal to any element of G, thus α0 ∈ qNA(G). We find that
α1 = a−10 α0k. Thus, α = β(1)(e, u) for u =

(
a−10

)α0 k ∈ G and β = α0 ∈ qNA(G). The

second part follows from computing the commutator [β(1)(e, u), a−1].

(ii) As G is abelian, then for all h ∈ G1, h = (h0, h0) and so, aβ0ua
−1
0 = u−1aβ1a

−1
1 ;

thus, u2 =
(
a−10 a1

)−1 (
a−10 a1

)β
follows. Again, as G is abelian then so is Ĝ; thus,

Ĝ ≤ CA(G). Now let α ∈ CA(G). Then from part (i), α = β(1)(e, u)ai and clearly,
α′ = β(1)(e, u) ∈ CA(G). On applying α′ to G1, we conclude that β ∈ CA(G), since
π0(G1) = G. Now aα

′
= (β−1a0βu, u−1β−1a1β)σ = (a0u, u

−1a1)σ = a implies u = e.

Hence, α = β(1)ai, β ∈ CA(G). Successive developments of α yield α ∈ Ĝ. ¤

3.1. State-closed representations. Given a group G, we describe below all the state-
closed representations of G on the binary tree. Consider a subgroup H of G among the
subgroups of index 2 in G. This subgroup contains the subgroup G2 generated by the
squares of the elements of G and G2 itself contains the commutator subgroup G′ of G.
Given such a subgroup H, we choose a 1/2-endomorphism ρ : H → G, a ∈ G \H and
a0 ∈ G. We will prove that the quadruple (H, ρ, a, a0) defines uniquely a state-closed
representation of G on the binary tree.

Theorem 3.1. Let G be a group, (H, ρ, a, a0) a quadruple as defined above and a1 =
a−10 ρ(a2). Also, let σ be the rigid extension of the transposition (0, 1) to an automor-
phism of the binary tree T2. Then the map ϕ : G→ Aut(T2) defined recursively by the
rules:

(ha)ϕ = (ρ(h)ϕaϕ0 , ρ
(
ha
−1
)a0ϕ

aϕ1 )σ

hϕ = (ρ(h)ϕ, ρ
(
ha
−1
)a0ϕ

)

is a homomorphism such that the first level stabilizer of Gϕ coincides with Hϕ. The
kernel of ϕ is equal to ρ−core(H).

Proof. It follows from the definition of the map ϕ that (ha)ϕ = hϕaϕ for every h ∈ H.
Thus, in order to prove that ϕ is a homomorphism it is sufficient to check the following
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equalities:
(
a2
)ϕ

= (aϕ)2 ,

(h1h2)
ϕ = hϕ1h

ϕ
2 ,

(ha)ϕ = (hϕ)a
ϕ

.

We prove them by induction on the tree level.

1)
(
a2
)ϕ

(aϕ)−2 =
(
ρ
(
a2
)ϕ
, ρ
((
a2
)a−1)a0ϕ)

((aϕ0 , a
ϕ
1 )σ)

−2 =

((a0a1)
ϕ , (a1a0)

ϕ) (aϕ0a
ϕ
1 , a

ϕ
1a

ϕ
0 )
−1 =

(
(a0a1)

ϕ (aϕ0a
ϕ
1 )
−1 , (a1a0)

ϕ (aϕ1a
ϕ
0 )
−1
)
.

The verification of the homomorphism condition clearly reduces to the next level.

2) (h1h2)
ϕ (hϕ1h

ϕ
2 )
−1 =

(
ρ (h1h2)

ϕ , ρ
(
ha
−1

1 ha
−1

2

)a0ϕ)
·

(
ρ (h1)

ϕ ρ (h2)
ϕ , ρ

(
ha
−1

1

)a0ϕ
ρ
(
ha
−1

2

)a0ϕ)−1
=

(
(ρ (h1) ρ (h2))

ϕ (ρ (h1)
ϕ ρ (h2)

ϕ)
−1
,

(
ρ
(
ha
−1

1

)a0
ρ
(
ha
−1

2

)a0)ϕ (
ρ
(
ha
−1

1

)a0ϕ
ρ
(
ha
−1

2

)a0ϕ)−1)
.

Again, the reduction in this case is clear.

3) (ha)ϕ
(
(hϕ)a

ϕ
)−1

= (ρ (ha)ϕ , ρ (h)a0ϕ) ·
(
σ
(
(aϕ0 )

−1 , (aϕ1 )
−1
)(

ρ (h)ϕ , ρ
(
ha
−1
)a0ϕ)

(aϕ0 , a
ϕ
1 )σ

)−1
=

(
ρ (ha)ϕ

(
ρ
(
ha
−1
)a0ϕaϕ1)−1

, ρ (h)a0ϕ
(
ρ (h)ϕa

ϕ
0

)−1
)

=

(
ρ (ha)ϕ

(
ρ (ha)a

−1
1 ϕaϕ1

)−1
, ρ (h)a0ϕ

(
ρ (h)ϕa

ϕ
0

)−1)
;

the last equality follows from

ρ
(
ha
−1
)
= ρ (ha)ρ(a

−2) = ρ (ha)a
−1
1 a−10 .

Now we consider whether the first coordinate of (ha)ϕ
(
(hϕ)a

ϕ
)−1

is trivial. The fol-

lowing sequence of equivalent statements lead to the desired reduction

ρ (ha)ϕ
(
ρ (ha)a

−1
1 ϕaϕ1

)−1
= e,

ρ (ha)a
−1
1 ϕaϕ1 = ρ (ha)ϕ ,

aϕ1ρ (h
a)ϕ (aϕ1 )

−1 =
(
ρ (ha)a

−1
1

)ϕ
.
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The question of triviality of the second coordinate of (ha)ϕ
(
(hϕ)a

ϕ
)−1

reduces more

simply to the next level. Now let N be the kernel of the homomorphism ϕ. Then
for every h ∈ N , hϕ is inactive, and consequently, h ∈ H. Thus hϕ = e = (e, e) =

(ρ(h)ϕ, ρ(ha
−1
)a0ϕ). Hence ρ(h) ∈ N and N is ρ-invariant. On the other hand, if

M is a subgroup of H which is normal in G and is also ρ-invariant then for every
h ∈ M the elements ρ(h) and ρ(ha

−1
)a0 belong to M . It follows inductively from the

representation hϕ = (ρ(h)ϕ, ρ(ha
−1
)a0ϕ) that hϕ is trivial. Hence, M ≤ N and kernel of

ϕ is ρ−core(H). ¤

Remarks. We maintain the above notation.

(1) The relationship between the ker(ρ) and ρ−core(H) is not totally clear. Yet, it is
obvious that D = ker(ρ) ∩ ker(ρ)a is contained in ρ−core(H). Thus if ρ is simple then
D = {e} = [ker(ρ), ker(ρ)a]. We conclude that in case the abelian subgroups are cyclic
(for instance, when G is a free group), then the condition ρ is simple implies ρ is a
monomorphism. In the other direction, if G is abelian then ker(ρ) = ker(ρ)a = D, and
all simple 1/2-endomorphisms are also monomorphisms.

(2) Suppose that G is a normal subgroup of some group F and suppose that ρ is a
restriction of an endomorphism ρ̂ of F . Suppose in addition that G is of finite index
k in F , an let F k be the subgroup of F generated by the k-th powers of its elements.

Then L =
(
F k
)2 ≤ H and so, Lρ = Lρ̂ ≤ L; thus, L ≤ ρ−core (H). It follows then that

if F = G and ρ is simple then G is an elementary abelian 2-group.

3.2. Extensions and restrictions of 1/2-endomorphisms. The next results con-
cern manners of producing simple 1/2-endomorphisms.

Lemma 3.2. Let G be a group and H a subgroup of index 2. Suppose that ρ : H → G
is a simple 1/2-endomorphism of G. Then the restriction of ρ to H ∩ Hρ is a simple
1/2-endomorphism of Hρ.

Proof. Since H is not ρ-invariant, there exists an element b in ρ(H) outside H. There-
fore, G = H〈b〉. Let K be a subgroup of H ∩ Hρ, which is normal in Hρ and is

ρ-invariant. Then K is contained in Kρ−1 which is a normal subgroup of H. Therefore,
Kρ−1b is normal in H and K = Kb ≤ Kρ−1b. Now let M = Kρ−1 ∩Kρ−1b. Then M is a
normal subgroup of G and K ≤M . Also, we have

K ≤M ≤ Kρ−1 ,Mρ ≤ K

and thus M is ρ-invariant. Since ρ is simple, it follows that both M and K are trivial.
¤

Proposition 3.3. Let G be a group and H a subgroup of index 2. Suppose that

ρ : H → G is a simple homomorphism. Let G̃ = G × G be the direct product of G

with itself, H̃ = H ×G, and ρ̃ : H ×G→ G×G the map defined by ρ̃ : (h, x)→ (x, hρ)

for all h ∈ H, x ∈ G. Then H̃ is a subgroup of index 2 in G̃ and ρ̃ is a simple homo-
morphism.
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Proof. Let K̃ be a subgroup of H̃, normal in G̃ and ρ̃-invariant. Then the projection

of K̃ on its first coordinate produces a subgroup K of H, normal in G. Furthermore,

if y = (h, x) ∈ K̃ then we have h ∈ K, yρ̃(x, hρ) ∈ K̃, x ∈ H, yρ̃
2
= (hρ, xρ) ∈ K̃

and so hρ ∈ K; that is, K is a ρ-invariant. We conclude that K is trivial and thus

y = (e, x), yρ̃ = (x, e) = (e, e), y = e; hence K̃ is trivial. ¤

A direct application of this proposition is

Corollary 3.1. Let k ≥ 0,m = 2k. Consider the free-abelian group G = Zm of rank
m, its subgroup H = 2Z× Zm−1 and the rational vector space V = Qm. Define the
following linear transformations of V represented by the matrices

A0 =
1

2
, A1 =

(
0 1
1
2

0

)
, . . . ,Ak =

(
0 I2k−1
Ak−1 0

)

with respect to the canonical basis. Then Ak defines a simple homomorphism from H
into G, for all k ≥ 0.

The next result will be used in the final section of the paper in order to extend certain
simple 1/2-endomorphisms associated to lattices to their affine groups.

Lemma 3.3. Let G be a group which admits a factorization G = MH where H is a
subgroup of index 2 and M a normal subgroup such that CG(M) ≤M . Furthermore, let
ρ : H → G be a homomorphism, N = H ∩M and η the restriction of ρ to N . Suppose
η(N) ≤M and η simple. Then ρ is also simple.

Proof. Suppose η is simple and define K = ρ−core(H), D = K ∩ M . Then D is a
normal subgroup of G contained in N and

Dη = (K ∩N)η ≤ Kρ ∩Nη ≤ K ∩M = D,

is a subgroup of the η−core(M). Thus D is trivial and as both K and M are normal
subgroups of G, K centralizes M . We conclude that K ≤ M,K ≤ η−core(M) and
K = {e}. ¤

3.3. State-closed solvable groups. We present in this section a number of results,
some positive and others negative, for state-closed representations of finitely generated
solvable groups.

Proposition 3.4. Let G be an abelian state-closed group of automorphisms of the
binary tree. Then G is either torsion-free or an elementary abelian 2-group. If G
is an elementary abelian 2-group then it is a subgroup of the topological closure of
〈σ, σ(1), σ(2), . . .〉.

Proof. Suppose the group is not torsion-free. Then the set of involutions Ω2(G) is not
contained in the stabilizer subgroup G1, for otherwise this set would be ρ-invariant and
therefore trivial. Let a be an involution such that G = G1 ⊕ 〈a〉. But then, G2

1 = G2

and thus G2 = {e}. As a is active, a = (a′, a′)σ, and the elements of G1 have the form
h = (x, x), with a′, x ∈ G. It becomes clear on developing the elements of G that these
belong to the topological closure of 〈σ, σ(1), σ(2), . . .〉. ¤
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Proposition 3.5. Let G be a finitely generated torsion-free nilpotent group, H a sub-
group of G of finite index containing the commutator subgroup G′ and ρ : H → G a
homomorphism. Then G′ is ρ-invariant.

Proof. We proceed by induction on the nilpotency class k of G and may assume k ≥ 2.
There exists a free generating set S = {a1, a2, . . . , am} of G modulo G′ and positive
integers n1, n2, . . . , nm such that U = {an11 , an22 , . . . , anmm } is a free generating set for H
modulo G′. First we will show that γk(G) is ρ-invariant. Note that

γk(H) ≤ γk(G) ≤ H,

γk(H)ρ = γk(H
ρ) ≤ γk(G).

It is well-known that γk(G) is generated by a = [ai1 , ai2 , . . . , aik ] where ais ∈ S. Likewise,
γk(H) is generated by b = [a

ni1
i1
, a

ni2
i2
, . . . , a

nik
ik

]. Note that b = [ai1 , ai2 , . . . , aik ]
n = an

where n = ni1 , ni2 . . . nik . Now, bρ = [a
ni1ρ

i1
, a

ni2ρ

i2
, . . . , a

nikρ

ik
] = (aρ)n. Since G/γk(G) is

torsion-free it follows that aρ ∈ γk(G) and γk(G) is ρ-invariant. Therefore ρ induces a
homomorphism ρ : H/γk(G)→ G/γk(G) and the proof is finished by induction. ¤

Remark. In the above proposition, the hypothesis that the subgroup H contain G′

is necessary. For let G be the free nilpotent class group of nilpotency class 2, freely
generated by a, b, and let z = [a, b]. Consider the subgroup H = 〈ak, b〉 of G where
k ≥ 2. Then [G : H] = k2 and H is not a normal subgroup of G. The map ρ : ak →
b, b → a−1 extends to an epimorphism ρ : H → G and ρ(zk) = ρ[ak, b] = [b, a−1] = z.
If K is a nontrivial subgroup of H and is normal in G, then K contains zik for some
i ≥ 1; choose ik to be minimal. Then on applying ρ to K we produce zi which shows
that K cannot be ρ-invariant.

We are now ready to classify the finitely generated nilpotent state-closed groups acting
on the binary tree.

Theorem 3.2. Let G be a finitely generated nilpotent group and suppose G is a state-
closed group of automorphisms of the binary tree. Then G is either torsion-free abelian
group or a finite 2-group.

Proof. It is well-known that the set T (G) of torsion elements of G is indeed a finite
subgroup. We proceed by induction on |T (G)|. By the previous proposition, we may
assume T (G) to be non-trivial. Choose an involution a in G outside G1; therefore,
G = G1〈a〉. Recall that π0 is the projection map of the stabilizer subgroup G1 on its
first coordinate. The group G is described by the quadruple (G1, π0, a, a0). We may
obtain other faithful state-closed representations of G by different choices of a0. Let
a0 = e. Then we have a = (e, a1)σ, and since a has order 2, we find that a1 = e and
a = σ. By Lemma 3.2, π0 is a simple 1/2-endomorphism of (G1)

π0 . As |T (G1)| < |T (G)|,
we conclude by induction that (G1)

π0 is either free abelian or a finite 2-group. Since
a = σ, we have that G1 ≤ (G1)

π0 × (G1)
π0 and so, G1 is either free abelian or a finite

2-group. We have to discuss the first alternative only. In this case, T (G) = 〈σ〉 and is
central. We conclude that G2 = G2

1 and G is an elementary abelian 2-group. ¤
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The question as to which finitely generated torsion-free solvable groups admit faith-
ful state-closed representations is open. We give below some examples of non-abelian
groups with such representations.

Examples. (1) The torsion-free metacyclic group G = 〈a, b | ba = b−1〉 admits a
faithful representation as a state-closed group acting on the binary tree. For instance,
let D be the group generated by the automorphisms τ = (e, τ)σ, β = (τ−1, τ). Then
the group D is state-closed and one can verify directly that the map taking a to τ and
b to β extends to an isomorphism from G onto D. More polycyclic examples will be
constructed in the last section of this paper.

(2) We have shown in Lemma 3.3 of [BS2] that if ξ is a dyadic unit then λ = λ(1)(e, τ (ξ−1)/2)
conjugates τ = (e, τ)σ to τ ξ. The affine group of the dyadic integers is a metabelian
group and is state-closed. In particular, if ξ = 3, then λ = λ(1)(e, τ) conjugates
τ = (e, τ)σ to τ 3 and G = 〈τ, λ〉 is a metabelian torsion-free recurrent group. Note that
G is not polycyclic.

4. Lattices of finite rank

4.1. Generating pairs. Let G be an m-dimensional lattice. We recall the formulas in
Section 3,

a1 = a−10 π0(a
2),

π1(h) = π0(h
a−1)a0 = π0(h).

Therefore the elements of G have the following developments:

a = (a0, a
−1
0 π0(a

2))σ,

h = (π0(h), π0(h)), h ∈ H.

Any subgroup of G of finite index also has rank m, and thus so does the first level
stabilizer G1. We choose a free generating set {v1, v2, . . . , vm} of G such that G1 is freely
generated by {2v1, v2, . . . , vm} and let a = v1. Consider the vector space V = Q ⊗ G
and denote the extension of π0 to V by A. Then A is an invertible linear transformation
of V and the elements of G are represented in additive notation by

v1 = (a0,−a0 + 2A(v1))σ,

h = (A(h), A(h)) for all h ∈ G1.

On choosing r = −a0 + A(v1) in V , v1 may be re-written as

v1 = (A(v1)− r, A(v1) + r)σ.

In this form the development of the elements of G simplify to

{
u = (A(u)− r, A(u) + r)σ for all u ∈ G \G1,
h = (A(h), A(h)) for all h ∈ G1.
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Note that r ∈ G+A(G) \G. The matrix representation of A with respect to the basis
{v1, v2, . . . , vm} has the form

A =




a11
2

a12 · · · a1m
a21
2

a22 · · · a2m
...

...
. . .

...
am1
2

am2 · · · amm


 , (1)

where all the aij’s are integers; this is so since A maps the group 〈2v1, v2, . . . , vm〉 into
the group 〈v1, v2, . . . , vm〉. Considering that G1 is not A-invariant, the first column
A(v1) is not an integral vector, yet 2A(v1) is integral. The same observation holds
for r = −a0 + A(v1). The characteristic polynomial f(x) of A has the form f(x) =
xm + 1

2
g(x) where g(x) is an integral polynomial of degree m− 1.

Definition 2. Let A be an invertible m ×m matrix with rational coefficients. Then
W = A−1(Zm) ∩ Zm is called the Z-domain of A. If W has index n in Zm then A is
called 1/n-integral. If the restriction of A to W defines a simple homomorphism then
A is said to be simple.

For an arbitrary basis of the group G, the matrixA associated to the 1/2-endomorphism
π0 from the stabilizer subgroup G1 into the group G must be 1/2-integral. It is clear
that a matrix is 1/2-integral if and only if the sum of any two (not necessary distinct) of
its non-integral columns is integral. It follows from the arguments above that any 1/2-
integral matrix is conjugate to a matrix of the type (1). The following proposition gives a
criterion for a 1/n-integral matrix A to be simple, when considered as a homomorphism
from its Z-domain into Zm.

Proposition 4.1. Let A be an m ×m matrix over Q. Suppose A is an 1/n-integral
matrix. Then A is simple if and only if its characteristic polynomial is not divisible
by a monic polynomial with integral coefficients. Furthermore, if n is a prime number,
then A is simple if and only if its characteristic polynomial of A is irreducible.

Proof. Let W = A−1(Zm) ∩ Zm be the Z-domain of A.

(i) Suppose A is not simple and let {0} 6= U ≤ W be such that A(U) ≤ U and C
be the restriction of A to U . Then the characteristic polynomial of C is a monic
polynomial with integral coefficients and is a factor of the characteristic polyno-
mial of A. In the other direction, suppose f(x) = xk + a1x

k−1 + · · ·+ ak ∈ Z[x]
is an irreducible factor of the characteristic polynomial of A. Let Û ≤ Qm be

the kernel of the operator f (A). Then for arbitrary nonzero element v ∈ Û the

vectors v,A(v),A2(v), . . .Ak−1(v) form a basis of the space Û and the matrix
of the operator A|Û in this basis is obviously integral. Therefore there exists
a nonzero integer q such that all the vectors qv, qA(v), qA2(v), . . . qAk−1(v) are

integral and form a basis of the space Û and the matrix of A|Û is integral. Thus

U = Û ∩ Zm is a nontrivial invariant group, and A is not simple.
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(ii) Suppose n is a prime number. Then any 1/n-integral matrix is similar to a
matrix of the type

A =




a11
n

a12 · · · a1m
a21
n

a22 · · · a2m
...

...
. . .

...
am1
n

am2 · · · amm


 .

Let f(x) be the characteristic polynomial of A, then the polynomial nf(x) has
integral coefficients. It is clear that in any nontrivial decomposition of nf(x)
into a product of two polynomials with integral coefficients one of the factors
will have a leading coefficient equal to 1. Thus the irreducibility of f(x) is
equivalent to the simplicity of A.

¤

Corollary 4.1. Let G be an m-dimensional lattice and K a sub-lattice of G. Then K
is also m-dimensional.

Proof. Suppose K is a proper non-trivial subgroup of G, which is state-closed. Since
Q⊗K1 = Q⊗K and is A-invariant and as A is irreducible, we get that Q⊗K = Q⊗G
and therefore K and G have equal ranks. ¤

Example. We cannot conclude in the above corollary that K = G. For, let G be the
2-dimensional lattice generated by α = (e, αβ2)σ, β = (α, α). Then K = 〈α, β2〉 is a
proper sub-lattice of G.

We have obtained the following variant of Theorem 3.1 for torsion-free abelian groups.

Proposition 4.2. Let G = Zm and let A be an m×m invertible rational matrix which
is 1/2-integral and simple. Let H = A−1 (G) ∩ G and r ∈ G + A(G) \ G. Then the
pair (A, r) determines uniquely a representation ϕ of the group G as an m-dimensional
lattice, by the rules

vϕ =

{
((A (v)− r)ϕ , (A (v) + r)ϕ) σ if v ∈ G \H
(A (v)ϕ ,A (v)ϕ) if v ∈ H.

Let us start again with an abstract torsion-free abelian group G of rank m and a
faithful state-closed representation ϕ of G described by the quadruple (H, ρ, a, a0). The
following steps lead to the description of the representation ϕ by the pair of parameters
(A, r).

(i) Identify G with the additive group Zm, fix the canonical basis {e1, e2, . . . , em}.
Identify a with e1 and identify the basis of H with {2e1, e2, . . . , em}.

(ii) Define the vector space V = Qm and extend ρ to a linear transformation A
of V which is represented in the canonical basis as an irreducible 1/2-integral
matrix A.

(iii) Define r = −a0 +A(e1). Then H = A−1 (G)∩G, r ∈ G+A(G) \G. Hence the
representation ϕ is described simply by the generating pair (A, r).
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If A is an invertible integral matrix, then for A′ = TAT−1 and r′ = Tr, the pair (A′, r′)
defines a state-closed representation ϕ′ of G and ϕ = Tϕ′; in particular, Gϕ = Gϕ′ .
Therefore, in classifying the generating pairs (A, r), we may restrictA to representatives
of the similarity classes of the 1/2-integral irreducible matrices under conjugation by
T ∈ GL(m,Z).

4.2. 1-dimensional lattices. We give below a description of the 1-dimensional lat-
tices.

Theorem 4.1. Let G = 〈g〉 be a cyclic group of infinite order, let ϕ : G → Aut(T2)
be a faithful state-closed representation of G and denote gϕ by α. Furthermore, let
τ = (e, τ)σ, µ = (e, µ−1)σ. Then there exist integers c, d such that α =

(
αc, αd

)
σ and

c+d odd. If α = (αc, α1−c) σ, then τ = α−2c+1. If α = (αc, α−1−c)σ, then µ = α2c+1. In
addition, any α =

(
αc, αd

)
σ with c+d odd is conjugate to τ = (e, τ)σ by a functionally

recursive automorphism of the tree.

Proof. Let (A, r) be the generating pair of ϕ. Obviously, H = 〈g2〉. On denoting gϕ by
α we have α = (αc, αd)σ, for some integers c, d. In additive notation, ρ : 2α 7→ (c+ d)α
and so A = ( c+d

2
) and r = d−c

2
. Since A is simple, f = c + d is odd. Let c + d = ±1.

When α = (αc, α1−c)σ, we have

α2 = (α, α) , α−2c =
(
α−c, α−c

)
, α−2c+1 =

(
e, α1−2c) σ

and thus τ = α−2c+1. Similarly, if α = (αc, α−1−c)σ, we have µ = α2c+1. Let w =
(c + d − 1)/2. Define the automorphisms of the tree, λ = (λ, λα(−c+d)w) and γ =
(λ−1γ, α−cλ−1γ). Then {α, λ, γ} is a functionally recursive set and it can be verified
that λ−1αλ = αc+d and γ−1αγ = τ . ¤

5. Finite-state lattices

5.1. Contracting maps. If A is a linear transformation of a vector space over a sub-
field of the complex numbers, then the spectral radius of A, denoted by κ(A), is the
largest absolute value of the eigenvalues of A. If κ(A) < 1 then A is a contracting map.

Theorem 5.1. Suppose G is an m-dimensional lattice defined by (A, r). Then G is
finite-state if and only if A is a contracting map.

Proof. Since G is a lattice, the characteristic polynomial f(x) of A is irreducible. There-
fore the eigenvalues λi of A are all distinct and thus A is diagonalizable over the com-
plex numbers. We will fix a basis {e1, e2, ...em} for G, which will be identified with
the Euclidean basis for Rm. Let {ε1, ε2, . . . , εm} be the basis of C⊗G, formed by the
eigenvectors of A such that A(εi) = λiεi. Let (ξ1(v), ξ2(v), . . . , ξm(v)) be the coordinate
vector of v ∈ G with respect to this basis.

(i) Suppose by contradiction that G is finite state and κ(A) ≥ 1. Let λ = λ1, |λ| ≥ 1.
Since the group G has rank m there exists a vector v ∈ G with a nonzero first coor-
dinate ξ1(v). Let us fix this v. We are going to find a sequence {vn} of states of v
such that the sequence {|ξ1(vn)|} is nondecreasing. Using this we will prove that v has
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infinitely many states. The sequence will be defined inductively. Set v0 = v. For every
n ≥ 0, vn+1 is a state of vn and is defined by the rules below.

If vn is inactive then vn+1 = A(vn). Then vn+1 is a state of vn and ξ1(vn+1) = λξ1(vn)
with | ξ1(vn+1) |=| λ | · | ξ1(vn) |≥| ξ1(vn) |.
If vn is active then the vectors A(vn)+r and A(vn)−r are states of vn. If ξ1(r) 6= 0 then
either |ξ1 (A (vn) + r) | > |ξ1 (A (vn)) | ≥ |ξ1(vn)| or |ξ1 (A (vn)− r) | > |ξ1 (A (vn)) | ≥
|ξ1(vn)|. Then we choose vn+1 to be equal to one of the vectors A(vn) + r, A(vn) − r
so that |ξ1(vn+1)| > |ξ1(vn)|. If ξ1(r) = 0 then we choose vn+1 = A (vn) + r. Then
|ξ1(vn+1)| = |λ| · |ξ1 (vn)| ≥ |ξ1 (vn)|.
An infinite number of elements from the sequence {vn} are active, otherwise all the vec-
tors An(v) are eventually integral which would contradict the simplicity of the matrix
A. Thus in the case where ξ1(r) 6= 0, the sequence {|ξ1(vn)|} is nondecreasing and has
infinitely many different elements. If ξ1(r) = 0 then ξ1(vn) = λnξ1(v). Therefore the
sequence {ξ1(vn)} may contain a finite number of different elements only when λ is a
root of unity. But by Proposition 4.1 this contradicts the simplicity of A. Hence in all
cases, v has an infinite number of different states.

(ii) Suppose κ = κ(A) < 1. We will prove that every element v ∈ G has finite number
of states. Define the max-norm of a vector by ‖u‖ = max{|ξ1(u)|, . . . , |ξm(u)|}. Then
‖An(u)‖ ≤ κn‖u‖ for all n ∈ N and u ∈ G. Any state of v, seen as a tree automorphism,
is equal to v or to a vector of the type An(v) ± An1(r) ± An2(r) ± · · · ± Anl(r), where
n > n1 > n2 > . . . > nl > 0 is a decreasing sequence of positive integers. The norms of
the latter states can be estimated as follows:

‖An(v)± An1(r)± An2(r)± · · · ± Anl(r)‖ ≤
‖An(v)‖+ ‖An1(r)‖+ ‖An2(r)‖+ · · ·+ ‖Anl(r)‖ ≤

‖An(v)‖+ ‖An−1(r)‖+ ‖An−2(r)‖+ · · ·+ ‖A(r)‖+ ‖r‖ ≤
κn‖v‖+

(
κn−1 + κn−2 + · · ·+ κ+ 1

)
‖r‖ ≤

κn‖v‖+
∞∑

s=0

κs‖r‖ ≤ ‖v‖+ (1− κ)−1‖r‖.

Therefore all the states of the tree automorphism v lie inside some finite ball with
respect to the max-norm which itself is contained in a finite Euclidean ball. As the
states are integral vectors, there exists only a finite number of them. ¤

Example. Let A be the m×m matrix



0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 . . . . . . 1
1/2 0 . . . . . . 0



.

Then the characteristic polynomial of A is f(x) = xm−1/2 and A is an irreducible 1/2-

integral matrix with spectral radius m
√

1/2. If we choose r = 1
2
em then the generating
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pair (A, r) defines a group G with the following set of free generators

α = (e, α(m−1))σ, α(1), α(2), . . . , α(m−1).

Thus, G is state-closed and finite-state. Indeed G is recurrent, as the first level stabilizer
G1 is freely generated by α(1), α(2), . . . , α(m−1), α2 = (α(m−1), α(m−1)) = α(m) whose
projection on the first coordinate produces G. The automata corresponding to the
generators of G are obtained by choosing different initial states in the Moore diagram
shown on Figure 3.

Figure 3. Automaton generating Zn

The group G is a minimal lattice. To prove this, it is sufficient to show that the state-
closure of any non-trivial cyclic subgroup generated by β = αi0α(1)i1α(2)i2 . . . α(m−1)im−1

is the whole group G. We define a norm of β by

| β |=| i0 | + | i1 | + · · ·+ | im−1 | .
Consider a minimal counterexample; that is, β has minimal non-zero norm such that
the set of states Q(β) does not generate G. We may choose β such that i0 ≥ 0. If
i0 = 2i′ then β = (β0, β0) ∈ G1 and β0 = α(m−1)i′αi1α(1)i2 . . . α(m−2)im−1 . If i0 = 2i′ + 1
then β = (β0, β1)σ where again β0 = α(m−1)i′αi1α(1)i2 . . . α(m−2)im−1 which has norm
| i′ | + | i1 | + · · ·+ | im−1 |. Thus by the minimality of β, we have i0 = 0. A repetition
of this argument leads to a contradiction.

Theorem 5.2. Let G be finite-state lattice of rank m defined by the pair (A, r). Then G
is a recurrent lattice and the characteristic polynomial of A−1 is an integral monic irre-
ducible polynomial. Furthermore, for a fixed m, there exist only finitely many GL(m,Z)-
similarity classes of linear transformations A which are 1/2-integral, irreducible and
contracting.

Proof. Let f(x) = xm + 1
2
(am−1xm−1 + . . .+ a0) be the characteristic polynomial of A.

Then as the spectral radius of A is less than 1, and since the coefficients 1
2
ai of f(x)

are symmetric polynomials in the roots, we get that |ai| < 2
(
m
i

)
. In particular, 1 ≤

|a0| < 2 and |a0| = 1. Since the ai’s are integers, the number of possible characteristic
polynomials f(x) is finite. As the matrix A is conjugate to a matrix of the type
(1) and has determinant ± 1

2
, the image of G1 under A is G; that is, A is recurrent.
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Now, the characteristic polynomial of A−1 is the integral irreducible polynomial h(x) =
a0x

m + a1x
m−1 + · · · + am−1x + 2, where |a0| = 1. By a theorem of Latimer and

MacDuffee [N] the number of GL(m,Z)-similarity classes of linear transformations with
characteristic polynomial h(x) is equal to the number of ideal classes in the order Z[α],
where α is a root of h(x), and therefore is finite. We conclude that there is a finite
number of similarity classes of A−1 and therefore of A as well. ¤

Remarks. (i) Although a finite-state lattice is recurrent, the converse is not necessarily

true. For example, let G be determined by (A, r) where A =

(
0 1

1/2 1

)
. Then, since

det(A) = −1/2, the group G is recurrent. However, it is not finite-state since κ(A) > 1.

(ii) If a lattice G is finite-state we cannot conclude that it is a minimal lattice. For,

let A =

(
1 −1

5/2 −2

)
and let G be the group generated by α = (e, α2β5)σ, β =

(α−1β−2, α−1β−2). We verify directly that the states of α are contained in K = 〈α, β5〉
and therefore G is not a minimal lattice.

5.2. Finite-state lattices of small rank.

Theorem 5.3. Consider the automorphisms of the binary tree τ = (e, τ)σ, µ = (e, µ−1)σ.
A subgroup G of automorphisms of the binary tree is a 1-dimensional finite-state lattice
if and only if it is generated by an l-th root of τ or µ for some odd integer l.

Proof. Let G = 〈α〉 be a 1-dimensional finite-state lattice with generating pair (A, r).
By Proposition 5.1, A = ±1/2. When (A, r) = (1/2, 1/2), we get a cyclic group
generated by the adding machine τ = (e, τ)σ and when (A, r) = (−1/2,−1/2) we get a
cyclic group generated by µ = (e, µ−1)σ. By Theorem 4.1, α is an l-th root of τ or µ for
some odd integer l. On the other hand it can be checked directly that a group generated
by an l-th root of τ or µ for an odd integer l is state-closed and finite-state. ¤

Theorem 5.4. Let A be a 2×2 rational 1/2-integral matrix. Then (A, r) is a generating
pair for a 2-dimensional lattice if and only if A is GL(2,Z)-similar to the companion
matrix of one of the six polynomials x2 ± 1

2
, x2 ± 1

2
x+ 1

2
, x2 ± x+ 1

2
.

Proof. The matrix A is equivalent to

(
1
2
a11 a12

1
2
a21 a22

)
where the aij’s are integers. By

Theorem 5.2 its characteristic polynomial is f(x) = x2+ 1
2
a1x+

1
2
a0 with |a0| < 2, |a1| <

4. Thus, |a0| = 1, |a1| = 0, 1, 2, 3. The roots of f(x) are z1 = 1
4
(−a1 +

√
a21 − 8a0),

z2 =
1
4
(−a1−

√
a21 − 8a0). If ∆ = a21− 8a0 ≤ 0 then a0 = 1, |a1| = 0, 1, 2 follow. On the

other hand, suppose ∆ = a21−8a0 > 0; that is, a21 ≥ 8a0. If a0 = 1 then a1 = ±3,∆ = 1,
and so |z1| or |z2| = 1. Thus, a0 = −1,∆ = a21 + 8. On substituting the possible values
of a1 in zi we find that the only possibility for a1 is 0. Hence the pair (a0, a1) varies
over the set {(1, 0), (1,±1), (1,±2), (−1, 0)}.
Now we try to determine the possible reductions of the matrix A modulo conjugations
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by invertible integral matrices

(
s11 s12
s21 s22

)
. On conjugating A by

(
−1 0
0 1

)
, we may

assume a21 ≥ 0. We have trace(A) = 1
2
a11+ a22 = −1

2
a1, det(A) = 1

2
a11a22− 1

2
a21a12 =

1
2
a0. Therefore, a22 = −1

2
a1 − 1

2
a11, a21a12 = −(12a211 + 1

2
a1a11 + a0). On conjugating A

by

(
1 0
s 1

)
we transform 1

2
a11 into 1

2
a11 + sa12, and on conjugating by

(
1 s
0 1

)
, we

transform 1
2
a11 into

1
2
(a11−sa21). Thus, we can reduce the absolute value of 1

2
a11 unless

possibly when |a11| ≤ |a12| , 12 |a21|. Hence we may assume, 2a211 ≤
∣∣1
2
a211 +

1
2
a1a11 + a0

∣∣.
The possible solutions (a0, a1, a11) are contained in the table

a0 1 1 1 1 1 −1
a1 0 −1 1 2 −2 0
a11 0 −1, 0 0, 1 0, 1 −1, 0 0

On using the fact that a22 = −1
2
(a1 + a11) is an integer, the possibilities for a11 are

reduced further and on using the formula a12a21 = −(1
2
a211 +

1
2
a1a11 + a0), we obtain

the following table

a0 1 1 1 1 1 −1
a1 0 −1 1 2 −2 0
a11 0 −1 1 0 0 0
a22 0 1 −1 −1 1 0

a12a21 −1 −2 −2 −1 −1 1

The different columns of the table correspond to different characteristic polynomials.
As we may always choose a21 > 0, there are at most 8 classes. Further equivalences may
occur only within the same column of the table. Suppose a21 is an even integer 2a′21, as

may occur in the second and third columns. Then

(
a22 −2a12
−a′21 a11

)
conjugates A into

(
1
2
a11 2a12

1
2
a′21 a22

)
. Thus, in the third and fourth columns a21 may be chosen to be equal

to 1. Considering that |a11| = 1 in these columns, we may conjugate the corresponding
matrix into one where a11 = 0. Hence, the equivalence classes of A are represented
uniquely by the companion matrix of the characteristic polynomial of A. ¤

Remark. The polynomials f(x) = xm+ 1
2
(am−1xm−1+ . . .+a0) such that the absolute

value of each of their roots is less than 1 present some remarkable features. As we
showed in Theorem 5.2, there is a finite number of such polynomials for each fixed
degree m. The proof of the above theorem shows that the number for m = 2 is 6,
and that the class number corresponding to each polynomial is 1. We note that Pavel
Guerzoy has investigated with the use of the Number Theoretic package PARI-GP ([PG]
polynomials of higher degree. He reproduced our 6 polynomials of degree 2, produced
a complete list of 14 polynomials of degree 3, 36 polynomials of degree 4 and 58 of
degree 5. In addition, it turns out that the class number in all these cases is 1. We
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note that though the class number eventually increases for higher degrees, still 1 seems
to be quite predominant.

6. Recurrent Lattices

6.1. Adding machines. As we commented earlier, the automorphism τ = (e, τ)σ
which generates a lattice of rank 1 represents binary addition in its action on the
dyadic integers and was thus called an adding machine. We will show below that the
notion of an adding machine can be generalized to lattices of arbitrary rank. Let G
be an m-dimensional recurrent lattice defined by the generating pair (A, r). Also let
A−k(G) = {v ∈ G | Ak(v) ∈ G} and recall that Gk is the pointwise stabilizer of the
k-th level of the tree.

Lemma 6.1. The group A−n(G) coincides with Gn for every n.

Proof. We proceed by induction on n. We have A0(G) = G = G0. Assume n ≥ 1.
The group A−n(G) stabilizes the first level. For every g ∈ A−n(G), we have g =
(A (g) , A (g)) and A (g) ∈ A−n+1(G) which by the inductive hypothesis is the stabilizer
of the (n− 1)-st level of the tree. Thus g ∈ Gn and A−n(G) ≤ Gn. On the other hand,
we have A (G1) = G,A (G2) ≤ G1, . . . , A (Gn) ≤ Gn−1, and thus Gn ≤ A−n(G). Hence
Gn = A−n(G). ¤

Since A (G1) = G, it follows that there exists d ∈ G \ G1 such that r = A(d); we fix
such a d. Therefore, A−1(d) ∈ G1 \ G2 and for all n ≥ 0, A−n(d) ∈ Gn \ Gn+1. We
define an A-adic number as the series c0d+ c1A

−1(d) + · · ·+ cnA
−n(d) + · · · where the

cn’s are 0 or 1. These A-dic numbers belong to the closure of Ĝ of the group G in the
automoprhism group of the tree with respect to the 2-adic topology. We will show that
the group G acts as an adding machine on these numbers.

Lemma 6.2. The set of all A-adic numbers coincides with the topological closure Ĝ of

the group G. The map Ψ from the boundary of the binary tree to Ĝ, defined by

Ψ(c0, c1, . . . , cn, . . .) = c0d+ c1A
−1(d) + · · ·+ cnA

−n(d) + · · ·
is well-defined and bijective.

Proof. We have to prove that the series c0d+c1A
−1(d)+c2A−2(d)+ · · ·+cn(A−nd)+ · · ·

is convergent; equivalently, the sequence of its partial sums is a Cauchy sequence. This
follows directly from the fact that Gn = A−n(G). Thus the map Ψ is well defined. In

order to prove that every element of Ĝ can be uniquely expanded in such a way, it is
sufficient to prove that for every n and every g ∈ G there exists a unique element of
the form gn = c0d+ c1A

−1(d)+ · · ·+ cnA
−n(d) where ci ∈ {0, 1} such that g− gn ∈ Gn.

Let us prove this by induction on n. If g ∈ G1 then g − d 6∈ G1. On the other hand,
if g 6∈ G1 then g − d ∈ G1. Thus the assertion is true for n = 1. Suppose it is true for
n = k − 1, k ≥ 2. Since g − gk−1 ∈ Gk−1 = A−k+1(G) and A is injective, there exists
unique h ∈ G such that g − gk−1 = A−k+1(h). If h ∈ G1 = A−1(G) then g − gk−1 ∈
A−k(G) = Gk and we put gk = gk−1. Then g − gk ∈ Gk but g −

(
gk−1 + A−k+1 (d)

)
=
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A−k+1(h) − A−k+1(d) = A−k+1(h − d) 6∈ Gk. If h 6∈ G1 then h − d ∈ G1 = A−1(G)
and if we put gk = gk−1 + A−k+1(d) then g − gk = A−k+1(h − d) ∈ A−k(G) = Gk but
g − gk = A−k+1(h) 6∈ A−k(G) = Gk. Thus, in any case, gk can be chosen uniquely. ¤

The following proposition shows that the above identification Ψ is compatible with the

action of G both on Ĝ and on the boundary of the tree.

Proposition 6.1. Let Ψ be the bijection from the boundary of the tree to Ĝ. Then for
every element w of the boundary and g ∈ G we have

wg = Ψ−1 (Ψ(w) + g) .

Proof. Let g ∈ G,w = (c0, c1, . . .) be arbitrary infinite path of the binary tree (ci ∈
{0, 1}) and w′ = (c1, c2, . . .). Denote by ψ(g) the tree automorphism defined by the rule

wψ(g) = Ψ−1 (Ψ (w) + g) .

We have to prove that ψ(g) = g. If g ∈ G1 then

g +Ψ(w) = g + c0d+ c1A
−1(d) + · · · = c0d+

A−1
(
A (g) + c1d+ c2A

−1 (d) + · · ·
)
.

Therefore wψ(g) = Ψ−1 (Ψ (w) + g) is the sequence
(
c0, (w

′)ψ(g0)
)

where, g0 = A(g).

Thus, in this case, ψ(g) = (ψ (A (g)) , ψ (A (g))). If g /∈ G1 and c0 = 0 then

g +Ψ(w) = g + c1A
−1(d) + · · · = d+ (g − d) +

c1A
−1(d) + · · · = 1 · d+ A−1(A (g − d) + c1d+

+c2A
−1 (d) + · · · ).

If g /∈ G1 and c0 = 1 then

g +Ψ(w) = g + d+ c1A
−1(d) + c2A

−2 (d) · · · =
= 0 · d+ A−1(A (g + d) + c1 + c2A

−1 (d) + c3A
−2 (d) + · · · ).

Therefore in this case

ψ(g) = (ψ (A (g − d)) , ψ (A (g + d)))σ =

(ψ (A (g)− r) , ψ (A (g) + r))σ.

We conclude that the map ψ satisfies the same recurrence as that which defines the
group G and therefore ψ(g) = g for every g ∈ G. ¤

Now it follows from Proposition 6.1 that the natural action of Ĝ on itself is identified,

by using the bijection Ψ, with the action of Ĝ on the tree.

Example. Let A =

(
0 1

1/2 0

)
, r =

(
0

1/2

)
. Then A−1 =

(
0 2
1 0

)
and the

multiplicative group G is freely generated by α = (e, α(1))σ, α(1). In additive notation,
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G has the basis α = v1 =

(
1
0

)
, α(1) = v2 =

(
0
1

)
. We compute

d = A−1r =

(
1
0

)
= v1,A

−1d =

(
0
1

)
= v2, . . . ,

A−2id = 2iv1,A
−(2i+1)d = 2iv2, . . .

An element w ∈ Ĝ, in additive notation, has the form

w = ξ1v1 + ξ2v2,

where ξ1 =
∑
ci2

i, ξ2 =
∑
di2

i are dyadic integers. The element of the boundary which
corresponds to w is Ψ−1(w) = (f0, f1, . . . , f2i, f2i+1, . . .) where f2i = ci, f2i+1 = di. Now,
it can be checked that applying α to f =

∑
fi2

i corresponds to calculating Ψ−1(w+v1).

6.2. Topological closure of recurrent lattices. Let G be a recurrent lattice and
(A, r) its generating pair. We will prove in this section that A determines the topological

closure Ĝ of G, independently of r. Recall from Proposition 3.2 that the centralizer

of a recurrent abelian group G is equal to Ĝ. As was mentioned earlier, there exists

d ∈ G\G1 such that r = A(d). Then the closure Ĝ, by Proposition 6.1, can be naturally
identified with the group of formal series of the form c0d+c1A

−1(d)+c2A−2(d)+· · · , ci ∈
{0, 1}.
Lemma 6.3. For any formal power series f(x) = 1+b1x+b2x

2+· · ·+bnxn+· · · ∈ Z[[x]]
the operator f(A−1) = I+b1A

−1+b2A−2+ · · ·+bnA−n+ · · · is a well-defined continuous

automorphism of the group Ĝ.

Proof. For any g ∈ Ĝ, the sequence of partial sums of the series g+b1A
−1(g)+b2A−2(g)+

· · ·+bnA−n(g)+· · · is a Cauchy sequence and thus the series is convergent to an element

of the group Ĝ. Thus f(A−1) is an endomorphism of the group Ĝ which leaves invariant
Gn = A−n(G) for all n ≥ 0. Hence, f(A−1) is a continuous function. Now, since every
series f(x) = 1+ b1x+ · · ·+ bnx

n+ · · · ∈ Z[[x]] is a unit in this ring, the endomorphism

f(A−1) is an automorphism of the group Ĝ. ¤

Theorem 6.1. Let L andM be two recurrent m-dimensional lattices with the respective

generating pairs (A,A (d1)) and (A,A (d2)). Then their closures L̂ and M̂ are equal.

Proof. Since d2 is an integral vector, there exists a sequence (c0, c1, . . . , cn, . . .) with
cn ∈ {0, 1} such that d2 = c0d1 + c1A

−1(d1) + · · ·+ cnA
−n(d1) + · · · . Since A(d2) is not

integral, c0 = 1. By Lemma 6.3, the sum B = 1 + c1A
−1 + c2A

−2 + · · · + cnA
−n + · · ·

defines an automorphism of the group L̂. Obviously, A commutes with B and thus the
generating pair of the group B−1(L) is (BAB−1, BA (d1)) = (A,A (d2)). We conclude

that B−1(L) =M and M̂ = L̂. ¤

We conclude that recurrent lattices defined by matrices with the same characteristic
polynomial have equal completions, irrespective of the vector r.
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7. Finite-state representations of affine groups

Let V be the free abelian group of rank m generated by the canonical basis of column
vectors {v1, v2, . . . , vm} and letW be the subgroup of V generated by {2v1, v2, . . . , vm}.
Consider the matrix defined on the vector space Q⊗ V ,

A =




0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 . . . . . . 1
1/2 0 . . . . . . 0




Conjugation of elementary transformations Ei,j(t) by A
−1 has the following effect:

AEi,j(t)A
−1 = Ei−1,j−1(δt),

where the indices are written modulo m and

δ =





1 if i = j, or 1 < i, j,
2 if 1 = j < i,

1/2 if 1 = i < j.

Let Γ be the subgroup of GL(m,Z) consisting of matrices B = (bij) where bij is even
for i < j. Then Γ is a maximal subgroup of GL(m,Z) with respect to the property of
not containing non-trivial elements of odd order. The group Γ is generated by the set
of elementary matrices

S =
{
Ei,j(1) for i > j, Ei,j(2) for i < j, Ei,i(−1) for all i

}
.

We verify the following conditions:

W is Γ-invariant, A(W ) = V,AΓA−1 = Γ.

Let G be the semi-direct product of V by Γ. The elements of G are written as (v,B),
where v ∈ V,B ∈ Γ and the product is defined by (v,B)(v ′,B′) = (v + B(v′),B · B′).
We simplify the notation (v,B) as v ·B. Then H = W ·Γ is a subgroup of index 2 in G.
Also, G = V H and, clearly, V is self-centralizing in G. Define the 1/2-endomorphism
ρ : H → G by

ρ : w ·B 7→ A(w) ·ABA−1.
Then ρ is an isomorphism from H onto G and so by using it we may define a recurrent
representation ϕ of G on the binary tree. Since ρ restricted to W is simple we conclude
from Lemma 3.3 that ρ is also simple and so, the representation ϕ is faithful.

7.1. Polycyclic examples. Using the affine group, we can prove the existence of sub-
groups of G which are torsion-free polycyclic and non-abelian. To this effect let C =
A−1−I. ThenC ∈ Γ; this follows from the fact that xn−2 = (x−1)(xn−1+· · ·+x+1)−1.
Since A−1 is irreducible on Q⊗ V then so is C. Let M = V 〈C〉. Then by Lemma 3.3,
the map ρ induces a simple 1/2-endomorphism on M . One may generalize this con-
struction by considering the group U of units in the ring of algebraic integers of Q[C].
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Then U is a subgroup of Γ. Dirichlet’s Unit Theorem [BSh] provides us with a torsion-
free abelian subgroup F of D of higher rank for polynomials of higher degrees m. Then
M = V F is a state-closed metabelian polycyclic group.

7.2. Finite-state state-closed representation of affine groups. We proceed to
construct a concrete representation ϕ : G (= V Γ)→ Aut(T2) and show that the image
is generated by finite-state automorphisms of the binary tree.

Choose (vϕ1 )0 = e. Then,

vϕ1 = (e, 2A(v1)
ϕ)σ = (e, vϕm)σ,

vϕ2 = (vϕ1 , v
ϕ
1 ), . . . ,

vϕi = (vϕi−1, v
ϕ
i−1), . . . ,

vϕm = (vϕm−1, v
ϕ
m−1).

Drop ϕ from the notation; so,

v1 = (e, vm)σ,

vi = (vi−1, vi−1) for 2 ≤ i ≤ m− 1,

vm = (vm−1, vm−1).

The representation of B ∈ Γ is given by

Bϕ = (ρ(B)ϕ, ρ(Bv
−1
1 )ϕ) = (ρ(B)ϕ, (A(I −B)v1)) · ρ(B)ϕ);

and so, in particular, for the generators of Γ in S,

Ei,j(t)
ϕ = (Ei−1,j−1(δt)

ϕ, (A(I − Ei,j(t))v1)) · Ei−1,j−1(δt)ϕ).
Note that

A(I − Ei,j(t))v1 =





0 if j 6= 1,
−tvi−1 if i 6= 1, j = 1,

1
2
(1− t) vm if i = 1, j = 1.

Hence, on removing the ϕ from the notation, we have

Ei,j(t) =





(Ei−1,j−1(δt), Ei−1,j−1(δt)) if j 6= 1,
(Ei−1,m(δt), (−tvi−1) · Ei−1,m(δt)) if i 6= 1, j = 1,
(Em,m(δt),

(
1−t
2
vm
)
· Em,m(δt)) if i = 1, j = 1.

We have arrived finally at the form the generators take in this representation:

E1,1(−1) = (Em,m(−1), vm · Em,m(−1)),
Ej,j(−1) = (Ej−1,j−1(−1), Ej−1,j−1(−1)) if 1 < j,
E1,j(2) = (Em,j−1(1), Em,j−1(1)) if 1 < j,
Ei,j(2) = (Ei−1,j−1(2), Ei−1,j−1(2)) if 1 < i < j,
Ei,1(1) = (Ei−1,m(δ), (−vi−1) · Ei−1,m(δ)) if 1 < i,
Ei,j(1) = (Ei−1,j−1(1), Ei−1,j−1(1)) if 1 < j < i,

The representation of G is finite-state. This is so because the set of states of each vj
is equal to {e, vi | 1 ≤ i ≤ m} and the states of the given generators Ei,j(t) of Γ are
contained in the product of sets Y · S where Y = {e,±vi | 1 ≤ i ≤ m}.
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The Mapping Class Group of the Twice Punctured Torus

by

J. R. Parker and C. Series

Introduction

Let Σ be a (possibly punctured) surface of negative Euler characteristic, and let C(Σ)
be the set of isotopy classes of families of disjoint simple closed curves on Σ. When Σ
is a once punctured torus Σ1, there is a well known recursive structure on C(Σ1) which
arises from the relationships between C(Σ1) (identified with the extended rational num-
bers), continued fractions, and PSL(2,Z) (the mapping class group of Σ1) [11], [21]. The
results in this paper arose out of a search for an analogous structure on C(Σ2), where
Σ2 is a torus with two punctures. Masur and Minsky [15], [16] have recently described
an alternative approach. Our method is motivated by the Bowen-Series construction
[4], [22] of Markov maps for Fuchsian groups. This generalised the relationship between
PSL(2,Z) (now thought of as a Fuchsian group acting in the hyperbolic plane) and
continued fractions (now thought of as points in the limit set of PSL(2,Z)), to a large
class of Fuchsian groups Γ. The Markov map was a map on the boundary at infinity,
in other words the limit set Λ(Γ), which generated continued fraction expansions for
points in Λ(Γ), and whose admissible sequences simultaneously gave an elegant solution
to the word problem in Γ [22] (see Section 1.1 below).

The idea behind this paper rests on the analogy between Γ acting on the hyperbolic
plane and the mapping class groupMCG(Σ) acting on Teichmüller space T (Σ). In this
analogy, the boundary S1 of the hyperbolic plane (or the limit set of Γ) is replaced by a
suitable boundary of T (Σ). We use the Thurston boundary, namely the space PML(Σ)
of projective measured laminations on Σ (see Section 1.4 below). The mapping class
groupMCG(Σ) (see Section 1.5 below) acts on both T (Σ) and PML(Σ). By analogy
with the Bowen-Series construction, we define a Markov map f on PML(Σ) which has
the same relation to the action ofMCG(Σ) on PML(Σ) as the Bowen-Series map has
to the action of Γ on Λ(Γ) = S1. Thurston’s well known theory of train tracks [18],
[23] givesML(Σ) a piecewise linear cone structure. Here we use the variant of π1-train
tracks introduced by Birman and Series [2]. This special class of train tracks is defined
relative to a fixed choice of fundamental domain and associated geometric generators
for π1(Σ), in such a way that an integer weighting yields not only a (multiple) simple
loop but simultaneously allows one to read off a shortest representative as a cyclic word
in π1(Σ). Thus the spaceML(Σ) is partitioned into finitely many maximal cells corre-
sponding to weightings on the (finitely many) possible π1-train tracks associated to a
given fundamental domain for Σ2.

In this paper we study the special case of the twice punctured torus Σ2. We use this
structure to construct a Markov map f on ML(Σ2). The Markov partition is essen-
tially the set of maximal cells and the restriction of f to each cell is a specific (rather
simple) element of MCG(Σ2) which acts linearly on the set of weights. Labelling the
cells by the corresponding elements ofMCG(Σ2), we show that the f -expansions (that
is the labelled orbit paths of f , see Section 1.1) give a unique normal form for the
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elements ofMCG(Σ2). In particular, the labels are a set of generators forMCG(Σ2),
and comparison of normal forms for nearby elements allows us to find a presentation
forMCG(Σ2). Since the map f is Markov, the f -expansions lie in a subshift of finite
type which is in fact close to geodesic with respect to the set of generators in question.
In the language of automatic groups (see Section 1.2 below), these normal forms for
elements ofMCG(Σ2) allow us to construct a word acceptor. If we can show that these
normal forms satisfy the fellow traveller property then this gives an explicit automatic
structure onMCG(Σ2). We conclude the paper by showing that this is indeed the case.
Our method is rather similar to that given by Mosher [17] who shows that any mapping
class group has an automatic structure.

The dimension of PML(Σ) is necessarily odd. We choose to study the case of the twice
punctured torus because it is one of the few three dimensional examples. The details
of the construction are rather special; we conjecture that the underlying principles are
not. One of the main obstacles to finding a complete generalisation of these techniques
is the difficulty of finding a map f and a Markov partition of PML(Σ) suitably related
to the piecewise linear structure on PML(Σ).
An illuminating discussion can be made for the once punctured torus Σ1, where the
dimension of PML(Σ1) is 1. Here the Teichmüller space is the upper half plane and the
mapping class group is PSL(2,Z). Although the final results are familiar, the methods
may be of interest, and we begin by presenting this example in some detail to explain
our ideas. Presumably similar methods would prove the automaticity result for Bowen-
Series expansions in the Fuchsian group case.

The outline of the paper is as follows. Section 1 draws together the necessary back-
ground material from a variety of sources. Section 2 gives the construction for the once
punctured torus. Sections 3, 4 and 5 extend this construction to the twice punctured
torus. Section 3 contains an explicit development of the Birman-Series construction for
Σ2. Section 4 gives the action of the mapping class group and the construction of the
Markov map f . In Section 5 we construct a word difference machine which shows that
the f -expansions satisfy the fellow traveller property.

The results in this paper arose out of discussions between the authors and Linda Keen
as part of our ongoing work to understand the Maskit embedding of the twice punc-
tured torus, [12], [13]. We would also like to thank David Epstein and Sarah Rees for
helpful discussions about automatic groups. Part of this research was carried out while
the first author was supported by a S.E.R.C./E.P.S.R.C. Research Fellowship held at
the University of Warwick in the period 1992 – 1994.
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Index of symbols used.

δj a Dehn twist on the once or twice punctured torus: Sections 1.5, 2.2, 3.2.
ιj a symmetry of the once or twice punctured torus: Sections 2.2, 3.2.
ρj the composition of Dehn twists δjδ0δj for j = 1, 2: Sections 4.6, 5.3, 5.4.
φ an element of the mapping class groupMCG(Σj).
ψ a word difference: Sections 1.2, 2.5, 5.
e the identity element of a group.
ej, e

i
j irreducible loops on the once or twice punctured torus: Sections 2.1, 3.1.

fj a Markov map onML(Σj).
Ij maximal cells forML(Σ1): Section 2.1.
∆j maximal cells forML(Σ2): Section 3.1.
Σj the j times punctured torus, for j = 1, 2.
Aj, Bj, . . . regions inML(Σ2) or F : Sections 4.1, 4.5.
Qj, Rj, . . . the union of several regions in F : Sections 2.4, 5.2.
X◦ the interior of a set X.
A the alphabet for a word acceptor: Sections 1.2, 2.4, 4.7.
D the collection of word differences: Sections 1.2, 2.5, 5.1, 5.5.
F the set of Farey blocks (pairs) for Σ2 (or Σ1): Sections 2.3, 4.3.

1. Background

In this section we gather together all of the background material we need. This is taken
from a variety of different areas. Much of the material is expository in nature.

1.1. Markov Maps and the Bowen-Series construction. A Markov map on a
space X is a map f : X → X, together with a finite (or in certain cases infinite)
partition of X into sets Xi, such that f(Xi) is an exact union of sets Xj. We say that
f satisfies the Markov property: if f(X◦i ) ∩ X◦j is non empty then Xj ⊂ f(Xi). For

ξ ∈ X, let p(ξ) = j if ξ ∈ Ij. The sequence p(ξ), p(f(ξ)), p(f 2(ξ)), p(f 3(ξ)), . . . is called
the f -expansion of ξ. Associated to f is a transition matrix of zeros and ones recording
which transitions between states can occur. Since f is Markov, all infinite sequences
with allowable transitions occur. The finite blocks which occur in these expansions are
called admissible. Often a Markov map is required to be expanding or to have other
differentiability properties. Such questions will not concern us here.

The Bowen-Series construction was modelled on the relationship between PSL(2,Z)
acting in the upper half plane model of the hyperbolic plane H2 and the continued
fraction transformation acting on the extended real line R ∪ {∞}. The continued
fraction map

f(x) =





x− 1 if x ≥ 1
x+ 1 if x ≤ −1
−1
x

if |x| ≤ 1

can be regarded as an example of a Markov map with the partition Π into intervals
[∞,−1], [−1, 0], [0, 1], [1,∞]. (For simplicity here and in what follows we omit details
about endpoints. As defined above, the map f is 2-valued at the endpoints.) The
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f -expansion of a point ξ ∈ R is essentially the same as its continued fraction expansion.
We note that the restriction of f to each element of Π belongs to the finite subset
Γ0 = {x 7→ x − 1, x 7→ x + 1, x 7→ −1/x} ⊂ PSL(2,Z). (The well known fact that
Γ0 is a generating set for PSL(2,Z) may be proved using these expansions [22].) Via
f -expansions, R ∪ {∞} may be mapped in an obvious way into Π∞n=0Γ0, giving an
alternative viewpoint in which points in R are regarded as infinite words in Γ0 [20].
Furthermore, the finite admissible blocks which occur in these f -expansions give an
elegant and well known solution to the word problem in PSL(2,Z) [20]: each finite
admissible block is a shortest word relative to the generators Γ0 and every element in
PSL(2,Z) occurs as an admissible block in precisely one way.

This construction was generalised in [4] to the case of an arbitrary Fuchsian group Γ
acting in the disc model of the hyperbolic plane with a given geometric set of generators
Γ0. (See [22] for the best exposition.) This involves the construction of a Markov map
f on the boundary at infinity, the unit circle S1. The elements of the partition were
intervals Ij, and, for each j, the restriction f |Ij was in Γ0. The f -expansions carried
full information about the Γ-action on S1, in the sense that two points were in the
same Γ orbit if and only if the “tails” of their f -expansions agreed. Furthermore,
and this is the point of interest here, these f -expansions simultaneously generate a
most elegant solution to the word problem in Γ [22]. If to each partition interval is
associated f |Ij ∈ Γ0, the f -expansions map to a set of infinite sequences in Γ0. The
finite admissible blocks in the f -expansion, give unique shortest representatives for
words in Γ relative to the generators Γ0. Clearly, this comes very close to saying they
generate an automatic structure for Γ.

1.2. Automatic Groups. In this section we give the properties of automatic groups
that will be used later. More general references to this and related material are the
books of Epstein et al [7] and Holt [9], to which the reader is referred for more details.
See also [10], [19].

An alphabet A is a finite set. A language L over an alphabet A is a collection of
finite sequences of elements of A (called words or strings). The length of a string
w = (a1, . . . , an) is |w| = n.

For the purpose of this paper a finite state automaton over an alphabet A is a finite,
directed, edge labelled graph whose vertices are called states and whose directed edges
are called arrows. There is a specified state called the start state and a partition of the
states into two disjoint sets, the accept states and the non-accept states. Every arrow
from a state is labelled with a symbol from A and no two arrows from the same state
have the same label. Given any string w = (a1, . . . , an) over A and any state s there is
at most one path of arrows starting at s so that the jth arrow is labelled with aj. This
path terminates at some state s′. We say that w goes from s to s′.

The language accepted by this automaton is the collection of strings w over A which go
from the start state to some accept state. A language L over A is called regular if it is
accepted by some finite state automaton over A and this automaton is said to recognise
the language L.
Let G be a group with identity element e. Consider an alphabet A and a map A → G
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denoted by a 7→ a. This extends to a map from the collection of strings over A to G
by w = (a1, . . . , an) 7→ w = a1 . . . an, the product of the images of the letters in w. If
every element of G can be described in this way we call A a finite generating set for G.
A language L = L(G) over A is called an automatic structure for G if two conditions
are satisfied. First, L(G) is a regular language which maps onto G. That is, there is a
finite state automaton so that every element of G may be described by (at least) one
path through this automaton. This automaton is called the word acceptor W(G). The
second property is known as the fellow traveller property which we explain below. If a
group G has an automatic structure then G is called an automatic group.

For a group G with finite generating set A, the word length of g ∈ G denoted |g| with
respect to A is the shortest length of any word in A representing g. The word metric
on G is d(g, h) = |g−1h|. Given a word w = (a1, . . . , an) over A, for each integer
0 ≤ t ≤ n, denote by w(t) = (a1, . . . , at) the prefix of w of length t, and for integers
t ≥ n denote w(t) = w. Given a constant k, two words w, v over A are k-fellow
travellers if d

(
w(t), v(t)

)
≤ k for all t ≥ 0. Also k is called the fellow traveller constant

for w and v. The group G satisfies the fellow traveller property if there is a constant k
such that for any words w, v ∈ L with d(w, v) ≤ 1 then w and v are k-fellow travellers.

Let w and v be a pair of words as above and a ∈ A ∪ {e} so that wa = v. If w and v
are k-fellow travellers then ψ(t) = w(t)−1v(t) has length at most k for all t ≥ 0. Thus
for all choices of w and v with d(w, v) ≤ 1 the ψ(t) lie in a finite set D, the collection
of word differences and A∪ {e} ⊂ D ⊂ L. Knowledge of the word differences allows us
to reconstruct the multiplicative structure of G in an automated way.

More precisely, the fellow traveller property is equivalent to the existence of multiplier
automataMa for each a ∈ A∪ {$} for G [7], [10]. EachMa is a 2-stringed automaton
whose alphabet is A′ × A′, where A′ is the padded alphabet A ∪ {$}. It accepts the
padded pair (w+, v+) for strings (w, v) over A whenever w, v are accept states of W(G)
and wa = v. Here the symbols w+, v+ indicate that the padding symbol $, which maps
to the identity in G, may be added to the shorter of w, v to make them have equal
length. The automaton M$ recognises identity in G, replacing the condition wa = v
by w = v.

The multiplier automataMa for a ∈ A∪ {$} may be constructed by means of a word-
difference machine, clearly explained in [10] and summarised here. This is really a
collection of new automata, all of which have the same state space, namely the set of
triples (s1, s2, ψ) such that s1, s2 are states of L(G) and ψ ∈ D. The start state is
(s0, s0, e) where s0 is the start state of L(G) and e is the identity of G. For a, b ∈ A
there is an arrow from (s1, s2, ψ) to (s′1, s

′
2, ψ

′) if and only if there are arrows s1
a−→ s′1

and s2
b−→ s′2 in the word acceptor and if ψ′ = x−1ψy. In the automatonMa, the state

(s1, s2, d) is a success state if s1, s2 are in L and if ψ̄ = ā.

There is an extra technicality needed to deal with the padding symbol. Namely, we
have to add an extra state to the word acceptor W(G) which is reached when W(G)
is in an accept state and the padding symbol is read. If either of s1 or s2 is this extra
state, then one or other of x, y as above will be replaced by the padding symbols $ and
the condition ψ′ = x−1ψy will be replaced by ψ′ = ψy or ψ′ = x−1ψ. Frequently we
shall think of these conditions as commutative squares or triangles of relations between
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elements in the group.

If we can construct a word difference machine using a finite set of word differences
D′, then we have clearly verified the fellow traveller property and can use the above
process to simultaneously construct all the multiplicative automataMa. The process
can be seen as concatenating squares or triangles to yield a collection of cross paths in
D between all the prefixes w(t) and wa(t) occurring in the normal forms of any two
words w and wa for a ∈ A. The collection of all those squares and triangles which arise
is easily seen to give a presentation for the group.

We can often use a Markov map to construct a word acceptor. This is analogous
to Mosher’s construction of a word acceptor by reversing the combing process [17].
Suppose that we have a (fixed point) free action of a group G on a space X and a
Markov map f defined with respect to a partition {Xi} of X so that on Xi the map f is
some element of G. Suppose that there exists a particular x ∈ X so that for each g ∈ G
there is a non-negative integer n so that fn(gx) = x, and so that n = 0 if and only if g is
the identity e.1 Then we can use f to define a word acceptor for G as follows. There is
a special start state corresponding to x and there is one state for each Xi in the Markov
partition. For each Xi suppose that f |Xi

= αi and f |Xi
= αi : Xi → Xj ∪ · · · ∪ Xk.

We draw an arrow from the each of the states Xj, . . . , Xk to Xi with the label αi
−1.

This means that all the arrows arriving in each state have the same label and all arrows
leaving each state have different labels. (Strictly speaking, there should be arrows
leaving each state with every label in the alphabet. If there are letters in the alphabet
that do not occur as labels leaving a particular state Xi then we draw arrows from Xi

with these labels to a new state called the fail state. All arrows leaving the fail state
return there. In practice we do not use the fail state and will omit all arrows leading
there.) In order to read a normal form for g ∈ G we consider the word in G obtained by
inverting the composition of the particular values of f arising from f n(gx) = x. This
is the same as path through the word acceptor corresponding to g.

We shall find a suitable set of word differences D by starting from the generating set
A and successively adding more words ψ′ as dictated by the conditions ψ′ = x−1ψy
until the collection we arrive at becomes closed under further moves of this kind. The
method is similar to Mosher’s construction of “raising bems” [17]. Since the states
of the word acceptor are elements of the partition of X, the states of the difference
machine are elements (Xi, Xj, ψ) for Xi, Xj in the Markov partition and ψ ∈ D. The

new relations will be of the form ψ′ = αi−1ψαj where αi = f |Xi
. We shall also allow

degenerate squares or triangles corresponding to pairs of states (Xi, Xj, ψ), (X
′
i, Xj, e)

with ψ = f |Xi
, giving the trivial relation e = ψ−1ψ. During this process of adding

new word differences, it will unfortunately sometimes be necessary to subdivide some
of the states Xi. This is because the various word differences ψ ∈ D may map the state
Xi to a number of different states on which the definition of f varies, thus possibly

introducing several different variants of the relation ψ ′ = α−1i ψαj. Technically, this
means that we have to add new states (Yik , Yjl , ψ) to the word difference automaton,
where the new sets Yik , Yjl are certain subsets of Xi and Xj. However, these difficulties

1This is very close to the property of orbit equivalence: f is said to be orbit equivalent to G on X
if for any x, y ∈ X then x = gy for some g ∈ G if and only if fnx = fmy for some m,n ≥ 0.
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are also resolved after a finite number of steps, and it should be clear that from the
resulting collection of squares and triangles we can construct automata as required.

1.3. Multiple simple loops and π1-train tracks. In what follows we do not use the
conventional Thurston theory of train tracks (for which see [18], [23]) but a variant due
to Birman and Series [2]. We will only be concerned with punctured surfaces and there
the theory is much easier. Thus we restrict our attention to this case. For details see
also [12].

A loop on a surface Σ is a closed curve. A loop is called simple if it has no self inter-
sections. A loop is boundary parallel or peripheral if it is homotopic to a loop around a
puncture. A multiple simple loop is a collection of pairwise disjoint simple loops none
of which is either homotopically trivial or boundary parallel. For the p times punc-
tured torus Σp the maximal number of non-trivial homotopy classes of disjoint, non
boundary parallel curves is p. Thus a multiple simple loop γ on Σp can be written as
m1γ1+ · · ·+mpγp where mj is a non-negative integer and the γj are distinct homotopy
classes of simple closed curves on Σp.

For definiteness, fix a choice of hyperbolic structure on Σ and let R ⊂ H2 be a fun-
damental region for our surface whose vertices are all at punctures of the surface.2

Suppose R has sides σk and side pairing maps µk : σk 7→ σk′ where µk′ = µk
−1 for each

k. Let R be the closure of R in H2. A π1-train track τ is a collection of pairwise disjoint
arcs αj : [0, 1]→ R so that

(i) αj(0) ∈ σk and αj(1) ∈ σl,
(ii) αj(λ) ∈ R◦ for λ ∈ (0, 1),

(iii) at most one arc joins each pair of sides,

(iv) no arc goes from one side to itself. That is, if k and l are as in (i) then k 6= l.

An arc of τ is called a corner arc if it joins adjacent sides of R. Each corner arc faces
a particular vertex of R and for each vertex cycle in the side pairing of R we have
the corresponding corner cycle consisting of all corner branches corresponding to the
same puncture. A weighting w on a π1-train track τ is an assignment of a non-negative
number w(αj) to each arc αj of τ . A weighting is integral if each weight is a (non-
negative) integer. We define the length of w, denoted |w|, as |w| =∑w(αj) where the
sum is over all arcs αj of τ .

We now explain how to collapse a multiple simple loop to obtain a π1-train track with
an integral weighting. We begin by lifting the multiple simple loop γ to the fundamental
region R. The multiple simple loop becomes a collection of arcs, called strands, joining
sides of R. We say that a multiple simple loop γ is supported on a π1-train track τ if,
for every strand of γ there is an arc of τ joining the same pair of sides. If γ is supported
on τ we may give τ an integral weighting wγ by assigning to each arc of τ the number
of strands of γ joining that pair of sides. This weighting has the following properties
(see [2], [12]):

2Our results are combinatorial in nature and hence independent of the particular hyperbolic struc-
ture chosen. Nevertheless, since the theory of π1-train tracks involves hyperbolic geometry, some choice
needs to be made.
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(i) For each side pairing µk : σk → σk′ , the sum of the weights of arcs with end-
points on σk is the same as the sum of the weights of arcs with endpoints on
σk′ .

(ii) At least one arc in each corner cycle must have weight zero.

The first condition holds because when we perform the gluing coming from µk each
endpoint of a strand of γ on σk is identified with the endpoint of a strand on σk′ . Thus
the total numbers of endpoints on this pair of sides are the same. The second condition
holds because, if not, the strands in corner cycle would join up to give a peripheral loop
in γ. If a (non-negative but not necessarily integral) weighting satisfies (i) and (ii) we
call it a proper weighting. Conversely, every proper integral weighting w on a π1-train
track τ gives rise to a multiple simple loop γ. This means that in order to study multiple
simple loops it is sufficient to study proper integral weightings on π1-train tracks. Let
W (τ) denote the collection of all proper weightings on the π1-train track τ and WO(τ)
the collection of proper integral weightings on τ (see [12]).

1.4. Irreducible loops and PML. A π1-train track τ is said to be recurrent (see
[23]) if there exists a proper integral weighting w ∈ WO(τ) so that w(αj) is non-zero
for all branches αj of τ . Such a π1-train track τ is said to be maximal if there does
not exist a recurrent π1-train track τ ′ so that τ is properly contained in τ ′ in the
obvious sense. It follows from Thurston’s theory, or as one can directly verify in the
special cases of concern to us here, that if τ is a maximal recurrent train track then the
dimension of W (τ) is 6g−6+2p where Σ is a surface of genus g with p points removed.
We call the collection of all proper weightings W (τ) on a maximal recurrent π1-train
track τ a maximal cell. Any simple loop γ defines a recurrent π1-train track τ(γ) with
weights w(γ) as above. A simple loop γ is said to be irreducible if w(γ) 6= w1 + w2

for any w1, w2 ∈ WO
(
τ(γ)

)
and wj 6= 0 for j = 1, 2. Clearly there are only finitely

many maximal recurrent π1-train tracks. We shall see below that if Σp is the p-times
punctured torus, for p = 1, 2, each maximal cell is the linear span of 2p irreducible
loops.

We denote the collection of all homotopy classes of multiple simple, non-boundary
parallel loops on Σ byMLO(Σ) and the collection of all measured geodesic laminations
on Σ byML(Σ). It is a theorem of Birman and Series [2] thatMLO(Σ) andML(Σ)
can be identified with the collections of proper integral weightings and proper weightings
respectively on π1-train tracks on Σ. ForMLO(Σ) the proof of this follows the outline
given above. If w ∈ ML(Σ) then clearly w is contained in some maximal cell W (τ).
Thus ML(Σ) is the union of maximal cells W (τi) where τi runs over all maximal
recurrent π1-train tracks on Σ. This givesML(Σ) a natural cell structure. In the cases
we are interested in, namely Σ1 and Σ2, we shall prove (Propositions 2.1.1 and 3.1.2)
the following result.

Proposition 1.4.1. For p = 1, 2 let Σp denote the p times punctured torus. There
are finitely many irreducible loops e1, . . . , ek on Σp so that for each maximal π1-train
track τ the corresponding maximal cell W (τ) is the positive linear span of 2p irreducible
loops: W (τ) = sp+{ei1 , . . . , ei2p}, where ij ∈ {1, . . . , k}. Also the intersection of two
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cells is

W (τ) ∩W (τ ′) = sp+
(
{ei1 , . . . , ei2p} ∩ {ei′1 , . . . , ei′2p}

)
,

where
W (τ) = sp+{ei1 , . . . , ei2p} and W (τ ′) = sp+{ei′1 , . . . , ei′2p}.

The space W (τ) may be projectivised in a natural way to obtain ¶W (τ) and similarly
WO(τ) can be projectivised to obtain the set of rational weightings PWO(τ). The
space PML = PML(Σ) is the union over all τ of the corresponding cones ¶W (τ),
which we call π1-cones, glued along their lower dimensional common simplices as in the
proposition. We denote the union of all rational weightings ¶WO(τ) by PMLO(Σ).
Using the Birman-Series identification, the space PML(Σ) can be naturally identified
with the space of projective measured laminations on Σ, shown by Thurston to be a
sphere of dimension 6g − 7 + 2p [18]. Thus in our two examples, we expect PML(Σ1)
and PML(Σ2) to be S1 and S3 respectively. In each example we shall first determine
the maximal cones. Gluing up using Proposition 1.4.1 will allow us to see explicitly
how the spheres S1 and S3 are formed.

1.5. Dehn twists and the mapping class group. The (orientation preserving)map-
ping class groupMCG =MCG(Σ) of Σ is the group of isotopy classes of (orientation
preserving) automorphisms of Σ, see [1] or [17] for example. That is, an element ofMCG
is an (orientation preserving) homeomorphism of Σ to itself and two such homeomor-
phisms give the same element ofMCG if one can be deformed to the other isotopically
along a continuous path of homeomorphisms of Σ to itself. There is a natural action of
the mapping class group on Teichmüller space of Σ as the Teichmüller modular group.
This action can be extended to PML(Σ), [24], and it is this action we will consider
here.

Let w be a simple closed curve on a surface Σ parametrised by ξ ∈ [0, lw] where lw is
the length of w. Consider a small tubular neighbourhood around w in Σ and denote
this by Nw = [0, 1]×w. We define a homeomorphism of Σ called (left) Dehn twist about
w (see [1] for example) denoted δw as the identity on Σ − Nw and by requiring that
(η, ξ) ∈ [0, 1]×w is mapped by δw to (η, ξ− ηlw) where η ∈ [0, 1] and ξ− ηlw is defined
mod lw. Observe that if η = 0 or 1 then δw is the identity. By a well known result of
Dehn [6], the (orientation preserving) mapping class group is generated by Dehn twists.

We will produce a set of Dehn twists which we shall show are generators for the map-
ping class groups of Σ1 and Σ2. We will then investigate the action of these Dehn
twists on the piecewise linear structure on PML(Σp) given by π1-train tracks. In par-
ticular we show that the Dehn twists act piecewise linearly on PML(Σp) with respect
to this piecewise linear structure. Moreover, the action also restricts to an action on
PMLO(Σp). This gives a piecewise linear action of MCG on PML and PMLO re-
spectively. This action is not free in the sense that there are elements of PMLO which
have non-trivial stabilisers in MCG. For example, performing a Dehn twist about w
fixes w and any curve disjoint from w. In order to construct a Markov map whose
orbits describeMCG we need to find a (fixed point) free action ofMCG on a suitable
space Y . For the case of the once punctured torus, Y will be the space of (ordered)
Farey neighbours, that is, pairs of curves which intersect exactly once. For the twice
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punctured torus we will generalise this idea by defining quadruples of curves in a special
topological configuration which we call Farey blocks. The space Y of Farey blocks will
admit a free action ofMCG(Σ2).

2. The mapping class group of the once punctured torus

In this section we carry out the construction of π1-train tracks, a Markov map and an
automatic structure for the once punctured torus. Much of the material in this section
is, to some extent, well known. However, we shall adopt a non-standard view point. The
reasons for including this section are two-fold. First, the main structure of the argument
is the same as for the twice punctured torus. Thus it will serve as motivation and a
guide for what follows, explaining the main ideas with computations of a much more
manageable scale. Secondly, when we are dealing with the twice punctured torus there
are several steps in the construction of the Markov map and automatic structure. One
of these steps is essentially the construction we present in this section. This will save
us considerable effort later on. In Sections 2.1 and 2.2 we show that certain elementary
Dehn twists act on ML(Σ1) exactly like the continued fraction map on R ∪ {∞}. In
Section 2.3 we construct the Markov map and in Sections 2.4 and 2.5 we explain how
it gives the automatic structure forMCG(Σ1) = PSL(2,Z).

2.1. π1-train tracks and the cell structure ofML(Σ1). As remarked in Section 1.3,
we start by fixing a definite hyperbolic structure for Σ1 and a fundamental domain
R1 ⊂ H2 for the action of π1(Σ) on the hyperbolic plane.

v v

vv

1 4

32

R

T

T

S S1

Fig. 2.1.1. A hyperbolic fundamental domain R1 for Σ1, where S, T denote S−1, T−1

The fundamental domain R1 we choose is the standard rectangular one with opposite
sides identified by side pairings which match the midpoints of the sides. The region
R1 has four vertices all of which project to the puncture of Σ1 (see Fig. 2.1.1). We
label these v1, v2, v3, v4 in clockwise order. Writing vivj for the side joining vi to vj, the
side pairings will be S carrying v1v2 to v4v3 and T carrying v1v4 to v2v3. The maps
S and T correspond to homotopy classes of simple closed curves which freely generate
the fundamental group. We now introduce the irreducible loops that will form the
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basis for ML(Σ1) as explained in Proposition 1.4.1. They are defined as follows (see
Fig. 2.1.2.):3

• e0 consists of a single arc joining v1v2 and v3v4;

• e1 consists of an arc joining v1v2 and v2v3 and an arc joining v3v4 and v4v1;

• e∞ consists of a single arc joining v2v3 and v4v1;

• e−1 consists of an arc joining v2v3 and v3v4 and an arc joining v4v1 and v1v2.

We mention in passing that one may also define these loops in terms of the cutting
sequences as discussed in [3] or [22]: e0 = S, e1 = ST , e∞ = T and e−1 = S−1T . (Since
the loops are un-oriented, strictly speaking e0 = S or S−1 and so on.)

e e e e0 1 -18

Fig. 2.1.2. The elementary π1-train tracks

Next, we define cells in ML(Σ1). We show below that these are maximal. The cells
are:

I0 = sp+{e0, e1}, I1 = sp+{e0, e−1}, I2 = sp+{e∞, e−1}, I3 = sp+{e∞, e1}.

Proposition 2.1.1. The cells I0, I1, I2, I3 are maximal and their union isML(Σ1).

Proof. It is sufficient to show that no extra arcs can be added to any of these four π1-
train tracks, and that any loop is supported on one of them. This is carried out in the
appendix to [2]. For convenience we reproduce it here. Clearly, any maximal π1-train
track on Σ1 must have one of the two forms illustrated in Fig. 2.1.3. Summing the
weights over the two pairs of identified sides and cancelling a we obtain two equations

b+ e = c+ d, b+ c = e+ d.

We may solve these to obtain b = d and c = e. Now we know that on the corner cycle we
cannot have all the weights non-zero. Thus b = 0 or c = 0. Since all the weights are non-
negative, this means that there are four configurations of π1-train track corresponding
to non-boundary parallel, simple loops on Σ1. ¤

Notation 2.1.2. By Proposition 2.1.1 any simple closed curve γ may be represented
as aei + bej where w(γ) ∈ Ik = sp+{ei, ej} for some k = 0, 1, 2, 3. We always write
the ordered pair (a, b) to represent ae0 + be1 if w(γ) ∈ I0, ae0 + be−1 if w(γ) ∈ I1,
ae∞ + be−1 if w(γ) ∈ I2 or ae∞ + be1 if w(γ) ∈ I3.

3For simplicity we draw R1 as a Euclidean rectangle in what follows.
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a

b c

de

a

b c

de

(i) (ii)
Fig. 2.1.3. The two possible configurations for a maximal weighted π1-train track on R1

The notation for the ej has the following rationale. Regard R1 as a square with v1 in
the bottom left hand corner, and side pairings which are Euclidean translations. By
Proposition 2.1.1 above, any simple closed curve γ on Σ1 is supported on one of the
four maximal cells Ik. Thus, up to homotopy, γ is equivalent to a family of parallel
Euclidean straight lines across R1. Lifting to the Euclidean universal cover of R1, that
is R2, such a family of lines links to form a line of rational slope on the plane. With
this identification, it is clear that the curve we have labelled ej has slope j.

2

3

3

Fig. 2.1.4. The line of slope 3/5 drawn on R1 and as a weighted π1-train track

More generally, we obtain an identification of PML(Σ1) with the extended real line
R ∪ {∞} by mapping (a, b) ∈ I0 to the point b/(a + b), (a, b) ∈ I1 to −b/(a + b),
(a, b) ∈ I2 to −(a+ b)/b and (a, b) ∈ I3 to (a+ b)/b. An example, the curve represented
by (2, 3) = 2e0 + 3e1 ∈ I0, is shown in Fig. 2.1.4. This corresponds to the line of slope
3/5 in R2.

The maximal cells I0, I1, I2, I3 have their boundaries identified as in Proposition 1.4.1.
In this case it is easy to see that I0∩I1 = sp+{e0}, I1∩I2 = sp+{e−1}, I2∩I3 = sp+{e∞}
and I3 ∩ I0 = sp+{e0}. The other two intersections are empty. This is illustrated in
Fig. 2.1.5, from which one clearly sees that PML(Σ1) ∼ S1. We remark that in the
appendix to [2], Birman and Series considered oriented curves and so found a different
cell structure forML(Σ1).
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Fig. 2.1.5. The partition of ML(Σ1) into maximal cells

2.2. Dehn twists and the mapping class group. Let the Dehn twists about e∞
and e0 be denoted by δ0 and δ1 respectively. We now want to investigate the effects
of these twists on the projective structure on the space of train tracks constructed in
the previous section. In order to simplify things we will make use of some natural
symmetries of R1 and the π1 train tracks we constructed above. These symmetries are
defined as follows:

• ι1 interchanges the pairs (v1, v4), (v2, v3);

• ι2 cyclically permutes the vertices sending v1 to v2, v2 to v3 and so on;

• ι3 fixes v1 and v3 and interchanges (v2, v4).

In addition, we will sometimes write ι0 for the identity map. Observe that applying ι2
twice we get a rotation of R1 by 180◦ which interchanges v1, v3 and v2, v4. Even though
this is not the identity on R1 it does act as the identity on each of the Ij. (This map is
just the map which sends any curve to itself with the opposite orientation.) The ιj act
on PML(Σ1) as the Klein 4-group. On these irreducible loops this action is given by:

ι1 : e0 7→ e0, e1 7→ e−1, e∞ 7→ e∞, e−1 7→ e1,
ι2 : e0 7→ e∞, e1 7→ e−1, e∞ 7→ e0, e−1 7→ e1,
ι3 : e0 7→ e∞, e1 7→ e1, e∞ 7→ e0, e−1 7→ e−1.

Note that the action of the symmetries extends naturally to the cells Ij. Moreover, the
action is given by ιj(I0) = Ij. The benefit of applying these symmetries is that we only
need consider the action of δ0 onML(Σ1). The action of δ0

−1 and δ1
±1 will follow by

symmetry as follows. We claim that

ι1δ0ι1 = δ0
−1 ι2δ0ι2 = δ1 ι3δ0ι3 = δ1

−1

ι1δ1ι1 = δ1
−1 ι2δ1ι2 = δ0 ι3δ1ι3 = δ0

−1.

This is because ι1 and ι3 reverse orientation and so conjugate right Dehn twists to left
Dehn twists, while ι2 preserves orientation but interchanges e0 and e∞.
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Applying a Dehn twist to a weighted π1-train track sometimes results in an unreduced
π1-train track, that is a π1-train track which may have arcs with both ends on the same
edge of the fundamental domain. An unreduced π1-train track satisfies conditions (i) –
(iii) given in Section 1.3 but fails to satisfy (iv). The process of converting an unreduced
(weighted) π1-train track into a (reduced) π1-train track is called pulling tight. Suppose
that the unreduced π1-train track τ has an arc α from the side σk to itself and that
this arc has weight w(α). Suppose also that τ has a proper integral weighting. We
begin by converting it into a multiple simple loop γ on R1. This means that we replace
each arc αj with weight w(αj) by w(αj) strands joining the same pair of sides as αj.
In particular we have w(α) strands from σk to itself. We now perform a homotopy
of Σ which will remove the intersections of all these strands with σk. This is done as
follows. We can always choose an innermost strand β, which together with an arc of
σk bounds a disc in R1 containing no other strands. Suppose that the endpoints of β
on σk are x+ and x−. Now consider the images of x+ and x− under the side pairing
map µk. These are points of σk′ that are ends of strands β+ and β− respectively. (To
find out which strands, put an orientation on σk and σk′ consistent with µk and then
count endpoints from the corresponding ends of σk and σk′ .) The other endpoints of
β+ and β− are points y+ and y− on sides σ+ and σ−. We replace β, β+ and β− by a
single strand β ′ from y+ to y−. It is clear that this strand can be drawn disjoint from
the other strands of γ. We have reduced the number of strands by two. This process
clearly terminates after a finite number of applications, giving a multiple simple loop
which has no strands with both endpoints on σk. Repeating for all k gives a reduced
π1-train track on R1 with a proper integral weighting.

Proposition 2.2.1. Let (a, b) ∈ I0. The Dehn twists act on I0 as follows:

δ0(a, b) = (b, a+ b) ∈ I3
δ−10 (a, b) = (b, a) ∈ I1

Proof. This follows directly from the linearity theorems in [2]. We include an alterna-
tive proof as an illustration of how we manipulate π1-train tracks. It is illustrated in
Fig. 2.2.1 below. We begin with the train track for a general integral point (a, b) ∈ I0.
We want to perform the Dehn twist δ±1j , for j = 0, 1, about the curve γj which is
either e∞ or e0 respectively. We draw a tubular neighbourhood about γj as a strip
going from one side to the opposite side. This strip is bounded by dotted lines in the
figure. The Dehn twist is the identity outside this strip and inside the strip fixes one
boundary component of the cylinder about γj while rotating the other component one
whole turn. In between we interpolate linearly so that an arc of a train track which
went straight across is now wrapped once around the cylinder before emerging on the
other side. It still carries the same weight which represents the number of strands in
the corresponding multiple simple loop. In the cases illustrated in the top or bottom
diagrams in Fig. 2.2.1, all that remains is to gather together arcs whose endpoints lie on
the same sides and add their weights. In the middle two cases in Fig. 2.2.1 we need an
intermediate step. Namely the image train track is unreduced so that we need to pull
tight. In the first case, that is δ0

−1(a, b), the unreduced arc joins the bottom side to
itself and has weight b. Convert the train track into a multiple simple loop by drawing
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w(α) strands joining the same pair of sides as α for each arc α with weight w(α). This
gives b strands joining the bottom side to itself. Reading from the left, the first b end-
points of strands along the bottom edge are joined to the next b strands in the reverse
order. Likewise reading from the left, the first b strands on the top side are ends of
strands all joining the left hand side and the next b strands all join the right hand side.
Thus we may pull all b simple loops tight at once by replacing all 3b of these strands by
b strands joining the left and right sides. The result after converting back to a π1-train
track is shown in the right hand column. For δ1(a, b) we perform the same process but
the result is slightly more complicated. Now we have an arc of weight b joining the
right hand side to itself. When we convert to a multiple simple loop this arc becomes b
strands which, reading from the bottom, are the first b strands on the right hand side.
These are joined to the next b strands on the same side. On the left hand side the first
b strands from the bottom have their other endpoint on the bottom side. However we
need to take care when finding the next b strands. If a ≥ b these next b strands join
the right hand side and we may pull these loops tight to obtain b strands joining the
bottom side to the right hand side. There were a− b strands joining the left and right
sides which we have not used and these remain after pulling tight. In the case where
a ≤ b we can pull a strands tight in this way. There remain b − a strands joining the
right hand side to itself. Their other ends join the left and top sides. Thus after pulling
tight we obtain b−a strands joining the top and bottom sides and a remain joining the
left and top sides. After reconverting to π1-train tracks one obtains the result, again
shown in the right hand column. To complete the proof for general weightings (a, b),
note that we can clearly obtain the result for proper rational weightings by clearing
denominators inMLO(Σ1). The result for general w(α) follows by continuity. ¤

=
b

b

a a

b

b

a

b

a+b
b

a+b

=

=

=

=

a>b

a<b

a

b

b

a

b

b

a

b

b
a

a

b a

b

b a

b b

a-bb

b

a b-a

a

b a

b

b a

b

b a+b

b

δ

δ

δ

δ

0

0

1

1

-1

-1

Fig. 2.2.1. The action of Dehn twists on points of I0
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It is well known that the Dehn twists δ0 and δ1 generate the mapping class group
MCG(Σ1). In fact we have ι2 = δ1δ0δ1. Together with ι2δ1ι2 = δ0 and the fact that ι2
has order 2 this immediately gives

δ1δ0δ1 = δ0δ1δ0, (δ0δ1)
3 = e.

It turns out that this gives a presentation ofMCG(Σ1):

MCG(Σ1) =
〈
δ0, δ1|δ1δ0δ1 = δ0δ1δ0, (δ0δ1)

3 = e
〉
.

This may be seen either using standard facts about the modular group or can be
deduced from the automatic structure given below, see Section 2.5. In order to obtain
the identification ofMCG(Σ1) with PSL(2,Z), consider the identification of PML(Σ1)
with R∪{∞} given in Section 2.1. It is easy to see that after making this identification,
the action of δ0 and δ1 on R ∪ {∞} is given by

δ0 : x 7→ x/(−x+ 1), δ1 : x 7→ x+ 1.

Notice that this is essentially the same as the continued fraction map explained in
Section 1.1. We see that ι2 : x 7→ −1/x. If we had been considering oriented curves
as in the appendix of [2] it is clear that ι2

2 would fix each non-trivial, non-peripheral
curve but reverse its orientation. This corresponds to the matrix −I and we would have
obtained an action of SL(2,Z) rather than PSL(2,Z).

2.3. The Markov map and Farey pairs. We will now define a Markov map f1 on
ML(Σ1) from which we shall construct the desired automatic structure forMCG(Σ1).
The Markov partition ofML(Σ1) will consist of the four maximal cells I0, I1, I2 and
I3. These cells are closed and therefore intersect along their boundaries. This gives rise
to ambiguities, but this will not present a problem. The map f1|Ij will be chosen from

{δ0±1, δ1±1} in such a way that f1 has the required Markov property.

Lemma 2.3.1. δ1(I0) = I0 ∪ I3.

Proof. By Proposition 2.2.1 we see that δ1(I0) ⊂ I0 ∪ I3. Also δ1
−1(I0) ⊂ I0 and

δ1
−1(I3) = ι3δ0ι3(ι3I0) = ι3δ0(I0) ⊂ ι3(I3) = I0. This gives the result. ¤

We now define f1|I0 = δ1 and f1|Ij by symmetry. In summary, f1 is defined as

f1|I0 = δ1 : I0 7→ I0 ∪ I3
f1|I1 = δ1

−1 : I1 7→ I1 ∪ I2
f1|I2 = δ0 : I2 7→ I1 ∪ I2
f1|I3 = δ0

−1 : I3 7→ I0 ∪ I3.
On a boundary Ii ∩ Ij the map is considered to be two valued. By Lemma 2.3.1 the
map f satisfies the Markov property of Section 1.1. The following lemma will be crucial
for constructing the automaton. Recall the definition of length given in Section 1.3. In
this case we can see by direct inspection that if w = (a, b) ∈ Ij then |w| = a + 2b for
j = 0, 1, 2, 3.

Lemma 2.3.2. Let w ∈ MLO(Σ1) be a proper integral weighting on a π1-train track
τ . Then |f1(w)| ≤ |w| with equality if and only if w = ae0 or ae∞ for a ∈ N.
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Proof. This is easy to check from Proposition 2.2.1. ¤

The rough idea of the construction of the word acceptor forMCG(Σ1) is to use the four
cells I0, I1, I2, I3 as states and to define arrows using the transition matrix associated to
the Markov map f1. However there is a problem with this idea, namelyMCG(Σ1) does
not act freely onML(Σ1). In other words, φγ = γ for φ ∈ MCG(Σ1) and γ a simple
loop on Σ1 does not imply that φ is the identity. We therefore need to consider the
action ofMCG(Σ1) on a space of slightly more elaborate objects on which the action
is fixed point free. To this end, we introduce the notation of a Farey pair.

Two (homotopy classes of) simple closed curves on Σ1 are called Farey neighbours
if they (have representatives that) intersect exactly once. Notice that this condition
automatically implies that these curves do not divide the punctured torus so neither
of them can be boundary parallel or homotopically trivial. We consider ordered pairs
of Farey neighbours (γ1, γ2) which we refer to as Farey pairs. It is clear that (e0, e∞)
and (e∞, e0) are both Farey pairs. We denote the set of all Farey pairs by F . It is
easy to see the Farey pair (e0, e∞) has trivial stabiliser inMCG(Σ1) and that, for any
other Farey pair (γ1, γ2), there is an element φ ofMCG(Σ1) sending it to (e0, e∞). As
(e0, e∞) has trivial stabiliser this element is unique. In particular, ι2 sends (e∞, e0)
to (e0, e∞). Fortunately, the notion of Farey neighbours is compatible with the cell
structure ofML(Σ1) in the following sense.

Proposition 2.3.1. Let (γ1, γ2) be a pair of Farey neighbours. If {γ1, γ2} 6= {e0, e∞}
then γ1 and γ2 are both contained in Ij for some j = 0, 1, 2, 3.

Proof. The easiest way to see this is to use the well known fact that, using the iden-
tification of PML(Σ1) with R ∪ {∞} given in Section 2.1, a pair of Farey neighbours
corresponds to a pair of rational numbers p/q and r/s with ps − qr = ±1, see [20].
Provided we have {±p/q,±r/s} 6= {0 = 0/1,∞ = 1/0}, it is clear that p/q and r/s
are both contained in one of the intervals [−∞,−1], [−1, 0], [0, 1] or [1,∞]. The result
follows from the discussion in Section 2.1. ¤

On a cell Ij, the map f1 is constantly equal to a fixed element αj of MCG(Σ1) with
possible ambiguity at the endpoints. Proposition 2.3.3 allows us to extend the action
of f1 to F −

{
(e0, e∞), (e∞, e0)

}
by defining f1(γ1, γ2) =

(
αj(γ1), αj(γ2)

)
whenever

γ1 and γ2 are both in Ij. (Notice that this automatically takes care of the ambigu-
ities at the endpoints.) Since the mapping class group preserves Farey neighbours,
it follows that

(
αj(γ1), αj(γ2)

)
∈ F and we can continue to iterate f1 until possibly

f1
n(γ1, γ2) ∈

{
(e0, e∞), (e∞, e0)

}
. The following shows that the iteration process will

always terminate in this way. It is an immediate consequence of Lemma 2.3.2.

Lemma 2.3.3. Suppose (γ1, γ2) ∈ F and {γ1, γ2} 6= {e0, e∞}. Then

|f1(γ1)|+ |f1(γ2)| < |γ1|+ |γ2|.

Suppose now that φ ∈ MCG(Σ1). Since the condition of being Farey neighbours is
topological, the pair

(
φ(e0), φ(e∞)

)
is always a Farey pair. Our normal form results

from the following proposition.
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Proposition 2.3.2. Let φ ∈MCG(Σ1). Then there exists a non-negative integer n so
that ι2

εf1
n
(
φ(e0), φ(e∞)

)
= (e0, e∞) where ε = 0 or 1.

Proof. This follows immediately from the above discussion and Lemma 2.3.4. ¤

Remark. This proposition shows that the actions of f1 andMCG(Σ1) on the space of
Farey neighbours are orbit equivalent. In other words, for any pairs of Farey neighbours
{γ1, γ2} and {γ ′1, γ′2} we have

{γ′1, γ′2} =
{
φ(γ1), φ(γ2)

}

for φ ∈MCG(Σ1) if and only if there exist non-negative integers m, n so that

f1
n{γ1, γ2} = f1

m{γ′1, γ′2}.
The concept of orbit equivalence is of considerable importance in ergodic theory since
any properties depending only on the orbit structure, for example invariant measures,
can now be studied relative to f1 rather than the group MCG(Σ1). In particular, we
have shown that the action on the space of Farey neighbours is hyperfinite, see [5]. This
should be compared with the analogous results for Fuchsian groups in [4], [22].

2.4. The normal form and the word acceptor. Let us denote the exceptional Farey
pairs (e0, e∞) and (e∞, e0) by K0 and K2. We extend the definition of f1 by setting
f1|K0 = ι0 = e and f1|K2 = ι2 = δ1δ0δ1. Thus we can write F = I0∪I1∪I2∪I3∪K0∪K2.
The point of Proposition 2.3.5 is that it allows us to define normal forms for elements
ofMCG(Σ1) in the following way. For any φ ∈ MCG(Σ1), the pair

(
φ(e0), φ(e∞)

)
lies

in some cell, Un say, where Un is one of I0, . . . , I3, K0, K2. As we apply the map f1 we
move through a sequence of cells

Un // Un−1 // · · · // U1
// U0 = K0.

Here each cell Uj for j ≥ 2 is one of the four cells I0, . . . , I3 and U1 is one of the five
cells I0, . . . , I3, K2. At each stage, f1|Uj

= αj, a fixed element in the set {δ0±1, δ1±1}
(or possibly ι2 if U1 = K2). Thus we have

f1
n
(
φ(e0), φ(e∞)

)
=
(
α1α2 · · ·αnφ(e0), α1α2 · · ·αnφ(e∞)

)
= (e0, e∞).

SinceMCG(Σ1) acts freely on the space F this shows that α1α2 · · ·αnφ = e giving the
normal form φ = αn

−1 · · ·α1
−1. In particular, we have shown that {δ0±1, δ1±1} generate

MCG(Σ1).

For example, suppose that φ = δ0
2δ1. We claim that the normal form for φ is δ0δ1

−1ι2.
From Proposition 2.2.1 we see that φ(e0) = (1, 1) ∈ I3 and φ(e∞) = (0, 1) ∈ I3. Thus
we need to find the f1-expansion for the Farey pair

(
φ(e0), φ(e∞)

)
∈ I3. Applying

f1|I3 = δ0
−1 we obtain f1φ(e0) = (0, 1) ∈ I0 and f1φ(e∞) = (1, 0) ∈ I0. Applying

f1|I0 = δ1 we obtain K2. Applying f1|K2 = ι2 brings us back to K0. Thus

f1
3
(
φ(e0), φ(e∞)

)
=
(
ι2δ1δ0

−1φ(e0), ι2δ1δ0
−1φ(e∞)

)
= (e0, e∞).

From Proposition 2.3.5 we see that ι2δ1δ0
−1φ = e and hence φ = δ0δ1

−1ι2 as claimed.
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Now we follow the procedure outlined in Section 1.2 and construct a finite state au-
tomaton that recognises our normal form. We have just extended the definition of f1
to the F , the set of Farey pairs:

f1|I0 = δ1 : I0 7→ I0 ∪ I3 ∪K0 ∪K2

f1|I1 = δ1
−1 : I1 7→ I1 ∪ I2 ∪K0 ∪K2

f1|I2 = δ0 : I2 7→ I1 ∪ I2 ∪K0 ∪K2

f1|I3 = δ0
−1 : I3 7→ I0 ∪ I3 ∪K0 ∪K2

f1|K0 = e : K0 7→ K0

f1|K2 = ι2 : K2 7→ K0.

In order to define the word acceptor, we define six states labelled I0, I1, I2, I3, K0,
K2 and we draw an arrow from state U to state V labelled by α if U ⊂ f1(V ) and
f1|V = α−1. The start state is K0. It is clear that there is at most one arrow with a
given label from each state and that all arrows ending at a particular state have the
same label. Any path in this graph beginning at K0 and following arrows in the given
direction gives the normal form for an element ofMCG(Σ1) by reading the labels on the
arrows in the order given by the path. Moreover any φ has a unique normal form given
in this way. The word acceptor is shown in Fig. 2.4.1. We remark that because we are
dealing with composition of functions we read all strings from right to left. Perhaps it
is worth pointing out that the normal forms that this word acceptor produces all have
the formW (δ0, δ1

−1)ιε2 orW (δ0
−1, δ1)ιε2 whereW (α, β) is any string in the letters α and

β and ε is either 0 or 1.

KI I

I K I

00 1

22

δ δ

δ δ

δ δ

δ

δ δ

δ

1 1

0 0

10

1 1

0 0

δ 1
−1

−1

−1

−1

−1
0

−1δ

δ

δ 1

2

δ−1
0

−1

δ

δ 1

0

3

ι

Fig. 2.4.1. The word acceptor

For example the element φ = δ0
2δ1 considered in the example above corresponds to the

following path in the word acceptor

K0
ι2 // K2

δ1
−1

// I0
δ0 // I3.
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2.5. The word difference machine. In order to produce an automatic structure for
MCG(Σ1) we now explain how to construct the word difference machine as explained
in Section 1.2. We must find a finite set of words D in MCG(Σ1) called the word
differences. This set should have the following properties: first D should contain the
identity e and all the letters of the alphabet A. The second property is slightly more
complicated. Suppose that ψ ∈ D and U , V are two subsets of the Ij for j = 0, 1, 2, 3
or Kj for j = 0, 2 with the property that ψ(U) = V . Let f1|U = α and f1|V = β denote
the restriction of f1 to U and V . Here α and β are particular elements of the alphabet
A. Then ψ′ = βψα−1 sends α(U) to β(V ).4 Our second requirement on D is that for
all ψ ∈ D we should have ψ′ ∈ D for all choices of U and V . This means that we get a
commutative diagram which we call a square:

U
ψ //

α
²²

V

β
²²

α(U)
ψ′ // β(V )

(∗)

This square corresponds to the relation ψ′ = βψα−1 in G. We want to be able to
concatenate squares vertically. In general α(U) and β(V ) will contain points in several
elements of the partition of F into Ij and Kj. This means that f1 may not be a fixed
element ofMCG(Σ1) on α(U) and β(V ). Let U ′ and V ′ be subsets of α(U) and β(V )
which each lie in a single set in the partition and satisfy ψ ′(U ′) = V ′. We are always
able to subdivide α(U) and β(V ) into finitely many pieces for which this property holds.
Since U ′ and V ′ are each contained in a single set of the partition, the restriction of
f1 to each of these two sets is a fixed element of MCG(Σ1). In this way we can now
construct several squares

U ′
ψ′ //

α′

²²

V ′

β′

²²
α′(U ′)

ψ′′ // β′(V ′)

(∗)

each of which may be placed below (∗). In other words, we may concatenate squares
vertically. A special case is where the word difference is the identity e

U
e //

α
²²

U

α
²²

α(U)
e // α(U)

For example, if U = I0, V = I1 and ψ = δ0
−1 we can construct the following square.

This may be verified using Proposition 2.2.1 and the discussion in Section 2.4.

I0
δ0
−1

//

f1|I0=δ1
²²

I1

f1|I1=δ1
−1

²²
I0 ∪ I3 ∪K0 ∪K2 ι2

// I1 ∪ I2 ∪K0 ∪K2

4This differs from the expression in Section 1.2 as we are now reading strings from right to left.
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In order to concatenate vertically, we need to subdivide the sets in the bottom line of
this square. It could be followed by squares whose top lines are one of

I0
ι2 // I2, I3

ι2 // I1, K0
ι2 // K2, K2

ι2 // K0.

For example, it could be followed by the following square with U ′ = I0 and V ′ = I2:

I0
ι2 //

f1|I0=δ1
²²

I2

f1|I2=δ0
²²

I0 ∪ I3 ∪K0 ∪K2 ι2
// I1 ∪ I2 ∪K0 ∪K2

In order to simplify such diagrams, we make the following definitions

Q0 = I0 ∪ I3 ∪K0 ∪K2, Q2 = I1 ∪ I2 ∪K0 ∪K2.

If ψ = α or ψ = β−1 we define degenerate squares, or triangles as follows. In the case
where ψ = α, we do not apply f1 to V . This means that V may contain points from
several sets in the partition, indeed we can take V = α(U). Likewise if ψ = β−1 we
define a triangle by not applying f1 to U . Again U may contain points from several
sets in the partition and we may take U = β(V ). In both cases ψ ′ is the identity map
e:

U
ψ=α //

α

²²

α(U)

α(U)
ψ′=e

77ooooooooooooo

β(V )
ψ=β−1 //

ψ′=e ''OOOOOOOOOOOOO V

β
²²

β(V )

(∗∗)

We now show that we can take the set of word differences to be

D = {e, δ0, δ0−1, δ1, δ1−1, ι2}.
We first display all squares and triangles for which U is (a subset of) I0. In the cases
of triangles where ψ = β−1 then we replace U by β(V ) and include the cases for which
I0 ⊂ β(V ) in our list.

Q0
δ0 //

e ÃÃB
BB

BB
BB

B
I3

δ0
−1

²²
Q0

I0
δ0
−1

//

δ1
²²

I1

δ1
−1

²²
Q0 ι2

// Q2

I0
δ1 //

δ1
²²

Q0

Q0

e

>>}}}}}}}}

Q0
δ1
−1

//

e ÃÃB
BB

BB
BB

B
I0

δ1
²²
Q0

I0
ι2 //

δ1
²²

I2

δ0
²²

Q0 ι2
// Q2

The squares and triangles where U is (a subset of) I1, I2 or I3 or where β(V ) = Q2 may
be obtained from these by symmetry. Finally, suppose that U is either K0 or K2. If the
word difference ψ is δj

±1 for j = 0, 1 the relevant squares and triangles have already
been included in the above list. Moreover, for such word differences the new word
difference ψ′ is e. On the other hand, if the word difference is ι2 we obtain triangles

K0
ι2 //

e !!B
BB

BB
BB

B
K2

ι2
²²
K0

K2
ι2 //

ι2
²²

K0

K0

e

==||||||||
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Fig. 2.5.1. The (asynchronous) word difference machine

(In addition there are edges from e to itself labelled (δ0, δ0), (δ0
−1, δ0−1), (δ1, δ1), (δ1−1, δ1−1)

and (ι2, ι2).)

We now explain how to construct the word difference machine from these squares and
triangles. Following the outline in Section 1.2, the states of the machine should be any
triple (U, V, ψ) which appears as the top line of one of our squares or triangles. However,
since the only function of the choice of U , V is to determine the value of the map f ,
we may as well take the states of the word difference machine to be the elements of D.
The arrows will be ordered pairs (x, y) ∈ A ∪ {−} where x and y are essentially the
inverses of α and β. In other words, given a square of the form (∗) we draw an arrow
from ψ′ to ψ and label it (α−1, β−1). Similarly the triangles (∗∗) correspond to arrows
from e to ψ labelled (α−1,−) and (−, β−1) respectively. We illustrate this in Fig. 2.5.1.
In addition there should be arrows labelled (α, α) from e to itself for all α ∈ A. It
is automatic from our construction that for any path in the word difference machine
with strings of labels (αj

−1, βj
−1) the strings of labels αj

−1 and βj
−1 are both paths

through the word acceptor. A result of this construction is that we have verified the
presentation for MCG(Σ1) given in section 2.2 (compare the proof of Theorem 2.3.12
of [7], page 51). In order to see this, observe that any closed path through the Cayley
graph can be decomposed into a union of triangles each of which has one side of length
at most one and of which the other two sides are paths in normal form leading back
to the identity. This forms a van Kampen diagram for the closed path by covering it
with squares and triangles of the form we have constructed above. One can easily verify
that each of these squares and triangles corresponds to a relation which may be derived
from δ1δ0δ1 = δ0δ1δ0 or (δ0δ1)

3 = e.

This has essentially constructed a 2-stringed automaton for the word difference machine.
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There is still a technical problem to be overcome. Namely, the word difference machine
is asynchronous. This is because some of the labels have the form (α−1,−) or (−, β−1).
In fact, this will occur exactly once when we are dealing with pairs of elements of the
group which differ by a word of length exactly one. Specifically, the first time the
normal forms of the prefixes from the word acceptor differ we see the symbol “−” in
one of the strings in the word difference machine. This is because all arrows from e
to any other state have this form and no other arrow does. In order to rectify this
difficulty we need to synchronise the word difference machine. This is done as follows.
In the definition of a two stringed automaton, we need to put a padding symbol $ at
the end of one of the words to ensure that they have the same length. Thus we need to
move “−” in the middle of the word to a $ at the end of the word. This is achieved by
adding to our set of word differences the diagonals in each square. That is, for squares
of the type (∗) we add the diagonal word differences β−1ψ′ = ψα−1 and βψ = ψ′α.
(We remark that it is easy to see by inspection that this new word difference can be
rearranged to the form ι2δj

±1 for j = 0, 1.) This has the following effect. Suppose the
normal forms from the word acceptor for words differing by ψ are α1

−1α2
−1α3

−1α4
−1

and β1
−1β2

−1α4
−1. Below we give the path in the word difference machine above (read

from bottom to top), the corresponding squares, the amended squares and finally the
path in the synchronised difference machine.

ψ1 U1

ψ1

ÃÃ@
@@

@@
@@

@

α1

²²

U1

ψ1 //

α1

²²

V1

e

²²

ψ1

ψ2

(α1−1,β1
−1)

OO

U2

ψ2

ÂÂ@
@@

@@
@@

@

α2

²²

V1

β1
²²

U2

ψ′2 //

α2

²²

V1

β1
²²

ψ′2

(α1−1,$)

OO

ψ3

(α2−1,β2
−1)

OO

U3

ψ3

ÃÃ@
@@

@@
@@

@

α3

²²

V2

β2
²²

U3

ψ′3 //

α3

²²

V2

β2
²²

ψ′3

(α2−1,β1
−1)

OO

e

(α3−1,−)
OO

U4
e //

α4
²²

U4

α4
²²

U4
e //

α4
²²

U4

α4
²²

e

(α3−1,β2
−1)

OO

e

(α4−1,α4−1)

OO

U5
e // U5 U5

e // U5 e

(α4−1,α4−1)

OO

Here ψ2, ψ3, ψ
′
2 and ψ′3 are chosen so that the middle two diagrams commute. It is

clear how to change the word difference machine in the light of this example. Of course
there are now rather more states and arrows in the synchronised difference machine. In
particular, the new states are

D′ =
{
e, δ0, δ0

−1, δ1, δ1
−1, ι2, ι2δ0, ι2δ0

−1, ι2δ1, ι2δ1
−1
}
.

3. Train tracks for the twice punctured torus.

We now turn our attention to the twice punctured torus Σ2. We want to mimic the
constructions of the previous section. As we shall see, at every stage the basic ideas are
the same but the implementation is considerably more complex.
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3.1. The cell structure ofML(Σ2). The construction of π1-train tracks for the twice
punctured torus was given in [12]. For convenience we go through this briefly.
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Fig. 3.1.1. A hyperbolic fundamental domain R2 for Σ2

Once again, we fix a hyperbolic structure on Σ2 by specifying a fundamental polygon
for the action of π1(Σ2) on H2. The fundamental domain R2 that we choose to work
with has six vertices, all of which project to punctures of Σ2. We label these v1, . . . , v6
in clockwise order. The side pairings will be S1 identifying v1v2 to v4v3, S2 identifying
v6v1 with v5v4 and T identifying v5v6 with v3v2. We assume that S1, S2 and T match
the endpoints of the respective sides. It is clear that v1 and v4 project to one puncture
and the other four vertices project to the other. The maps S1, S2 and T correspond to
homotopy classes of simple closed curves that generate the fundamental group π1(Σ2).
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Fig. 3.1.2. The irreducible loops on Σ2
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We now introduce the irreducible loops that will form the basis ofML(Σ2). Fig. 3.1.2
is a schematic picture of the eleven loops as they appear on the fundamental domain R2.
The end of a strand on one side of R2 is glued by a side-pairing transformation to the
corresponding end of the paired side. Thus shortest words representing these loops can
be either computed directly or read off using the method of cutting sequences, see [2],
[3] or [12]. For example, in the loop e11 there are three strands. The end of the strand
on v4v3 is glued to the end on v1v2; the end on v2v3 is glued to the end on v5v6, and
the end on v5v4 is glued to the end on v1v6. Thus the cutting sequence is S1TS2, which
as one may easily verify represents this loop in π1(Σ2). Since we are only interested in
the un-oriented loop up to free homotopy, any cyclic permutation of this sequence or
its inverse would work just as well. The full list of cutting sequences for loops is

e0 = S1, e1∞ = S1T, e−1∞ = S1
−1T, e1−1 = S1TS2

−1,

e0 = S2, e∞1 = TS2, e∞−1 = TS2
−1, e−11 = S1

−1TS2,

e∞∞ = T, e11 = S1TS2, e
−1
−1 = S1

−1TS2
−1.

The reason for our notation is the following. If we split R2 into two boxes, the upper
one with vertices v1, v2, v3, v4 and the lower with vertices v1, v4, v5, v6 (see [12]) then e

i
j

has gradient i in the upper box and j in the lower box. Where there is no superscript
(subscript) then the relevant loop has no arcs in the upper (respectively lower) box.
This idea is developed further in [12].
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Fig. 3.1.3. Generic points in the maximal cells ∆1, . . . , ∆7
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We now define 28 cells ∆j in ML(Σ2). As we shall show, these cells are maximal,
meeting only on lower dimensional faces, and their union isML(Σ2).

∆1 = sp+{e0, e0, e11, e1−1}, ∆2 = sp+{e0, e1∞, e11, e1−1},
∆3 = sp+{e∞1 , e0, e11, e1−1}, ∆4 = sp+{e∞1 , e1∞, e11, e1−1},
∆5 = sp+{e∞1 , e0, e∞−1, e1−1}, ∆6 = sp+{e∞1 , e∞∞, e∞−1, e1−1},
∆7 = sp+{e∞∞, e∞1 , e1∞, e1−1}.
∆8 = sp+{e0, e0, e−1−1, e−11 }, ∆9 = sp+{e0, e−1∞ , e−1−1, e−11 },
∆10 = sp+{e∞−1, e0, e−1−1, e−11 }, ∆11 = sp+{e∞−1, e−1∞ , e−1−1, e−11 },
∆12 = sp+{e∞−1, e0, e∞1 , e−11 }, ∆13 = sp+{e∞−1, e∞∞, e∞1 , e−11 },
∆14 = sp+{e∞∞, e∞−1, e−1∞ , e−11 }.
∆15 = sp+{e0, e0, e11, e−11 }, ∆16 = sp+{e0, e∞1 , e11, e−11 },
∆17 = sp+{e1∞, e0, e11, e−11 }, ∆18 = sp+{e1∞, e∞1 , e11, e−11 },
∆19 = sp+{e1∞, e0, e−1∞ , e−11 }, ∆20 = sp+{e1∞, e∞∞, e−1∞ , e−11 },
∆21 = sp+{e∞∞, e1∞, e∞1 , e−11 }.
∆22 = sp+{e0, e0, e−1−1, e1−1}, ∆23 = sp+{e0, e∞−1, e−1−1, e1−1},
∆24 = sp+{e−1∞ , e0, e−1−1, e1−1}, ∆25 = sp+{e−1∞ , e∞−1, e−1−1, e1−1},
∆26 = sp+{e−1∞ , e0, e1∞, e1−1}, ∆27 = sp+{e−1∞ , e∞∞, e1∞, e1−1},
∆28 = sp+{e∞∞, e−1∞ , e∞−1, e1−1}.

The statement that ∆j is a cell should be interpreted in the following way. One needs
to check that the four irreducible loops defining ∆j are all supported on a common
π1-train track τj. This is immediate since one checks that, in each case, all four loops
can be drawn in R2 in such a way that they intersect only on the boundary ∂R2. The
arcs may be homotoped so that their endpoints are at the midpoints of the sides of
R2. Since the midpoints are identified by the side pairings, this exactly gives a π1-train
track in the sense of [2]. The cell ∆j consists of all proper weightings on the π1-train
track τj. Fig. 3.1.4 shows the π1-train track τ1 which supports for the cell ∆1. We
normally draw this as in the top left hand corner of Fig. 3.1.3 where it is clearer that
the weighting shown is ae0 + be0 + ce11 + de1−1. It is easy to check that this is a proper
weighting as defined in Section 3.1.

a

b

c d

c+d

d c

Fig. 3.1.4. The π1-train track τ1 corresponding to ∆1
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Notation 3.1.1. When we want to speak of a point of one of these cells we write it as
an ordered quadruple (a, b, c, d) to represent aei + bej + cek + dek ∈ sp+{ei, ej, ek, el}
where the irreducible loops are taken in the order given above. Thus, for example
(a, b, c, d) ∈ ∆1 means ae0 + be0 + ce11 + de1−1.

Proposition 3.1.1. The cells ∆1, . . . ,∆28 are maximal and their union isML(Σ2).

Proof. (Outline) The idea is similar to the proof of Proposition 2.1.1. We will sketch
the idea and then illustrate it by performing the computation in one case. All other
cases are similar, straightforward, and left to the reader. The idea is the following.
It is clear that any multiple simple loop may be homotoped so that it runs along a
collection of arcs in R2 joining midpoints of distinct sides, and which meet only on ∂R2.
Collapsing all arcs joining the same pair of sides yields a properly weighted π1-train
track on R2. We now reverse this process and investigate what the possibilities for
maximal weightings of this kind are. Take a copy of R2 and draw strands joining the
midpoints of pairs of distinct sides in such a way that no two strands intersect, that no
two strands join the same pair of sides and that no more strands can be added without
violating the previous two conditions. Now put a weight on each strand. In order to be
proper, the weights must satisfy the following conditions as outlined in Section 1.3:

(i) all weights should be non-negative and not all zero,

(ii) either the weight on the corner strand separating v1 from the rest of R should
be zero or else the weight on the corner strand separating v4 should be zero,

(iii) the weight on at least one of the four corner strands separating v2, v3, v5, v6
from the rest of R2 should be zero,

(iv) the sum of the weights of all strands ending on a given side should be equal to
the sum of weights on the side it is identified with.

a b

c

d e f

g

h i

Fig. 3.1.5. Possible weightings on a maximal configuration

Condition (iv) puts three linear relations between the weights. Solving these relations
and inserting conditions (i), (ii) and (iii), we see that we must be in one of the 28
maximal cells defined above depending on our initial configuration of strands. Detailed
computations for the configuration of Fig. 3.1.5 are carried out below. ¤
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Fig. 3.1.6. Dividing the 2−sphere into 14 three-cells.
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Fig. 3.1.7. Fig. 3.1.6 repeated but indicating the maximal cells

An Example. We now perform the computations in the configuration given Fig. 3.1.5
which is a maximal diagram of the type described. By equating the weights on each
side we see that

a+ b = h+ i, a+ c+ d = b+ c+ e+ f, d+ e+ g + h = f + g + i.

At least one of d and f must vanish by condition (ii). (Otherwise there would be a loop
homotopic to one of the punctures.) Without loss of generality we suppose d = 0. This
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means

a+ b = h+ i, a = b+ e+ f, e+ g + h = f + g + i.

Substituting for a in the first equation we obtain

2b+ e+ f = h+ i, e+ h = f + i.

Adding these and cancelling f + h from each side we get i = b + e. Substituting and
cancelling once again we find that h = b+ f . To summarise:

a = b+ e+ f, d = 0, h = b+ f, i = b+ e.

Now by (iii), at least one of a, b, h, i must vanish. By inspection, if any of a, h, i vanish
then so must b. (Remember all weights are non-negative.) This means that b must be
zero and the train track is:

ce0 + ge0 + ee11 + fe1−1 = (c, g, e, f) ∈ ∆1,

corresponding, after changing labels, to the picture shown in Fig. 3.1.4.

We now indicate how the lower dimensional facets in the boundaries of the maximal cells
∆j for j = 1, . . . , 28 fit together in such a way that the resulting manifold is a 3-sphere.
To do this, observe that there are fourteen maximal cells containing the irreducible
loop e1−1 and fourteen containing e−11 . Moreover, these two irreducible loops never
occur together in one of the cells (or else there would be loops around both punctures).
Thus each maximal cell is a cone with apex e1−1 or e−11 over the cell spanned by the
other three irreducible loops. One can verify that there are fourteen possibilities for
these cells spanned by three loops and that each one arises. Moreover, these fourteen
cells may be glued together to form a 2-sphere as indicated in Fig. 3.1.6. Thus the
fourteen maximal cells involving e1−1 form a cone over the 2-sphere, that is a 3-ball.
Similarly the other fourteen maximal cells also give a 3-ball. When the boundaries of
these two balls are glued together in the obvious manner they form a 3-sphere. We
show which maximal cells intersect to give the three-cells on the 2-sphere in Fig. 3.1.7.

3.2. Dehn twists and a presentation for MCG(Σ2). Let the Dehn twists about
e∞∞, e

0 and e0 be denoted by δ0, δ1 and δ2 respectively. We now want to investigate
the action of these Dehn twists on the cell structure ofML(Σ2) given in the previous
section. Again we begin by introducing some symmetries that will simplify matters.
We are only interested in symmetries which fix the punctures. The symmetry group
will be isomorphic to Klein’s four group and we describe its non-trivial elements by
their action on the vertices of R2:

• ι1 interchanges the pairs (v1, v4), (v2, v3), (v5, v6);

• ι2 interchanges the pairs (v1, v4), (v2, v5), (v3, v6);

• ι3 fixes v1, v4 and interchanges the pairs (v2, v6), (v3, v5).

When necessary we shall denote the identity by ι0. It is clear that ι1 and ι3 are
orientation reversing homeomorphisms of Σ2 and that ι2 is orientation preserving. We
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easily see that ιj has the following effect on the eleven irreducible loops:

ι1 : e
i
j 7−→ e−i−j, e0 7−→ e0, e0 7−→ e0,

ι2 : e
i
j 7−→ eji , e0 7−→ e0, e0 7−→ e0,

ι3 : e
i
j 7−→ e−j−i , e0 7−→ e0, e0 7−→ e0

where i, j ∈ {∞,±1} and −∞ = ∞. Thus these actions clearly respect the cell
structure ofML(Σ2). In particular, the maximal cells ∆8, . . . , ∆28 can be expressed as
∆j+7k = ιk(∆j) for j = 1, . . . , 7 and k = 1, 2, 3. The symmetries ιk conjugate the Dehn
twists δj to one another. It is easy to check that

ι1δ0ι1 = δ0
−1, ι1δ1ι1 = δ1

−1, ι1δ2ι1 = δ2
−1,

ι2δ0ι2 = δ0, ι2δ1ι2 = δ2, ι2δ2ι2 = δ1,

ι3δ0ι3 = δ0
−1, ι3δ1ι3 = δ2

−1, ι3δ2ι3 = δ1
−1.

We can also express ι2 in terms of the δj as

ι2 = δ2δ0δ2δ1δ0δ2 = (δ0δ1δ2)
2.

The proof of this identity will be an easy exercise once the effect of the Dehn twists on
ML(Σ2) has been investigated in the next section. This proof will be left to the reader.

Before we go on to investigate the effect of Dehn twists on π1-train tracks we will discuss
the presentation of MCG in terms of Dehn twist generators. The first claim is that
δ0, δ1 and δ2 generate the (orientation preserving) mapping class group of Σ2. As in
section 2, this will be a consequence of our construction of the Markov map, which will
once again produce a unique normal form for every element of MCG(Σ2) in terms of
δ0, δ1 and δ2 (and their inverses).

There are certain relations in G which arise by inspection on Σ2. For example, since
e0 and e0 are disjoint, the Dehn twists δ1 and δ2 commute. Also, since e0 and e0
each intersect e∞∞ exactly once, for j = 1, 2 the Dehn twists δ0 and δj satisfy the braid
relation δ0δjδ0 = δjδ0δj. Finally, ι2 is an involution so its square is the identity. Using
the form for ι2 constructed above, we can write ι2 = (δ0δ1δ2)

2. This gives the relation
(δ0δ1δ2)

4 = e (compare [1]).

It turns out that these are all the relations we need to give a presentation of G. This
will follow from our construction of the word difference machine (section 5) along the
same lines as explained in section 2.5. Hence we obtain the following presentation for
MCG(Σ2). This resembles the presentations for other mapping class groups given by
Birman in [1] and could have been derived using methods similar to hers.

Theorem 3.2.1. The mapping class group of the twice punctured torus admits a pre-
sentation:

MCG(Σ2) =
〈
δ0, δ1δ2

∣∣δ1δ2 = δ2δ1, δ1δ0δ1 = δ0δ1δ0, δ2δ0δ2 = δ0δ2δ0, (δ0δ1δ2)
4 = e

〉
.
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In section 5 of [14] Magnus gives the following presentation ofMCG(Σ2). The generators
are r, s, ρ, σ, τ subject to the following relations:

s2 = (r−1s)3, sτs−1 = ρ, sρs−1 = ρτ−1ρ−1,

rτr−1 = τ, rρr−1 = ρτ−1, s−4ρτ−1ρ−1τ = 1,

σ2 = s−4, σrσ−1 = r, σsσ−1 = s, στσ−1 = τ−1s4.

One may pass from our presentation to Magnus’ presentation via the substitution

r = δ1, s = δ1δ0δ1, ρ = δ1δ0δ1δ2
−1δ0

−1δ1
−1,

σ = δ1
−1δ0

−1δ1
−1δ1

−1δ0
−1δ1

−1, τ = δ1δ2
−1.

The proof of this is straightforward and is left to the reader.

3.3. The effect of Dehn twists on PML. We now investigate the effect of the Dehn
twists on the maximal cells. Using general results of Birman-Series [2] and Hamidi-
Tehrani-Chen [8] we know that these maps are piecewise linear. In fact using reductions
similar to those in section 2 we will show this directly. We begin by summarising the
results.
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Fig. 3.3.1. The effect of δ1 on ∆1

Proposition 3.3.1. The Dehn twist δ1 has the following effect on ∆1, . . . ,∆7 :

(i) δ1 maps ∆1 piecewise linearly to ∆1 ∪∆3 ∪∆5 as follows:

δ1(a, b, c, d) =





(a− c− d, b, c, d) ∈ ∆1 if c+ d ≤ a

(c+ d− a, b, a− d, d) ∈ ∆3 if d ≤ a ≤ c+ d

(c, b, d− a, a) ∈ ∆5 if a ≤ d.
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Fig. 3.3.2. The effect of δ1 on ∆2

(ii) δ1 maps ∆2 piecewise linearly to ∆2 ∪∆4 ∪∆7 ∪∆6 as follows:

δ1(a, b, c, d) =





(a− b− c− d, b, c, d) ∈ ∆2 if b+ c+ d ≤ a

(b+ c+ d− a, b, a− b− d, d) ∈ ∆4 if b+ d ≤ a ≤ b+ c+ d

(b+ d− a, c, a− d, d) ∈ ∆7 if d ≤ a ≤ b+ d

(c, b, d− a, a) ∈ ∆6 if a ≤ d.

(iii) δ1 maps ∆3 to ∆12, ∆4 to ∆13, ∆5 to ∆10, and ∆6 to ∆11 as follows:

δ1(a, b, c, d) = (d, b, c, a).

(iv) δ1 maps ∆7 to ∆14 as follows:

δ1(a, b, c, d) = (c, d, a, b).

We remark that inverting the maps in Propositions 3.3.1(i) and (ii) shows that δ1
−1

maps
⋃7
j=1∆j to ∆1 ∪∆2. We now investigate the action of δ2.

Proposition 3.3.2. The Dehn twist δ2 has the following effect on ∆1, . . . ,∆7

(i) δ2 maps ∆1 to ∆1 ∪∆2 as follows:

δ2(a, b, c, d) =

{
(a, b+ d− c, c, d) ∈ ∆1 if c ≤ b+ d

(a, c− b− d, b+ d, d) ∈ ∆2 if b+ d ≤ c.
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(ii) δ2 maps ∆2 to ∆1 ∪∆2 as follows:

δ2(a, b, c, d) =

{
(a, d− c, c, b+ d) ∈ ∆1 if c ≤ d

(a, c− d, d, b+ d) ∈ ∆2 if d ≤ c.

(iii) δ2 maps ∆3 to ∆4 ∪∆3 ∪∆7 as follows:

δ2(a, b, c, d) =





(a, b+ d− a− c, c, d) ∈ ∆3 if a+ c ≤ b+ d

(a, a+ c− b− d, b+ d− a, d) ∈ ∆4 if a ≤ b+ d ≤ a+ c

(a− b− d, b+ d, c, d) ∈ ∆7 if b+ d ≤ a.

(iv) δ2 maps ∆4 to ∆4 ∪∆3 ∪∆7 as follows:

δ2(a, b, c, d) =





(a, d− a− c, c, b+ d) ∈ ∆3 if a+ c ≤ d

(a, a+ c− d, d− a, b+ d) ∈ ∆4 if a ≤ d ≤ a+ c

(a− d, d, c, b+ d) ∈ ∆7 if ≤ a.

(v) δ2 maps ∆5 to ∆5 ∪∆6 as follows:

δ2(a, b, c, d) =

{
(a, b+ c+ d− a, c, d) ∈ ∆5 if a ≤ b+ c+ d

(b+ c+ d, a− b− c− d, c, d) ∈ ∆6 if b+ c+ d ≤ a.

(vi) δ2 maps ∆6 to ∆5 ∪∆6 as follows:

δ2(a, b, c, d) =

{
(a, c+ d− a, b+ c, d) ∈ ∆5 if a ≤ c+ d

(c+ d, a− c− d, b+ c, d) ∈ ∆6 if c+ d ≤ a.

(vii) δ2 maps ∆7 to ∆5 ∪∆6 as follows:

δ2(a, b, c, d) =

{
(b, d− b, a, c+ d) ∈ ∆5 if b ≤ d

(d, b− d, a, c+ d) ∈ ∆6 if d ≤ b.

We remark that inverting these maps shows that δ2
−1 maps ∆1 ∪ ∆2 to ∆1 ∪ ∆2;

∆3 ∪∆4 ∪∆7 to ∆3 ∪∆4, and ∆5 ∪∆6 to ∆5 ∪∆6 ∪∆7. We now turn our attention
to δ0

−1.

Proposition 3.3.3. The Dehn twist δ0
−1 has the following effect on ∆1, . . . ,∆7 :

(i) δ0
−1 maps ∆1 to ∆25, ∆2 to ∆24, ∆3 to ∆23, and ∆4 to ∆22 as follows:

δ0
−1(a, b, c, d) = (a, b, c, d).

(ii) δ0
−1 maps ∆5 to ∆5 ∪∆6 as follows:

δ0
−1(a, b, c, d) =

{
(c, a− c, b+ c, d) ∈ ∆5 if c ≤ a

(a, c− a, b+ c, d) ∈ ∆6 if a ≤ c.

(iii) δ0
−1 maps ∆6 to ∆5 ∪∆6 as follows:

δ0
−1(a, b, c, d) =

{
(b+ c, a− b− c, c) ∈ ∆5 if b+ c ≤ a

(a, b+ c− a, c) ∈ ∆6 if a ≤ b+ c.
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Fig. 3.3.3. The effect of δ0
−1 on ∆7

(iv) δ0
−1 maps ∆7 onto ∆7 ∪∆4 ∪∆3 ∪∆2 ∪∆1 as follows:

δ0
−1(a, b, c, d) =





(a− b− c, b, c, d) ∈ ∆7 if b+ c ≤ a

(a− c, a− b, b+ c− a, d) ∈ ∆4 if b, c ≤ a ≤ b+ c

(a− c, b− a, c, d) ∈ ∆3 if c ≤ a ≤ b

(c− a, a− b, b, d) ∈ ∆2 if b ≤ a ≤ c

(c− a, b− a, a, d) ∈ ∆1 if a ≤ b, c.

We remark that inverting these maps we see that δ0 maps ∆1 ∪∆2 ∪∆4 ∪∆3 ∪∆7 to
∆7 and ∆5 ∪∆6 to ∆5 ∪∆6.

Remark. Points in the images of the Dehn twists are in fact well defined. In other
words, if equality holds in one of the conditions above, we are on the common boundary
of two maximal cells. For example if (a, b, c, d) ∈ ∆1 with a = c+ d then

δ1(c+ d, b, c, d) = be0 + ce11 + de1−1 ∈ ∆1 ∩∆3.

Proof of Propositions 3.3.1, 3.3.2, and 3.3.3. The method will be the same for each
of the propositions and is completely analogous to the proof of Proposition 2.2.1. The
proof of Proposition 3.3.1(i) follows from an analysis of Fig. 3.3.1, Proposition 3.3.1(ii)
from Fig. 3.3.2 and Proposition 3.3.3(iv) from Fig. 3.3.3. The proofs of the other parts
follow along similar lines but are easier. To avoid repetition we will discuss the proof of
Proposition 3.3.1(i) and leave the rest to the reader. These proofs should be compared
to the very similar discussion in section 3.2 of [8].
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In Fig. 3.3.1, we start off with the π1-train track for a general point (a, b, c, d) ∈ ∆1.
We want to perform a Dehn twist δ1 about e0. A tubular neighbourhood about e0 is
represented by the pair of dotted lines in the figure. The Dehn twist is the identity
everywhere outside these dotted lines and so everything we see here remains the same.
In the cylinder between the dotted lines, we do a whole turn to the left. This means
that a line crossing this cylinder is wrapped once around the cylinder before exiting
in the same place. In the diagram this is represented by the diagonal lines inside the
strip (in the train track on the top right). The new train track is a representation of
the original train track after the Dehn twist has taken place. Unfortunately, this train
track is unreduced. That is, it has strands from one side to itself (the upper right hand
side v4v3). We need to remove these loops by pulling them tight as explained in section
2.2.

The details of how to pull tight are as follows. The results are shown in the lower part
of Fig. 3.3.1. As usual, it is enough to assume that all the weights are integers. Recall
that an integral weight m on a strand means that m strands join the same pair of sides
of R2. The ends of these strands are identified, preserving order, with the strands on
the paired side. In the top right hand diagram of Fig. 3.3.1, there are c + d strands
joining the side v4v3 to itself. The side pairing S1

−1 takes the 2(c + d) ends of these
loops to the lowest 2(c + d) ends of strands emanating from v1v2. We begin with the
innermost of these loops, that is the strand that, together with an arc of v4v3, bounds a
disc containing no strands. The endpoints of this loop are the (c+d)th and (c+d+1)th
ends from the bottom of v4v3. These are identified by the side pairing S1

−1 with the
(c+d)th and (c+d+1)th ends from the bottom of v1v2. Providing a and d are non-zero
these are ends of strands joining v1v2 with v5v4 and v4v3 respectively. When we pull
this loop tight these three strands become a single strand from v5v4 to v4v3. Doing this
min{a, d} times we get this number of strands joining v5v4 and v4v3.

In the case where a ≤ d we have exhausted all a strands joining the sides v1v2 and v4v3.
We therefore continue using the c+ d strands joining v3v2 and v1v2. After pulling each
of the next d − a loops tight we obtain strands from v3v2 to v5v4. Finally the each of
the remaining c loops gives a strand from to v3v2 to v6v1. There are a strands from v1v2
to v3v2 remaining that have not been changed. Putting all this information together
we obtain the π1-train track in the bottom right of Fig. 3.3.1. It is then clear that this
train track is the point (c, b, d− a, a) ∈ ∆5.

The case a ≥ d is similar but with further sub-cases c + d ≤ a and d ≤ a ≤ c + d.
These give the other train tracks on the lower line of Fig. 3.3.1 and the points of ∆1

and ∆3 listed in the statement of Proposition 3.3.1. The rest of the propositions follow
similarly. ¤

The following corollary is an immediate consequence of these results. It may be verified
by considering the image of each of the eij and extending linearly to the whole of
ML(Σ2).

Corollary 3.3.1. We have ι2 = (δ0δ1δ2)
2.
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4. The Markov map

In this section we construct the Markov map which will be the key to constructing our
normal form for elements ofMCG(Σ2).

4.1. Canonical Dehn twists for maximal cells. For each maximal cell ∆j we now
define a canonical Dehn twist ηj which is one of δ0

±1, δ1
±1, δ2

±1. For simplicity we work
with ∆1, . . . ,∆7 and then define canonical Dehn twists for the other cells by symmetry.
These twists will map maximal cells onto the union of other cells and are the essential
step for defining our Markov map.

Definition. The canonical Dehn twist on ∆1, ∆2, ∆5, and ∆6 is δ1. The canonical
Dehn twist on ∆3, ∆4, and ∆7 is δ0

−1.

From Propositions 3.3.1, 3.3.2 and 3.3.3 we see that the images of the canonical Dehn
twists are as follows

δ1 : ∆1 −→ ∆1 ∪∆3 ∪∆5

δ1 : ∆2 −→ ∆2 ∪∆4 ∪∆6 ∪∆7

δ0
−1 : ∆3 −→ ∆23 = ι3(∆2)

δ0
−1 : ∆4 −→ ∆22 = ι3(∆1)

δ1 : ∆5 −→ ∆10 = ι1(∆3)

δ1 : ∆6 −→ ∆11 = ι1(∆4)

δ0
−1 : ∆7 −→ ∆1 ∪∆2 ∪∆3 ∪∆4 ∪∆7.

We now show that the canonical Dehn twists map maximal cells onto the union of
other maximal cells listed above. The interior of a maximal cell is defined to be ∆◦j ,
the collection of points (a, b, c, d) ∈ ∆j with a, b, c, d all positive.

Proposition 4.1.1. Denote the canonical Dehn twist on the cell ∆k by ηk. For each
j, k ∈ {1, . . . , 28}, if ∆◦j ∩ ηk(∆◦k) is non-empty then ∆j ⊂ ηk(∆k).

Proof. Since the maximal cells only overlap on their boundaries and we are assuming
that ∆◦j ∩ ηk(∆◦k) is non-empty it is sufficient to consider only the maximal cells which
appear in the images of canonical Dehn twists listed above. In order to check that
∆j ⊂ ηk(∆k) we need only show ηk

−1(∆j) ⊂ ∆k. This may be checked using the
propositions of section 3.3 by inspection on a case by case basis. ¤

4.2. The Markov map on ML(Σ2). We are going to define the Markov map on
the partition of ML(Σ2) into maximal cells by taking the shortest word in canonical
Dehn twists that maps the maximal cell ∆j onto a union of at least two maximal cells.
This will ensure that the resulting mapping has enough “expansion” to strictly reduce
length. We will see that composition of at most three canonical Dehn twists has this
property. As usual there will be an ambiguity as to how the Markov map is defined on
the intersections of maximal cells (that is on their common boundary faces).

It turns out that certain pairs of maximal cells, for example ∆1 ∪ ∆2, have the same
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canonical Dehn twist and always occur together in the image of a canonical twist.
Others, for example ∆7, occur on their own in the image. This means that we can
make our partition of ML(Σ2) coarser. That is, we group the maximal cells ∆j in
pairs or on their own according to how they behave under these canonical Dehn twists.
These groupings will be called regions. The regions are defined as follows:

A0 = ∆1 ∪∆2, B0 = ∆3 ∪∆4, C0 = ∆5 ∪∆6, D0 = ∆7,

A1 = ∆8 ∪∆9, B1 = ∆10 ∪∆11, C1 = ∆12 ∪∆13, D1 = ∆14,
A2 = ∆15 ∪∆16, B2 = ∆17 ∪∆18, C2 = ∆19 ∪∆20, D2 = ∆21,

A3 = ∆22 ∪∆23, B3 = ∆24 ∪∆25, C3 = ∆26 ∪∆27, D3 = ∆28.

There are four different types of region which we call Aj, Bj, Cj, Dj where j = 0, 1, 2, 3
is determined by Aj = ιj(A0) and so on.

c+d

c

d

b

d c

b+c+d

aa

c

b

d c

d

b+c+d
a

dc

b

d a+c

b+c+d
a

b

d
c

d a+c

b

d

d

ca

c+d a

d

a c

b

d

c+d a

c+d

b a

d

c

d b

A B

C D

0 0

0 0

∆ 1 ∆ 2 3∆ ∆ 4

∆ 5 ∆ 6 ∆ 7

Fig. 4.2.1. Generic points in the regions A0, B0, C0 and D0

Lemma 4.2.1. The canonical Dehn twists map regions onto unions of other regions.
For A0, B0, C0 and D0 these regions are given below.

δ1 : A0 7−→ A0 ∪B0 ∪ C0 ∪D0

δ0
−1 : B0 7−→ A3 = ι3(A0)

δ1 : C0 7−→ B1 = ι1(B0)

δ0
−1 : D0 7−→ A0 ∪B0 ∪D0.

The results for the other regions may be obtained by symmetry.

We are now ready to define the Markov map f2 onML(Σ2). This is defined to be the
shortest word in the canonical Dehn twists that maps each region onto at least two
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other regions. It is given as follows:

f2|A0 = δ1 : A0 7−→ A0 ∪B0 ∪ C0 ∪D0

f2|B0 = δ2
−1δ0

−1 : B0 7−→ A3 ∪B3 ∪ C3 ∪D3

f2|C0 = δ2δ0δ1 : C0 7−→ A2 ∪B2 ∪ C2 ∪D2

f2|D0 = δ0
−1 : D0 7−→ A0 ∪B0 ∪D0

f2|A1 = δ1
−1 : A1 7−→ A1 ∪B1 ∪ C1 ∪D1

f2|B1 = δ2δ0 : B1 7−→ A2 ∪B2 ∪ C2 ∪D2

f2|C1 = δ2
−1δ0

−1δ1
−1 : C1 7−→ A3 ∪B3 ∪ C3 ∪D3

f2|D1 = δ0 : D1 7−→ A1 ∪B1 ∪D1

f2|A2 = δ2 : A2 7−→ A2 ∪B2 ∪ C2 ∪D2

f2|B2 = δ1
−1δ0

−1 : B2 7−→ A1 ∪B1 ∪ C1 ∪D1

f2|C2 = δ1δ0δ2 : C2 7−→ A0 ∪B0 ∪ C0 ∪D0

f2|D2 = δ0
−1 : D2 7−→ A2 ∪B2 ∪D2

f2|A3 = δ2
−1 : A3 7−→ A3 ∪B3 ∪ C3 ∪D3

f2|B3 = δ1δ0 : B3 7−→ A0 ∪B0 ∪ C0 ∪D0

f2|C3 = δ1
−1δ0

−1δ2
−1 : C3 7−→ A1 ∪B1 ∪ C1 ∪D1

f2|D3 = δ0 : D3 7−→ A3 ∪B3 ∪D3.

It is clear from Proposition 4.1.1 and Lemma 4.2.1 that f2 satisfies the Markov property
with respect to the partition ofML(Σ) into the sixteen regions A0, . . . , D3.

Recall that the length |γ| of a multiple simple loop γ supported on a weighted π1-train
track τ is the sum of the weights on all its strands. For a proper integral weighting this
is a positive integer. Let (a, b, c, d) ∈ ∆j with the standard bases. We now compare
the length of the π1-train track represented by this point with the length of its image
under the Markov map f2 as defined above. We have
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a b

a b

b a

b a

b a

b

b

b

a b

b

b c

c b

b c
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c b

b c
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c b

b c

a

c b

a

Fig. 4.2.2. The nine exceptional configurations of Proposition 4.2.2
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Proposition 4.2.1. The Markov map f2 does not increase length. Moreover f2 strictly
decreases length for every train track except those of the form:

ae0 + be0, ae
1
∞ + be∞1 , ae

−1
∞ + be∞−1, ae

∞
∞ + be1−1, ae

∞
∞ + be−11 , (1)

ae0 + be1∞ + ce−1∞ , ae
∞
∞ + be1∞ + ce−1∞ , ae0 + be∞1 + ce∞−1, ae

∞
∞ + be∞1 + ce∞−1. (2)

Proof. This follows from an analysis of lengths for the action of f2 on each maximal cell
∆j:

cell |(a, b, c, d)| f2 |f2(a, b, c, d)| |(a, b, c, d)| − |f2(a, b, c, d)|
∆1 a+ b+ 3c+ 3d δ1 a+ b+ 2c+ 2d c+ d

∆2 a+ 2b+ 3c+ 3d δ1 a+ b+ 2c+ 2d b+ c+ d

∆3 2a+ b+ 3c+ 3d δ2
−1δ0

−1 a+ b+ 2c+ 2d a+ c+ d

∆4 2a+ 2b+ 3c+ 3d δ2
−1δ0

−1 a+ b+ 2c+ 3d a+ b+ c

∆5 2a+ b+ 2c+ 3d δ2δ0δ1 2a+ b+ 2c+ d 2d
∆6 2a+ b+ 2c+ 3d δ2δ0δ1 2a+ b+ 2c+ d 2d

∆7 a+ 2b+ 2c+ 3d δ0
−1 a+ b+ c+ 3d b+ c.

¤

In what follows we will be particularly interested in the four train tracks (2) (as illus-
trated in the lower line of Fig. 4.2.2) which are ∆19 ∩∆26, ∆20 ∩∆27 (which together
form C2 ∩ C3) and ∆5 ∩∆12, ∆6 ∩∆13 (which together form C0 ∩ C1).

4.3. The space of Farey blocks. As for the once punctured torus, in order to con-
struct a normal form and word acceptor from the Markov map we constructed in the
previous section, we need to find a space on whichMCG(Σ2) acts without fixed points.
For the once punctured torus we could take the space of Farey pairs. For the twice
punctured torus we will generalise this to the space of Farey blocks. A Farey block
is an ordered quadruple of (homotopy classes of) simple loops which lie in a certain
topological configuration on Σ2.

Let γi and γj be (homotopy classes of) simple closed curves on Σ2. Define the inter-
section number i(γi, γj) to be the minimal number of points in γi ∩ γj as γi, γj vary
through all elements of their free homotopy class. The idea behind the construction of
Farey blocks is the following. Consider a pair of Farey neighbours on the twice punc-
tured torus, that is an ordered pair of curves (γ1, γ2) that intersect exactly once, so that
i(γ1, γ2) = 1. Both of these curves are necessarily non-dividing and there exists a curve
β that separates γ1∪γ2 from the punctures and which is unique up to isotopy. The curve
β is the commutator [γ1, γ2]. On an unpunctured or once punctured torus β would be
homotopically trivial or peripheral respectively. Moreover, in that case (γ1, γ2) would
have trivial stabiliser in the mapping class group. However, for the twice punctured
torus this is not the case. There is a non-trivial homeomorphism which preserves γ1,
γ2 and β and which interchanges the punctures. The square of this map is the Dehn
twist about β. We get around this difficulty by considering an extra curve γ3 that is
disjoint from γ1 and intersects γ2 and β once and twice respectively. Here is the precise
definition.
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Definition. A Farey block is an ordered quadruple of (homotopy classes of) curves
(γ1, γ2, β; γ3) with the properties that:

(i) γj is non-dividing for j = 1, 2, 3 and β is dividing,

(ii) i(γj, β) = 0 for j = 1, 2 and i(γ3, β) = 2,

(iii) i(γ2, γj) = 1 for j = 1, 3 and i(γ1, γ3) = 0.

The collection of all Farey blocks will be denoted F . Since Farey blocks are only defined
using topological data, namely the intersection number and the separation properties of
(homotopy class of) simple closed curves, the image of a Farey block under an element
ofMCG(Σ2) is also a Farey block. This defines an action ofMCG(Σ2) on F . We claim
that this action is free. In order to see this, consider the Farey block

(
e0, e

∞
∞, e

∞
1 + e∞−1; e

0
)
.

It is clear that this has trivial stabiliser. (It is easy to see that this block is mapped to
itself by ι1 but we are only considering orientation preserving automorphisms of Σ2.)

The idea behind the normal form for the twice punctured torus is similar to that for
the once punctured torus. Namely we apply a general element φ ∈ MCG(Σ2) to the
Farey block

(
e0, e

∞
∞, e

∞
1 + e∞−1; e

0
)
to obtain a new Farey block

φ
(
e0, e

∞
∞, e

∞
1 + e∞−1; e

0
)
=
(
φ(e0), φ(e

∞
∞), φ(e

∞
1 + e∞−1);φ(e

0)
)
.

The idea is to apply the Markov map f2 repeatedly to φ
(
e0, e

∞
∞, e

∞
1 + e∞−1; e

0
)
until we

get back our original Farey block. The resulting f2-expansion should be the normal
form for φ. In practice it is slightly more complicated than this.

Crucial to the construction for the once punctured torus, in section 2, was the following
fact. If (γ1, γ2) was a Farey pair, then γ1 and γ2 both lay in the same cell Ij in
ML(Σ1) so that we could take f1(γ1) = αj(γ1), f1(γ2) = αj(γ2) for the same element
αj ∈ MCG(Σ2). In consequence,

(
f1(γ1), f1(γ2)

)
was again a Farey pair and applying

f1 to a sequence of such pairs gave a well-defined sequence of elements in MCG(Σ1),
which defined our normal forms.

The analogous statement about Farey blocks is almost, but unfortunately not quite,
correct. In fact we can observe that if (γ1, γ2, β; γ3) is a Farey block and if β is in the
interior of a region R then γ1 and γ2 are also in R. This is because γ1 and γ2 are disjoint
from β and so the π1-train tracks representing these γi and β are both contained in the
same maximal cell (compare this with Proposition 2.3.3). In addition, if γ1 is in the
R◦ then γ3 is also in R. If, however, γ1 is on the boundary of R then γ3 may be in
an adjacent region. In the next section we characterise those weighted π1-train tracks
which represent dividing curves. This will enable us to determine those exceptional
cases which cause difficulty in extending the map f2.

4.4. Dividing curves. The following lemma will allow us to determine which dividing
curves do not lie in the interior of any region.

Lemma 4.4.1. If a proper integral weighting w on a π1-train track τ on R2 represents
a connected dividing loop β on Σ2 then
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(i) for each side σ of R2, the sum of the weights on arcs with endpoints on σ is
even,

(ii) the weights of w have no common factor.

Proof. Let τ be a π1-train track carrying weight w(α) on strand α. As usual, the
weighting can be expanded to the loop β by replacing each strand α with w(α) disjoint
strands joining the same pair of sides and gluing their ends together with side pairings.
Since β is connected, condition (ii) is clear.

Any dividing curve β separates Σ2 into a torus with a hole and a sphere with 2 punctures
and a hole. Colouring the components of Σ2−β with distinct colours, we see that both
punctures lie in a region of the same colour. The colouring lifts to a colouring of
R2 − β in such a way that colours alternate along the sides of R2, changing each time
an endpoint of a strand of β meets the side. Since β avoids the punctures, the two
segments of side which meet in a puncture have the same colour. The condition (i) is
now clear. ¤

χ

χ

β β

β β

0 0 1

2 2 3

Fig. 4.4.1. The six curves of Proposition 4.4.2

Proposition 4.4.1. Every dividing curve is in the interior of a region with the following
six exceptions, see Fig. 4.4.1:

χ0 = e
∞
1 + e∞−1 ∈ C0 ∩ C1, β0 = e

1
1 + e

1
−1 ∈ A0 ∩B0, β1 = e

−1
1 + e−1−1 ∈ A1 ∩B1,

χ2 = e
1
∞ + e−1∞ ∈ C2 ∩ C3, β2 = e

1
1 + e

−1
1 ∈ A2 ∩B2, β3 = e

1
−1 + e

−1
−1 ∈ A3 ∩B3.

Proof. Any weighting w representing a dividing curve must satisfy conditions (i) and
(ii) of Lemma 4.4.1. Recall that in section 3.1 we mentioned the idea of splitting R2

into two boxes by drawing a horizontal line from v1 to v4. We claim that if w represents
a dividing curve then, in at least one of these boxes, there are arcs with non-zero
weights across each of the four corners. We say that such a box contains a cross. (This
condition plays a crucial role in [12]. As can be seen in Fig. 4.4.1, the curves χ0, β0, β1
contain a cross in the lower box and χ2, β2, β3 have one in the upper box.) Let w be a
weighting representing a connected dividing curve where neither box contains a cross.
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If a box does not contain a cross, then one can see by inspection of the irreducible loops
in Fig. 3.1.2 (or the generic π1-train tracks in Fig. 3.1.3), that it contains a certain
number a of corner strands across one pair of opposite corners and a number b strands
going across a pair of opposite sides. Thus the number of strands ending at each pair
of opposite sides is a and a+ b respectively. By (i) both a and a+ b are even. Thus so
is b. Doing this for both boxes we obtain a contradiction to (ii).

Now we refer to Fig. 4.2.1 which shows the generic configurations for weights in any of
the four regions A0, B0, C0, D0. Let us take the region A0 = ∆1 ∪∆2; the other cases
are similar. The observation that w contains a cross translates into the statement that
c > 0 and d > 0, where, as shown in the top left two diagrams, c and d are the weights
on e11 and e1−1 respectively. Since ∆1 and ∆2 are glued across the face b = 0 to form
the region A0, any such weighting is in the interior of A0 unless a (the coefficient of e0)
vanishes. It is however easy to see that any weight be0+ ce

1
1+de

1
−1 or be

1
∞+ ce11+de

1
−1

represents a multiple loop, one of whose components is e11 + e
1
−1. This contradicts the

hypothesis that w represents a connected curve unless b = 0 and c = 1 = d, in which
case w = β0.

For B0 = ∆3 ∪ ∆4, the weighting w contains a cross provided a + c > 0 and d > 0.
Again b = 0 gives ∆3 ∩ ∆4 in the interior of B0. Thus we have to check two cases,
c = 0 and a = 0. When a = 0 we obtain a contradiction as above unless w = β0.
When c = 0, Lemma 4.4.1(i) shows that all the weights are even, in contradiction to
Lemma 4.4.1(ii).

The cases of C0 and D0 are similar and can be left to the reader. ¤

The following lemma will be needed in the next section.

Lemma 4.4.2. Let β be a simple closed dividing curve on Σ2.

(i) If β is in the interior of A0 then f2|A0(β) = δ1(β) is either in the interior of one
of A0, B0, C0, D0 or else δ1(β) = β0.

(ii) If β is in the interior of D0 then f2|D0(β) = δ0
−1(β) is either in the interior of

one of A0, B0, D0 or else δ0
−1(β) = β0.

Proof. Both parts are similar. We only consider (i). Consider δ1 acting on ML(Σ2).
We know that β is in the interior of A0 and δ1(A0) = A0 ∪ B0 ∪ C0 ∪ D0. Therefore
δ1(β) is in the interior of A0 ∪ B0 ∪ C0 ∪ D0. In other words, δ1(β) is in the interior
of one of A0, B0, C0, D0 or else it is in the common boundary of at least 2 of these
regions. By Proposition 4.4.2 we see that the only possibility is that δ1(β) = β0. ¤

We will need to characterise the curve γ3 in the Farey block (γ1, γ2, β; γ3) when (γ1, γ2, β)
is either (e0, e

∞
∞, χ0) or (e

∞
∞, e0, χ0).
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Fig. 4.4.2. The curves disjoint from e0

Proposition 4.4.2. If (γ1, γ2, β; γ3) is a Farey block with (γ1, γ2, β) = (e0, e
∞
∞, χ0) then,

for some non-negative integer a, γ3 has one of the following forms:

(i) e0,

(ii) e∞1 + e1−1 + aχ0 = (a+ 1, 0, a, 1) ∈ ∆5 ∩∆6,

(iii) e∞−1 + e
−1
1 + aχ0 = (a+ 1, 0, a, 1) ∈ ∆12 ∩∆13.

If (γ1, γ2, β) = (e∞∞, e0, χ0) then, for some non-negative integer a, γ3 has one of the
following forms:

(iv) e1−1 + aχ0 = (a, 0, a, 1) ∈ ∆5 ∩∆6,

(v) e−11 + aχ0 = (a, 0, a, 1) ∈ ∆12 ∩∆13.

Remark. Observe that, apart from the case (γ1, γ2, β; γ3) = (e0, e
∞
∞, χ0; e

0), in this
situation all four curves γ1, γ2, γ3, β are in either ∆5 ∪∆6 = C0 or ∆12 ∪∆13 = C1.

Proof. We begin with the case (γ1, γ2, β) = (e0, e
∞
∞, χ0). We know γ3 must be disjoint

from γ1 = e0. There is a one parameter family of simple closed curves on Σ2 disjoint
from e0. (To see this, observe that Σ2 − {e0} is topologically a four times punctured
sphere. It is well known that simple closed curves on the four punctured sphere are
parametrised by Q∪{∞}.) It is not hard to show that all curves disjoint from e0 must
have one of the following six types (see Fig. 4.4.2):

(a, 0, b, b) ∈ ∆1, (a, 0, b, a+ b) ∈ ∆3, (a+ b, 0, a, b) ∈ ∆5,

(a+ b, 0, a, b) ∈ ∆12, (a, 0, b, a+ b) ∈ ∆10, (a, 0, b, b) ∈ ∆8.

It is easy to see that the intersection numbers of these curves with γ2 = e
∞
∞ are: a+2b,

a+ 2b, b, b, a+ 2b, a+ 2b respectively. Since γ3 should intersect γ2 = e
∞
∞ exactly once

we obtain the result.
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Now we turn our attention to the case (γ1, γ2, β) = (e∞∞, e0, χ0). All curves disjoint
from γ1 = e

∞
∞ must have one of the following four forms (see Fig. 4.4.3):

(a, 0, a, b) ∈ ∆6, (a, 0, a, b) ∈ ∆13, (a, 0, a, b) ∈ ∆20, (a, 0, a, b) ∈ ∆27.

b
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a+b a

b
a a

b

a a+b b

a a
b

a a+b a+b a

b
a a

b

Fig. 4.4.3. The curves disjoint from e∞∞

The intersection numbers of these curves with γ2 = e0 are b, b, 2a+b, 2a+b respectively.
The result follows as above. ¤

The next proposition is a similar characterisation of γ3 when (γ1, γ2, β) is (e0, e∞∞, χ2)
or (e∞∞, e

0, χ2).

Proposition 4.4.3. If (γ1, γ2, β; γ3) is a Farey block with (γ1, γ2, β) = (e0, e∞∞, χ2) then,
for some non-negative integer a, γ3 has one of the following forms:

(i) e0,

(ii) e1∞ + e−11 + aχ2 = (a+ 1, 0, a, 1) ∈ ∆19 ∩∆20,

(iii) e−1∞ + e1−1 + aχ2 = (a+ 1, 0, a, 1) ∈ ∆26 ∩∆27.

If (γ1, γ2, β) = (e∞∞, e
0, χ2) then, for some non-negative integer a, γ3 has one of the

following forms:

(iv) e−11 + aχ2 = (a, 0, a, 1) ∈ ∆19 ∩∆20,

(v) e1−1 + aχ2 = (a, 0, a, 1) ∈ ∆26 ∩∆27.

Proof. This follows by applying ι2 to the results in Proposition 4.4.4. ¤

Observe that in this case we have (γ1, γ2, β; γ3) = (e0, e∞∞, χ2; e0) or else all four curves
are in ∆19 ∪∆20 = C2 or ∆26 ∪∆27 = C3.

4.5. Subdividing F : the states of the word acceptor. In the next section we shall
extend the Markov map f2 to a map on the space of Farey blocks F . Inverting this map
will give the word acceptor. This construction will resemble that given in section 2.3
but will involve some extra steps. The first part of this process is to divide F into
subsets which will form the states of the word acceptor. We begin by stratifying F into
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three subsets. Define

F0 =
{
(γ1, γ2, β; γ3) ∈ F : β = χ0, {γ1, γ2} = {e0, e∞∞} or β = χ2, {γ1, γ2} = {e0, e∞∞}

}
,

F1 =
{
(γ1, γ2, β; γ3) ∈ F : β = χ0, {γ1, γ2} 6= {e0, e∞∞} or β = χ2, {γ1, γ2} 6= {e0, e∞∞}

}
,

F2 =
{
(γ1, γ2, β; γ3) ∈ F : β 6∈ {χ0, χ2}

}
.

Our goal is to define a map f on F so that for each Farey block (γ1, γ2, β; γ3) there is
a non-negative integer n so that

fn(γ1, γ2, β; γ3) = (e0, e
∞
∞, χ0; e

0).

At each stage, we want f to equal a specific one of the sixteen possible values of f2, so
that for any Farey block we have

f(γ1, γ2, β; γ3) =
(
f2(γ1), f2(γ2), f2(β); f2(γ3)

)
=
(
φ(γ1), φ(γ2), φ(β);φ(γ3)

)

for some φ ∈MCG(Σ2). The difficulty is that, if the members of the block (γ1, γ2, β; γ3)
lie in different regions, it is not clear which value for φ to pick. This happens, for ex-
ample, in the case of the Farey block (e1−1, e0, β0; e

∞
∞).

We resolve this difficulty by using the results of the previous section and the stratifi-
cation above. Roughly speaking, f will be defined as follows. On F2, the map f will
take the value of f2 on the region which contains the dividing curve β. Applying f
will decrease the length |β| of β. We continue applying f until β = χ0 or χ2. Thus,
there will be a non-negative integer n2 so that fn2(γ1, γ2, β; γ3) ∈ F1 ∪ F0. On F1

the map f will be the Markov map f1 on ML(Σ1) constructed in section 2.3. This
map will fix β and reduce |γ1| + |γ2|. Thus, there will be a non-negative integer n1 so
that fn1+n2(γ1, γ2, β; γ3) ∈ F0. Finally, on F0 the map f will fix |γ1| + |γ2| + |β| and
decrease |γ3|. There will be a non-negative integer n0 so that fn0+n1+n2(γ1, γ2, β; γ3) =
(e0, e

∞
∞, χ0; e

0).

In order to carry out the details we shall introduce a number of extra regions which will
become the states of the word acceptor. These regions will all be subsets of the space
F of Farey blocks.

We begin by considering F2. By definition, if the Farey block (γ1, γ2, β; γ3) is in F2

then the dividing curve β is neither χ0 nor χ2. Using Proposition 4.4.2, we see that
either β is in the interior of one of the sixteen regions A0, . . . , D3 or else β is one of the
four dividing curves β0, β1, β2, β3. (Recall that for these four curves βj ∈ Aj ∩ Bj).
We divide F2 into twenty regions as follows. We call these Aj, Bj, Cj, Dj, Ej for
j = 0, 1, 2, 3. The sixteen subsets A0, . . . ,D3 of F2 are defined to consist of all Farey
blocks for which β is in the interior of the region A0, . . . , D3 inML(Σ2), respectively.
The four subsets Ej of F2 are defined to consist of all Farey blocks for which β = βj
where j = 0, 1, 2, 3. That is when j = 0:

A0 =
{
(γ1, γ2, β; γ3) ∈ F : β ∈ (∆1 ∪∆2)

◦},
B0 =

{
(γ1, γ2, β; γ3) ∈ F : β ∈ (∆3 ∪∆4)

◦},
C0 =

{
(γ1, γ2, β; γ3) ∈ F : β ∈ (∆5 ∪∆6)

◦},
D0 =

{
(γ1, γ2, β; γ3) ∈ F : β ∈ ∆◦7

}
,

E0 =
{
(γ1, γ2, β; γ3) ∈ F : β = β0

}
.
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For k = 1, 2, 3 apply the symmetry ιk to the above five regions in order to obtain Ak,
Bk, Ck, Dk and Ek.

By abuse of notation we will frequently drop the bold face notation Aj and simply write
Aj when the meaning is clear from the context. Thus the reader should keep clearly in
mind that Aj may either denote a region of ML(Σ2) as defined in section 4.2 or the
subset Aj ⊂ F2 of Farey blocks. The subsets Aj, Bj, . . . , Ej will be states in the word
acceptor we are aiming to construct. Before defining the map f on each of these twenty
regions (whose inverse will give the arrows in the word acceptor), we will proceed to
define the states for the strata F1 and F0.

We consider first the Farey blocks in F1. Here we have β = χ0 or χ2. For the sake of
definiteness we will describe the situation for χ0 in detail. In order to perform the same
constructions for χ2 it is necessary to apply the symmetry ι2. The curve χ0 divides Σ2

into two components, one of which is a twice punctured disc and the other is a torus
with a hole. All homotopically non-trivial, non-peripheral simple closed curves on Σ2

that are disjoint from χ0 are contained in the one holed torus component of Σ2 − χ0.
In particular, this is true for γ1 and γ2. The stabiliser of χ0 inMCG(Σ2) is the group
generated by δ0 and δ2. The action of the group they generate on the one-holed-torus
component of Σ2−χ0 exactly corresponds to the action ofMCG(Σ1) on Σ1 considered
in section 2. Therefore, we divide F1 into states which correspond to the intervals I0,
I1, I2 and I3 for the space of Farey pairs on the once punctured torus. This is done as
follows:

F0 =
{
(γ1, γ2, β; γ3) ∈ F : β = χ0; γ1, γ2 ∈ sp+{e0, e∞1 }

}
,

G0 =
{
(γ1, γ2, β; γ3) ∈ F : β = χ0; γ1, γ2 ∈ sp+{e∞∞, e∞1 }

}
,

F1 =
{
(γ1, γ2, β; γ3) ∈ F : β = χ0; γ1, γ2 ∈ sp+{e0, e∞−1}

}
,

G1 =
{
(γ1, γ2, β; γ3) ∈ F : β = χ0; γ1, γ2 ∈ sp+{e∞∞, e∞−1}

}
,

F2 =
{
(γ1, γ2, β; γ3) ∈ F : β = χ2; γ1, γ2 ∈ sp+{e0, e1∞}

}
,

G2 =
{
(γ1, γ2, β; γ3) ∈ F : β = χ2; γ1, γ2 ∈ sp+{e∞∞, e1∞}

}
,

F3 =
{
(γ1, γ2, β; γ3) ∈ F : β = χ2; γ1, γ2 ∈ sp+{e0, e−1∞ }

}
,

G3 =
{
(γ1, γ2, β; γ3) ∈ F : β = χ2; γ1, γ2 ∈ sp+{e∞∞, e−1∞ }

}
.

Finally, we consider F0. Here either β = χ0 and {γ1, γ2} = {e0, e∞∞} or β = χ2

and {γ1, γ2} = {e0, e∞∞}. In Propositions 4.4.4 and 4.4.5 we analysed the different
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possibilities for γ3. We divide F3 into states according to these different possibilities:

H0 =
{
(e∞∞, e0, χ0; γ3) ∈ F : γ3 = (a, 0, a, 1) ∈ ∆5 ∩∆6 where a ∈ N ∪ {0}

}
,

I0 =
{
(e0, e

∞
∞, χ0; γ3) ∈ F : γ3 = (a+ 1, 0, a, 1) ∈ ∆5 ∩∆6 where a ∈ N ∪ {0}

}
,

H1 =
{
(e∞∞, e0, χ0; γ3) ∈ F : γ3 = (a, 0, a, 1) ∈ ∆12 ∩∆13 where a ∈ N ∪ {0}

}
,

I1 =
{
(e0, e

∞
∞, χ0; γ3) ∈ F : γ3 = (a+ 1, 0, a, 1) ∈ ∆12 ∩∆13 where a ∈ N ∪ {0}

}
,

H2 =
{
(e∞∞, e

0, χ2; γ3) ∈ F : γ3 = (a, 0, a, 1) ∈ ∆19 ∩∆20 where a ∈ N ∪ {0}
}
,

I2 =
{
(e0, e∞∞, χ2; γ3) ∈ F : γ3 = (a+ 1, 0, a, 1) ∈ ∆19 ∩∆20 where a ∈ N ∪ {0}

}
,

H3 =
{
(e∞∞, e

0, χ2; γ3) ∈ F : γ3 = (a, 0, a, 1) ∈ ∆26 ∩∆27 where a ∈ N ∪ {0}
}
,

I3 =
{
(e0, e∞∞, χ2; γ3) ∈ F : γ3 = (a+ 1, 0, a, 1) ∈ ∆26 ∩∆27 where a ∈ N ∪ {0}

}
,

J0 =
{
(e0, e

∞
∞, χ0; e

0) ∈ F
}
,

J2 =
{
(e0, e∞∞, χ2; e0) ∈ F

}
.

In each case, notice that (a, 0, a, 0) corresponds to the loop β, that is χ0 or χ2.

4.6. The definition of the map f . Having defined the states which partition the
space F of Farey blocks, we now turn our attention to the definition of the map f .
First we consider states in F2. For Farey blocks in Aj, . . . , Dj we define f to be the
same as the Markov map f2 on the corresponding regions Aj, . . . , Dj inML(Σ2). We
need to be slightly more careful in computing the images of these blocks.

Lemma 4.6.1. On F2 the Dehn twist δ1 maps A0 onto A0 ∪ B0 ∪ C0 ∪ D0 ∪ E0 and
δ0
−1 maps D0 onto A0 ∪B0 ∪D0 ∪ E0.

Proof. This is an immediate consequence of Lemma 4.4.3. ¤

To define f in Ej we have a choice since, as in Proposition 4.4.2, βj ∈ Aj ∩ Bj. We
choose f |Ej

= f2|Aj
so that, for example, f |E0 = f2|A0 = δ1. It is easy to check

that δ1(β0) = χ0 so that, with this definition, f maps E0 into F1 ∪ F0. (We remark
that f2|B0(β0) = δ2

−1δ0
−1(β0) = χ2 so this would also be true if we had made the other

choice.) Since δ1
−1(χ0) = β0 it is easy to see that f maps E0 onto that subset of F1∪F0

consisting of all Farey blocks with β = χ0. Applying symmetries, corresponding results
are true for f(Ej) for j = 1, 2, 3. We can now summarise the effect of the map f on
all states in F2. In each case, the arrow indicates that f maps the gives state onto the
union of the states listed on the right. Note that for simplicity, we have now replaced
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the bold Aj, . . . , Ej with Aj, . . . , Ej for j = 0, 1, 2, 3.

f |A0 = δ1 : A0 7−→ A0 ∪B0 ∪ C0 ∪D0 ∪ E0,

f |B0 = δ2
−1δ0

−1 : B0 7−→ A3 ∪B3 ∪ C3 ∪D3 ∪ E3,

f |C0 = δ2δ0δ1 : C0 7−→ A2 ∪B2 ∪ C2 ∪D2 ∪ E2,

f |D0 = δ0
−1 : D0 7−→ A0 ∪B0 ∪D0 ∪ E0,

f |E0 = δ1 : E0 7−→ F0 ∪G0 ∪H0 ∪ I0 ∪ J0 ∪ F1 ∪G1 ∪H1 ∪ I1,
f |A1 = δ1

−1 : A1 7−→ A1 ∪B1 ∪ C1 ∪D1 ∪ E1,

f |B1 = δ2δ0 : B1 7−→ A2 ∪B2 ∪ C2 ∪D2 ∪ E2,

f |C1 = δ2
−1δ0

−1δ1
−1 : C1 7−→ A3 ∪B3 ∪ C3 ∪D3 ∪ E3,

f |D1 = δ0 : D1 7−→ A1 ∪B1 ∪D1 ∪ E1,

f |E1 = δ1
−1 : E1 7−→ F0 ∪G0 ∪H0 ∪ I0 ∪ J0 ∪ F1 ∪G1 ∪H1 ∪ I1,

f |A2 = δ2 : A2 7−→ A2 ∪B2 ∪ C2 ∪D2 ∪ E2,

f |B2 = δ1
−1δ0

−1 : B2 7−→ A1 ∪B1 ∪ C1 ∪D1 ∪ E1,

f |C2 = δ1δ0δ2 : C2 7−→ A0 ∪B0 ∪ C0 ∪D0 ∪ E0

f |D2 = δ0
−1 : D2 7−→ A2 ∪B2 ∪D2 ∪ E2,

f |E2 = δ2 : E2 7−→ F2 ∪G2 ∪H2 ∪ I2 ∪ J2 ∪ F3 ∪G3 ∪H3 ∪ I3,
f |A3 = δ2

−1 : A3 7−→ A3 ∪B3 ∪ C3 ∪D3 ∪ E3,

f |B3 = δ1δ0 : B3 7−→ A0 ∪B0 ∪ C0 ∪D0 ∪ E0,

f |C3 = δ1
−1δ0

−1δ2
−1 : C3 7−→ A1 ∪B1 ∪ C1 ∪D1 ∪ E1,

f |D3 = δ0 : D3 7−→ A3 ∪B3 ∪D3 ∪ E3,

f |E3 = δ2
−1 : E3 7−→ F2 ∪G2 ∪H2 ∪ I2 ∪ J2 ∪ F3 ∪G3 ∪H3 ∪ I3.

Having defined f on all of F2, we now consider F1. As we described in the previous
section, we may regard (γ1, γ2) as lying on a one-holed torus (one of the components
of Σ2 − β). Moreover, as γ1 and γ2 intersect exactly once they correspond to Farey
neighbours. Therefore, we define f to agree with the map f1 on the space of Farey
pairs and described in section 2.4. Results about the image of this map follow as in
that section. Thus we have:

f |F0 = δ2 : F0 7−→ F0 ∪G0 ∪H0 ∪ I0 ∪ J0 ∪H1 ∪ I1,
f |G0 = δ0

−1 : G0 7−→ F0 ∪G0 ∪H0 ∪ I0 ∪ J0 ∪H1 ∪ I1,
f |F1 = δ2

−1 : F1 7−→ F1 ∪G1 ∪H0 ∪ I0 ∪ J0 ∪H1 ∪ I1,
f |G1 = δ0 : G1 7−→ F1 ∪G1 ∪H0 ∪ I0 ∪ J0 ∪H1 ∪ I1,
f |F2 = δ1 : F2 7−→ F2 ∪G2 ∪H2 ∪ I2 ∪ J2 ∪H3 ∪ I3,
f |G2 = δ0

−1 : G2 7−→ F2 ∪G2 ∪H2 ∪ I2 ∪ J2 ∪H3 ∪ I3,
f |F3 = δ1

−1 : F3 7−→ F3 ∪G3 ∪H2 ∪ I2 ∪ J2 ∪H3 ∪ I3,
f |G3 = δ0 : G3 7−→ F3 ∪G3 ∪H2 ∪ I2 ∪ J2 ∪H3 ∪ I3.

Finally, we consider Farey blocks in F0. If we were in the case of the once punctured
torus we would need to apply a power of the involution δ1δ0δ1. For the twice punctured
torus, this element has infinite order (its fourth power is Dehn twist about χ2). There-
fore we need to investigate the effect of powers of δ1δ0δ1 and δ2δ0δ2. For simplicity we
denote δjδ0δj by ρj for j = 1, 2. We have the following lemma.
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Lemma 4.6.2. If the Farey block (γ1, γ2, β; γ3) is in H0 then its image under ρ2
−1 is

in I0 if a ≥ 1 or is in J0 if a = 0. If (γ1, γ2, β; γ3) is in I0 then its image under ρ2
−2 is

in I0 if a ≥ 1 or is in J0 if a = 0. Moreover any Farey block in I0 or J0 arises as the
image of a Farey block in H0 or I0 in this way.

Proof. The curve χ0 is fixed under application of δ0 or δ2 and so under any power of
ρ2. It follows by a similar argument to those given in section 2.1 that ρ2 interchanges
e0 and e∞∞. It remains to check the effect of ρ2 on the possible curves γ3. If the Farey
block (γ1, γ2, β; γ3) is in I0 then γ3 = (a + 1, 0, a, 1) ∈ ∆5 ∩ ∆6. We claim that ρ2

−1

sends (a+ 1, 0, a, 1) ∈ ∆5 ∩∆6 to (a, 0, a, 1) ∈ ∆5 ∩∆6. Likewise, if (γ1, γ2, β; γ3) is in
H0 then γ3 = (a, 0, a, 1) ∈ ∆5 ∩∆6 and we claim that ρ2

−1 sends (a, 0, a, 1) ∈ ∆5 ∩∆6

to (a, 0, a − 1, 1) ∈ ∆5 ∩ ∆6 if a ≥ 1 or to e0 if a = 0. This claim is proved using
Propositions 3.3.2 and 3.3.3 as follows:

(a+ 1, 0, a, 1) ∈ ∆5 ∩∆6

δ2
−1

²²

(a, 0, a, 1) ∈ ∆5 ∩∆6

δ2
−1

²²
(a+ 1, 0, a, 1) ∈ ∆5 ∩∆6

δ0
−1

²²

(a, 1, a− 1, 1) ∈ ∆6

δ0
−1

²²
(a, 1, a, 1) ∈ ∆5

δ2
−1

²²

(a, 0, a− 1, 1) ∈ ∆5 ∩∆6

δ2
−1

²²
(a, 0, a, 1) ∈ ∆5 ∩∆6 (a, 0, a− 1, 1) ∈ ∆5 ∩∆6

where we assume a ≥ 1 in the right hand column. If a = 0 then

ρ2
−1(e1−1) = δ2

−1δ0
−1δ2

−1(e1−1) = δ2
−1δ0

−1(e1∞) = δ2
−1(e0) = e0.

¤

Corollary 4.6.1. Applying ρ2
−j to Farey blocks in H0, I0 decreases the length of γ3 by

2j.

Therefore we define f on F0 as follows.

f |H0 = ρ2
−1 : H0 −→ I0 ∪ J0, f |I0 = ρ2

−2 : I0 −→ I0 ∪ J0,
f |H1 = ρ2 : H1 −→ I1 ∪ J0, f |I1 = ρ2

2 : I1 −→ I1 ∪ J0,
f |H2 = ρ1

−1 : H2 −→ I2 ∪ J2, f |I2 = ρ1
−2 : I2 −→ I2 ∪ J2,

f |H3 = ρ1 : H3 −→ I3 ∪ J2, f |I3 = ρ1
2 : I3 −→ I3 ∪ J2,

f |J0 = e : J0 −→ J0, f |J2 = ι2 : J2 −→ J0.

This completes the definition of the map f .

4.7. The word acceptor. We have now subdivided the space F of Farey blocks into
states and defined the map f on each state, in such a way that

(i) for each state U , we have f |U ≡ φ for some φ ∈MCG(Σ2), and

(ii) for any states U and V if f(U) ∩ V ◦ 6= ∅ then V ⊂ f(U).
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In order for f to define a normal form leading to a suitable word acceptor, we now only
need to verify that successive applications of the map f always eventually terminate in
the end state J0. Of course, this requirement was central to our choice of definition of
the map f . In analogy with the case of the once punctured torus Σ1 we have:

Proposition 4.7.1. Let (γ1, γ2, β; γ3) be any Farey block in F . There exists a non-
negative integer n so that fn(γ1, γ2, β; γ3) = (e0, e

∞
∞, χ0; e

0).

Proof. This is similar to Proposition 2.3.5. First, if (γ1, γ2, β; γ3) ∈ F2 it follows from
Proposition 4.2.2 and Proposition 4.4.2. that f strictly decreases |β|. Thus there is a
non-negative integer n2 so that fn2(γ1, γ2, β; γ3) is in F1 or F0. For any Farey block
in F1 the map f strictly decreases |γ1| + |γ2|. This follows from Corollary 2.3.4. Thus
there is a non-negative integer n1 so that fn2+n1(γ1, γ2, β; γ3) is in F0. For any Farey
block in F0 other than (e0, e

∞
∞, χ0; e

0) or (e0, e∞∞, χ2; e0), using Corollary 4.6.3 we see
that the map strictly decreases |γ3|. Thus there is a non-negative integer n0 so that
fn2+n1+n0(γ1, γ2, β; γ3) is either (e0, e

∞
∞, χ0; e

0) or (e0, e∞∞, χ2; e0). Finally,

f |J2(e0, e∞∞, χ2; e0) = ι2(e
0, e∞∞, χ2; e0) = (e0, e

∞
∞, χ0; e

0).

¤

Remark. Just as in section 2 this proposition proves that the actions of f andMCG(Σ2)
are orbit equivalent, in other words, for any (γ1, γ2, β; γ3) and (γ ′1, γ

′
2, β

′; γ′3) in F we
have

(γ′1, γ
′
2, β

′; γ′3) =
(
φ(γ1), φ(γ2), φ(β);φ(γ3)

)

for φ ∈MCG(Σ2) if and only if there exist non negative integers m, n so that

fn(γ1, γ2, β; γ3) = fm(γ′1, γ
′
2, β

′; γ′3).

See the remark following Proposition 2.3.5 for the significance of this observation.

D A C

E E

F G

H I

0 0 0

0

1 1

1 1

1

B0

F0

H0 I0

G0

J2J0

B3 C2

Fig. 4.7.1. A diagram of the arrows from states A0, . . . , J0.

(An arrow from (or to) a box means that there should be an arrow from (or to) each state in

that box. Each arrow should be labelled with the inverse of f on the state it points towards.)



384 J. R. Parker and C. Series

Proposition 4.7.1 allows us to construct a normal form for elements of MCG(Σ2).
Namely, for any φ ∈MCG(Σ2), we determine the map fn for which

fn
(
φ(e0), φ(e

∞
∞), φ(χ0);φ(e

0)
)
= (e0, e

∞
∞, χ0; e

0).

Since at each stage f is a fixed element ofMCG(Σ2) this, together with the fact that
MCG(Σ2) acts freely on F , gives a unique expression for φ. The details of the normal
form are now rather complicated and are best described in terms of a word acceptor for
MCG(Σ2). The states of the word acceptor are obviously Aj, . . . , Ij for j = 0, 1, 2, 3
and J0, J2. To get the arrows we need to invert the map f on each separate state. The
alphabet A which labels these arrows will consist of all possible values of f−1, namely:

A =

{
e, ι2, δ0

±1, δ1
±1, δ2

±1, δ1δ0, δ1
−1δ0

−1, δ2δ0, δ2
−1δ0

−1,

(δ1δ0δ2)
±1, (δ2δ0δ1)±1, ρ1±1, ρ2±1, ρ1±2, ρ2±2,

}
.

We list the labelled arrows leading from each state. We begin with J0. It has the
following arrows which may be read off from the definition of f . The arrows from J0
are.

J0
δ1
−1

// E0, J0
δ2
−1

// F0, J0
δ0 // G0, J0

ρ2 // H0, J0
ρ22 // I0,

J0
δ1 // E1, J0

δ2 // F1, J0
δ0
−1

// G1, J0
ρ2−1 // H1, J0

ρ2−2 // I1,

J0
ι2 // J2.

The arrows from J2 may be found from those from J0 by applying the symmetry ι2,
with one exception: there is no arrow from J2 to J0. The arrows from Ij may be found
by applying ιj to the following arrows from I0:

I0
δ1
−1

// E0, I0
δ2
−1

// F0, I0
δ0 // G0, I0

ρ2 // H0, I0
ρ22 // I0,

I0
δ1 // E1, I0

δ2 // F1, I0
δ0
−1

// G1.

The arrows from Hj may be found by applying ιj to the following arrows from H0:

H0
δ1
−1

// E0, H0
δ2
−1

// F0, H0
δ0 // G0,

H0
δ1 // E1, H0

δ2 // F1, H0
δ0
−1

// G1.

The arrows from Fj and Gj are very similar. They may be found by applying ιj to the
following arrows from F0 and G0:

F0
δ1
−1

// E0, F0
δ1 // E1, F0

δ2
−1

// F0, F0
δ0 // G0,

G0
δ1
−1

// E0, G0
δ1 // E1, G0

δ2
−1

// F0, G0
δ0 // G0.
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The arrows from A0, B0, D0 and E0 are all similar. They are

A0
δ0 // D0, A0

δ1
−1

// A0, A0
δ0
−1δ1

−1

// B3, A0
δ2
−1δ0

−1δ1
−1

// C2,

B0
δ0 // D0, B0

δ1
−1

// A0, B0
δ0
−1δ1

−1

// B3, B0
δ2
−1δ0

−1δ1
−1

// C2,

D0
δ0 // D0, D0

δ1
−1

// A0, D0
δ0
−1δ1

−1

// B3, D0
δ2
−1δ0

−1δ1
−1

// C2,

E0
δ0 // D0, E0

δ1
−1

// A0, E0
δ0
−1δ1

−1

// B3, E0
δ2
−1δ0

−1δ1
−1

// C2.

Finally, the arrows from C0 are

C0
δ1
−1

// A0, C0
δ0
−1δ1

−1

// B3, C0
δ2
−1δ0

−1δ1
−1

// C2.

The arrows from Aj, Bj, Cj, Dj and Ej for j = 1, 2, 3 may be found by applying the
symmetry ιj to A0, B0, C0, D0 or E0 respectively.

In Fig. 4.7.1 we have given a schematic representation of the arrows from A0, . . . , J0
listed above. In order to simplify the diagram we have drawn a single arrow to represent
several between different pairs of states. In order to reconstruct the word acceptor, the
diagram should be reproduced with all suffices j = 0, 1, 2, 3 by applying symmetries ιj.
The arrows to the right hand columns indicate how these four different diagrams are
linked. An arrow between two of the rectangular boxes should be replaced with arrows
between all the states in each of the two boxes. Finally, the arrows from state Uj to
Vk should be labelled with the inverse of f |Vk . Observe that all arrows between boxes
either go upwards or across but never downwards. This gives the word acceptor the
structure of a partially ordered set.

5. The word difference machine

In this final section, following the procedures of sections 1.2 and 2.5, we construct a
word difference machine for the word acceptor ofMCG(Σ2).

5.1. Outline of the construction. The construction of the word difference machine
is very similar to the construction for the once punctured torus given earlier. Our
notation will follow that established in the introduction to section 2.5. As before,
the word difference machine is a 2-stringed finite state automaton. Its states are the
elements of a set of word differences D. As before, the basic building blocks are squares

U
ψ //

α
²²

V

β
²²

α(U)
ψ′ // β(V )

(∗)

where now U , V are subsets of the states Aj, . . . , Ij, J0, J2 ⊂ F . As usual, in such
a square ψ, ψ ∈ D, ψ(U) = V , α = f |U , β = f |V and ψ′ = βψα−1. In addition to
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degenerate squares, or triangles, of type (∗∗)

U
ψ=α //

α

²²

α(U)

α(U)
ψ′=e

77ooooooooooooo

β(V )
ψ=β−1 //

ψ′=e ''OOOOOOOOOOOOO V

β

²²
β(V )

(∗∗)

used in section 2.5 we also introduce further degenerate squares where we only apply f
to either U or to V . If we do not apply f to U , then we may relax the requirement that
U be contained in a single state in the partition of F . In this case we write ψ−1(V )
in place of U . Likewise when we do not apply f to V we write ψ(U) instead of V and
allow it to contain points in more than one state.

U
ψ //

α

²²

ψ(U)

α(U)
ψ′

;;wwwwwwww

ψ−1(V )
ψ //

ψ′ $$IIIIIIIII
V

β

²²
β(V )

(∗ ∗ ∗)

We require that ψ′ = ψα−1 or ψ′ = βψ respectively is in D. We need to be careful
that only finitely many such triangles occur in each path through the word difference
machine. This is a key point which we will discuss later. The arrows in the word
difference machine will consist of pairs (α−1, β−1) corresponding to the diagram (∗) or
(α−1,−), (−, β−1) corresponding to (∗∗) or (∗ ∗ ∗). For example, a square of type (∗)
will give an arrow (α−1, β−1) from ψ′ ∈ D to ψ ∈ D. The set D should contain all
elements of the alphabet A constructed in the previous section. In fact we will begin
by considering the set

D0 =
{
e, ι2, δ0

±1, δ1
±1, δ2

±1}.
As all the elements of A have length at most six in these letters we can break squares
involving word differences in A down into at most six squares (placed horizontally)
involving word differences in D0 (see section 5.5 below). During our construction we
will add to the listD0. Recall that in Section 3.3 we found various relations inMCG(Σ2).
We will use these when constructing the squares. The fact that we need to use no more
relations is the proof that the presentation forMCG(Σ2) given in Theorem 3.2.1 works.
Because of the stratification of states in F described in section 4.5, the normal form
given by the word acceptor for each element φ inMCG(Σ2) may be broken down as φ =
φ2φ1φ0 where φj(e0, e

∞
∞, χ0; e

0) is in Fj for j = 0, 1, 2. We will break the word difference
machine into subgraphs which correspond to these pieces. There will additionally be
a fourth subgraph which will correspond to certain special word differences, which we
call exceptional (see section 5.4 below).

5.2. Squares and triangles arising from states in F2. We begin by constructing
squares and triangles where U and V are contained in F2 and where ψ ∈ D0 = {δj±1|j =
0, 1, 3} ∪ {ι2}. By use of the symmetries ιj for j = 1, 2, 3 we may restrict our attention
to the case where U and V are subsets of A0, B0, C0, D0 and E0. As usual, we drop
the distinction between A0, . . . , E0 and A0, . . . , E0. Since δ1 = f |A0 we already know
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its effect on A0. Thus we can write down the triangle:

A0
δ1 //

δ1
²²

A0 ∪B0 ∪ C0 ∪D0 ∪ E0

A0 ∪B0 ∪ C0 ∪D0 ∪ E0

e

33hhhhhhhhhhhhhhhhhhh

In order to simplify things further, we define Qj = Aj∪Bj∪Cj∪Dj∪Ej for j = 0, 1, 2, 3.
Now suppose that U is one of B0 or C0. Using Proposition 3.3.1, we obtain two squares:

B0
δ1 //

δ2
−1δ0

−1

²²

C1

δ2
−1δ0

−1δ1
−1

²²
Q3 e

// Q3

C0
δ1 //

δ2δ0δ1
²²

B1

δ2δ0
²²

Q2 e
// Q2

When considering D0 and E0 we make the following definitions which again simplify
the notation.

Rj = Aj ∪Bj ∪Dj ∪ Ej for j = 0, 1, 2, 3;

Sj = Fj ∪Gj for j = 0, 1, 2, 3;

Tj = Hj ∪ Ij ∪ Jj ∪Hj+1 ∪ Ij+1 for j = 0, 2.

We obtain

D0
δ1 //

δ0
−1

²²

D1

δ0
²²

R0
δ1δ0δ1 // R1

E0
δ1 //

δ1
²²

S0 ∪ S1 ∪ T0

S0 ∪ S1 ∪ T0
e

66mmmmmmmmmmmm

Now we do the same for ψ = δ1
−1. We obtain one triangle:

Q0
δ1
−1

//

e ÃÃB
BB

BB
BB

B
A0

δ1
²²
Q0

Now we consider squares where ψ = δ2. From Proposition 3.3.2 we know the effect of
δ2 on ∆1, . . . ,∆7. We know that δ2 : A0 −→ A0 and δ2 : B0 −→ B0 ∪ D0. We divide
U = B0 into maximal subsets U1 = δ2

−1(B0) or U2 = δ2
−1(D0). This gives:

A0
δ2 //

δ1
²²

A0

δ1
²²

Q0
δ2 // Q0

δ2
−1(B0)

δ2 //

δ2
−1δ0

−1

²²

B0

δ2
−1δ0

−1

²²
C3 ∪D3

δ0 // Q3

δ2
−1(D0)

δ2 //

δ2
−1δ0

−1

²²

D0

δ0
−1

²²
A3 ∪B3 ∪ E3

δ2δ0 // Q0

Now δ2(C0 ∪ D0) = C0. Therefore we divide V = C0 into subsets V1 = δ2(C0) and
V2 = δ2(D0).

C0
δ2 //

δ2δ0δ1
²²

δ2(C0)

δ2δ0δ1
²²

Q2
δ0 // C2 ∪D2

D0
δ2 //

δ0
−1

²²

δ2(D0)

δ2δ0δ1
²²

R0
ι2δ2

−1

// A2 ∪B2 ∪ E2

E0
δ2 //

δ1
²²

E0

δ1
²²

S0 ∪ S1 ∪ T0
δ2 // S0 ∪ S1 ∪ T0
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We remark that it is not immediately obvious that the bottom lines of these squares
are as claimed. We now do an example which illustrates how the bottom line is found.
The rest are simple and are left to the reader. The example we choose is

δ2
−1(B0) ∩B0

δ2 //

δ2
−1δ0

−1

²²

B0

δ2
−1δ0

−1

²²
C3 ∪D3

δ0 // Q3

We do this using the following result.

Proposition 5.2.1. If (a, b, c, d) ∈ ∆3 ∪ ∆4 = B0 and δ2(a, b, c, d) ∈ ∆3 ∪ ∆4 = B0

then

δ2
−1δ0

−1(a, b, c, d) ∈ ∆26 ∪∆27 ∪∆28 = C3 ∪D3

and

δ2
−1δ0

−1δ2(a, b, c, d) = δ0δ2
−1δ0

−1(a, b, c, d) ∈ Q3.

Moreover, any point of Q3 arises in this way.

Proof. The word difference can of course be found without reference to the states on the
bottom line of the diagram. It is clear that in the present case the new word difference
ψ′ is

(
δ2
−1δ0

−1)δ2
(
δ2
−1δ0

−1)−1 = δ2
−1δ0

−1δ2δ0δ2 = δ0

using the relation δ2δ0δ2 = δ0δ2δ0. We now justify the claims about the regions involved
in this diagram. We begin by identifying U1 = B0 ∩ δ2−1(B0). We know that B0 =
∆3 ∪ ∆4. By Proposition 3.3.2 (iii) and (iv) we see that (a, b, c, d) ∈ ∆3 is sent to
∆3∪∆4 = B0 provided a ≤ b+d and that (a, b, c, d) ∈ ∆4 is sent to B0 provided a ≤ d.
Thus,

U1 = {(a, b, c, d) ∈ ∆3 : a ≤ b+ d} ∪ {(a, b, c, d) ∈ ∆4 : a ≤ d}.
By definition δ2(U1) ⊂ B0, and it is not hard to check that δ2(U1) = B0. We now
investigate the effect of δ2

−1δ0
−1 on U . We know from Proposition 3.4.3 (i) that δ0

−1

sends ∆3 and ∆4 to ∆23 and ∆22 respectively by δ0
−1(a, b, c, d) = (a, b, c, d). Thus U is

sent to the appropriate subset of A3. Applying ι3 to Proposition 3.3.1 (i) we see that if
(a, b, c, d) ∈ ∆22 with a ≤ d then δ2

−1(a, b, c, d) is in ∆26. Similarly, if (a, b, c, d) ∈ ∆23

with a ≤ b + d then δ2
−1(a, b, c, d) is in ∆27 or ∆28. It is not hard to show that this

map is surjective and so δ2
−1δ0

−1(U) = C3 ∪D3. Finally, we know that δ2
−1δ0

−1 maps
B0 onto Q3. ¤

By similar reasoning we construct all the squares and triangles for which ψ = δ2
−1.

A0
δ2
−1

//

δ1
²²

A0

δ1
²²

Q0
δ2
−1

// Q0

B0
δ2
−1

//

δ2
−1δ0

−1

²²

δ2
−1(B0) ∩B0

δ2
−1δ0

−1

²²
Q3

δ0
−1

// C3 ∪D3
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δ2(C0) ∩ C0
δ2
−1

//

δ2δ0δ1
²²

C0

δ2δ0δ1
²²

C2 ∪D2
δ0
−1

// Q2

δ2(D0) ∩ C0
δ2
−1

//

δ2δ0δ1
²²

D0

δ0
−1

²²
A2 ∪B2 ∪ E2

ι2δ1 // R0

D0
δ2
−1

//

δ0
−1

²²

δ2
−1(D0) ∩B0

δ2
−1δ0

−1

²²
R0

δ0
−1δ2

−1

// A3 ∪B3 ∪ E3

E0
δ2
−1

//

δ1
²²

E0

δ1
²²

S0 ∪ S1 ∪ T0
δ2
−1

// S0 ∪ S1 ∪ T0
Similarly, when ψ = δ0 or δ0

−1 we obtain:

R0
δ0 //

e ÃÃB
BB

BB
BB

B
D0

δ0
−1

²²
R0

C0
δ0 //

δ2δ0δ1
²²

C0

δ2δ0δ1
²²

Q2
δ1 // Q2

A0
δ0
−1

//

δ1
²²

B3

δ1δ0
²²

Q0 e
// Q0

B0
δ0
−1

//

δ2
−1δ0

−1

²²

A3

δ2
−1

²²
Q3 e

// Q3

C0
δ0
−1

//

δ2δ0δ1
²²

C0

δ2δ0δ1
²²

Q2
δ1
−1

// Q2

D0
δ0
−1

//

δ0
−1

²²

R0

R0

e

>>||||||||

E0
δ0
−1

//

δ1
²²

E3

δ2
−1

²²
S0 ∪ S1 ∪ T0

ι2ρ2 // S3 ∪ S3 ∪ T2
Finally we consider the word difference ι2.

A0
ι2 //

δ1
²²

A2

δ2
²²

Q0
ι2 // Q2

B0
ι2 //

δ2
−1δ0

−1

²²

B2

δ1
−1δ0

−1

²²
Q3

ι2 // Q1

C0
ι2 //

δ2δ0δ1
²²

C2

δ1δ0δ2
²²

Q2
ι2 // Q0

D0
ι2 //

δ0
−1

²²

D2

δ0
−1

²²
R0

ι2 // R2

E0
ι2 //

δ1
²²

E2

δ2
²²

S0 ∪ S1 ∪ T0
ι2 // S2 ∪ S3 ∪ T2

Now consider the diagrams we have constructed above. If the bottom line consists of
a word difference between regions we have already constructed then we have no more
work. However, there are some diagrams for which this is not the case. First, there are
those diagrams where the bottom line involves the regions making up Sj or Tj. We will
consider these in the next section. Secondly, there are word differences between regions
in Qj or Rj which we have not yet considered. We consider these individually.

The easiest case is where we have a word difference of ι2ψ where ψ is one of the word
differences that we can already deal with. These can be analysed as follows. For each
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of the squares we have constructed with word difference ψ and written in the form (∗)
we add a new square with word difference ι2ψ:

U
ψ //

α

²²

V
ι2 //

β
²²

W

γ

²²
U ′

ψ′ // V ′
ι2 // W ′

where W = ι2(V ), W ′ = ι2(V
′) and γ = ι2βι2 is f |W . If ψ′ has the form ι2ψ

′′ for some
ψ′′, then we use ι2

2 = e to get a word difference of ψ′′. This is illustrated in the example
given in section 5.5 below.

The remaining word differences we have to consider are

δ2δ0 : A3 ∪B3 ∪ E3 −→ R0, (1)
δ0
−1δ2

−1 : R0 −→ A3 ∪B3 ∪ E3, (2)
ρ1 = δ1δ0δ1 : R0 −→ R1. (3)

The word difference (3) is slightly more complicated than the others. We will treat
this word difference and those arising from it separately in section 5.4. These will be
called exceptional word differences and will constitute a separate subgraph of the word
difference machine.

We now consider the word difference (1). By examining which point goes to which, we
see that this may be broken into four new arrows. Namely

δ2δ0 : δ0
−1δ2

−1(B0) ∩ A3 −→ B0, δ2δ0 : δ0
−1δ2

−1(D0) ∩ A3 −→ D0,
δ2δ0 : B3 −→ A0, δ2δ0 : E3 −→ E0

Now δ0
−1δ2

−1(B0) ⊂ A3 and δ0
−1δ2

−1(D0) ⊂ A3. Thus we obtain the following squares

δ0
−1δ2

−1(B0)
δ2δ0 //

δ2
−1

²²

B0

δ2
−1δ0

−1

²²
C3 ∪D3

δ0 // Q3

δ0
−1δ2

−1(D0)
δ2δ0 //

δ2
−1

²²

D0

δ0
−1

²²
A3 ∪B3 ∪ E3

δ2δ0 // R0

B3
δ2δ0 //

δ1δ0
²²

A0

δ1
²²

Q0
δ2 // Q0

E3
δ2δ0 //

δ2
−1

²²

E0

δ1
²²

S2 ∪ S3 ∪ T2
ι2δ0

−1δ1
−1

// S0 ∪ S1 ∪ T0

The word differences on the bottom lines of these diagrams either have been considered
above or else involve Sj and Tj. In the latter case we will consider them in the next
section.
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e

δ  δ δ ι  δ ι  δ  δ

δ δ ι  δ ι  δ

ι

δ δ ι  δ ι  δ

δ  δ δ ι  δ ι  δ  δ

2

0 2 2 2 2 2 2 0

0 1 2 0 2 1

1 0 2 1 2 0

2 0 2 2 2 2 0 2
−1−1−1

−1 −1

−1−1

−1 −1 −1

Fig. 5.2.1. Non-exceptional arrows in the word difference machine where U is one of A0, B0, C0, D0

(Each arrow is labelled by a pair (α−1, β−1) as described in Section 5.1)

We now consider the word difference (2). It is rather similar to (1), and splits as

δ0
−1δ2

−1 : B0 −→ δ0
−1δ2

−1(B0) ∩ A3, δ0
−1δ2

−1 : A0 −→ B3,

δ0
−1δ2

−1 : D0 −→ δ0
−1δ2

−1(D0) ∩ A3, δ0
−1δ2

−1 : E0 −→ E3.

B0
δ0
−1δ2

−1

//

δ2
−1δ0

−1

²²

δ0
−1δ2

−1(B0)

δ2
−1

²²
Q3

δ0
−1

// C3 ∪D3

D0
δ0
−1δ2

−1

//

δ0
−1

²²

δ0
−1δ2

−1(D0)

δ2
−1

²²
R0

δ0
−1δ2

−1

// A3 ∪B3 ∪ E3

A0
δ0
−1δ2

−1

//

δ1
²²

B3

δ1δ0
²²

Q0
δ2
−1

// Q0

E0
δ0
−1δ2

−1

//

δ1
²²

E3

δ2
−1

²²
S0 ∪ S1 ∪ T0

ι2δ2δ0 // S2 ∪ S3 ∪ T2

The word differences on the bottom lines of these diagrams either have been considered
above or else involve Sj and Tj, again to be treated in the next section.

Fig. 5.2.1 shows the non-exceptional arrows constructed above where U is one of A0,
B0, C0 or D0. The labels on the arrows may be obtained from the squares listed above.
For example, the three arrows from e to δ1 are labelled (δ1

−1,−), (δ0δ2, δ1δ0δ2) and
(δ1
−1δ0

−1δ2
−1, δ0

−1δ2
−1).
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5.3. Squares and triangles arising from states in F0 and F1. We proceed along
the lines of the previous section. What we do now is essentially the same as in sec-
tion 2.5. Recall that Sj = Fj ∪Gj for j = 0, 1, 2, 3 and Tj = Hj ∪ Ij ∪ Jj ∪Hj+1 ∪ Ij+1

for j = 0, 2. We begin with the word diffences δ1 and δ−11 . We have:

S0 ∪ T0
δ1 //

e %%LLLLLLLLLL
E1

δ1
−1

²²
S0 ∪ T0

T0
δ1
−1

//

e ÃÃA
AA

AA
AA

E0

δ1
²²
T0

We now consider δ2:

F0
δ2 //

δ2
²²

S0 ∪ T0

S0 ∪ T0
e

99rrrrrrrrrr

G0
δ2 //

δ0
−1

²²

G1

δ0
²²

S0 ∪ T0
ρ2 // S1 ∪ T0

T0
δ2 //

e ÃÃA
AA

AA
AA

F1

δ2
−1

²²
T0

(Recall that ρ2 = δ2δ0δ2.) We now consider δ2
−1 and δ0:

S0 ∪ T0
δ2
−1

//

e %%LLLLLLLLLL
F0

δ2
²²

S0 ∪ T0

S0 ∪ T0
δ0 //

e %%LLLLLLLLLL
G0

δ0
−1

²²
S0 ∪ T0

We now consider δ0
−1:

F0
δ0
−1

//

δ2
²²

F1

δ2
−1

²²
S0 ∪ T0

ρ2−1 // S1 ∪ T0

G0
δ0
−1

//

δ0
−1

²²

S0 ∪ T0

S0 ∪ T0
e

99rrrrrrrrrr

T0
δ0
−1

//

e ÃÃA
AA

AA
AA

A
G1

δ0
²²
T0

We now consider ι2:

F0
ι2 //

δ2
²²

F2

δ1
²²

S0 ∪ T0
ι2 // S2 ∪ T2

G0
ι2 //

δ0
−1

²²

F2

δ0
−1

²²
S0 ∪ T0

ι2 // S2 ∪ T2
As for word differences between states in F2, if we have a square for the word difference
ψ of the form (∗) then we add a new square with the word difference ι2ψ:

U
ψ //

α

²²

V
ι2 //

β
²²

W

γ

²²
U ′

ψ′ // V ′
ι2 // W ′

where W = ι2(V ), W ′ = ι2(V
′) and γ = ι2βι2 is f |W . Now if ψ′ were ι2ψ′′ then we

have ι2ψ
′ = ι2

2ψ′′ = ψ′′ since ι22 is the identity. This has completed the construction of
squares and triangles for the standard word differences. There remain a few cases that
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we have not dealt with. These arise is the bottom line in some of the diagrams we have
found. The relevant word differences are

ρ2 : S0 ∪ T0 −→ S1 ∪ T0, (1)

ρ2
−1 : S0 ∪ T0 −→ S1 ∪ T0, (2)

δ0
−1δ1

−1 : S2 ∪ S3 ∪ T2 −→ S2 ∪ S3 ∪ T2, (3)

δ2δ0 : S0 ∪ S1 ∪ T0 −→ S0 ∪ S1 ∪ T0 (4)

where, as in section 4.6, ρj = δjδ0δj for j = 1, 2. We consider them separately.

The word difference (1) splits as

ρ2 : F0 −→ G1, ρ2 : G0 −→ F1, ρ2 : H0 ∪ J0 −→ I0, ρ2 : I0 −→ H0,

as well as ρ2 acting on H1 and I1. Applying the symmetry ι1 this is equivalent to ρ2
−1

acting on H0 and I0 which we consider under (2). Thus we get diagrams

F0

ρ2 //

δ2
²²

G1

δ0
²²

S0 ∪ T0
ρ2 // S1 ∪ T0

G0

ρ2 //

δ0
−1

²²

F1

δ2
−1

²²
S0 ∪ T0

ρ2 // S1 ∪ T0

H0 ∪ J0
ρ2 //

e &&LLLLLLLLLL
I0

ρ2−1

²²
H0 ∪ J0

I0
ρ2 //

ρ2−1

²²

H0

ρ2−2

²²
H0 ∪ J0 e

// H0 ∪ J0
Similarly for (2). We get

ρ2
−1 : F0 −→ G1, ρ2

−1 : G0 −→ F1, ρ2
−1 : H0 −→ I0, ρ2

−1 : I0 −→ H0 ∪ J0.
In addition, there is ρ2

−1 acting on H1 and I1. Applying the symmetry ι1, we can
obtain these word differences from ρ2 acting on H0 and I0. This was done above. The
remaining word differences give the following diagrams

F0

ρ2−1 //

δ2
²²

G1

δ0
²²

S0 ∪ T0
ρ2−1 // S1 ∪ T0

G0

ρ2−1 //

δ0
−1

²²

F1

δ2
−1

²²
S0 ∪ T0

ρ2−1 // S1 ∪ T0

H0

ρ2−1 //

ρ2−2

²²

I0

ρ2−1

²²
H0 ∪ J0 e

// H0 ∪ J0

I0
ρ2−1 //

ρ2−1

²²

H0 ∪ J0

H0 ∪ J0
e

88rrrrrrrrrr

We now consider the word differences (3) and (4). The only way that these word
differences can occur is from one of the following diagrams

E3
ι2δ2δ0 //

δ2
−1

²²

E2

δ2
²²

S2 ∪ S3 ∪ T2
δ0
−1δ1

−1

// S2 ∪ S3 ∪ T2

E0
ι2δ0

−1δ2
−1

//

δ1
²²

E1

δ1
−1

²²
S0 ∪ S1 ∪ T0

δ2δ0 // S0 ∪ S1 ∪ T0
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Applying the symmetries we see that it is sufficient to consider the following word
differences

δ0δ2 : S0 ∪ T0 −→ S0 ∪ S1 ∪ T0, (5)

δ0
−1δ2

−1 : S0 ∪ T0 −→ F1, (6)

δ2δ0 : S0 ∪ T0 −→ G1, (7)

δ2
−1δ0

−1 : S0 ∪ T0 −→ S0 ∪ S1 ∪ T0. (8)

These break down into diagrams as follows

F0
δ0δ2 //

δ2
²²

G0

δ0
−1

²²
S0 ∪ T0 e

// S0 ∪ T0

G0
δ0δ2 //

δ0
−1

²²

S1 ∪ T0

S0 ∪ T0
ρ2

99rrrrrrrrrr

T0
δ0δ2 //

ρ2 ÃÃA
AA

AA
AA

F0

δ2
²²
T0

S0 ∪ T0
δ0
−1δ2

−1

//

ρ2−1 ((RRRRRRRRRRRRR
F1

δ2
−1

²²
S1 ∪ T0

S0 ∪ T0
δ2δ0 //

ρ2 %%LLLLLLLLLL
G1

δ0
²²

S1 ∪ T0

F0
δ2
−1δ0

−1

//

δ2
²²

S1 ∪ T0

S0 ∪ T0
ρ2−1

66lllllllllllll

G0
δ2
−1δ0

−1

//

δ0
−1

²²

F0

δ2
²²

S0 ∪ T0 e
// S0 ∪ T0

T0
δ2
−1δ0

−1

//

ρ2−1 &&MMMMMMMMMMMMM G0

δ0
−1

²²
T0

ρ

ρ

e

δ δ δ

δ  δ δ  δ

ι δ  δ

ι δ  δ ι δ  δ

ι δ  δ

δ  δ δ δ δ

0

0

−1

2

−1

1

−1

2 1 0

−1 −1

2 0 2

−1 −1

2 0201

2 0 2

2 1 0

0 2

−1 −1

2

−1 −1

0 2

2

2

−1

δ  δ

Fig. 5.3.1. Arrows in the word difference machine where U is one of F0, G0, H0, I0, J0
(In addition there should be word differences ι2ψ. The square boxes denote word differences

where V is Ej .)

We remark that all these squares have introduced no new word differences in their
bottom lines.
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5.4. The exceptional word differences. We have now completed the word difference
machine except that we have not dealt with word differences arising from the following
square (which was called (3) in section 5.2):

D0
δ1 //

δ0
−1

²²

D1

δ0
²²

R0

ρ1 // R1

and its symmetric images. Recall that Rj = Aj ∪ Bj ∪ Dj ∪ Ej. Observe that δ1 :
D0 −→ D1 and its symmetric images do not arise in the bottom row of any of the
squares or triangles we have constructed so far. We call them exceptional initial states.
There are some states which only arise in paths beginning with an exceptional initial
states. We call these exceptional states. Because they never occur in a bottom row, once
we have gone from an exceptional state to a non-exceptional state (that is any of the
states considered in sections 5.2 and 5.3) we can never return to an exceptional state.
In order to get from an exceptional to a non-exceptional state it is usually necessary
to pass through a triangle. Thus a triangle of this special type can only occur once
in any path through the word difference machine. The exceptional states constitute a
separate subgraph of the word difference machine. We now construct the exceptional
states arising from the map: ρ1 : R0 −→ R1. Intersecting this with the states of F2

gives:

ρ1 : ρ1
−1(D1) ∩ A0 −→ D1, (1)

ρ1 : ρ1
−1(B1) ∩ A0 −→ B1, (2)

ρ1 : D0 −→ ρ1(D0) ∩ A1, (3)

ρ1 : B0 −→ ρ1(B0) ∩ A1, (4)

ρ1 : E0 −→ E1. (5)

Each of these five maps is the top line in a square or triangle of the form (∗), (∗∗) or
(∗ ∗ ∗). We claim that ρ1

−1(D1) and ρ1
−1(B1) are subsets of A0 and that ρ1(D0) and

ρ1(B0) are subsets of A1. This may be checked using Propositions 3.3.1, and 3.3.3. The
maps (1) and (3) above give rise to squares of the form (∗) for which the new word
difference ψ′ is again ρ1. They are

ρ1
−1(D1)

ρ1 //

δ1
²²

D1

δ0
²²

R0

ρ1 // R1

D0

ρ1 //

δ0
−1

²²

ρ1(D0)

δ1
−1

²²
R0

ρ1 // R1

The map (5) gives a square which leads directly to a non-exceptional state involving
F1 and F0. It is

E0

ρ1 //

δ1
²²

E1

δ1
−1

²²
S0 ∪ S1 ∪ T0

δ0 // S0 ∪ S1 ∪ T0
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The maps (2) and (4) are immediately followed by a triangle and a square.

ρ1
−1(B1)

ρ1 //

δ1
²²

B1

δ2δ0
²²

C0

δ1δ0

::uuuuuuuuuu

δ2δ0δ1
²²

Q2

Q2

δ1

::uuuuuuuuuu

B0

ρ1 //

δ0δ1 ##FFFFFFFFF

δ2
−1δ0

−1

²²

ρ1(B0)

δ1
−1

²²
Q3

δ1 ##GG
GG

GG
GG

G C1

δ2
−1δ0

−1δ1
−1

²²
Q3

ρδ

δ  δ

δ  δ
δ

δ1

1 0

0 1

0

11

Fig. 5.4.1. Arrows between exceptional word differences ending at the initial difference δ1

(The square boxes denote non-exceptional word differences.)

When we form arrows in the word difference machine, we reverse the arrows in each of
the squares and triangles listed above. Recall that exceptional initial states never occur
as the bottom line in any of the squares we have constructed. This means that there are
no arrows leading out of exceptional initial states. In other words they are dead ends in
the word difference machine. Moreover, there are no arrows to non-exceptional states
from the subgraph of the word difference machine consisting of exceptional states.

5.5. Synchronising the word difference machine. Sections 5.2, 5.3 and 5.4 contain
a full list of all word differences. There is one last technical problem because, as in
section 2.5, the word difference machine we have constructed using this process is not
synchronised. This is because of the presence of triangles rather than squares. We need
to check that only finitely many triangles can occur in any path through the difference
machine and to then compensate for this by adding padding symbols $.

In the previous sections we have constructed, up to symmetry, all the squares and
triangles that give rise to arrows in the difference machine. As before, we use the
following notation for triangles:
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U
ψ //

α
²²

V

α(U)
ψ′

==zzzzzzzz

U
ψ //

ψ′ !!DD
DD

DD
DD

V

β
²²

β(V )

There are exactly three ways that triangles can arise. First, there are triangles where ψ ′

is the identity. Clearly, this can occur at most once in any path through the difference
machine. This is equivalent to saying that the only arrows leading to the state e in the
difference machine also start at e.

Secondly, there are triangles between non-exceptional states where ψ is (δjδ0)
±1 or

(δ0δj)
±1 and ψ′ is ρj±1 for j = 1, 2. For example

G0
δ0δ2 //

δ0
−1

²²

S1 ∪ T0

S0 ∪ T0
ρ2

99rrrrrrrrrr

Any subsequent squares have the word difference e or ρj
±1. Therefore this type of

triangle can occur at most once. This is equivalent to saying that, in Fig. 5.3.1, the
only arrows leading to the state ρ2

±1 begin either at ρ2
±1 or at e.

Thirdly, there are triangles occurring during transition from exceptional states to non-
exceptional states. Once we leave exceptional states we never return and so this can
occur at most once. In other words, in Fig. 5.4.1 there are no arrows from exceptional
states to non-exceptional states and the triangles occur on the arrows from δ1δ0 and
δ0δ1 to ρ1. We now give an example which contains all three types of triangles. This
is the worst possible case we must deal with. This is the word difference δ1 for the
following Farey block in D0:

γ1 = (0, 1, 2, 3) ∈ ∆7, γ2 = (1, 1, 5, 8) ∈ ∆7, β = (3, 3, 11, 15) ∈ ∆7; γ3 = (1, 1, 4, 6) ∈ ∆7.

The squares associated with reducing this Farey block back to J0 are:
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D0

δ0
−1

²²

δ1 // D1

δ0
²²

A0

δ1
²²

ρ1 // B1

δ2δ0

²²

C0

δ2δ0δ1
²²

δ1δ0

66mmmmmmmmmmmmmmmm

B2

δ1
−1δ0

−1

²²

δ1 // B2

δ1
−1δ0

−1

²²
C1

δ2
−1δ0

−1δ1
−1

²²

δ0 // C1

δ2
−1δ0

−1δ1
−1

²²
C3

δ1
−1δ0

−1δ2
−1

²²

δ1 // D3

δ0
²²

B1

δ2δ0
²²

δ2
−1

// D1

δ0
²²

ι2 // D3

δ0
²²

E2

δ2
²²

δ2
−1δ0

−1
// E1 ι2

// E3

δ2
−1

²²

G2

δ0
−1

²²

δ0δ1

((QQQQQQQQQQQQQQQQ

H3

ρ1
²²

ρ1
// J2

ι2

²²

J2

ι2
²²

e

66mmmmmmmmmmmmmmmm

J0 e
// J0

In order to synchronise the word difference machine, as we saw in section 2.5, it is nec-
essary to add to the set of word differences by adding in diagonals to squares. Because
we can have more than one triangle these diagonals may carry over several squares. In
our example, we need word differences δ2δ1δ0δ1 between H3 and E3; δ0

−1δ2δ0δ1 between
G2 and D3 and so on. Adding all possible diagonals in groups of one, two and three
squares adds considerably to the possible word differences. Finally, we need to make
further changes in the collection of word differences. This is because we need to con-
sider initial word differences for all elements of the alphabet A. So far we have only
considered initial word differences in D0 as indicated in section 5.1. Because all words
in A have length at most six in the letters of D0 this means we need to concatenate up
to six word differences. For example, the word difference δ1δ0δ2 on the state D0 gives
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rise to three squares concatenated horizontally:

D0
δ2 //

δ0
−1

²²

δ2(D0) ∩ C0
δ0 //

δ2δ0δ1
²²

δ0δ0(D0) ∩ C0
δ1 //

δ2δ0δ1
²²

δ1δ0δ2(D0) ∩B0

δ2δ0
²²

R0
ι2δ2

−1
// A2 ∪B2 ∪ E2

δ1

// R2 e
// R2

In fact, this may be simplified to give the square

D0
δ1δ0δ2 //

δ0
−1

²²

δ1δ0δ2(D0) ∩B0

δ2δ0
²²

R0
ι2 // R2

All these changes make the final collection of word differences D rather large but it is
still finite. Thus we have a word difference machine in the usual sense. This makes
MCG(Σ2) automatic. It seems likely that the same structure shows thatMCG(Σ2) is
biautomatic (in other words generators can be added at either end) but we have not
explored this possibility.
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Kac-Moody Groups: Split and Relative Theories. Lattices

by

B. Remy

introduction

Historical sketch of Kac-Moody theory. — Kac-Moody theory was initiated in 1968,
when V. Kac and R. Moody independently defined infinite-dimensional Lie algebras
generalizing complex semi-simple Lie algebras. Their definition is based on Serre’s pre-
sentation theorem describing explicitly the latter (finite-dimensional) Lie algebras [Hu1,
18.3]. A natural question then is to integrate Kac-Moody Lie algebras as Lie groups
integrate real Lie algebras, but this time in the infinite-dimensional setting. This dif-
ficult problem led to several propositions. In characteristic 0, a satisfactory approach
consists in seeing them as subgroups in the automorphisms of the corresponding Lie
algebras [KP1,2,3]. This way, V. Kac and D. Peterson developed the structure theory
of Kac-Moody algebras in complete analogy with the classical theory: intrinsic defini-
tion and conjugacy results for Borel (resp. Cartan) subgroups, root decomposition with
abstract description of the root system... Another aspect of this work is the construc-
tion of generalized Schubert varieties. These algebraic varieties enabled O. Mathieu to
get a complete generalization of the character formula in the Kac-Moody framework
[Mat1]. To this end, O. Mathieu defined Kac-Moody groups over arbitrary fields in the
formalism of ind-schemes [Mat2].

Combinatorial approach. — Although the objects above – Kac-Moody groups and
Schubert varieties – can be studied in a nice algebro-geometric context, we will work
with groups arising from another, more combinatorial viewpoint. All of this work is
due to J. Tits [T4,5,6,7], who of course contributed also to the previous problems. The
aim is to get a much richer combinatorial structure for these groups. This led J. Tits
to the notion of “ Root Group Datum” axioms [T7] whose geometric counterpart is the
theory of Moufang twin buildings. The starting point of the construction of Kac-Moody
groups [T4] is a generalization of Steinberg’s presentation theorem [Sp, Theorem 9.4.3]
which concerns simply connected semi-simple algebraic groups. In this context, the
groups SLn(K[t, t−1]) are Kac-Moody groups obtained via Tits’ construction.

Relative Kac-Moody theory in characteristic 0. — So far, the infinite-dimensional ob-
jects alluded to were analogues of split Lie algebras and split algebraic groups. Still, it
is known that by far not all interesting algebraic groups are covered by the split theory
– just consider the simplest case of the multiplicative group of a quaternion skew field.
This is the reason why Borel-Tits theory [BoT] is so important: it deals with algebraic
groups over arbitrary fields K, and the main results provide a combinatorial structure
theorem for K-points, conjugacy theorems for minimal K-parabolic subgroups (resp. for
maximal K-split tori). This theory calls for a generalization in the Kac-Moody setting:
this work was achieved in the characteristic 0 case by G. Rousseau [Rou1,2,3; B3R].

Two analogies. — The example of the groups SLn(K[t, t−1]) is actually a good guideline
since it provides at the same time another analogy for Kac-Moody groups. Indeed, over

401
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finite fields K = Fq, the former ones are arithmetic groups in the function field case.
Following the first analogy – a Kac-Moody group is an infinite-dimensional reductive
group, a large part of the present paper describes the author’s thesis [Ré2] whose basic
goal is to define K-forms of Kac-Moody groups with no assumption on the ground field
K. This prevents us from using the viewpoint of automorphisms of Lie algebras as in
the works previously cited, but the analogues of the main results of Borel-Tits theory
are proved. This requires first to reconsider Tits’ construction of Kac-Moody groups
and to prove results in this (split) case, interesting in their own right. On the other
hand, the analogy with arithmetic groups will also be discussed so as to see Kac-Moody
groups as discrete groups – lattices for Fq large enough – of their geometries.

Tools. — Let us talk about tools now, and start with the main difficulty: no algebro-
geometric structure is known for split Kac-Moody groups as defined by J. Tits. The
idea is to replace this structure by two well-understood actions. The first one is not
so mysterious since it is linear: it is in fact the natural generalization of the adjoint
representation of algebraic groups. It plays a crucial role because it enables to endow a
large family of subgroups with a structure of algebraic group. The second kind of action
involves buildings: it is a usual topic in group theory to define a suitable geometry out
of a given group to study it (use of Cayley graphs, of boundaries... ) Kac-Moody groups
are concerned by building techniques thanks to their nice combinatorial properties, re-
fining that of BN -pairs (for an account on the general use of buildings in group theory,
see [T2]). There exists some kind of (non-unique) correspondence between buildings
and BN -pairs [Ron §5], but it is too general to provide precise information in specific
situations. Some refinements are to be adjusted accordingly – see the example of Eu-
clidean buildings and “ Valuated Root Data” in Bruhat-Tits theory [BrT1]. As already
said, in the Kac-Moody setting the refinements consist in requiring the “ Root Group
Datum” axioms at the group level and in working with twin buildings at the geometric
level. Roughly speaking, a twin building is the datum of two buildings related by op-
position relations between chambers and apartments.

Organization of the paper. — This article is divided into four parts. Part 1 deals with
group combinatorics in a purely abstract context. Since the combinatorial axioms will
be satisfied by both split and non-split groups, it is an efficient way to formalize proper-
ties shared by them. We describe the geometry of twin buildings and the corresponding
group theoretic axioms. The aim is to obtain two kinds of Levi decomposition which
will be of interest later on. Part 2 describes the split theory of Kac-Moody groups. In
particular, we explain why the adjoint representation can be seen as a substitute for a
global algebro-geometric structure. An illustration of this is a repeatedly used argument
combining negative curvature and algebraic groups arguments. Part 3 presents the rel-
ative theory of almost split Kac-Moody groups. A sketch of the proof of the structure
theorem for rational points is given. The particular case of a finite ground field is con-
sidered, as well as a classical example of a twisted group leading to a semi-homogeneous
twin tree. Finally, part 4 adopts the viewpoint of discrete groups. We first show that
Kac-Moody theory enables to produce hyperbolic buildings (among many other possi-
bilities) and justify why these geometries are particularly interesting. Then we show
that Kac-Moody groups or their spherical parabolic subgroups over a finite ground field
are often lattices of their buildings. This leads to an analogy with arithmetic lattices
over function fields. The assumed knowledge for this article consists of general facts



Kac-Moody Groups 403

from building theory and algebraic groups. References for buildings are K. Brown’s
book [Br2] for the apartment systems viewpoint and M. Ronan’s book [Ron] for the
chamber systems one. Concerning algebraic groups, the recent books [Bo] and [Sp] are
the main references dealing with relative theory.

Acknowledgements. — This work presents a Ph.D. prepared under the supervision of
G. Rousseau. It is a great pleasure to thank him, as well as M. Bourdon who drew my
attention to the discrete groups viewpoint. I am very grateful to H. Abels, P. Abra-
menko, and Th. Müller for their kindness. It was a pleasure and a nice experience
to take part in the conference “ Groups : geometric and combinatorial aspects” orga-
nized by H. Helling and the latter, and to be welcomed at the SFB 343 (University of
Bielefeld).

1. Abstract group combinatorics and twin buildings

The aim of this section is to provide all the abstract background we will need to study
split and almost split Kac-Moody groups. Subsection 1.1 introduces the root system of
a Coxeter group. These roots will index the group combinatorics of the “ Twin Root
Datum” axioms presented in Subsection 1.2. In the next subsection, we describe the
geometric side of the (TRD)-groups, that is the twin buildings on which they operate.
Subsection 1.4 is dedicated to the geometric notions and realizations to be used later. At
last, Subsection 1.5 goes back to group theory providing some semi-direct decomposition
results for distinguished classes of subgroups.

1.1. Root systems and realizations of a Coxeter group. The objects we define
here will be used to index group theoretic axioms (1.2.A) and to describe the geometry
of buildings (1.3.B).

A. Coxeter complex. Root systems. Let M = [Mst]s,t∈S denote a Coxeter matrix
with associated Coxeter system (W,S). For our purpose, it is sufficient to suppose the
canonical generating set S finite. The group W admits the following presentation :

W = 〈s∈S | (st)Mst = 1 whenever Mst <∞〉.
We shall use the length function ` : W → N defined w.r.t. S. The existence of an
abstract simplicial complex acted upon by W is the starting point of the definition of
buildings of type (W,S) in terms of apartment systems. This complex is called the
Coxeter complex associated to W , and will be denoted by Σ(W,S) or Σ. It describes
the combinatorial geometry of “ slices” in a building of type (W,S) – the so-called
apartments. The abstract complex Σ is made of translates of the special subgroups
WJ := 〈J〉, J ⊂ S, ordered by inclusion [Br2, p.58-59]. The root system of (W,S) is
defined by means of the length function ` [T4, §5]. The set W admits a W -action via
left translations. Roots are distinguished halves of this W -set, whose elements will be
called chambers.

Definition.

(i) The simple root of index s is the half αs := {w∈W | `(sw) > `(w)}.
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(ii) A root of W is a half of the form wαs, w∈W, s∈S. The set of roots will be denoted
by Φ; it admits an obvious W -action.

(iii) A root is called positive if it contains 1; otherwise, it is called negative. Denote by
Φ+ (resp. Φ−) the set of positive (resp. negative) roots of Φ.

(iv) The opposite of a root is its complement.

Remark. The opposite of the root wαs is indeed a root since it is wsαs.

The next definitions are used for the group combinatorics presented in 1.2.A.

Definition. (i) A pair of roots {α; β} is called prenilpotent if both intersections
α ∩ β and (−α) ∩ (−β) are non-empty.

(ii) Given a prenilpotent pair of roots {α; β}, the interval [α; β] is by definition the
set of roots γ with γ ⊃ α ∩ β and (−γ) ⊃ (−α) ∩ (−β). We also set ]α; β[:=
[α; β] \ {α; β}.

B. The Tits cone. Linear refinements. We introduce now a fundamental real-
ization of a Coxeter group : the Tits cone. It was first defined in [Bbk, V.4] to which
we refer for proofs. This approach will also allow us to consider roots as linear forms
[Hu2, II.5]. We keep the Coxeter system (W,S) with Coxeter matrix M = [Mst]s,t∈S .
Consider the real vector space V over the symbols {αs}s∈S and define the cosine matrix
A ofW by Ast := − cos(π/Mst) : this is the matrix of a bilinear form B (w.r.t. the basis
{αs}s∈S). To each s of S is associated the involution σs : λ 7→ λ− 2B(αs, λ)αs, and the
assignment s 7→ σs defines a faithful representation of W . The (positive) half-space in
V ∗ of an element λ in V is denoted by D(λ) : D(λ) := {x∈V ∗ | λ(x) > 0}. We denote
its boundary – the kernel of λ – by ∂λ.

Definition. (i) The standard chamber c is the simplicial cone
⋂

s∈S
D(αs) of el-

ements of V ∗ on which all linear forms αs are positive. A chamber is a W -
translate of c.

(ii) The standard facet of type J, J ⊂ S, is FI :=
⋂

s∈I
∂αs ∩

⋂

s∈S\I
D(αs). A facet of

type J is a W -translate of FJ .

(iii) The Tits cone C of W is the union of the closures of all chambers
⋃

w∈W
wc =

⊔

w∈W,J⊂S
wFJ .

A study of the action ofW on C shows that the type is well-defined. A facet is spherical
if it is of type J with WJ finite. Facets of all types are represented here, as simplicial
cones. The simplicial complex so obtained is not locally finite in general, but its interior
C is. In fact, a facet is of non-spherical type if and only if it lies in the boundary of the
Tits cone. Further properties of the cone C are available in [V].
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Example. In the case of an affine reflexion group, the Tits cone is made up of the
union of an open half-space and the origin, which is the only nonspherical facet. The
affine space in which the standard representation of the group is defined is just the
affinisation of this cone [Hu2, II.6].

The viewpoint of linear forms for roots enables us to introduce another – more restrictive
– notion of interval of roots.

Definition. Given two roots α and β, the linear interval they define is the set [α; β]lin
of positive linear combinations of them, seen as linear forms on V .

Figure. —
α β

α

β

The picture above illustrates a general fact: there are two ways to be prenilpotent.
Either the walls of the roots intersect along a spherical facet – and the four pairs of
roots of the form {±α;±β} are prenilpotent, or a root contains the other – and only
two pairs among the four are prenilpotent.

Remark. For a prenilpotent pair of roots, one has [α; β]lin ⊂ [α; β], still the notions
do not coincide, even in the Kac-Moody situation. G. Rousseau indicated an example
of strict inclusion provided by a tesselation of the hyperbolic plane H2 [Ré2, 5.4.2].

C. Geometric realizations. We will try to use geometry as much as possible instead
of abstract set-theoretic structures. As an example, we will often represent Coxeter
complexes by polyhedral complexes [BH]. We are interested in such spaces with the
following additional properties.

(i) The complex is labelled by a fixed set of subsets of S – the types. We call facets
the polyhedra inside. Codimension 1 facets are called panels, maximal facets
are called chambers.

(ii) There is a countable family of codimension 1 subcomplexes – the walls – w.r.t.
which are defined involutions – the reflections. A reflection fixes its wall and
stabilizes the whole family of them.

(iii) For a chamber c, there is a bijection between the set of generators S and the
walls supporting the panels of c. The corresponding reflections define a faithful
representation of W by label-preserving automorphisms of the complex.

(iv) The W -action is simply transitive on chambers.

Remark. (1) The Tits cone satisfies all the conditions above, with simplicial cones
as facets instead of polyhedra.
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(2) We may use geometric realizations where only spherical types appear. This is
the case in the examples below.

Example. (1) The simplest example with infinite Coxeter group is given by the real
line and its tesselation by the segments defined by consecutive integers. It is
acted upon by the infinite dihedral group D∞, and the corresponding buildings
are trees.

(2) Another famous example associated to an affine reflection group comes from the
tesselation of the Euclidean plane by equilateral triangles. Buildings with this

geometry as apartments are called Ã2- or triangle buildings. They are interest-
ing because, even if they belong to the well-known class of Euclidean buildings,
many of them do not come from Bruhat-Tits theory.

(3) A well-known way to concretely construct a Coxeter group with a realization of
its Coxeter complex is to apply Poincaré polyhedron theorem [Mas, IV.H.11].
This works in the framework of spherical, Euclidean or hyperbolic geometry; we
just have to consider reflections w.r.t. to a suitable polyhedron. For a tiling of a
hyperbolic space Hn, the corresponding buildings are called hyperbolic, Fuchsian
in the two-dimensional case.

Figure. —

1.2. Axioms for group combinatorics. We can now give axioms refining BN -pairs
and adapted to the Kac-Moody situation.

A. The (TRD) axioms. The axioms listed below are indexed by the set of roots
Φ of the Coxeter system (W,S). It is a slight modification of axioms proposed in [T7].
That it implies the group combinatorics introduced by V. Kac and D. Peterson [KP2]
follows from [Ré2, Théorème 1.5.4], which elaborates on [Ch] and [T3].

Definition. Let G be an abstract group containing a subgroup H. Suppose G is endowed
with a family {Uα}α∈Φ of subgroups indexed by the set of roots Φ, and define the sub-
groups U+ := 〈Uα | α∈Φ+〉 and U− := 〈Uα | α∈Φ−〉. Then, the triple

(
G, {Uα}α∈Φ, H

)

is said to satisfy the (TRD) axioms if the following conditions are satisfied.

(TRD0) Each Uα is non-trivial and normalized by H.

(TRD1) For each prenilpotent pair of roots {α; β}, the commutator subgroup [Uα, Uβ] is
contained in the subgroup U]α,β[ generated by the Uγ’s, with γ∈]α, β[.

(TRD2) For each s in S and u in Uαs \ {1}, there exist uniquely defined u′ and u′′

in U−αs \ {1} such that m(u) := u′uu′′ conjugates Uβ onto Usβ for every root



Kac-Moody Groups 407

β. Besides, it is required that for all u and v in Uαs \ {1}, one should have
m(u)H = m(v)H.

(TRD3) For each s in S, Uαs 6⊂ U− and U−αs 6⊂ U+.

(TRD4) G is generated by H and the Uα’s.

Such a group will be referred to as a (TRD)-group. It will be called a (TRD)lin-group
or said to satisfy the (TRD)lin axioms if (TRD1) is still true after replacing intervals
by linear ones.

Remark. (1) A consequence of Borel-Tits theory [BoT, Bo, Sp] is that isotropic
reductive algebraic groups satisfy (TRD)lin axioms. We will see in 2.3.A that
so do split Kac-Moody groups. The case of non-split Kac-Moody groups is the
object of the Galois descent theorem – see 3.2.A.

(2) The case of algebraic groups suggests to take into account more carefully pro-
portionality relations between roots seen as linear forms. It is indeed possible to
formalize the difference between reduced and non-reduced infinite root systems,
and to derive refined (TRD)lin axioms [Ré2, 6.2.5].

B. Main consequences. We can derive a first list of properties for a (TRD)-group G.

Two BN-pairs. — The main point is the existence of two BN -pairs in the group G.
Define the standard Borel subgroup of sign ε to be Bε := HUε. The subgroup N < G is
by definition generated by H and the m(u)’s of axiom (TRD2). Then, one has

H =
⋂

α∈Φ
NG(Uα) = B+ ∩N = B− ∩N,

and (G,B+, N, S) and (G,B−, N, S) are BN -pairs sharing the same Weyl group W =
N/H. As B+ and B− are not conjugate, the positive and the negative BN -pairs do
not carry the same information. A conjugate of B+ (resp. B−) will be called a positive
(resp. negative) Borel subgroup.

Refined Bruhat and Birkhoff decompositions. — A formal consequence of the existence
of a BN -pair is a Bruhat decomposition for the group. In our setting, the decomposition
for each sign can be made more precise. For each w∈W , define the subgroups Uw :=
U+ ∩ wU−w−1 and U−w := U− ∩ wU+w

−1. The refined Bruhat decompositions are then
[KP2, Proposition 3.2] :

G =
⊔

w∈W
UwwB+ and G =

⊔

w∈W
U−wwB−,

with uniqueness of the first factor. A third decomposition involves both signs and will
be used to define the twinned structures (1.3.A). More precisely, the refined Birkhoff
decompositions are [KP2, Proposition 3.3]:

G =
⊔

w∈W
(U+ ∩ wU+w

−1)wB− =
⊔

w∈W
(U− ∩ wU−w−1)wB+,

once again with uniqueness of the first factors.

Other unique writings. — Another kind of unique writing result is valid for the groups
U±w. For each z ∈W , define the (finite) sets of roots Φz := Φ+ ∩ z−1Φ− and Φ−z :=
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Φ− ∩ z−1Φ+. Then, the group Uw (resp. U−w) is in bijection with the set-theoretic
product of the root groups indexed by Φw−1 (resp. Φ−w−1) for a suitable (cyclic) ordering
on the latter set [T4, proposition 3 (ii)], [Ré2, 1.5.2].

Two buildings. — Let us describe now how to construct a building out of each BN -pair,
the twin structure relating them being defined in 1.3.A. Fix a sign ε and consider the
corresponding BN -pair (G,Bε, N, S). Let dε : G/Bε × G/Bε → W be the application
which associates to (gBε, hBε) the element w such that Bεg

−1hBε = BεwBε. Then, dε
is a W -distance making (G/Bε, dε) a building [Ron, 5.3]. The standard apartment of
sign ε is {wBε}w∈W , the relevant apartment system being the set of its G-transforms.
A facet of type J is a translate gPε,J of a standard parabolic subgroup Pε,J := BεWJBε.

C. Examples. — The most familiar examples of groups enjoying the properties
above are provided by Chevalley groups over Laurent polynomials. These groups are
Kac-Moody groups of affine type. We briefly describe the case of the special linear
groups SLn(K[t, t−1]), n ≥ 2. From the Kac-Moody viewpoint, the ground field is K.
The buildings involved are Bruhat-Tits. They are associated to the p-adic Lie groups
SLn

(
Fq((t))

)
and SLn

(
Fq((t−1))

)
respectively in the case of a finite ground field Fq. The

Weyl group is the affine reflection group Sn n Zn−1. The Borel subgroups are

B+ :=




M ∈




K[t] K[t]

tK[t] K[t]




∣∣∣∣∣∣∣∣
detM = 1





;

B− :=




M ∈




K[t−1] t−1K[t−1]

K[t−1] K[t−1]




∣∣∣∣∣∣∣∣∣
detM = 1




.

As subgroupH, we take the standard Cartan subgroup T of SLn(K) made up of diagonal
matrices with coefficients in K× and determinant 1. For 1 ≤ i ≤ n − 1, the monomial

matrices with

(
0 1
−1 0

)
in position (i, i + 1) on the diagonal (and 1’s everywhere else

on it) lift the n− 1 simple reflexions generating the finite Weyl group of SLn(K). The
last reflexion “ responsible for the affinisation” is lifted by

Nn :=




0 0 −t−1

0




1 0

0 1


 0

t 0 0



.
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The situation is the same for root groups: besides the simple root groups of SLn(K),
one has to add

Un :=





un(k) :=




1 0 0

0 1 0

kt 0 1




∣∣∣∣∣∣∣∣∣∣∣∣∣

k∈K





,

to get the complete family of subgroups indexed by the simple roots.

1.3. Moufang twin buildings. The theory of Moufang twin buildings is the geometric
side of the group combinatorics above. A good account of their general theory is [A1].
It was initiated in [T6], [T7] and a posteriori in [T1], whereas [RT2,3] deals with the
special case of twin trees. References for the classification problem are [MR] for the
unicity step, and then B. Mühlherr’s work, in particular [Mü] and his forthcoming
Habilitationschrift.

A. Twin buildings. The definition of a twin building is quite similar to that of a
building in terms of W -distance [T7, A1 §2].
Definition. A twin building of type (W,S) consists of two buildings (I+, d+) and
(I−, d−) of type (W,S) endowed with a (W -)codistance. By definition, the latter is
a map d∗ : (I+×I−)∪ (I−×I+)→ W satisfying the following conditions for each sign
ε and all chambers xε in Iε and y−ε, y′−ε in I−ε.
(TW1) d∗(y−ε, xε) = d∗(xε, y−ε)−1.

(TW2) If d∗(xε, y−ε) = w and d−ε(y−ε, y′−ε) = s∈S with `(ws) < `(w), then d∗(xε, y′−ε) =
ws.

(TW3) If d∗(xε, y−ε) = w then for each s∈S, there exists z−ε∈I−ε with d−ε(y−ε, z−ε) = s
and d∗(xε, z−ε) = ws.

From this definition can be derived two opposition relations. Two chambers are opposite
if they are at codistance 1. Given an apartment Aε of sign ε, an opposite of it is an
apartment A−ε such that each chamber of Aε admits exactly one opposite in A−ε. In
this situation, the same assertion is true after inversion of signs. An apartment admits
at most one opposite, and the set of apartments having an opposite forms an apartment
system in the building [A1 §2].
Remark. We defined two opposition relations, but we have to be careful with them.
Whereas an element of the apartment system defined above admits by definition exactly
one opposite, a chamber admits many opposites in the building of opposite sign. In the
sequel, the bold letter A will refer to a pair (A+,A−) of opposite apartments.

The connection with group combinatorics is folklore [Ré2, 2.6.4].

Proposition. Let G be a (TRD)-group. Then the buildings associated to the two BN-
pairs of G are Moufang and belong to a twin building structure. In particular, two facets
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of opposite signs are always contained in a pair of opposite apartments. Moreover, G
is transitive on pairs of opposite chambers.

So far, we explained how to derive two buildings from (TRD)-groups. The main con-
sequences of Moufang property will be described in the next subsection. So what is
left to do is to define the codistance. Whereas W -distance is deduced from Bruhat de-
composition, the W -codistance can be made completely explicit thanks to the Birkhoff
decomposition 1.2.B. Two chambers of opposite signs gB+ and hB− are at codistance
w if and only if g−1h is in the Birkhoff class B+wB−. This definition does not depend
on the choice of g and h in their class.

Examples. — 1. The class of twin trees has been studied in full generality in [RT2,3]
where many properties are established. For instance, the trees have to be at least semi-
homogeneous. The proofs are simpler than in the general case thanks to the use of an
integral codistance which faithfully reflects the properties of the W -codistance.

2. For the groups SLn(K[t, t−1]) of 1.2.C, the opposition relation can be formulated
more concretely. Two chambers gB+ and hB− are opposite if and only if their stabi-
lizers – Borel subgroups of opposite signs – intersect along a conjugate of T . Over Fq,
this is equivalent to intersecting along a group of (minimal) order (q − 1)n−1.

B. Geometric description of the group action. Suppose we are given a (TDR)-
group G and denote by A the standard pair of opposite apartments in its twin building,
that is {wB+}w∈W t {wB−}w∈W . We want to give a geometric description of the G-
action on its twin building.

Kernel of the action. — One has (i) H = FixG(A+) = FixG(A−).
This result is the geometric formulation of [KP2, Corollary 3.4]; it shows that the kernel
of the action of G on its twin building is contained in H < G.

Moufang property. — Roughly speaking, requiring the Moufang property for a building
is a way to make sure the latter admits a sufficiently large automorphism group, with
well-understood local actions. We just state the main consequence of it, which will
enable us to compute the number of chambers whose closure contains a given panel F .
This integer will be referred to as the thickness at F of the building. Let us start with
Fs the positive panel of type s in the closure of the standard chamber c. Then [Ron,
(MO1) p.74]:

(ii) The root group Uαs fixes αs and is normalized by H. It is simply transitive on the
chambers containing Fs and 6= c.

By homogeneity, (ii) is true for every configuration panel-chamber-wall-root as above,
and mutatis mutandis everything remains true for the negative building of G.

Figure. —
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The Weyl group as a subquotient. — The following assertion is just a geometric formu-
lation of axiom (TRD2). Consider the epimorphism ν : N ³ W with Ker(ν) = H.

(iii) The group N stabilizes A; it permutes the Uα’s by nUαn
−1 = Uν(n)α, and the roots

of A accordingly.

1.4. A deeper use of geometry. In this section, we exploit different geometric no-
tions to study in further detail (TRD)-groups.

A. Convexity and negative curvature. To each of these notions corresponds a spe-
cific geometric realization, the conical and the metric realization, respectively. These
geometries can be defined for a single building, they basically differ by the way an apart-
ment is represented inside. The representations of the whole building are obtained via
standard glueing techniques [D2, §10].
The conical realization of a building. — An apartment of fixed sign is represented
here by the Tits cone of the Weyl group (1.1.B). For twin buildings, a pair of opposite
apartments is represented by the union of the Tits cone and its opposite in the ambient
real vector space. We can then use the obvious geometric opposition because it is the
restriction of the abstract opposition relation of facets. The point is that the shape of
simplicial cone for each facet fits in convexity arguments.

The metric realization of a building. — This realization was defined by M. Davis and
G. Moussong. Its main interest is that it is non-positively curved. Actually, it satisfies
the CAT(0) property: geodesic triangles are at least as thin as in the Euclidean plane.
This enables one to apply the following [BrT1, 3.2].

Theorem (Bruhat-Tits fixed point theorem)). Every group of isometries of a CAT(0)-
space with a bounded orbit has a fixed point.

This result generalizes a theorem applied by É. Cartan to Riemannian symmetric spaces
to prove conjugacy of maximal compact subgroups in Lie groups. The metric realization
only represents facets of spherical type. Indeed, consider the partially ordered set of
spherical types J ⊂ S. A chamber is represented by the cone over the barycentric
subdivision of this poset. G. Moussong [Mou] proved that this leads to a piecewise
Euclidean cell complex which is locally non-positively curved. A simple connectivity
criterion by M. Davis [D1] proves the global CAT(0) property for Coxeter groups, and
the use of retractions proves it at the level of buildings [D2].

B. Balanced subsets. In a single building, to fix a facet is the condition that defines
the so-called family of parabolic subgroups. In the twin situation, we can define another
family of subsets taking into account both signs. By taking fixators, it will also give
rise to an interesting family of subgroups.

Definition. Call balanced a subset of a twin building contained in a pair of opposite
apartments, intersecting the building of each sign and covered by a finite number of
spherical facets.

Suppose we are given a balanced subset Ω and a pair of opposite apartments A con-
taining it. According to the Bruhat decompositions, for each sign ε the apartment
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Aε = {wBε}w∈W is isomorphic to the Coxeter complex of the Weyl group W . We can
then define interesting sets of roots associated with the inclusion Ω ⊂ A, namely:

Φu(Ω) = {α ∈ Φ | α ⊃ Ω ∂α 6⊃ Ω}, Φm(Ω) = {α ∈ Φ | ∂α ⊃ Ω},
and Φ(Ω) = {α ∈ Φ | α ⊃ Ω} = Φu(Ω) t Φm(Ω).

So as to work in an apartment of fixed sign, we shall use the terminology of separation
and strong separation. Using the Tits cone realization, we denote by Ω+ (resp. Ω−) the
subset Ω∩A+ (resp. the subset of opposites of points in Ω∩A−). This enables to work
only in A+. The root α is said to separate Ω+ from Ω− if α ⊃ Ω+ while −α ⊃ Ω−; α
strongly separates Ω+ from Ω− if it separates Ω+ from Ω− and if not both of Ω+ and
Ω− are contained in the wall ∂α. Then Φu(Ω) is the set of roots strongly separating Ω+

from Ω−, Φ(Ω) that of roots separating Ω+ from Ω−. We will often omit the reference
to Ω when it is obvious. Here is an important lemma which precisely makes use of a
convexity argument [Ré2, 5.4.5].

Lemma. The sets of roots Φu, Φm, and Φ are finite.

Idea of proof. The set Φm is obviously stable under opposition, it is finite since there is
only a finite number of walls passing through a given spherical facet. Choose a point in
each facet meeting Ω+ (resp. Ω−) and denote the barycenter so obtained by x+ (resp.
x−). The point x± is contained in a spherical facet F±. Connect the facets by a minimal
gallery Γ, and denote by d± the chamber whose closure contains F± and at maximal
distance from the chamber of Γ whose closure contains F±. By convexity, a root in Φu

has to contain d+ but not d−, so #Φu is bounded by the length of a gallery connecting
these chambers.

Figure. —
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Examples. According to 1.3.A, a pair of spherical points of opposite signs is a simple
but fundamental example of balanced subset. Let us describe the sets Φm and Φu in
such a situation. Set Ω± := {x±} ⊂ A+ so that Ω = {−x−;x+}, and draw the segment
[x−;x+] in the Tits cone. The set Φm is empty if [x−;x+] intersects a chamber. The
roots of Φu are the ones that strongly separate x+ from x−. Assume first that each
point lies in (the interior of) a chamber, which automatically implies that Φm(Ω) is
empty. First, by transitivity of G on the set of pairs of opposite apartments (1.3.A), we
may assume that A is the standard one. Then thanks to the W -action, we can suppose
that the positive point x+ lies in the standard positive chamber c+; there is a w in W
such that x− lies in wc+. Choose a minimal gallery between c+ and wc+. Then Φu is
the set Φw−1 of the `(w) positive roots whose wall is crossed by it. The first picture

below is an example of type Ã2 with Φm = ∅ and #Φu = 5. Now we keep this Ã2

example, fix a wall ∂α and consider pairs of points {x±} with [x−;x+] ⊂ ∂α. This
implies that Φm will be always equal to {±α}. Still, as in the previous case, the size of
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Φu will increase when so will the distance between x− and x+. So the second picture

below is an example of type Ã2 with #Φm = 2 and #Φu = 8.

Figure. —
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1.5. Levi decompositions. This section is dedicated to the statement of two kinds
of decomposition results, each being an abstract generalization of the classical Levi
decompositions.

A. Levi decompositions for parabolic subgroups. The first class of subgroups
distinguished in a group with a BN -pair is that of parabolic subgroups. The existence
of root groups in the (TRD) case suggests to look for more precise decompositions [Ré2,
6.2].

Theorem (Levi decomposition for parabolic subgroups). Let F be a facet. Suppose
F is spherical or G satisfies (TRD)lin. Then for every choice of a pair A of opposite
apartments containing F, the corresponding parabolic subgroup FixG(F ) admits a semi-
direct product decomposition

FixG(F ) =M(F,A)n U(F,A).
The group M(F,A) is the fixator of F ∪−F, where −F is the opposite of F in A; it is
generated by H and the root groups Uα with ∂α ⊃ F . It satisfies the (TRD) axioms,
and the (TRD)lin refinement if so does G. The group U(F,A) only depends on F, it is
the normal closure in FixG(F ) of the root groups Uα with α ⊃ F .

Remark. (1) It is understood in the statement that all the roots considered above
are subsets of A. By transitivity of G on pairs of opposite apartments, the root
groups are conjugates of that in the (TRD) axioms.

(2) In the case of an infinite Weyl group, Levi decompositions show that the action
of a (TRD)-group on a single building cannot be discrete since the fixator of a
point contains infinitely many root groups.

B. Levi decompositions for small subgroups. As mentioned in 1.4.B, the twin
situation leads to the definition of another class of interesting subgroups.

Definition. A subgroup of G is called small if it fixes a balanced subset.

To describe the combinatorial structure of small subgroups, we need to require the
additional (NILP ) axiom. It is not really useful to state it here explicitly, because our
basic object of study is the class of Kac-Moody groups which satisfy it. We have [Ré2,
6.4]:

Theorem (Levi decomposition for small subgroups). Suppose G is a (TRD)lin-group
satisfying (NILP), and let Ω be a balanced subset. Then for every choice of pair of



414 B. Remy

opposite apartments A containing Ω, the small subgroup FixG(Ω) admits a semi-direct
product decomposition

FixG(Ω) =M(Ω,A)n U(Ω,A),
where both factors are closely related to the geometry of Ω (and of A, w.r.t. which all
roots are defined). Namely, M(Ω,A) satisfies the (TRD)lin axioms for the root groups
Uα with ∂α ⊃ Ω, that is α∈Φm(Ω); and U(Ω,A) is in bijection with the set-theoretic
product of the root groups Uα with α∈Φu(Ω) for any given order.

Remark. In the Kac-Moody case, it can be shown that U(Ω,A) only depends on Ω and
not on A, so that we will use the notation U(Ω) instead.

Example. (1) As a very special case, consider in the standard pair of opposite
apartments the balanced subset Ω := { c+;wc−}, where c± are the standard
chambers. Then, thanks to the first case of example 1.4.B, we see that FixG(Ω) =
T nUw, with Uw as defined in 1.2.B. Set-theoretically, the latter group is in par-
ticular a product of `(w) root groups.

(2) Another special case is provided by the datum of two opposite spherical facets
±F in A. Then U(F ∪ −F ) = {1} and the fixator of the pair is at the same
time the M-factor of the Levi decomposition above and in the previous sense for
the parabolic subgroups FixG(F ) and FixG(−F ).

C. Further examples. The examples below appear in the two simplest cases of special
linear groups over Laurent polynomials (1.2.C). They will illustrate both kinds of de-
composition. Examples of hyperbolic twin buildings will be treated in Section 4.1.

The case SL2(Fq[t, t−1]). The Bruhat-Tits buildings involved are both isomorphic to the
homogeneous tree Tq+1 of valency q + 1. A pair of opposite apartments is represented
by two parallel real lines divided by the integers. Let us consider first the fixator of
a single point. If this point is in an open edge, then its fixator is a Borel subgroup

isomorphic to the group SL2

(
Fq[t] Fq[t]
tFq[t] Fq[t]

)
. If the point is a vertex, then it is isomor-

phic to the Nagao lattice SL2(Fq[t]). Let us consider now pairs of points { x+;−x−} of
opposite signs. We use the notation of the examples of 1.4.B. If the points are opposite
vertices, then Φu is empty and Φm consists of two opposite roots: the corresponding
small subgroup is equal to theM -factor, a finite group of Lie type and rank one over Fq.
If the points are non opposite middles of edges e+ and −e−, and if the edges e+ and e−
in the positive straight line are at W -distance w, then the corresponding small fixator
is the semi-direct product of T (isomorphic to F×q ) by a commutative group isomorphic

to the additive group of the Fq-vector space F`(w)q .

Figure. —

−x

x x− +

−T−

T+
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The case SL3(Fq[t, t−1]). The case of single points is quite similar. For instance, let us
fix a vertex x. The set L of chambers whose closure contains x can naturally be seen as
the building of SL3(Fq). The fixator P of x is isomorphic to SL3(Fq[t]). The M -factor
in the Levi decomposition of P is a finite group of Lie type A2 over Fq and its action
on the small building L is the natural one. The infinite U -factor fixes L pointwise.
Suppose now we are in the second case of example 1.4.B: the pair of points { x+;−x−}
lies in a wall ∂α. We already now that Φm contains the two opposite roots ±α, so
that the M -factor of Fix({ x+;−x−}) is a rank one finite group of Lie type over Fq. If
we assume α to be the first simple root of SL3(Fq), then M is the group of matrices(
X 0
0 detX−1

)
, with X ∈ GL2(Fq). The U -factor is a (commutative) p-group, with

p = char(Fq). It is isomorphic to the group of matrices



1 0 P
0 1 Q
0 0 1


, where P and Q

are polynomials of Fq[t] of degree bounded the number of vertices between x− and x+.

2. Split Kac-Moody groups

In 1987, J. Tits defined group functors whose values over fields we will call (split) Kac-
Moody groups. In Subsection 2.1 below, we give the definition of these groups, which
involves some basic facts from Kac-Moody algebras to be recalled. Subsection 2.2 re-
lates Kac-Moody groups to the abstract combinatorics previously studied, providing
afterwards some more information. The three last subsections then deal with more
specific properties. In Subsection 2.3 we present the adjoint representation and Subsec-
tion 2.4 combines it with Levi decompositions to endow each small subgroup with the
structure of an algebraic group. Finally, Subsection 2.5 presents an argument which
will occur several times afterwards. It is used for example to prove a conjugacy theorem
for Cartan subgroups.

2.1. Tits functors and Kac-Moody groups. We sum up here the step-by-step def-
inition of split Kac-Moody groups by J. Tits. It is also the opportunity to indicate
how the notions defined in Subsection 1.1 for arbitrary Coxeter groups arise in the
Kac-Moody context. All the material here is contained in [T4, §2].
A. Definition data. Functorial requirements. The data needed to define a Tits
group functor are quite similar to that needed to define a Chevalley-Demazure group
scheme.

Definition. (i) A generalized Cartan matrix is an integral matrix A = [As,t]s,t∈S sat-
isfying: As,s = 2, As,t ≤ 0 when s 6= t and As,t = 0⇔ At,s = 0.

(ii) A Kac-Moody root datum is a 5-tuple
(
S,A,Λ, (cs)s∈S, (hs)s∈S

)
, where A is a gen-

eralized Cartan matrix indexed by the finite set S, Λ is a free Z-module (whose Z-dual
is denoted by Λ )̌. Besides, the elements cs of Λ and hs of Λˇ are required to satisfy
〈cs | ht〉 = Ats for all s and t in S.
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Thanks to these elementary objects, it is possible to settle abstract functorial require-
ments generalizing the properties of functors of points of Chevalley-Demazure group
schemes [T4, p.545]. The point is that over fields a problem so defined does admit a
unique solution, concretely provided by a group presentation [T4, Theorem 1]. This is
the viewpoint we will adopt in the next subsection and for the rest of our study. Let
us first define further objects only depending on a Cartan generalized matrix.

Definition. (i) The Weyl group of a generalized Cartan matrix A is the Coxeter group

W = 〈s∈S | (st)Mst = 1 whenever Mst <∞〉
with Mst = 2, 3, 4, 6 or ∞ according to whether AstAts = 0, 1, 2, 3 or > 3.

(ii) The root lattice of A is the free Z-module Q :=
⊕

s∈S
Zas over the symbols as, s∈S.

We also set Q+ :=
⊕

s∈S
Nas.

The groupW operates on Q via s ·at = at−Astas. This allows to define the root system
∆re of A by ∆re := W · {as}s∈S. This set has all the abstract properties of the set
of real roots of a Kac-Moody algebra. In particular, one has ∆re = ∆re

+ t ∆re
− , where

∆re
ε := εQ+ ∩ ∆re. Let us explain now how to recover the notions of Subsection 1.1.

Recall that given a Coxeter matrix M , we defined its cosine matrix so as to introduce
the Tits cone on which the group acts. The starting point here is the generalized Cartan
matrix which plays the role of the cosine matrix. This allows us to define the Tits cone
as in 1.1.B, as well as all the objects related to it. Instead of V , the real vector space
we use here is QR := Q ⊗Z R. This way, we get a bijection between ∆re and the root
system of the Weyl group as defined in 1.1.A, for which the notions of prenilpotence
and intervals coincide. General references for abstract infinite root systems are [H2]
and [Ba]. Note that in the Kac-Moody setting, linear combinations of roots give roots
only involving integral coefficients. This leads to the following.

Convention. In Kac-Moody theory, the root system ∆re will play the role of the root
system of the Weyl group of A, and the roots will be denoted by latin letters.

B. Lie algebras, universal enveloping algebras, Z-forms. As already said, a
more constructive approach consists in defining groups by generators and relations.
The idea is to mimic a theorem by Steinberg giving a presentation of a split simply
connected semi-simple algebraic group over a field. So far, so good. The point is that
the relations involving root groups are not easily available. One has to reproduce some
kind of Chevalley’s construction in the Kac-Moody context. This implies introduction
of quite a long series of “tangent” objects such as Lie algebras, universal enveloping
algebras and, finally, Z-forms of them.

Kac-Moody algebras. From now on, we suppose we are given a Kac-Moody root datum
D =

(
S,A,Λ, (cs)s∈S, (hs)s∈S

)
.

Definition. The Kac-Moody algebra associated with D is the C-Lie algebra gD gen-
erated by g0 := Λˇ ⊗Z C and the sets {es}s∈S and {fs}s∈S, subject to the following
relations:

[h, es] = 〈cs, h〉es and [h, fs] = −〈cs, h〉fs for h∈g0, [g0, g0] = 0,
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[es, fs] = −hs ⊗ 1, [es, ft] = 0 for s 6= t in S,

(ad es)
−Ast+1et = (adfs)

−Ast+1ft = 0 (Serre relations).

This Lie algebra admits an abstract Q-gradation by declaring the element es (resp. fs)
to be of degree as (resp. −as) and the elements of g0 to be of degree 0. Each degree
for which the corresponding subspace is non-trivial is called a root of gD.

For each s ∈ S, the derivations ades and adfs are locally nilpotent, which enables
us to define the automorphisms exp(ades) and exp(adfs) of gD. The automorphisms
exp(ades). exp(adfs). exp(ades) and exp(adfs). exp(ades). exp(adfs) are equal and will
be denoted by s∗. We are interested in s∗ because if we define W ∗ to be the group
of automorphisms of gD generated by the s∗’s, then s∗ 7→ s lifts to a homomorphism
ν : W ∗ ³ W . Considering the W ∗-images of the spaces Ces and Cfs makes ∆re appear
as a subset of roots of gD. A basic fact about real roots a in Kac-Moody theory is
that the corresponding homogeneous subspaces ga ⊂ gD are one-dimensional, so that
the W -action on ∆re is lifted by the W ∗-action on the homogeneous spaces ga, a∈∆re.
Besides, for s∈S and w∗∈W ∗, the pair of opposite elements w∗({±es}) only depends
on the root a := ν(w∗)as; we denote it by {±ea}.
Divided powers and Z-forms. We want now to construct a Z-form of the universal
enveloping algebra UgD in terms of divided powers. Subrings of this ring will be used
for algebraic differential calculus on some subgroups of Kac-Moody groups. For each

u ∈ UgD and each n ∈ N, u[n] will denote the divided power (n!)−1un and

(
u
n

)
will

denote (n!)−1u(u − 1)...(u − n + 1). For each s∈ S, U{s} (resp. U{−s}) is the subring∑
n∈N Ze

[n]
s (resp.

∑
n∈N Zf

[n]
s ) of UgD. We denote by UO the subring of UgD generated

by the (degree 0) elements of the form

(
h
n

)
, with h∈Λˇ and n∈N.

Definition. We denote by UD the subring of UgD generated by UO and the U{s} and
U{−s} for s in S. It contains the ideal UD+ := gD.UgD ∩ UD.

The point about UD is the following.

Proposition. The ring UD is a Z-form of UgD i.e., the natural map UD ⊗Z C→ UgD
is a bijection.

Remark. In the finite-dimensional case – when gD is a semi-simple Lie algebra, UD is
the ring used to define Chevalley groups by means of formal exponentials [Hu1, VII].

C. Generators and Steinberg relations. Split Kac-Moody groups. We can
now start to work with groups.

First step: root groups and integrality result. Let us consider a root c in ∆re. We
denote by Uc the Z-scheme isomorphic to the additive one-dimensional group scheme
Ga and whose Lie algebra is the Z-module generated by {±ec}. For each root c, the

choice of a sign defines an isomorphism Ga
∼→ Uc. These choices are analogues of the

ones defining an “ épinglage” in the finite-dimensional case. We denote for short Us

(resp. U−s) the Z-group scheme Uas (resp. U−as), and xs (resp. x−s) the isomorphism
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Ga
∼→ Us (resp. Ga

∼→ U−s) induced by the choice of es (resp. fs) in {±es} (resp.
{±fs}). Let us consider now {a; b} a prenilpotent pair of roots. The direct sum of the
homogeneous subspaces gc of degree c ∈ [a; b]lin is a nilpotent Lie subalgebra g[a;b]lin
of gD, which defines a unique unipotent complex algebraic group U[a;b]lin

, by means of

formal exponentials.

Proposition. There exists a unique Z-group scheme U[a;b]lin
containing the Z-schemes

Uc for c∈ [a; b]lin, whose value over C is the complex algebraic group U[a;b]lin
with Lie

algebra g[a;b]lin
. Moreover, the product map

∏

c∈[a;b]lin

Uc → U[a;b]lin

is an isomorphism of Z-schemes for every order on [a; b]lin.

Remark. This result is an abstract generalization of an integrality result of Chevalley
[Sp, Proposition 9.2.5] concerning the commutation constants between root groups of
split semi-simple algebraic groups. The integrality here is expressed by the existence
of a Z-structure extending the C-structure of the algebraic group. We will make these
Z-group schemes a bit more explicit when defining the adjoint representation (in 2.3.A).

Second step: Steinberg functors. Now we see the Z-schemes U[a;b]lin
just as group functors

over rings. We will amalgamate them so as to obtain a big group functor containing all
the relations between the root groups. This is the step of the procedure where algebraic
structure is lost. The relations c ∈ [a; b]lin give rise to an inductive system of group
functors with injective transition maps Uc(R) ↪→ U[a;b]lin

(R) over every ring R.

Definition. The Steinberg functor – denoted by StA – is the limit of the inductive
system above.

This group functor only depends on the generalized Cartan matrix A, not on the whole
datum D. Besides, the W ∗-action on gD extends to a W ∗-action on StA : for each w in
W , we will still denote by w∗ the corresponding automorphism.

Third step: the tori and the other relations. What is left to do at this level is to
introduce a torus, a split one by analogy with Chevalley groups. In fact, it is de-
termined by the lattice Λ of the Kac-Moody root datum D. As in the previous
step, we are only interested in group functors. Denote by TΛ the functor of points
HomZ−alg(Z[Λ],−) = Homgroups(Λ,−×) defined over the “category” Z-alg of rings. For

a ring R, r an invertible element in it and h an element of Λ ,̌ the notation rh corre-
sponds to the element λ 7→ r〈λ|h〉 of TΛ(R). We will also denote r〈λ|h〉 by λ(rh). This way
we can see elements of Λ as characters of TΛ. We finally set s̃(r) := xs(r)x−s(r−1)xs(r)
for each invertible element r in a ring R, and s̃ := s̃(1).

Definition. For each ring R, we define the group GD(R) as the quotient of the free
product StA(R) ∗ TΛ(R) by the following relations.

txs(q)t
−1 = xs(cs(t)q); s̃(r)ts̃(r)−1 = s(t);

s̃(r−1) = s̃rhs ; s̃us̃−1 = s∗(u);
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with s ∈ S, c ∈ ∆re, t ∈ TΛ(R), q ∈ R, r ∈ R×, u ∈ Uc(R). We define this way a group
functor denoted by GD and called the Tits functor associated to D. The value of this
functor on the field K will be called the split Kac-Moody group associated to D and
defined over K.

Remark. This is the place where we use the duality relations between Λ and Λˇ required
in the definition of D. This duality occurs in the expression cs(t), and allows to define a
W -action on Λ by sending s to the involution of Λ : λ 7→ λ−〈λ | hs〉cs. This yields aW -
action on TΛ thanks to which the expression s(t) makes sense in the defining relations.
The expression s∗(u) comes from the W ∗-action on the Steinberg functor.

Example. (1) As a first example, we can consider a Kac-Moody root datum where
A is a Cartan matrix and Λˇ is the Z-module freely generated by the hs’s. Then
what we get over fields is the functor of points of the simply connected Chevalley
scheme corresponding to A. This can be derived from the theorem by Steinberg
alluded to in 2.1.A [Sp, Theorem 9.4.3]. One cannot expect better since as al-
ready explained, algebraic structure is lost during the amalgam step defining StA.

(2) More generally, the case where Λ (resp. Λ )̌ is freely generated by the cs’s (resp.
hs’s) will be referred to as the adjoint (resp. simply connected) case.

(3) The groups SLn(K[t, t−1]) of 1.2.C can be seen as split Kac-Moody groups over

K. The generalized Cartan matrix is the matrix Ãn−1 indexed by {0; 1; ...n− 1},
characterized for n ≥ 3 by Aii = 2, Aij = −1 for i and j consecutive modulo n

and Aij = 0 elsewhere. In rank 2, Ã2 is just

(
2 −2
−2 2

)
. The Z-module Λ (resp.

Λ )̌ is then the free Z-module of rank n− 1 generated by the simple roots c1, ...
cn−1 of the standard Cartan subgroup T of SLn(K) (resp. the corresponding
one-parameter multiplicative subgroups). To be complete, one has to add the
character c0 := −∑1≤i≤n−1 ci (resp. the cocharacter h0 := −∑1≤i≤n−1 hi).

These examples show in particular that neither Λ nor Λˇ need to contain the
cs’s or the hs’s as free families.

2.2. Combinatorics of a Kac-Moody group. This section states the connection
with the abstract group combinatorics presented in §1, then stresses some specific prop-
erties (often due to splitness). We are given here a split Kac-Moody group G defined
over K which acts on its twin building (I+, I−, d∗).
A. Main statement. As the (TRD) axioms were adjusted to the Kac-Moody situa-
tion, it is not surprising to get the following result [Ré2, 8.4.1].

Proposition. Let G be a Kac-Moody group, namely the value of a Tits group functor
over a field K. Then G is a (TRD)lin-group for the root groups of its definition, which
also satisfies also the axiom (NILP) for Levi decomposition of small subgroups (1.5.B).
The standard Cartan subgroup T plays the role of the normalizer of the Uα’s.

Sketch of proof. In the defining relations of a Kac-Moody group (2.1.C), everything
seems to be done so as to conform to the (TRD) axioms. Still, we have to be a bit
more careful with the non degeneracy requirements. Indeed, for the first half of axiom
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(TRD0) and axiom (TRD3), we have to use the adjoint representation defined later.
This point is harmless since the definition of this representation does not need group
combinatorics.

Remark. This result can be used to prove the unicity over fields of Kac-Moody groups.
Actually, the original group combinatorics involved in the proof by J. Tits [T4, §5] was
more general.

B. Specific properties. As Tits functors generalize Chevalley-Demazure schemes, one
can expect further properties for at least two reasons. The first one is the “algebraicity”
of Kac-Moody groups i.e., the fact that the precise defining relations are analogues of
that for algebraic groups. The second reason is splitness.

“Algebraicity” of Tits functors. First, we know that the biggest group normalizing all
the root groups is the standard Cartan subgroup T : this is a purely combinatorial
consequence of the (TRD) axioms due to the fact that in BN -pairs, Borel subgroups
coincide with their normalizer. Besides we have a completely explicit description of the
T -action on root groups – by characters. This leads to the following result [Ré2, 10.1.3].

Proposition. If the ground field K has more than 3 elements, then the fixed points
under T in the buildings are exactly the points in A (the standard pair of opposite
apartments).

Remark. What this proposition says is that this set is not bigger than A. This result
has to be related to another one, where the same hypothesis |K| > 3 is needed: in this
case, N is exactly the normalizer of T in G [Ré2, 8.4.1].

Another algebraic-like consequence is about Levi decompositions and residues in build-
ings. Consider the standard facet ±FJ of spherical type J ⊂ S and sign ±. Then the
M -factor (see 1.5.B, example (2)) is the Kac-Moody group corresponding to the datum
where A is restricted to J × J , and only the cs’s and hs’s with s∈J are kept. This is
a root datum abstractly defining points of a reductive group. Moreover, the union of
the sets of chambers whose closure contains ±FJ – the residue of ±FJ – is the twin
building of the reductive group, on which it operates naturally. The generalization to
arbitrary facets is straightforward.

Remark. The analogy with reductive groups can fail on some points. Consider for
instance the case of the centralizer of the standard Cartan subgroup T . It is classical
in the algebraic setting that the centralizer of a Cartan subgroup is not bigger than
the subgroup itself. Consider once again the groups SLn(K[t, t−1]) of 1.2.C. Then the
centralizer of T – the standard Cartan subgroup of SLn(K) – is infinite-dimensional
since it is the group of determinant 1 diagonal matrices with monomial coefficients.

Splitness. The main analogy with split reductive groups is that the torus is a quotient
of a finite numbers of copies of K× and each root group is isomorphic to the additive
group of the ground field K. Combined with a geometric consequence of the Moufang
property, the latter property of root groups says:

Lemma. Every building arising from a split Kac-Moody group is homogeneous, that is
thickness is constant (equal to |K|+ 1) over all panels.
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The buildings arising from a split Kac-Moody group will be referred to as (split) Kac-
Moody buildings.

2.3. The adjoint representation. Besides the geometry of buildings, an important
tool to study Kac-Moody groups is a linear representation which generalizes the adjoint
representation of algebraic groups. Let us fix a Kac-Moody root datum D and the
corresponding Tits functor GD.

A. Formal sums and distribution algebras. Let us go back to the situation of
2.1.C; we work in particular with the prenilpotent pair of roots {a; b}. In the Z-form
UD, we consider the subring U[a;b]lin := UD ∩ Ug[a;b]lin

. Let us define the R-algebra

̂(U[a;b]lin
)
R

of formal sums
∑

c∈Na+Nb
rcuc, with uc homogeneous of degree c in UD and

rc∈R.
Definition. Denote by U[a;b]lin the group functor which to each ring R associates the

subgroup 〈exp(rec) | r ∈ R, c ∈ ∆re ∩ (Na + Nb)〉 < ̂(U[a;b]lin
)
R

×
. Here exp(rec) is

the formal exponential
∑

n≥0 r
ne

[n]
c and ̂(U[a;b]lin

)
R

×
is the multiplicative group of the

R-algebra ̂(U[a;b]lin
)
R
.

There is a little abuse of notation when denoting by U[a;b]lin a new object, but we will
justify it soon. Thanks to a generalized Steinberg commutator formula, one can prove
first:

Proposition. The group functor U[a;b]lin is the functor of points of a smooth connected
group scheme of finite type over Z, with Lie algebra g[a;b]lin ∩UD. Its value over C is the
complex algebraic group U[a;b]lin , and we have DisteU[a;b]lin

∼= Ug[a;b]lin.

The notation Diste is for the algebra of distributions supported at unity of an algebraic
group. This proposition is the place where a bit of algebraic differential calculus [DG,
II.4] comes into play. We will not detail the use of it, but just say that it allows to prove
that the group functors above and of the proposition in 2.1.C coincide [Ré2, 9.3.3]. In
other words, this result leads to a concrete description of the group functors occurring
in the amalgam defining StA.

B. The adjoint representation as a functorial morphism. For every ring R, the
extension of scalars from Z to R of UD is denoted by

(
UD
)
R
. Denote by Autfilt(UD)(R)

the group of automorphisms of the R-algebra
(
UD
)
R

preserving its filtration arising

from that of UD and its ideal UD+ ⊗Z R. The naturality of scalar extension makes the
assignement R 7→ Autfilt(UD)(R) a group functor. We have [Ré2, 9.5.3]:

Theorem. There is a morphism of group functors Ad : GD → Autfilt(UD) characterized
by:

AdR
(
xs(r)

)
=
∑

n≥0

(ades)
n

n!
⊗ rn, AdR

(
x−s(r)

)
=
∑

n≥0

(adfs)
n

n!
⊗ rn,

AdR
(
TΛ(R)

)
fixes

(
U0
)
R

and AdR(h)(ea ⊗ r) = ca(h)(ea ⊗ r),
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for s in S, for each ring R, each h in TΛ(R) and each r in R.

Sketch of proof. No use of group combinatorics is needed for this result. Roughly speak-
ing, to define the adjoint representation just consists in inserting “ ad” in the arguments
of the formal exponentials for the root groups, and in making the torus operate diago-
nally w.r.t. the duality given by D. One has to follow all the steps of the definition of
Tits functors, and to verify that all the defining relations involved are satisfied by the
partial linear actions of the characterization. Proposition 2.3.B enables to justify that
the first formula defines a representation of the Steinberg functor. Then, the torus must
be taken into account, but the verification concerning the rest of the defining relations
of GD is purely computational. The naturality of the representation is an easy point.

C. The adjoint representation over fields. Restriction to values of Tits functors
over fields brings further properties, precisely because this allows the use of group com-
binatorics according to 2.2.A – see [Ré2, 9.6] for proofs.

Proposition. (i) Over fields, the kernel of the adjoint representation is the center
of the Kac-Moody group G. This center is the intersection of kernels of charac-
ters of T, namely the centralizers in T of the root groups.

(ii) If the ground field is algebraically closed, the image of Ad is again a Kac-Moody
group.

2.4. Algebraic subgroups. One of the main interests of the adjoint representation
is that it provides algebro-geometric structure for the family of small subgroups of a
Kac-Moody group.

A. Statement. The following result is, up to technicalities, the combination of the
abstract Levi decompositions and restrictions of source and target of the adjoint repre-
sentation [Ré2, 10.3].

Theorem (Algebraic structure). For every balanced subset Ω, denote by G(Ω) the quo-
tient group FixG(Ω)/Z

(
FixG(Ω)

)
of the corresponding small subgroup by its center.

Then G(Ω) admits a natural structure of algebraic group, arising from the adjoint rep-
resentation.

Remark. An important question then is to know how far the quotient G(Ω) is from the
small subgroup FixG(Ω) itself. To be more precise, let us fix a pair A of opposite apart-
ments containing the balanced subset Ω. Thanks to a suitable g in G, we may assume
A is the standard pair of opposite apartments. At the group level, this corresponds to
conjugating the small subgroup so as to make it contain the standard Cartan subgroup
T . Then the center of FixG(Ω) is the intersection of the kernels (in T ) of the char-
acters associated to the roots in Φ(Ω). (These roots index the root groups generating
the small subgroup together with T ). This shows that the quotient is always as a group
abstractly isomorphic to a diagonalisable algebraic group. This point will be important
when we handle Cartan subgroups, because preimages of diagonalisable groups will stay
diagonalisable.

Example. Let us consider some examples from 1.5.C, i.e., from some small subgroups
of SL2(K[t, t−1]) and SL3(K[t, t−1]). There will be no quotient in the SL2 case: the
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standard Cartan subgroup is one-dimensional. By taking a pair of opposite middles
of edges, one gets a small subgroup isomorphic to the M-factor of the last example

in 1.5.C. This group consists of the matrices

(
X 0
0 detX−1

)
, with X ∈ GL2(Fq). Its

center is one-dimensional and this is the corresponding quotient that actually admits
an algebraic structure by the procedure above.

B. Sketch of proof. The main tools for this proof are basic results from algebraic
geometry or algebraic group theory, such as constructibility of images of morphisms,
use of tangent maps to justify that a bijective algebraic morphism is an algebraic iso-
morphism... Let us make the same reductions as in the remark above. In particular,
Ω is in the standard pair of opposite apartments. Recall also the Levi decomposition
FixG(Ω) = M(Ω,A) n U(Ω,A), with M(Ω,A) satisfying the abstract (TRD) axioms.
The first step is the existence of a finite-dimensional subspace W (Ω)K ⊂

(
UD
)
K such

that the resctriction AdΩ of the adjoint representation is the center Z
(
FixG(Ω)

)
(< T )

[Ré2, 10.3.1]. Consequently, AdΩ is faithful on U(Ω) and on the subgroup of M(Ω,A)
generated by a positive half of Φm. The latter group is the “unipotent radical” of an
abstract Borel subgroup of M(Ω,A). Then, it is proved that the isomorphic images of
these two groups are unipotent closed K-subgroups of GL

(
W (Ω)K

)
[Ré2, 10.3.2]. The

next step is to show that the abstract image MΩ,A := AdΩ
(
M(Ω,A)

)
is also a closed

subgroup. This is done by proving that its Zariski closure in GL
(
W (Ω)K

)
is reductive

and comparing the classical decompositions so obtained. The proof of this fact works as
follows. We know at this level that the image by AdΩ of the abstract Borel subgroup of
M(Ω,A) is closed. By Bruhat decomposition and local closedness of orbits, this gives a
bound on the dimension of the Zariski closure. The use of Cartier dual numbers allows
to compute the Lie algebras involved and to show that the bound is reached. The
triviality of the unipotent radical follows from singular tori arguments [Ré2, 10.3.3].
The final step is to show that the semi-direct product so obtained in GL

(
W (Ω)K

)
is an

algebraic one: this is proved by Lie algebras (tangent maps) arguments [Ré2, 10.3.4].

2.5. Cartan subgroups. We present now a general argument combining negative cur-
vature and algebraic groups. Then we apply it to give a natural (more intrinsic) defi-
nition of Cartan subgroups, previously defined by conjugation. Recall that a group of
isometries is bounded if it acts with bounded orbits [Br2, p.160].

A. A typical argument. We suppose we are in the following setting: a group H acts
in a compatible way on a Kac-Moody group G and on its twin building. (For instance,
H may be a subgroup of G but this is not the only example.)

Argument. (1) Justify that H is a bounded group of isometries of both buildings
and apply the Bruhat-Tits fixed point theorem to get a balanced H-fixed subset Ω.

(2) Apply results from algebraic groups to the small H-stable subgroup FixG(Ω).

Remark. In Subsection 3.2.B, the argument is applied to the Galois actions arising
from the definition of almost split forms.
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B. Cartan subgroups. Recall that the standard Cartan subgroup is the value T of the
split torus TD on the ground field K. The provisional definition of Cartan subgroups
describes them as conjugates of T . We want to give a more intrinsic characterization
of them, by means of their behaviour w.r.t. the adjoint representation Ad. We suppose
here that the ground field K is infinite.

A criterion for small subgroups. This criterion precisely involves the adjoint represen-
tation. Let H be a subgroup of the Kac-Moody group G. Call H Ad-locally finite if
its image by Ad is locally finite, that is the linear span of the H-orbit of each point in(
UD
)
K is finite-dimensional.

Theorem. The following assertions are equivalent.
(i) H is Ad-locally finite.

(ii) H intersects a finite number of Bruhat double classes for each sign ±.
(iii) H is contained in the intersection of two fixators of spherical facets of opposite

signs.

Remark. 1. The importance of this theorem lies in the fact that it is a connection
between the two G-actions we chose to study G : the adjoint representation and the
action on the twin building.

2. This result is due to V. Kac and D. Peterson [KP3, Theorem 1] who proved a
lemma relating the Q-gradation and the Bruhat decompositions. This lemma was used
by them to prove conjugacy of Cartan subgroups over C, with Kac-Moody groups defined
as automorphism groups of Lie algebras. No argument of negative curvature appears in
their work, they invoke instead convexity properties of a certain distance function on
the Tits cone.

Definition and conjugacy of K-split Cartan subgroups. We say that a subgroup is Ad-
diagonalizable if its image by the adjoint representation is a diagonalizable group of
automorphisms of

(
UD
)
K. Until the end of the section, we will assume the ground field

K to be infinite so as to characterize algebraic groups by their points.

Definition. A subgroup of G is a (K-split) Cartan subgroup if it is Ad-diagonalizable
and maximal for this property.

We will omit the prefix “K-split” when the ground field is separably closed.

Theorem. The (K-split) Cartan subgroups are all conjugates by G of the standard
Cartan subgroup T .

Sketch of proof. [Ré2, 10.4.2] — Basically, this is the application of argument 2.5.A,
thanks to the smallness criterion above. An Ad-diagonalizable subgroup has to be small
and its image in the algebraic subgroup is a Cartan subgroup in the algebraic sense.
We have then to use transitivity of G on pairs of opposite apartments and the algebraic
conjugacy theorem of Cartan subgroups to send our subgroup in T thanks to a suitable
element of G.

C. Connection with geometry. Combining this theorem with the proposition of
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2.2.B and the fact that G is transitive on the pairs of opposite apartments, we get [Ré2,
10.4.3 and 10.4.4]:

Corollary. Suppose the ground field K is infinite. Then, there is a natural G-equivariant
dictionary between the pairs of opposite apartments and the K-split Cartan subgroups of
G. Moreover, given a facet F, this correspondence relates pairs of opposite apartments
containing F and K-split Cartan subgroups of G contained in the parabolic subgroup
FixG(F ).

We saw in the abstract study of (TRD)-groups that parabolic subgroups do not form
the only interesting class of subgroups. Let us consider a balanced subset Ω of the twin
building of G. A natural question is to know what the correspondence says in this case.
First we choose a pair of opposite apartments A containing Ω. We work in the conical
realization, that is, we see A as the union C ∪−C of a Tits cone and its opposite in the
real vector space V ∗. Then it makes sense to define the convex hull of Ω – denoted by
conv(Ω) – to be the trace on C ∪ −C of the convex hull determined in V ∗. The same
trick enables us to define the vectorial extension vect(Ω,A). The difference of notation
is justified by [Ré2, 10.4.5]:

Proposition. (i) K-split Cartan subgroups of G contained in FixG(Ω) are the preimages
of the maximal K-split tori of the algebraic group G(Ω). Besides, they are in one-to-one
G-equivariant correspondence with the pairs of opposite apartments containing Ω.

(ii) The subspace conv(Ω) and the subgroup U(Ω) only depend on Ω.

Remark. The independence of A for the convex hull is actually useful for the Galois
descent.

3. Relative Kac-Moody theory

We describe now an analogue of Borel-Tits theory. Section 3.1 defines the almost split
forms of Kac-Moody groups. This gives the class of groups which are concerned by
the theory. In Section 3.2, we state the structure theorem for rational points and try
to give an idea of its quite long proof. The geometric method for the Galois descent
follows faithfully the lines of G. Rousseau’s work, who used it for the characteristic 0
case [Rou1,2]. Section 3.3 introduces the class of quasi-split groups and states that this
is the only class of almost split Kac-Moody groups over finite fields. In Section 3.4, we
focus on relative links and apartments, so as to compute thicknesses for instance, and,
finally, in Secton 3.5 we use the classical example of the unitary group SU3 to show
how things work concretely.

3.1. Definition of forms. The requirements are basically of two kinds. We have to
generalize conditions from algebraic geometry, and then to ask for isotropy conditions.
We suppose we are given a ground field K, we choose a separable closure Ks (resp. an
algebraic closure K) of it. We work with the group G = GD(K) determined by K and
the Kac-Moody root datum D. To D is also associated the Z-form UD; if R is any ring,
then the scalar extension of UD from Z to R will be denoted by

(
UD
)
R
.
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A. Functorial forms. Algebraic forms. Here is the part of the conditions aiming
at generalizing algebraic ones. Unfortunately, K-forms of Kac-Moody groups are not
defined by a list of conditions stated once and for all at the beginning of the study.
One has to require a condition, then to derive some properties giving rise to the notions
involved in the next requirement, and so on. We sum up here the basic steps of this
procedure.

Use of functoriality. A Kac-Moody group is a value of a group functor over a field.
Consequently, it is natural to make occur a group functor as main piece of a K-form. A
functorial K-form of G is a group functor defined over field extensions of K which coin-
cides with the Tits functor GD over extensions of K. This is really a weak requirement
since in the finite-dimensional case, it just takes into account the functor of points of
a scheme. Still, this condition enables us to make the Galois group Γ := Gal(Ks/K)
operate on G [Ré2, 11.1.2]. We explained in 2.2.A that the adjoint representation is a
substitute for a global algebro-geometric structure on a Kac-Moody group. It is quite
natural then to work with this representation to define forms [Ré2, 11.1.3].

Definition. A prealgebraic K-form of G consists in of a functorial K-form G and of
a filtered K-form UK of the K-algebra

(
UD
)
K := UD ⊗Z K, both satisfying the following

conditions.

(PREALG1) The adjoint representation Ad is Galois-equivariant.

(PREALG2) The value of G on a field extension gives rise to a group embedding.

Remark. It is understood in the notion of filtered that UK is a direct sum K ⊕ UK+,
where UK+ is a K-form of the ideal

(
UD+

)
K. The existence of a filtered K-form of the

K-algebra
(
UD
)
K enables us this time to define a Γ-action on

(
UD
)
K, and finally on the

automorphism group Autfilt(UD)(K).
Example. As a fundamental example, we can consider the datum of the restriction of
the Tits functor to the K-extensions (contained in K) and the K-algebra

(
UD
)
K. This

will be referred to as the split form of G.

Algebraicity conditions. We suppose now we are given a splitting extension E/K of
the prealgebraic form (G,UK), that is a field over extensions of which the form is the
split one. We also assume that the field E is infinite and that the extension E/K is
normal. The definition of Cartan subgroups in terms of Ad and the Γ-equivariance of
this representation provides [Ré2, 11.2.2]:

Lemma. The image of an E-split Cartan subgroup by a Galois automorphism is still
an E-split Cartan subgroup.

In view of the conjugacy of Cartan subgroups, this lemma suggests to rectify Galois
automorphisms so as to make them stabilize the standard Cartan subgroup T . If γ
denotes a Galois automorphism such that γT = gTg−1, then γ̄ := intg−1 ◦γ will denote
such a rectified automorphism. At the E-algebras level, the symbol γ̄ will denote the
rectified (semilinear) automorphism Adg−1 ◦ γ, where γ is the Galois automorphism of(
UD
)
E arising from the form. The choice of g modulo N will be harmless. Another

class of interesting subgroups is that of root groups, for which things are not so nice.
Still, we have [Ré2, 11.2.3]:
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Lemma. If the cs’s are free in the lattice Λ of the Kac-Moody root datum D, then the
image of a root group (w.r.t. to T ) under a rectified Galois automorphism is still a root
group (w.r.t. to T ).

Note that the action on the group G has no reason to respect its nice combinatorics.
The additional requirements are then [Ré2, 11.2.5]:

Definition. An algebraic K-form of G is a prealgebraic form (G,UK) such that, for
each γ∈Γ, one has:

(ALG0) the rectified automorphism γ̄ stabilizes the family of root groups (w.r.t. to T ).

(ALG1) γ̄ respects the abstract Q-gradation of
(
UD
)
E, inducing a permutation of Q still

denoted by γ̄ and satisfying the homogeneity condition γ̄(na) = nγ̄(a), a∈∆re,
n∈N.

(ALG2) γ̄ respects the algebraic characters and cocharacters of T among all the abstract
ones.

Remark. The algebraic characters (resp. cocharacters) are the ones arising from Λ
(resp. Λ )̌: (ALG2) is indeed an algebraicity condition. Concerning (ALG1), the justi-
fication comes from algebraic differential calculus. If G admitted an algebro-geometric
structure – a topological Hopf algebra of regular functions for instance – with Ua as

a closed subgroup, then the subring
⊕

j≤n
E
eja
j!

would be the E-algebra of invariant dis-

tributions tangent to Ua. So it is natural to require a rectified Galois automorphism
(stabilizing T ) to respect the order of these distributions.

Here are now the main consequences of algebraicity [Ré2, 11.2.5 and 11.3.2].

Proposition. (i) (i) γ̄ is a group automorphism of Q, it stabilizes ∆re and induces
the same permutation as the one defined via the root groups.

(ii) γ̄ stabilizes N inducing an automorphism of W sending the reflexion w.r.t. ∂a
to the reflection w.r.t. ∂γ̄(a).

(iii) If the Dynkin diagram of A is connected, each Galois automorphism sends a
Borel subgroup on a Borel subgroup, possibly after opposition of its sign.

In the non connected case, oppositions of signs can occur componentwise. At this
step, there is no reason why the BN -pair of fixed sign should be respected. This is a
requirement to be made.

B. Almost splitness. This condition is the “isotropy part” of the requirements [Rou3].

Definition. The algebraic form (G,UK) is almost split if the Galois action stabilizes
the conjugacy of Borel subgroups of each sign.

The stability of conjugacy classes of Borel subgroups enables one to rectify each Galois
automorphism γ in such a way that γ∗ := intgσ

−1 ◦ γ stabilizes B+ and B−. This way,
the element gσ is defined modulo T = B+ ∩ B−. The assignment γ 7→ γ∗ defines a
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Γ-action on W stabilizing S and is called the ∗-action. The terminology is justified
by the analogy with the action considered by J. Tits in the classification problem of
semi-simple groups. Now we can turn for the first time to the other interesting G-space,
namely the twin building of the group [Ré2, 11.3.3 and 11.3.4].

Proposition. (i) Via group combinatorics, the Galois group operates on the build-
ings by automorphisms, up to permutation of types by the ∗-action defined above.

(ii) The Galois group acts by isometries on the metric realizations of the building of
each sign. Γ-orbits are finite.

The last assertion is the starting point of the argument in 2.5.A: there exist Γ-fixed
balanced subsets. In fact, we can prove [Ré2, 11.3.5]:

Theorem. Let us assume now E/K Galois, and let us consider Ω to be balanced and
Galois-fixed. Then the subspace W (Ω)E is defined over K, the homomorphism AdΩ is
Γ-equivariant, and its image is a closed K-subgroup of GL

(
W (Ω)E

)
.

So to speak, this is the first step of the Galois descent: looking at Γ-fixed balanced
subsets and at the corresponding small subgroups (resp. algebraic groups).

3.2. The Galois descent theorem. This section states the main structure result
about rational points of almost split Kac-Moody K-groups. The geometric side is at
the same time the main tool and an interesting result in its own right.

A. Statement [Ré2, 12.4.3]. Here is the result which justifies the analogy between the
theory of almost split forms of Kac-Moody groups and Borel-Tits theory for isotropic
reductive groups. We keep the almost split K-form (G,UK) of the previous section.
We suppose now E = Ks, i.e., that the form is split over the separable closure Ks.
A Kac-Moody group endowed with such a form will be called an almost split Kac-
Moody K-group. By definition, the group of rational points of the form is the group of
Galois-fixed points G(K) := GΓ.

Theorem (Galois descent). Let G be a Kac-Moody group, almost split over K. Then

(i) The set of Γ-fixed points in the twin building of G is still a twin building J \.

(ii) The group of rational points G(K) is a (TRD)lin-group for a natural choice of
subgroups suggested by the geometry of a pair of opposite apartments in J \. In-
deed, J \ is a geometric realization of the twin building abstractly associated to
G(K).

(iii) Maximal K-split tori are conjugate in G(K).

Remark. The assumption of splitness over Ks is not necessary in the algebraic case,
for which we can apply the combination of a theorem due to Cartier [Bo, Theorem 18.7]
and a theorem due to Chevalley-Rosenlicht-Grothendieck [Bo, Theorem 18.2].

B. Sketch of proof. Let us start with notation and terminology. The symbol Ω\

will always denote a Γ-fixed balanced subset, and Ω will denote the Γ-stable union of
spherical facets covering it. We are working now in the conical realization of the twin
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building so as to apply convexity arguments. A generic subspace is a subspace of a pair
of opposite apartments meeting a spherical facet.

Relative geometric objects. We define now relative objects with suggestive terminology.
This does not mean that we know at this step that they form a building.

Definition. (i) A (spherical) K-facet is the subset of Γ-fixed points of a (spherical)
Γ-stable facet. A K-chamber is a spherical K-facet of maximal closure. A K-
panel is a K-facet of codimension one in the closure of a K-chamber.

(ii) A K-apartment is a generic Γ-fixed subspace, maximal for these properties.

Remark. These geometric definitions also give sense to an opposition relation on K-
facets of oppposite signs, which will be called opposite if they form a symmetric subset
of a pair of opposite apartments.

Let us turn now to the other application of argument 2.5.A, with the Galois group as
bounded isometry group [Ré2, 12.2.1 and 12.2.3].

Theorem. For each Γ-fixed balanced subset Ω\, there exists a Γ-stable pair of opposite
apartments containing Ω. Since the Galois action preserves barycenters, conv(Ω\) is
Γ-fixed.

Sketch of proof. Theorem 3.1.B says that AdΩ
(
FixG(Ω)

)
is a K-group, so it admits

a Cartan subgroup defined over K. The Γ-equivariant dictionnary of 2.5.B says that
this corresponds geometrically to a Γ-stable pair of opposite apartments containing Ω.
The last assertion follows from the fact that the convex hull can be determined in any
apartment containing Ω\.

The last assertion is the starting point of convexity arguments, which enable one to
prove the following facts [Ré2, 12.2.4]:

• Two K-facets of opposite signs are always contained in a K-apartment.

• There is an integer d such that K-apartments and K-chambers are all
d-dimensional.

• The convex hull of two opposite K-chambers is a K-apartment, and each K-
apartment can be constructed this way. In particular, K-apartments are sym-
metric double cones.

• Each K-facet is in the closure of a spherical one. This enables us to define
K-chambers as K-facets (a priori not spherical) of maximal closure.

Rational transitivity results. The next step is to study J \ as a G(K)-set [Ré2, 12.3.2].

Theorem. (i) The group of rational points G(K) is transitive on the K-apartments.

(ii) Two K-facets of arbitrary signs are always contained in a K-apartment.

Remark. The proof of point (ii) requires a Levi decomposition argument for a Γ-fixed
balanced subset made of three points, so Levi decompositions are useful for balanced
subset more general than pairs of spherical points of opposite signs.
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Relative roots. Anisotropic kernel. To introduce a relative (TRD)-structure on the
rational points, we need of course to define a relative Coxeter system (W \, S\). We can
make the choice of a pair of K-facets ±F \ of opposite signs and of a pair ±c of opposite
chambers in such a way that:

• F \ and −F \ define a K-apartment AK by AK := conv(F \ ∪ −F \);

• the Γ-stable facet ±F such that ±F \ = (±F )Γ is in the closure of the chamber
±c;
• the pair of opposite apartments A defined by ±c is Γ-stable.

We see A as the union of the Tits cone and its opposite in the real vector space V ∗.
Moreover, we denote by L\ the linear span of AK in V ∗.

Definition. The restriction a\ := a |L\ of a root a of A (seen as a linear form on V ∗)
is a K-root of AK if the trace D(a\) := AK ∩ D(a) is generic. In this case, D(a\) is
called the K-halfspace of a\.

For a givenK-halfspaceD(a\), we consider the set Φa\ of roots b withD(b)∩AK = D(a\).
This set is stable under Γ and so is the group generated by the root groups Ub, b∈Φa\ .
Let us denote by VD(a\) the group of its Γ-fixed points.

Definition. (i) The group VD(a\) is the relative root group associated to the a\.

(ii) The fixator FixG(AK), denoted by Z(AK), is the anisotropic kernel associated to
AK.

Rational group combinatorics. The next step is to prove that G(K) admits a nice
combinatorial structure, stronger than BN -pairs but weaker than the (TRD)lin-axioms.
This group combinatorics is due to V. Kac and D. Peterson: the refined Tits systems
[KP2]. This is an abstract way to obtain the relative Coxeter system (W \, S\) we are
looking for, via BN -pairs. We have [Ré2, 12.4.1 and 12.4.2]:

Lemma. The group W \ is a subquotient of G(K), namely the quotient of the stabilizer
in G(K) of AK by its fixator. The half of each sign of the double cone AK is a geometric
realization of the Coxeter complex of W \, and the latter group is generated by reflections
w.r.t. to F \. The K-halfspaces D(a\) are in W \-equivariant bijection with the abstract
set of roots ΦK of (W \, S\).

We have now an index set for the (TRD)lin-axioms. What is still unclear is how to
define a linear interval of K-halfspaces. For D(a\) and D(b\), we set

[D(a\);D(b\)]lin. := {D(c\) | ∃λ, µ∈ R+ c\ = λa\ + µb\}.
With all the objects defined above, point (i) of the Galois descent theorem more precisely
says that the group of rational points G(K) – endowed with the K-points Z(K)Γ of the
anisotropic kernel and the family {VD(a\)}D(a\)∈ΦK – satisfies the (TRD)lin-axioms. Point
(ii) says that the set of Γ-fixed points in the twin building is the realization of a twin
building. Besides, all the suggestive terminology for relative objects is justified.

Maximal K-split tori. In the formulation above, we forgot the maximal K-split tori.
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According to 2.5.C, it is natural to expect a relative dictionary between K-apartments
and maximal K-split tori. A K-split torus of G is a K-split subgroup of a Γ-stable
Cartan subgroup (this definition makes sense since the latter groups admit natural
structures of K-tori). Let us keep the K-apartment AK, and Z(K) = FixG(AK).

Proposition. The anisotropic kernel Z(AK) is the fixator of any pair of opposite K-
chambers ±F \ in AK. It is a Γ-stable small subgroup and the Levi factor of the Γ-stable
parabolic subgroup FixG(±F \). Its associated algebraic group is semi-simple anisotropic.

Idea of proof. [Ré2, 12.3.2] — The first assertion follows from example 2 in 1.5.B, and
the anisotropy part is justified as in the proof of Lang’s theorem below (3.3.A).

As the quotient of a small subgroup defining its associated algebraic group is by a
diagonalisable group, the anisotropy assertion gives rise to a G(K)-equivariant map

{K-apartments} −→ {Maximal K-split tori}
AK 7→ Z0

d(AK),
where Z0

d(AK) is the connected K-split part of the center of Z(AK). A more precise
statement of point (iii) of the Galois descent theorem is that each K-split torus can be
conjugated by G(K) into Z0

d(AK). In particular, the map above is surjective. In fact, it
is bijective for K large enough.

3.3. A Lang type theorey. We describe here the specific situation in which the
ground field is finite.

A. Quasi-splitness. An algebraicK-group is quasi-split if it contains a Borel subgroup
defined over K, so in the twin situation, it is natural to introduce the following.

Definition. A Kac-Moody K-group is quasi-split if it contains two opposite Borel sub-
groups stable under the Galois group Γ.

Remark. Geometrically, this means that two opposite chambers are Galois-stable.

For comparison, the classical Lang theorem [Bo, 16.6] asserts that over a finite field, an
algebraic group has to be quasi-split.

Theorem (Lang’s theorem for Kac-Moody groups). Let G be a Kac-Moody group,
almost split over a finite field Fq. Then G is in fact quasi-split over Fq.

Sketch of proof. [Ré2, 13.2.2] — Actually, the proof of this result makes use of
the algebraic one. The argument works as follows. Look at the Levi decomposition
of a minimal Γ-stable parabolic subgroup P of G. By minimality, the Levi factor is
an algebraic Fq-group which cannot contain a proper parabolic subgroup defined over
Fq. Indeed, it would otherwise lead to a Γ-stable parabolic subgroup smaller than P .
Consequently, the Levi factor – which is reductive – has no proper parabolic subgroup
defined over Fq, but admits an Fq-Borel subgroup: it must be a torus.

B. Down-to-earth constructions of forms. Restriction to quasi-split forms enables
one to concretely define twisted Kac-Moody groups. In fact, groups of this kind were
already considered by J.-Y. Hée and J. Ramagge, who obtained structure theorems for
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“rational points” without reference to or use of buildings [H1 and H3], [Ra1 and Ra2].
These groups were studied in the wider context of generalized Steinberg torsions, which
allowed J.-Y. Hée to define analogues of Ree-Suzuki groups. If we stick to Galois torsion
as above, we have the following constructive result [Ré2, 13.2.3].

Proposition. Consider a generalized Cartan matrix A with Dynkin diagram D. Sup-
pose we are given a Galois extension E/K and a morphism ∗ : Gal(E/K) → Aut(D).
Then the simply connected (resp. adjoint) split Kac-Moody group defined over E admits
a quasisplit form over K with ∗-action the morphism above.

Remark. The Dynkin diagram of a generalized Cartan matrix is defined in [K]. The
result is also valid with a suitable notion of automorphism for a Kac-Moody root datum.
As we will see it as a procedure to construct twisted geometries which only depends on
A, we will not be interested in these refinements.

3.4. Relative apartments and relative links. We make precise now the determi-
nation of the shape of the apartments and of the relative links.

A. Geometry of relative apartments. Our aim here is to derive some more in-
formation about the geometry of K-apartments from the ∗-action of the almost split
form. This is to be combined with the constructive procedure of quasi-split forms
3.3.B. We are still working with the datum of a pair of K-facets ±F \ of opposite signs
and of a pair ±c of opposite chambers s.t. F \ and −F \ define a K-apartment AK by
AK := conv(F \ ∪ −F \); the Γ-stable facet ±F with ±F \ = (±F )Γ is in the closure ±c
and the pair of opposite apartments A defined by ±c is Γ-stable. Recall that A is the
union of the Tits cone and its opposite in the real vector space V ∗ and that L\ is the
linear span of AK in V ∗. By transitivity of G(K), all K-chambers are fixed points in
Γ-stable facets of fixed type S0.

Lemma. Denote by Γ∗ the automorphism group of the standard chamber c arising from
the ∗-action. Then L\ admits the following definition by linear equations:

L\ =
{
x∈V ∗ | as(x) = 0 ∀s∈S0 and as(x) = at(x) for Γ

∗s = Γ∗t
}
,

and the K-chamber is a simplicial cone of dimension d ≥ S\ defined by the same equa-
tions for x in c+.

This result [Ré2, 12.6.1] enables us to determine the shape of a K-chamber or a K-
apartment from the datum of the ∗-action. In other words, this is a concrete procedure
to determine a part of the geometry of the twisted twin building. To get more precise
information, we have to use finer theoretical results concerning infinite Kac-Moody
type root systems. Following the abstract results in [Ba], the datum of S0 and of
the ∗-action determines a relative Kac-Moody matrix, a relative version of the matrix
A. Then, there is a similar rule to deduce a Coxeter from it, and it happens to be
naturally isomorphic to the relative Weyl group W \. So another piece of the twisted
combinatorics is theoretically computable.

B. Geometry of relative residues. Once we have determined the geometry of the
slices of the twisted twin building, one may want to know more about the local geometry
of it. This we will also accomplish thanks to the knowledge of S0 and of the ∗-action.
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In the split case, according to 2.2.B, the fixator of a pair of opposite spherical facets
F± is abstractly isomorphic to a split reductive group. Besides, a realization of its twin
building is given by the union of the residues of F+ and F−. The relative version of this
is also valid. More precisely, let us consider a pair of opposite spherical K-facets ±F \

whose union will be denoted by Ω\. It can be shown then that the Galois actions on
the Γ-stable residues yields a natural K-structure on the reductive algebraic groups to
which the small subgroup FixG(Ω

\) is isomorphic. For instance, if we assume that ±F \

are spherical K-panels, this provides information about rational root groups. In fact,
we have [Ré2, 12.5.2 and 12.5.4]:

Lemma. (i) The union of the sets of K-chambers whose closure contains ±F \ is a
geometric realization of the twinning of an algebraic reductive K-group.

(ii) Rational root groups are isomorphic to root groups in algebraic reductive K-
groups. In particular, the only possible proportionality factor > 1 between K-
roots is 2 and rational root groups are metabelian.

Combined with the geometric consequence of the Moufang property, the second point
enables to compute thicknesses.

3.5. A classical twin tree. A. The split situation. Recall that SL3(K[t, t−1]) is

a split Kac-Moody group defined over the field K and of affine type Ã2. The Dynkin

diagram is the simply-laced triangle. The simple roots of the Ã2-affine root system
are denoted by a0, a1 and a2, for which we choose respectively the parametrizations

x0 : r 7→




1 0 0
0 1 0
−rt 0 1


, x1 : r 7→



1 r 0
0 1 0
0 0 1


 and x2 : r 7→



1 0 0
0 1 r
0 0 1


. The standard

Cartan subgroup is

T =



Du,v :=



u 0 0
0 u−1v 0
0 0 v−1



∣∣∣∣∣∣
u, v∈E×



 .

We work for this example with the Bruhat-Tits realization of the buildings.

B. The involution. Let us consider a separable quadratic extension E/K. We want
to define a quasi-split K-form of SL3(E[t, t−1]) so as to produce a semi-homogeneous
twin tree by quasi-split Galois descent. From a theoretical point of view (3.3.B), it is
enough to find an involution of the Dynkin diagram. We choose the inversion of types
1 and 2. We describe now concretely to which Galois action this choice leads. Let ι
(resp. τ) be the inversion (resp. the “antidiagonal” symmetry) of matrices,

τ :



a b c
d e f
g h i


 7→



i f c
h e b
g d a




Let ·σ be at the same time the non-trivial element of Gal(E/K) and this operation
on all matrix coefficients. Then the involution ·∗ := τ ◦ ι ◦ ·σ of SL3(E[t, t−1]) is the
one given by the quasi-split K-form. It is completely determined by the formulae
x1(r)

∗ = x2(r
σ), x2(r)

∗ = x1(r
σ) and x0(r)

∗ = x0(r
σ), the analogues for negative
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simple roots, and D∗u,v = Dvσ ,uσ . The group of monomial matrices lifting modulo T the

affine Weyl group W = S3 n Z2 is also ·∗-stable. This implies the ·∗-stability of the
standard apartments A+ = {wB+}w∈W and A− = {wB−}w∈W . The set of ∗-fixed points
inside is a K-apartment, since according to the permutation of types, there cannot be
a two-dimensional K-chamber. This set AK is the median of the standard equilateral
triangle (intersecting the edge of type 0) w.r.t. to which ·∗ operates by symmetry
in A. Consequently, each building is a tree and the relative Weyl group W \ is the

infinite dihedral group D∞. Translations are lifted by the matrices



atn 0 0
0 1 0
0 0 (atn)−1


;

reflexions by the matrices




0 0 (atn)−1

0 1 0
−atn 0 0


 , (n∈ Z, a∈K×). The reason why we

call the twin building so obtained a classical twin tree is that, up to sign conventions,
the Steinberg torsion we defined is that of the unitary group SU3 considered in [BrT2,
4.1.9].

C. Semi-homogeneity. What is left to do is to compute valencies. We will get semi-
homogeneous trees since there are two shapes of intersections of the K-apartment with
walls. We sketch arguments for positive standard vertices and edges, but the situation
is completely symmetric w.r.t. signs and can be deduced for every facet by transitivity
of the rational points.

The first (simplest) situation is given by the intersection of the standard edge of type 0
with AK. In this case, only one wall passes through the intersection point and each of
the two opposite K-roots is the trace on AK of a single root. The corresponding root
groups are stable and their groups of rational points are isomorphic to the additive
group of K. Hence a valency at all transforms of this K-vertex is equal to 1 + |K|.
The other situation corresponds to the fact that AK contains the standard vertex of
type {1; 2} for which 3 roots leave the same K-root as trace on AK. The small subgroup
fixing this vertex and its opposite in A is stable and abstractly isomorphic to SL3 over
E. According to the action around the vertex, the three positive root groups passing
through it are permuted and the small subgroup is abstractly isomorphic to a quasi-split
reductive K-group of rank one. The root groups of such groups are described in detail
in [BrT2, 4.1.9]; they are rational points of the unipotent radical of a Borel subgroup
of SU3, in bijection with K3. This can also be seen directly on the explicit description
of the Galois action above. Hence a valency at all transforms of this K-vertex is equal
to 1+ |K|3. This shows that we built a semi-homogeneous twin tree of valencies 1+ |K|
and 1 + |K|3. So in the case of a finite ground field K = Fq, one gets a locally finite
semi-homogeneous twin tree of valencies 1 + q and 1 + q3.

Figure. — [Here q = 2]
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4. Hyperbolic examples. Lattices

So far, we have just considered examples of Chevalley groups over Laurent polynomial
rings or twisted versions of them. Section 4.1 deals with split and twisted Kac-Moody
groups whose buildings are hyperbolic. In Section 4.2, we show that Kac-Moody theory
provides analogues of arithmetic groups over function fields.

4.1. Hyperbolic examples. At last, some more exotic Kac-Moody geometries will be
described.

A. Hyperbolic buildings. The definition of such spaces [GP] is the metric version of
that of buildings from the apartment system point of view.

Definition. Let R be a hyperbolic polyhedron providing a Poincaré tiling of the hyper-
bolic space Hn. A hyperbolic building of type R is a piecewise polyhedral cell complex,
covered by a family of subcomplexes, the apartments, all isomorphic to the tiling above
and satisfying the following incidence axioms.

(i) Two points are always contained in an apartment.

(ii) Two apartments are isomorphic by a polyhedral arrow fixing their intersection.

A building whose apartments are tilings of the hyperbolic plane H2 will be called Fuch-
sian.

The main point about hyperbolic buildings is that we get in this way CAT(−1)-spaces,
i.e., metric spaces where geodesic triangles are at least as thin as in H2. In particular,
they are hyperbolic in the sense of Gromov. The additional incidence axioms make
these spaces nice geometries where to refine results known for hyperbolic metric spaces,
or to generalize results about symmetric spaces with (strict) negative curvature.

Remark. Note that in contrast with the affine case, for hyperbolic buildings there is
usually no relation between the dimension of the apartments and the rank of the Weyl
group of the building. The two-dimensional case with a regular right-angled r-gon is
particularly striking: r ≥ 5 may be arbitrary large. Nevertheless, we will sometimes
be interested in the case called compact hyperbolic by Bourbaki. It corresponds to a
tesselation of Hn by a hyperbolic simplex. In this particular case, the relation alluded to
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above is valid; and the Weyl group shares another property with the affine case: every
proper subset of canonical generators gives rise to a finite Coxeter subgroup.

B. Split twin hyperbolic buildings. Our purpose here is to show which kind of
hyperbolic buildings can be produced via Kac-Moody machinery. Let us make prelim-
inary remarks, valid in both split and twisted cases. First, the rule of point (i) in the
second definition of 2.1.A shows that the Coxeter coefficients involved in Kac-Moody
theory are very specific: 2, 3, 4, 6 or ∞. So by far not any Coxeter group appears as
the Weyl group of a generalized Cartan matrix. Besides, the thicknesses will always be
of the form “ 1 + prime power”, and will be constant in the split case. These are strong
conditions, but not complete obstructions.

Hyperbolic realizations. It is clear that standard glueing techniques [D2, §10] apply in
the hyperbolic case once affine tilings are replaced by hyperbolic ones. Given P , a
hyperbolic Poincaré polyhedron with dihedral angles 6= 0 of the form π/m with m = 2,
3, 4 or 6, and which may have vertices at infinity; and given pk a prime power, there
exists a Kac-Moody building of constant thickness 1 + pk admitting a metric realiza-
tion whose apartments are Poincaré tilings defined by P [Ré1 §2]. This building is a
complete geodesic proper CAT(−1) metric space. This is just an existence result, it is
expected to be combined with a uniqueness assertion, but the following result due to
D. Gaboriau and F. Paulin ([GP], théorème 3.5) is quite disheartening.

Theorem. Let P be a regular hyperbolic Poincaré polygon with an even number of
edges and angles equal to π/m,m ≥ 3. Let L be a fixed generalized m-gon of classical
type and sufficiently large characteristic. Then, there exist uncountably many hyperbolic
buildings with apartments the tiling provided by P and links all isomorphic to L.

The latter theorem is in contrast with the following characterization proved by M.
Bourdon [Bou1, 2.2.1], which shows that in the two-dimensional case, there is some
kind of dichotomy according to whether m ≥ 3 or m = 2. The latter kind of buildings
will be referred to as the class of right-angled Fuchsian buildings.

Proposition. Consider the Poincaré tiling of the hyperbolic plane H2 by a right-angled
r-gon (r ≥ 5). Then, there exists a unique building Ir,q+1 satisfying the following
conditions:

• apartments are all isomorphic to this tesselation;

• the link at each vertex is the complete bipartite graph of parameters (q+1, q+1).

Consequently, we know by uniqueness that the building Ir,q+1 – r ≥ 5, q a prime power,
comes from a Kac-Moody group.

C. Quasi-split Kac-Moody groups and hyperbolic buildings. On the one hand,
according to Subsection 2.2.B, there is no possibility to construct buildings with non-
constant thickness via split Kac-Moody groups. On the other hand, we know by Sec-
tion 3.5 that we can obtain semi-homogeneous twin trees from classical groups. Here is
an example of what can be done in the context of hyperbolic buildings.

Semi-homogeneous trees in Fuchsian buildings. [Ré2, 13.3] — Definition of Fq-forms
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relies on the existence of symmetries in the Dynkin diagram. Let us sketch the applica-
tion of method 3.3.B to the buildings Ir,q+1. Denote by D the Coxeter diagram of the
reflection group associated to the regular right-angled r-gon R ⊂ H2. To get it, draw
the r-th roots of 1 on the unit circle and connect each pair of non consecutive points by

an edge
∞

——–. To keep all symmetries, lift this Coxeter diagram into a Dynkin diagram

replacing the edges
∞

——– by ⇐⇒. The corresponding generalized Cartan matrix A is
indexed by Z/r; it is defined by Aī,̄i = 2, Aī,̄i+1 = 0 and -2’s elsewhere.

Figure. — [Here r = 6]

We suppose now that the integer r is odd, so that D is symmetric w.r.t. each axis
passing through the middle of two neighbors and the opposite vertex. We fix such a
symmetry, and consider the quadratic extension Fq2/Fq : this defines a quasi-split form
as in 3.5.B. Moreover, the arguments to determine the shape of an Fq-chamber or an
Fq-apartment are the same. We get a straight line cut into segments and acted upon
by the infinite dihedral group D∞. The twisted buildings are trees.

Figure. — [Here r = 5 and q = 2]

For the valencies, we must once again distinguish two kinds of intersection of the bound-
ary of R with the Fq-apartment, which leads to two different computations. When the
Fq-apartment cuts an edge, the rational points of the corresponding root group are iso-
morphic to Fq, hence a valency equal to 1+q. The other case is when the Fq-apartment
passes through a vertex contained in two orthogonal walls, with two roots leaving the
same trace on the Galois-fixed line. The corresponding Galois-stable group is then a
direct product of two root groups (each isomorphic to Fq2) acted upon by interversion
and Frobenius: the valency at these points is then 1+ q2. Consequently, we obtain this
way a semi-homogeneous twin tree with valencies 1 + q and 1 + q2.

Twisted Fuchsian buildings in higher-dimensional hyperbolic buildings. [Ré1, §4.5] —
Galois descent makes the dimension of apartments decrease, so if we want Fuchsian
buildings with non constant thickness, we must consider higher dimensional hyperbolic
buildings. Let us consider a specific example obtained from a polyhedron in the hyper-
bolic ball B3 and admitting many symmetries: it is the truncated regular hyperideal
octahedron with dihedral angles π/2 and π/3. This polyhedron P is obtained by mov-
ing at same speed from the origin eight points on the axis of the standard orthogonal
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basis of R3. The condition on the angles impose to move the points outside of B3.
What is left to do then is to cut the cusps by totally geodesic hyperplanes centered at
the intersections of S2 = ∂B3 with the axis. A figure of this polyhedron is available in
[GP]. The polyhedron P admits a symmetry w.r.t. hyperplanes containing edges and
cutting P along an octogon. The residue at such an edge – where the dihedral angle
is π/3 – is the building of SL3. This enables one to define a quasi-split Fq-form whose
building is Fuchsian. The Fq-chambers are octogons and thicknesses at Fq-edges are
alternatively 1 + q and 1 + q3.

D. Hyperbolic buildings from a geometrical point of view. Here is now a small
digression concerning single hyperbolic buildings, without the assumption that they
arise from Kac-Moody theory. This often implies to restrict oneself to specific classes
of hyperbolic buildings, but provides stimulating results.

Existence, uniqueness and homogeneity. We saw in the previous subsection that unicity
results were useful to know which buildings come from Kac-Moody groups. Neverthe-
less, the “disheartening theorem” above shows that the shape of the chambers and the
links are not sufficient in this direction. F. Haglund [Ha] determined conditions to be
added so as to obtain characterization results for two-dimensional hyperbolic buildings.
His study enables him to know when the (type-preserving) full automorphism group is
transitive on chambers.

Automorphism groups. The first step towards group theory then is to consider groups
acting on a given hyperbolic building. Two kinds of groups are particularly interest-
ing: full automorphism groups and lattices. Concerning full automorphism groups, F.
Haglund and F. Paulin [HP] proved abstract simplicity and non-linearity results for two-

dimensional buildings. Besides, É. Lebeau [L] proved that some others of these groups
are strongly transitive on their buildings, hence admit a natural structure of BN -pair –
see [Ron], §5. Concerning lattices, the first point is the existence problem. In fact, the
main construction technique is a generalization to higher dimension of Serre’s theory
of graph of groups [Se]. D. Gaboriau and F. Paulin [GP] determined the precise local
conditions on a complex of groups in the sense of A. Haefliger [BH] to have a hyperbolic
building as universal covering. This method has the advantage to produce at the same
time a uniform lattice with the building. The lattices we will obtain by Kac-Moody
theory are not uniform.

Boundaries: quasiconformal geometry and analysis. The reason why boundaries of
metric hyperbolic metric spaces are interesting is that they can be endowed with a qua-
siconformal structure – see [GH], §7. In the case of hyperbolic buildings, the structure
can be expected to be even richer or better known, in view of the CAT(−1)-property
and the incidence axioms. At least for Fuchsian buildings, this is indeed the case as
shown by work due to M. Bourdon. In this situation, he relates the precise conformal
dimension of the boundary and the growth rate of the Weyl group [Bou2]. In a joint
paper with H. Pajot [BP1], the existence of Poincaré inequalities and the structure of
Loewner space is proved for the boundaries of the Ir,q+1’s.

Rigidity. — Rigidity is a vast topic in geometric group theory. In this direction, results
were proved by M. Bourdon first [Bou1] and then by M. Bourdon and H. Pajot [BP2].
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The first paper deals with Mostow type rigidity of uniform lattices. It concerns right-
angled Fuchsian buildings. A basic tool there is a combinatorial cross-ratio constructed
thanks to the building structure involved. It enables one to generalize arguments of
hyperbolic geometry by D. Sullivan to the singular case of (boundaries of) buildings.
The second paper uses techniques from analysis on singular spaces to prove a stronger
result implying Mostow rigidity, and in the spirit of results by P. Pansu [P1], B. Kleiner
and B. Leeb [KL] for Riemannian symmetric spaces (minus the real and complex hy-
perbolic spaces) and higher rank Euclidean buildings. More precisely, M. Bourdon and
H. Pajot proved [BP2]:

Theorem (Rigidity of quasi-isometries). Every quasi-isometry of a right-angled Fuch-
sian building lies within bounded distance from an isometry.

For the notion of a quasi-isometry, see for instance [GH, §5]. Roughly speaking, it
is an isometry up to an additive and a multiplicative constant, surjective up to finite
distance.

4.2. Analogy with arithmetic lattices. The purpose of this section is to present
several arguments to see Kac-Moody groups over finite fields as generalizations of arith-
metic groups over function fields.

A. Kac-Moody topological groups and lattices. Let G be a Kac-Moody group,
almost split – hence, quasi-split (3.3.A) – over the finite field Fq. We denote by ∆± the
locally finite metric realizations of the buildings associated to G. Recall that all points
there are of spherical type, hence the fixator of any point is a spherical parabolic sub-
group. By local finiteness, the (isomorphic) corresponding full automorphism groups
are locally compact. We use the notations Aut± := Aut(∆±). The groups Aut+ and
Aut− are besides unimodular and totally disconnected. We choose a left invariant Haar
measure Vol± and normalize it by Vol±

(
FixAut±(c±)

)
= 1, where c± is the standard

chamber.

Let us turn now to the analogy with arithmetic groups [Mar, p.61]. The affine case is in-
deed a guideline since Chevalley groups over Laurent polynomials are {0;∞}-arithmetic
groups over the global field Fq(t). This is the example of an arithmetic group for two
places. If we consider now the fixator of a facet, we get a group commensurable with
the value of the latter Chevalley group over the polynomials Fq[t], so that each fixator
of facet is an arithmetic group for one place. Besides, the normalization we chose for
the invariant measure consists in the affine case in assigning volume 1 to an Iwahori
subgroup. We just replaced here a p-adic Lie group by the full automorphism group of
a building.

If we consider now the general case, here is a result supporting the analogy, indepen-
dently proved by L. Carbone and H. Garland in the split case [CG, Ré3].

Theorem. Let G be an almost split Kac-Moody group over a finite field Fq. Denote by
∑

n≥0
dnt

n the growth series of the Weyl group W of G. Assume
∑

n≥0

dn
qn

<∞. Then:

(i) The group G is a lattice of (the full automorphism group of) ∆+ ×∆−.
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(ii) For any point in x−∈∆−, FixG(x−) is a lattice of ∆+.

(iii) These lattices are not uniform.

Remark. (1) Non-uniformness is due to J. Tits, who determined fundamental do-
mains for actions of parabolic subgroups in a combinatorial setting more general
than the (TRD) axioms [T3, A1 §3].

(2) Of course, the situation is completely symmetric w.r.t. signs: point (ii) is still
true after inversion of + and −.

(3) There is a straightforward generalization of this result to the case of locally finite
Moufang twin buildings. The cardinal of the ground field has to be replaced by the
maximal cardinal q of root groups. According to the Moufang property (1.3.B),
this integer is geometrically computed as follows. Consider any chamber, then
q + 1 is the maximal thickness among all the panels in its closure.

B. Sketch of proof. We just consider the case of the fixator of a negative point –
spherical negative parabolic subgroup. As we work over a finite field, we can make use
of the following facts due to Levi decompositions, 1.5.B and 1.5.A respectively.

(i) The fixator of a pair of (spherical) points of opposite signs is finite.

(ii) Borel subgroups are of finite index in the spherical parabolic subgroups contain-
ing them.

Discreteness follows from point (i), and according to point (ii), it is enough to show
that the fixator B− of a negative chamber is of finite covolume. The idea is to adapt
Serre’s criterion on trees to compute a volume. This requires to look at the series∑

d+∈C

1

|StabB−(d+)|
, where C is a complete set of representatives of chambers modulo

the discrete group considered. According to Tits’ result alluded to above, one has
C = A+. Thanks to a special case of the Levi decompositions (1.5.B), the series is

≤ 1

|T |
∑

w∈W

1

q`(w)
. Rearranging elements of W w.r.t. length in the dominating series,

one gets the series appearing in the statement.

Remark. When G is split over Fq, the assumption on the numerical series is sharp.

C. Classical properties for Kac-Moody lattices. The result above should be
seen as a starting point. Indeed, one may wonder whether some classical properties
of arithmetic groups are relevant or true for this kind of lattices. Some answers are
already known.

Moufang property. The first remark in order for the analogy is to consider Moufang
property. Recall that this property is already of interest in classical situations but is not
satisfied by all p-adic Lie groups. For instance, it can be proved for many Bruhat-Tits
buildings arising from reductive groups over local fields of equal (positive) characteristic,
but it is known for no local field of characteristic zero [RT1, §2]. This remark suggests
that the analogy with arithmetic groups in characteristic 0 will not be fruitful.

Kazhdan’s property (T). This property has proved to be useful in many situations, and
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makes sense for arbitrary topological groups, endowed with the discrete topology for
instance. In the classical case of Lie groups and their lattices, its validity is basically
decided by the rank of the ambient Lie group [HV, 2.8]. In rank ≥ 2, all Lie groups
are (T) and closed subgroups of finite covolume inherit the property [HV, 3.4]. Over
non-archimidean local fields and in rank 1, no group is (T) since a necessary condition
is to admit a fixed point for each isometric action on a tree [HV, 6.4]: contradiction
with the natural action on the Bruhat-Tits tree. Another necessary condition is for
instance compact generation, that is finite generation in the discrete case.

Property (T) is often characterized in terms of unitary representations, but the former
necessary condition involving actions on trees suggests to look for geometrical criteria
having the advantadge to make generalizations easier. An important example of this
approach works as follows. On the one hand, H. Garland used the combinatorial Laplace
operator on Bruhat-Tits buildings to obtain vanishing results for cohomology with
coefficients in finite-dimensional representations [G]. On the other hand, property (T)
is characterized by cohomology vanishing for every unitary representation. The idea
to generalize Garland’s method to infinite-dimensional representations is due to Pansu-
Zuk [Z, P2], then many people elaborated on this. For instance, nice updatings and
improvements as well as constructions of exotic discrete groups with property (T) are
available in Ballmann-Swiatkowski’s paper [BS]. That this concerns Kac-Moody groups
with compact hyperbolic Weyl groups was seen independently by Carbone-Garland and
Dymara-Januszkiewicz [CG, DJ]. According to the first cohomology vanishing criterion
[HV, 4.7], the following result [DJ, Corollary 2] proves more than property (T).

Theorem. Let G be a Kac-Moody group over Fq with compact hyperbolic Weyl group.
Then for q large enough and 1 ≤ k ≤ n − 1, the continuous cohomology groups
Hk
ct

(
Aut(∆±), ρ

)
with coefficients in any unitary representation ρ vanish.

Remark. (1) Note that the case for which we have a positive answer is for a sim-
plex as chamber. Actually, negative results are proved for Fuchsian buildings
with non simplicial chambers.

(2) Note also the condition on thickness, inside of which is hidden a spectral con-
dition on the Laplace operator. It is actually necessary, in contrast with the
classical situation as we will see in the forthcoming subsection.

Finiteness properties. A way to define these finiteness properties – Fn or FPn – is to use
cohomology or actions on complexes, but for the first two degrees it is closely related to
finite generation and finite presentability. A criterion defining the class of non-classical
Kac-Moody groups for which positive results are known, involves finiteness of standard
subgroups of the Weyl group. More precisely, we say that the Coxeter matrix M is
n-spherical if WJ = 〈J〉 is finite for any subset J with |J | ≤ n. For instance, if M is of
irreducible affine or compact hyperbolic type, it is (r− 1)-spherical but not r-spherical;
and 2-spherical means that all coefficients are finite. When results are known, they look
like those of arithmetic groups in characteristic p, for which much less is known than
in the characteristic 0 case. The abstract framework of group actions on twin buildings
in [A1] enables one to formulate and prove results in both classical and Kac-Moody
cases. The arguments there rely on homotopy considerations, in particular make use of
a deep result by K. Brown [Br1]. If we stick to finite generation or finite presentability,
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techniques of ordered sets from [T3] can also be used [AM]. Here are more recent results
by P. Abramenko [A2]:

Theorem. (i) If |S| > 1 andM is not 2-spherical, then B± is not finitely generated
(for arbitrary q).

(ii) Suppose that q > 3 and that M is 2-spherical but not 3-spherical. Then B± is
finitely generated but not finitely presentable.

(iii) Suppose that q > 13 and M is 3-spherical. Then B± is finitely presentable.

Remark. (1) Non finite generation (resp. non finite presentability) is a way to
contradict property (T) (resp. Gromov hyperbolicity).

(2) The hypothesis “Fq large enough” once again comes into play. P. Abramenko
noticed also that over tiny fields, some groups as in the theorem are lattices of
their building but are not finitely generated. This shows that the condition on
thickness is necessary for the previous theorem concerning property (T), while
it is not so in the classical case (rank argument).

REFERENCES

[A1] P. Abramenko, Twin Buildings and Applications to S-Arithmetic Groups, Lecture Notes in Math-

ematics vol. 1641, Springer, 1996.

[A2] P. Abramenko, Finiteness properties of groups acting on twin buildings, this volume.
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d’une donnée radicielle valuée, Publ. Math. IHÉS 60 (1984), 5 – 184.
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[GH] É. Ghys and P. de la Harpe, Sur les Groupes Hyperboliques d’après Mikhael Gromov, Progress in

Mathematics vol. 83, Birkhäuser, 1990.
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On the Finite Images of Infinite Groups

by

D. Segal

Introduction

‘There are many well known theorems which assert that one or another kind of infinite
group is residually finite. Only recently, however, have results begun to emerge which
take residual finiteness as an (explicit or implicit) hypothesis’ [S1]. The results referred
to concern questions of the type: what can be deduced about a residually finite group
if (a) it has relatively few subgroups of finite index, or (b) its finite quotient groups are
all relatively small, in some sense? Considerable further progress has been made in the
decade since I wrote the above, most of it surveyed in [MS2]. Here I shall discuss two
specific problems left open in [MS2], and relations between them.

The first problem concerns subgroup growth. We write

sn(G)

to denote the number of subgroups of index at most n in a group G, and say that G
has subgroup growth of type ≤ f , for a function f , if

log sn(G) = O(log f(n)).

If in fact log sn(G) = o(log f(n)), we say that G has subgroup growth of type strictly
less than f ; and if the type is ≤ f but not strictly less than f , then the type is f .
(Throughout, logarithms are to base 2.) Thus, for example, the groups with subgroup
growth of type ≤ n are just the groups of polynomial subgroup growth, or PSG groups;
the finitely generated residually finite groups with this property were characterised
in [LMS]: they are precisely the (finitely generated, residually finite) virtually soluble
minimax groups. (A soluble group G is minimax if there is a finite series 1 = G0 C

G1 C · · · C Gh = G with each factor Gi/Gi−1 either cyclic or quasicyclic.) Finitely
generated groups with subgroup growth of type

f0(n) := n
logn

(log logn)2

exist: they were constructed in [LPS]. Until very recently, no finitely generated group
was known having subgroup growth of a type strictly intermediate between n and f0(n).
This led Lubotzky, Pyber and Shalev [LPS] to formulate the following.

Strong Gap Conjecture. If G is a finitely generated group having subgroup growth
of type strictly less than f0 then G has polynomial subgroup growth.

If a single counterexample to this were found, the really interesting question would
remain of whether, for finitely generated groups, there is any gap at all in the possible
types of subgroup growth just above PSG; that is, whether the following is true.

Gap Conjecture. There exists an unbounded increasing function g : N → R+ such
that if G is a finitely generated group having subgroup growth of type strictly less than
ng(n) then G has polynomial subgroup growth.

446
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Shortly after the Bielefeld conference, and after writing the first version of this report,
I found a family of groups that refutes both conjectures. This means that some of
the questions raised in my talk have now been answered; most of them are still open,
however, and to preserve the balance of the article I shall state all the questions as they
arose, giving the answers as far as they are known. The construction of counterexam-
ples to the Gap Conjecture is described in Section 7.

For any group G, the subgroup growth of G is the same as that of its profinite com-

pletion Ĝ (where by sn(Ĝ) one understands the number of open subgroups of index at

most n in Ĝ). The question of whether a particular type f of subgroup growth occurs
is best approached in two stages: first, what kind (if any) of profinite group Γ can
have subgroup growth of type f? And secondly, can such a profinite group Γ be the
profinite completion of a finitely generated abstract group G? Of the results stated
below, Theorems 1 and 3 belong to the first stage, whereas Theorem 2 and Questions
1 and 2 belong to the second stage.

The Gap Conjecture was for some time known to be false for finitely generated profi-
nite groups: (easy) soluble counterexamples were constructed in [MS2], and (hard)
semisimple ones in [Sh2]. We shall see, however, that groups like those cannot be the
profinite completions of finitely generated abstract groups. In Section 6, we discuss
the construction of profinite counterexamples to the gap conjecture which might be the
profinite completions of finitely generated abstract groups; and indeed some of them
are, as we shall see in Section 7.

In the opposite direction, we may derive various restrictions on the structure of a profi-
nite group having slow subgroup growth. These amount to the existence of bounds for
various measures of size for the finite quotients of the group; specifically, on the ranks
of abelian sections and on the ‘complexity’ of the non-abelian chief factors. First of all,
we define rp(G) to be the maximal rank of any elementary abelian p-section of a finite
group G, and for an infinite group G let urp(G) denote the supremum of rp(G) over
all finite quotients G of G; this is the upper p-rank of G. Next, we need to consider
non-abelian composition factors of a group. According to the classification of finite
simple groups, these will be sporadic simple groups, alternating groups, or groups of
Lie type L(l, pe): here l denotes the Lie rank and pe the size of the field. I make the
following ad hoc definition for the ‘upper semisimple p-complexity’ of G: for a prime p,
ssp(G) is the supremum of the numbers rle such that some upper chief factor of G is
the direct product of r copies of L(l, pe), for some Lie type L. I also define ss0(G) to be
the supremum of the numbers rl such that some upper chief factor of G is the direct
product of r copies of Alt(l) or of rl copies of some sporadic group. (An upper chief
factor of G means a chief factor of some finite quotient of G). The following result, due
to Avinoam Mann and stated in [MS2], is proved in Section 1.

Theorem 1. Let G be a group with subgroup growth of type strictly less than f0. Then
ssp(G) is finite for every prime p and for p = 0.

This result is best possible as regards the finiteness of ss0(G); for the group with
subgroup growth type exactly f0 constructed in [LPS] has infinitely many alternat-
ing groups as upper chief factors. I do not know if it is best possible with regard to the
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finiteness of the ssp(G) for primes p, but this seems likely. Actually, we prove some-
thing stronger than Theorem 1: the bounds obtained apply not only to chief factors,
but more generally to ‘homogeneous upper normal sections’ – that is, to sections of
the form M/N where M > N are normal subgroups of finite index in G and M/N is a
direct product of isomorphic simple groups. It is worth remarking that bounding rle is
equivalent to bounding the rank of the group L(l, pe)(r), since the rank of L(l, pe) can
be bounded above and below by simple functions of l and e.

Now a key step in the characterisation of finitely generated groups with PSG was the
proof (given in [MS1]) that if a group G has PSG then the numbers ssp(G) are not only
finite, but bounded as p ranges over all primes and zero. This suggests the following.

Question 1. Does there exist a finitely generated group G such that the numbers ssp(G)
are finite but unbounded as p ranges over all primes and zero?

The answer to this question is ‘yes’. The finitely generated groups G described in
Section 7 have upper chief factors of the form PSL3(p)

(rp) for various primes p, where
rp →∞ with p.

What about groups G for which the numbers ssp(G) are uniformly bounded? Let us
say that a group G is of prosoluble type if every finite quotient of G is soluble – i.e.,

if Ĝ is prosoluble. Combining the argument of [LMS] with Lubotzky’s subsequent
characterisation of linear groups of slow subgroup growth, one obtains the following
(proved in Section 2).

Theorem 2. Let G be a finitely generated group. If (i) the numbers ssp(G) are bounded
as p ranges over all primes and zero, and (ii) G has subgroup growth of type strictly less
than nlog n/ log logn, then G is virtually of prosoluble type.

To say that G is virtually of prosoluble type means that G has a normal subgroup of
finite index which is of prosoluble type. As the type of subgroup growth is unchanged on
passing to a subgroup of finite index, we now restrict attention to groups of prosoluble
type. For these we have the following analogue of Theorem 1, proved in Section 3.

Theorem 3. Let G be a group of prosoluble type. If G has subgroup growth of type
strictly less than f0, then urp(G) is finite for every prime p.

Now we can ask the following.

Question 2. Does there exist a finitely generated group G such that the numbers urp(G)
are finite but unbounded as p ranges over all primes?

This is the second of the problems raised in [MS2]. Although not so formulated, it is
essentially a question about groups of prosoluble type; for it is shown in [LM2] that
every group G with ur2(G) finite is virtually of prosoluble type. If the answer to Ques-
tion 2 is ‘yes’, then such a group G will again be a candidate for a counterexample to
the Strong Gap Conjecture; indeed, in Section 6 we shall see how hypothetical coun-
terexamples to the Gap Conjecture might be obtained, by making the upper p-ranks
urp(G) grow very slowly with p. If the answer to Question 2 is ‘no’, then Theorem 3
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implies that the Strong Gap Conjecture is true for groups of prosoluble type. Indeed,
Theorem B of [MS1] asserts that every group of finite upper rank has PSG; the upper
rank ur(G) of G is the least integer r such that every subgroup of every finite quotient
of G can be generated by r elements (or else∞). A theorem of Kovács [Ko] shows that
ur(G) ≤ 1+supp urp(G) if G is a group of prosoluble type; so if G is a finitely generated
group of prosoluble type and urp(G) is bounded over all primes p then ur(G) is finite,
and hence G has PSG.

In Sections 4 and 5 we consider some special cases of the Gap Conjecture and of Ques-
tion 2. The first major breakthrough in the study of subgroup growth was the charac-
terisation by Lubotzky and Mann [LM1] of the residually nilpotent PSG groups. Using
subsequent work of Lubotzky and Shalev, it is not hard to sharpen this as follows.

Theorem 4. Let G be a finitely generated group which is virtually residually nilpotent.
If G has subgroup growth of type strictly less than nlogn/ log logn, then G is virtually a
soluble minimax group.

Such a group G must therefore have PSG, and so the Strong Gap Conjecture is true
for residually nilpotent groups. Similarly, Question 2 has a negative answer for such
groups.

Theorem 5. Let G be a finitely generated group which is virtually residually nilpotent.
If urp(G) is finite for every prime p then G is virtually a soluble minimax group.

These results are proved in Section 4. Section 5 deals with soluble groups: Question 2
is reformulated in terms of the module theory of soluble minimax groups, and I report
on some partial results obtained in [S3]. These would be superceded if the second part
of the following question has a negative answer:

Question 3. (i) Does there exist a finitely generated soluble group that is residually
finite but not virtually residually nilpotent?
(ii) Does there exist such a group which is abelian-by-minimax?

To conclude this introduction, I should mention a striking result obtained by Laci Pyber,
since the publication of [MS2]: in the types of subgroup growth for finitely generated
groups, there is no gap between nlogn and n!. The proof develops further the methods
introduced in [LPS], and is as yet unpublished. It is shown in [S4] that groups of the
kind described in Section 7, below, exhibit a continuous range of subgroup growth types
between n and nlog log n. Whether or not there is a genuine gap between types nlog logn

and nlog n remains to be seen.

1. Semisimple chief factors

Theorem 1 follows from the conjunction of the three propositions below. We follow the
method of [MS1], Section 4.

Proposition 1.1. Let G be a group. Suppose that

log sn(G) <
1

49
log f0(n) for all n ≥ k,
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where k ∈ N. If N ∼= Alt(l)(r) is an upper normal section of G with l ≥ 5 then rl ≤ k.

Proof. Let N be such an upper normal section of G. Then G has a finite quotient G
such that N is a normal subgroup of G and CG(N) = 1. Let K be the kernel of the
permutation action of G (given by conjugation) on the set of r simple factors of N .
Since Alt(l) has at most 2l! automorphisms we have |K| ≤ (2l!)r, while |G : K| ≤ r!.
Hence

|G| ≤ r!(2l!)r < rrllr = m, say.

On the other hand, N contains the direct product of r[l/4] Klein 4-groups. This contains

at least 2r
2[l/4]2 subgroups; therefore

log sm(G) ≥ r2[l/4]2 ≥ r2l2/49.

Now suppose that m ≥ k. Then log sm(G) < log f0(m)/49; it follows that

r2l2 < log f0(m) =
(logm)2

(log logm)2
,

which implies

log logm <
r log r + rl log l

rl
≤ log r

5
+ log l.

But it is obvious that log logm > log(lr) = log l + log r, so we have a contradiction.
Consequently m < k, and the result follows. ¤

Proposition 1.2. Let G be a group. Suppose that

log sn(G) ≤ 1

5
log f0(n) for all n ≥ k,

where k ∈ N. Then there exists k′ such that for every upper normal section N of G, if
N ∼= S(r) for some sporadic simple group S then r ≤ k′.

Proof. Let µ be the maximum of |Aut(S)| as S ranges over the finitely many sporadic
groups. Our normal section N contains an elementary abelian 2-group of rank r, hence
contains at least 2[r/2]

2
subgroups. Suppose that m := (rµ)r ≥ k. Arguing as above, we

get

[
r

2
]2 < log sm(G) ≤ r2(log(rµ))2

5(log(r log(rµ)))2
.

It follows that r is bounded above by a number depending only on µ and k. ¤

Proposition 1.3. Let G be a group with subgroup growth of type strictly less than f0.
Let p be a prime. Then there exists k = k(p) such that for every upper normal section
N of G, if N ∼= S(r) where S is a simple group of Lie type L(l, pe) then rle ≤ k.

Proof. Put q = pe. Suppose that S is of classical type, with l > 8. Then S has a
section isomorphic to PSL([(l + 1)/2], q) ([KL], §4.1), hence has an elementary abelian

p-section of rank [l/4]2e. Also |Aut(S)| < q2(2l+1)2 . In all other cases, we have l ≤ 8,

|Aut(S)| < q2×120
2
, and S contains an elementary abelian p-subgroup of rank e. Let us

deal with the classical case where l > 8; the other case is similar and slightly simpler.
Put

m = rrp2(2l+1)2er.
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As above, we find that

sm(G) > p[[l/4]
2er/2]

2

≥ pl
4e2r2/10000.

Now put ε = (10000 log p)−1 and let k be so large that log sn(G) < ε log f0(n) for all
n ≥ k. Suppose that m ≥ k. Then

l4e2r2
log p

100
< log sm(G) < ε

(logm)2

(log logm)2
< ε

r2(log r + 10l2e log p)2

(log r + log log(rp2(2l+1)2e))2
.

This rearranges to

log r + log log(rp2(2l+1)2e) <
log r

10l2e log p
+ 1;

since 2(2l+1)2 ≥ 722 this implies log r+3 < (log r)/10+ 1, a contradiction. It follows
that m < k, and hence that rle < k. ¤

We conclude this section by justifying a remark in the introduction. The rm rank rk(N)
of a finite group N is the least d such that every subgroup of N can be generated by d
elements.

Proposition 1.4. Let N ∼= S(r) where S is a finite simple group.
(i) If S is a sporadic group then

rr1 ≤ rk(N) ≤ rr2

where r1, r2 are respectively the minimal, maximal ranks of sporadic simple groups.
(ii) If S = Alt(l) then

2r[l/4] ≤ rk(N) ≤ rl.

(iii) If S = L(l, pe) then

r[l/4]2e ≤ rk(N) ≤ re · n(l)2/2
where n(l) ≤ max{248, 2l2} is the degree of the natural linear representation of L(l, pe)
over Fpe.

Proof. (i) is evident. The lower bounds in (ii) and (iii) were established in the course
of proving the preceding propositions. The upper bounds follow from corresponding
bounds on the ranks of Alt(l) and GLn(Fp); see for example [P], Theorem 1.1 and the
following discussion. ¤

2. Groups of bounded complexity

Here we prove Theorem 2. For a group G, let D(G) denote the intersection of the
centralisers of all non-abelian upper chief factors of G. The following is a simple obser-
vation:

Lemma 2.1. If G/D(G) is virtually soluble then G is virtually of prosoluble type.
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Suppose now that the numbers ssp(G) are bounded as p ranges over all primes and
zero. Then the non-abelian upper chief factors of G that are not products of groups
of Lie type have bounded order; so as N ranges over these, the groups G/CG(N)
also have bounded order, hence may be considered as linear groups of bounded de-
gree. On the other hand, Lemma 4.4 of [MS1] shows that there exists m such that
Aut(S) is a linear group of degree at most m whenever S is a simple factor of Lie
type of some upper chief factor of G. If r is an upper bound for the multiplicity of
simple factors in any such chief factor N , it follows that G/CG(N) is linear of de-
gree at most r! · rm. Thus G/D(G) is a sub-Cartesian product of linear groups of
bounded degree. Hence if G is also finitely generated, then G/D(G) is a subdirect
product of finitely many linear groups over fields: this is an application of the Lemma
in [LMS], §3. Assume finally that G has subgroup growth of type strictly less than
nlog n/ log log n. Then Lubotzky’s theorem ([Lu], §5.1) implies that each linear image of G
is virtually soluble; consequently G/D(G) is virtually soluble, and Theorem 2 follows
by Lemma 2.1.

The structure of profinite groups with bounded complexity, in the above sense, is quite
straightforward. Suppose G is a profinite group such that the numbers ssp(G) are
bounded as p ranges over all primes and zero. The proof of Theorem 1.2 in [Sh2] shows
that G has closed normal subgroups R ≤ G0 such that R is prosoluble, G/G0 is finite,
and G0/R is a Cartesian product of finite simple groups of Lie type. In [SS2] this de-
scription is exploited in order to give a complete characterisation of the profinite groups
with PSG: the groupG as above has PSG if and only if (i) the prosoluble subgroup R has
finite rank and (ii) the orders of the simple factors in G0/R satisfy a certain arithmetic
condition. It would be interesting to explore the arithmetic conditions corresponding
to other types of subgroup growth in profinite groups of this kind.

3. Subgroup growth and upper rank

Theorem 3 depends on the following lemma, which is based on the proof of [MS1],
Theorem 3.9. We write λ(s) to denote the least integer ≥ log s (recall that logarithms
are to base 2).

Lemma 3.1. Let G be a finite soluble group and let p be a prime such that rp(G) ≥ 2.
Then there exists s ∈ N such that

rp(G) ≤ s(5 + λ(s)) and sn(G) > ps
2/5,

where n = ps(5+λ(s)).

Proof. Assume without loss of generality that Op′(G) = 1, and put N = Op(G). Let
M = Φi(N), where i is chosen so as to maximise d(M) = s, say; here, Φ0(N) = N and
for j ≥ 1, Φj(N) is the Frattini subgroup of Φj−1(N). It follows from [DDMS] Chapter
2, Ex. 6 that |N : M | ≤ ps(1+λ(s)), and from loc.cit. Ex. 7 that rk(N) ≤ s(2 + λ(s)).
Also G/N is isomorphic to a completely reducible subgroup of GLd(N)(Fp), so we have

|G : N | ≤ p3d(N) ≤ p3s [W]. It is easy to see that rp(G) ≥ 2 implies s ≥ 2. Now put
m = s(5 + λ(s)). The index of Φ(M) in G is at most pm, and the Fp-vector space
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M/Φ(M) contains more than ps
2/5 distinct subspaces, so we have sn(G) > ps

2/5. On
the other hand,

rp(G) ≤ rk(N) + logp |G : N | ≤ s(2 + λ(s)) + 3s = m.

¤

Proof of Theorem 3. Let G be a group with subgroup growth of type strictly less
than f0(n) = nlog n/(log log n)

2
. We show that for each prime p, there is a finite bound for

the numbers rp(G) as G ranges over the finite soluble quotients of G. If these account
for all the finite quotients of G, then of course this means that urp(G) is finite. Having
fixed p, put

c =
1

20 log p
.

According to the hypothesis, there exists n0 ∈ N such that

sn(G) ≤ nc logn/(log logn)
2

for all n ≥ n0. I claim that

rp(G) ≤ max{703, log n0}
for every finite soluble quotient G of G. To see this, let G be such a quotient, and
suppose that rp(G) ≥ 704. Let s be the integer given in Lemma 3.1 (with G in place of
G), and put m = s(5 + λ(s)). Then rp(G) ≤ m. Suppose to begin with that pm > n0.
Lemma 3.1 gives

s2

5
log p < log spm(G) ≤ c(log pm)2/(log log pm)2

≤ cm2(log p)2/(logm)2

=
m2 log p

20(logm)2
,

since p ≥ 2 and c log p = 1/20. Now 5 + λ(s) < 2 log s, since m ≥ 704 implies s ≥ 26;
so m < 2s log s, and we deduce that

s2(logm)2 <
5

20
(2s log s)2 = s2(log s)2,

a contradiction since m > s. It follows that pm ≤ n0, whence

rp(G) ≤ m ≤ logp n0 ≤ log n0

as claimed. 2

4. Residually nilpotent groups

We begin with the

Proof of Theorem 4. Let G be a finitely generated group which is virtually residually
nilpotent, having subgroup growth of type strictly less than nlog n/ log logn. We show that
G is virtually a soluble minimax group. Replacing G by a suitable subgroup of finite
index, we may assume that G is residually nilpotent. Now a theorem of Shalev [Sh1]
shows that every pro-p group with subgroup growth of type strictly less than nlog n has
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finite rank; it follows that, for each prime p, the pro-p completion Ĝp of G has finite
rank, rp say. Now suppose N is a normal subgroup of G such that G/N is torsion-free
and nilpotent, of Hirsch length h(G/N) = h. For each prime p we have

h = dim((̂G/N)p) ≤ rk((̂G/N)p) ≤ rp

(see [DDMS], Chapters 3 and 4 for a discussion of the rank and dimension of pro-p
groups). Thus r2, say, is an upper bound for h(G/N) as G/N ranges over all torsion-
free nilpotent quotients of G. We may therefore choose N so that h = h(G/N) is
maximal. For each i put

Ni = [N,G, . . . , G] (i repetitions of G).

Then N/Ni is exactly the torsion subgroup of the finitely generated nilpotent group
G/Ni, and Ni/Ni+1 is an image of Ni−1/Ni⊗ZG/G′. It follows that π(N/Ni) = π(N/N1)
for all i ≥ 1, where π(N/N1) = π, say, is a finite set of primes. Putting

s = h+max
p∈π

rp,

we see that ur(G/Ni) ≤ s for each i ≥ 1. For each i, the group G/Ni is residually
finite, and since G is residually nilpotent we have

⋂∞
i=1Ni = 1. It follows that G is

itself residually (finite nilpotent of rank ≤ s). According to [S2], this implies that G
has a nilpotent normal subgroup Q such that G/Q is a subdirect product of finitely
many linear groups. Now Lubotzky [Lu], §5.1, has proved that a finitely generated
linear group with subgroup growth of type strictly less than nlogn/ log logn must have
PSG; hence G/Q has PSG, and is therefore virtually soluble [LMS]. Thus G is virtually
soluble, and the second part of the main result of [S2] now shows that G is virtually
nilpotent-by-abelian. An application of Theorem 1.1 of [SS1] now completes the proof
(see the Introduction of [SS1]). 2

If, in Theorem 4, G is assumed to be soluble, then it is enough to suppose that the
subgroup growth is of type strictly less than nlog n : the stronger hypothesis was only
needed in connection with Lubotzky’s theorem on linear groups, and this was used only
to show that G is virtually soluble.

Proof of Theorem 5. The group G is as above, except that the hypothesis on subgroup
growth is replaced by the hypothesis that urp(G) is finite for every prime p. Since ur2(G)
is finite, we know from [LM2] that G has a subgroup of finite index that is of prosoluble
type; so without loss of generality let us assume that G is residually nilpotent and that
all finite quotients of G are soluble. Arguing as above, we see that G is residually
(finite nilpotent of rank ≤ s) for some finite s. The main result of [S2] now shows that
G is virtually nilpotent-by-abelian. Now Lemma 2.2 of [MS1] asserts that a finitely
generated nilpotent-by-abelian group of finite upper rank is a minimax group; however,
the proof only requires the finiteness of the upper p-ranks, for certain primes p, so we
may conclude that G is virtually a minimax group. 2

5. Soluble groups

There are some grounds for believing that Question 2 has a negative answer for soluble
groups; in [S3] I state this as
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Conjecture A. Let G be a finitely generated soluble group. If urp(G) is finite for every
prime p then G has finite upper rank.

(If also G is residually finite, then it follows that G is a minimax group, by Theorem A
of [MS1].) This would generalise a theorem of D. J. S. Robinson [R2], which says that
a finitely generated soluble group with finite sectional p-rank for every prime p (an S0

group) must have finite rank. As we saw in the Introduction, the truth of Conjecture
A would imply that of the Strong Gap Conjecture for soluble groups. In fact we can
do a lot better.

Proposition 5.1. Let G be a finitely generated residually finite soluble group with
subgroup growth of type strictly less than nlogn. If Conjecture A is true, then G is a
minimax group.

Proof. By Theorem A of [MS1], it suffices to show that G has finite upper rank. Arguing
by induction on the derived length of G (see below) we reduce to the case where G has
an abelian normal subgroup A such that G/A is minimax and residually finite. Suppose
that G has infinite upper rank; then Conjecture A says that urp(G) is infinite for some
prime p. On the other hand, urp(G/A) = r, say, is finite. We shall obtain a contradiction
by deriving an upper bound for urp(G). Let q be a large positive integer, and suppose
that urp(G) exceeds q+ r. Then G has a finite quotient G such that rp(G) ≥ q+ r, and
we can choose it so that Op′(G) = 1. Put N = Op(G); note that N ≥ A, the image of A,
and that rp(A) ≥ q. Now let M/A be a normal subgroup of N/A such that d(M) = s,
say, is as large as possible. Then s ≥ q and s ≥ d(N); on the other hand, rk(N/M) ≤
urp(G/A) = r. By Lemma 3.18(i) of [DDMS], M/Φ(M) is self-centralising in N/Φ(M),
and it follows (as in the proof of [loc.cit. Lemma 3.18(ii)]) that |N/M | ≤ prλ(s). Arguing

as in the proof of Lemma 1.1, we now infer that sn(G) > ps
2/5, where n = p4s+rλ(s).

Now there exists n0 such that

log sm(G) < (85 log p)−1(logm)2

for every m ≥ n0. If n ≥ n0 this gives

(s2/5) log p < (85 log p)−1 ((4s+ rλ(s)) log p)2 ,

which simplifies to

s2 < 8rsλ(s) + r2λ(s)2

and so implies that s is bounded above by some number f(r) depending only on r. It
follows that either n < n0 or s ≤ f(r); thus we get an upper bound for q, and hence
one for urp(G). ¤

I suspect that the gap in subgroup growth types of finitely generated soluble groups
is even larger than that suggested by the above. Examples are constructed in [SS1]

of such groups with subgroup growth of type 2n
1/d

, for any positive integer d; but the
following is open.

Question 4. Does there exist a finitely generated soluble group of infinite rank with
subgroup growth of type ≤ 2n

ε
for every positive ε?

In the paper [S3], Conjecture A is recast as a conjecture about modules over minimax
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groups, in the following manner. As both hypothesis and conclusion depend only on
the finite quotients of G, we may as well assume that G in the conjecture is residually
finite. Suppose now that G is a finitely generated, residually finite soluble group of
derived length ` > 1, and that urp(G) is finite for every prime p. Let A be a maximal
abelian normal subgroup of G containing the last non-trivial term of the derived series
of G. Then G/A is again residually finite, by an elementary lemma, and the derived
length of G/A is ` − 1. Thus if Conjecture A is true for groups of derived length less
than `, then G/A is a minimax group. The conjugation action of G/A on A makes A
into a module for the group ring Z(G/A) = R, say. We define

urp(AR) = sup{dimFp(A)}
where A runs over all finite R-module images of A/Ap, and

ur(AR) = sup
p

urp(AR).

It is easy to see that ur(G) ≤ ur(G/A) + ur(AR); on the other hand, if B is an R-
submodule of finite index in A then G/B is residually finite, because the class of resid-
ually finite minimax groups is closed under extensions [R1, §9.3], and this implies that
urp(AR) ≤ urp(G) for each prime p. To establish Conjecture A, then, it would suffice
to show that if urp(AR) is finite for every prime p, then urp(AR) is uniformly bounded
over all p. Thus the conjecture is reduced to a problem about modules for the group
ring of a finitely generated minimax group.

Let Γ be a minimax group, and M a ZΓ-module. I shall write urp(M) for urp(MZΓ). In
general, it is perfectly possible for the upper p-ranks urp(M) to be finite but unbounded
as p ranges over all primes: for exampleM could be the direct sum, over all p, of vector
spaces (Fp)p, with trivial Γ-action. However, this example cannot occur as AR, above;
for AR satisfies an additional finiteness condition. Let us say that the ZΓ-module M is
quasi-finitely generated if there exists a finitely generated group which is an extension
of M by Γ. We can now reformulate our conjecture, as follows.

Conjecture B. Let Γ be a finitely generated minimax group, and M a quasi-finitely
generated ZΓ-module. If urp(M) is finite for every prime p then M has finite upper
rank.

Using a considerable amount of heavy machinery, I was able to establish the following
special case.

Theorem ([S3, Theorem 3.1]). Let Γ be a minimax group which is abelian-by-polycyclic,
and let M be a finitely generated ZΓ-module. If urp(M) is finite for every prime p then
M has finite upper rank.

There is some hope that further work along similar lines may lead to a full proof of
Conjecture B, thereby confirming the strong Gap Conjecture for soluble groups.

6. Profinite constructions

The proof of Proposition 3.3 in [MS1] yields the following.
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Lemma 6.1. Let G be a finite soluble group. Then for each integer n,

sn(G) ≤ nr+2,

where r = max{rp(G) | p ≤ n}.

This may be seen as a sort of converse to Lemma 3.1: together they show that for
a group of prosoluble type, slow subgroup growth is more or less equivalent to slow
growth of the upper p-ranks as p→∞. In [MS2], Theorem 1.5, it is used to construct
prosoluble groups of arbitrarily slow non-polynomial subgroup growth. However, these
groups are metabelian, and so cannot be the profinite completions of finitely generated
abstract groups: for it is shown in [SS1] that a finitely generated metabelian group,
if its subgroup growth is not polynomial, must have subgroup growth of type at least
2n

1/d
for some positive integer d. (So the Strong Gap Conjecture is true for metabelian

groups.)

As indicated in the preceding section, I doubt that there exist soluble counterexamples
to the Gap Conjecture. As a first step towards finding counterexamples of prosoluble
type, we can use Lemma 6.1 to construct some different prosoluble groups with slow
subgroup growth, ones that at least look as if they might be the profinite completions of
finitely generated abstract groups. Let g : N→ R+ be an unbounded strictly increasing
function. We recursively construct a sequence of pairs (Mi, Gi) as follows, with each
Gi a finite soluble group and Mi a minimal normal subgroup of Gi. Begin with an
arbitrary finite soluble group G0 6= 1 and minimal normal subgroup M0 of G0. Now let
i ≥ 1 and suppose we have defined Gi−1 and Mi−1; put mi−1 = |Gi−1|, let pi be a prime
with

pi > max{mi−1, g
−1(mi−1)},

and let Mi be a simple FpiGi−1-module that is non-trivial for Mi−1. Then put Gi =
Mi oGi−1. Note that

mi = pdii mi−1

where di = dimFpi Mi.

Proposition 6.1. Let G be the inverse limit of the sequence (Gi), with the obvious
maps.

(i) d(G) = max{2, d(G0)};
(ii) let p be a prime. Then

urp(G) =





rp(G0) if p | m0

di ≤ g(pi) if p = pi for i ≥ 1;
0 otherwise

(iii) for each positive integer n,

sn(G) ≤ nc+g(n)

where c = 2 + rk(G0);

(iv) urp(G) is unbounded as p ranges over all primes;

(v) G does not have polynomial subgroup growth.
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Proof. (i) Let i ≥ 1 and suppose that x1, . . . , xk generate Gi−1, where k ≥ 2. I claim
that then Gi is generated by a set of the form {a1x1, . . . , akxk} with a1, . . . , ak ∈Mi. In-
deed, if each such set generates a proper subgroup, then that subgroup is a complement
to Mi in Gi; but the number of such complements is just |Mi|, by the Schur-Zassenhaus
theorem, whereas the number of distinct k-tuples of the given form is |Mi|k, and each
k-tuple gives rise to a distinct complement. This is a contradiction since k ≥ 2. It
follows by induction that d(Gi) = max{2, d(G0)} for each i ≥ 1, and (i) follows.

(ii) Here by urp(G) I mean the maximal p-rank of any quotient of G by an open normal
subgroup, which is the same as the maximal p-rank of the groups Gi. So all the state-
ments are obvious except for the claim that di ≤ g(pi). However, since g is monotonic
this follows from

pi > g−1(mi−1) ≥ g−1(di),

where the second inequality holds because Mi is a 1-generator FpiGi−1-module.

(iii) This follows from (ii) by Lemma 6.1.

(iv) It suffices to show that di is unbounded. Suppose we had di ≤ d < ∞ for all i.
Then according to Mal’cev’s theorem on soluble linear groups there exists a natural
number q such that for each i ≥ 1, the group (Gq

i−1)
′ acts unipotently on the module

Mi. Now choose i large enough to ensure that pi−2 and pi−1 do not divide q. Then
Mi−2Mi−1 ≤ Gq

i−1, soMi−1 = [Mi−1,Mi−2] ≤ (Gq
i−1)

′; butMi−1 does not act unipotently
on Mi since the orders are coprime and the action is non-trivial.

(v) now follows from (iv) and [MS1], Theorem 3.9. ¤

Question 5. Is there a prosoluble group G of the above form having a dense finitely

generated subgroup Γ such that Γ̂ ∼= G, or at least such that the kernel of the natural

epimorphism Γ̂→ G is a profinite group of finite rank?

If the answer is ‘yes’, then we get a positive answer to Question 2; and by choosing the
function g to grow arbitarily slowly we obtain counterexamples to the gap conjecture.
Groups like G occur as automorphism groups of spherically homogeneous rooted trees,
as described in [G]; this may be a good setting in which to seek suitable candidates for
Γ.

Next we consider profinite groups of ‘semisimple’ type. As an analogue to Lemma 6.1
we have the following.

Lemma 6.2. Let q = pe where p is a prime, and let d ≥ 2. Let G be a subgroup of
GLd(q), of even order g. Then

sg(G) ≤ g4ed
2(3+2 log d)+1 < q12ed

5

.

Proof. This follows from the first (easier) part of the proof of Lemma 5.1 in [SS2],
together with Corollary 3.12 of [MW], which implies that the Fitting length of any
soluble subgroup of G is at most 3 + 2 log d. ¤

Now let (qi = peii ) be a sequence of prime powers and let (di) be a sequence of integers
≥ 2; assume that at least one of these sequences is strictly increasing, and that (qi, di) /∈
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{(2, 2), (2, 3)} for all i. Put Ti = PSLdi(qi) for each i, and for any subset J of N let

G(J) =
∏

j∈J
Tj;

this is a 2-generator profinite group. Define the function η : N → N by setting η(n)

equal to the largest index j such that (q
dj
j − 1)/(qj − 1) ≤ n if such exists, η(n) = 1

otherwise, and write
h(n) = 1 + 24eη(n)d

5
η(n).

Proposition 6.2. Let f : N → R+ be a strictly increasing unbounded function. Then
there exists an infinite subset J of N such that the group G(J) satisfies

sn(G(J)) ≤ nf(n)+h(n) for all large n.

Proof. Note first that if j > η(n) then Tj has no proper subgroup of index ≤ n ([KL],
Theorem 5.2.2). It follows that sn(G) = sn(T1×· · ·×Tη(n)). The result now follows from
Lemma 5.2 of [LPS], together with Lemma 6.2 above and the fact that qη(n) < n. ¤

This construction is used in [LPS] to produce a group with subgroup growth type
exactly nlog n. In that case the sequence (qi) is taken to be constant, and the result
depends on Theorem 1.4 of [LPS], which asserts that an(T ) ≤ nc logn for all n and every
finite simple group T (c being an absolute constant); this lies considerably deeper than
our Lemma 6.2, but is of no help if we want to construct groups with subgroup growth
of type strictly less than nlogn. On the other hand, Proposition 4.2 of [LPS] shows that
if qi = q is constant, then the profinite group G(J) contains a dense finitely generated

subgroup Γ such that Γ̂ ∼= Ẑ×G(J), and then Γ has subgroup growth of the same type
as that of G(J). If the qi are increasing as well as the di such a subgroup Γ may be hard
to find in G(J); I give below another construction, analogous to that of Proposition
6.1, that is more amenable.

Given a strictly, but very slowly, increasing unbounded function f : N→ R+, let us call
the sequence of pairs (qi, di) suitable if (i) the corresponding function h defined above
satisfies h = O(f), and (ii) at least one of the sequences (ei), (di) tends to∞. Theorem
4.1 of [MS1] shows that if (ii) holds then for any infinite subset J of N, the profinite
group G(J) does not have polynomial subgroup growth. With Proposition 6.2 this now
gives

Corollary 6.1. If the sequence (qi, di) is suitable, then the group G(J) has subgroup
growth of type ≤ nf , but does not have PSG.

There is no difficulty in constructing suitable sequences. We may for example choose
the sequences (ei) and (di) at will, subject to condition (ii), then for each i choose pi
so large that

f(peii ) ≥ eid
5
i .

Any such choice then gives rise, according to Corollary 6.1, to a semisimple profinite
counterexample to the Gap Conjecture.

Question 6. Given a function f as above, is there a suitable sequence (qi, di) such that
the corresponding profinite group G(J) provided by Proposition 6.2 contains a dense
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finitely generated subgroup Γ such that Γ̂ ∼= ∆×G(J) where ∆ is a profinite group of
finite rank?

For the second construction, we suppose that each of the simple groups Ti = PSLdi(qi)
comes with a faithful permutation representation of degree li, and for each k let Wk be
the permutational wreath product

Wk = Tk o Tk−1 o · · · o T1.
Let W be the inverse limit of the groups Wk as k →∞, relative to the natural epimor-
phisms

Wk+1 = Tk+1 oWk → Wk.

Now put mk = l1 . . . lk−1, and define the function h∗ by

h∗(n) = 12ekd
5
km

5
k where k = η(n).

Lemma 6.3. Let n be a large natural number and put k = η(n). Then

sn(W ) ≤ q
h∗(n)
k .

Proof. As above, we see that sn(Wj) = sn(Wk) whenever j ≥ k. Now Wk is a quotient
of SLdk(qk) oWk−1, which sits naturally inside GLdkmk

(qk). The result therefore follows
from Lemma 6.2. ¤

Now suppose we are given a function f : N → R+ as above. Fix integers d ≥ 2 and
e ≥ 1, and let (pi) be a strictly increasing sequence of odd primes such that for each
k > 1,

f(pek) > 12ed5m5
k,

where mk = l1 . . . lk−1 and li = (pedi − 1)/(pei − 1) for each i. Then Ti = PSL(d, pei ) has a
natural doubly transitive permutation representation on the points of the corresponding
projective space over Fpei , which has li points. Form W as above. I claim that sn(W ) <

nf(n) for all n ≥ l1; indeed, taking k = η(n) we have qk = pek < lk ≤ n and h∗(n) =
12ed5m5

k < f(pek) < f(n), so the claim follows from Lemma 6.3.

On the other hand, W does not have PSG: for Wk contains an elementary abelian

pk-subgroup of rank mke, hence contains at least p
em2k/5

k subgroups, of index less than

|Wk| <
k∏

i=1

ped
2mi

i < ped
2kmk

k ;

so if sn(W ) ≤ nα for all n then em2
k/5 ≤ ed2kmkα, which is false for large k since

mk ≥ pk−11 . We have established the following.

Proposition 6.3. Let f : N → R+ be a strictly increasing unbounded function. Let
d ≥ 2 and e ≥ 1. Then provided the sequence of primes (pn) grows sufficiently fast, the
profinite group

W = lim←−
n→∞

(
PSL(d, pen) o PSL(d, pen−1) o · · · o PSL(d, pe1)

)

has subgroup growth of type ≤ nf , but does not have PSG.
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The analogue of Question 6 for groups of this nature is answered in the final section.

7. Branch groups with the congruence subgroup property

For each i ≥ 1 let Ti be a primitive permutation group of degree li ≥ 4. For each k let
Wk be the permutational wreath product

Wk = Tk o Tk−1 o · · · o T1,
and let W be the inverse limit of the groups Wk as k → ∞, relative to the natural
epimorphisms

Wk+1 = Tk+1 oWk → Wk.

Thus W is a profinite group, and a base for the neighbourhoods of 1 in W is provided
by the subgroups

Kk = ker(W → Wk).

A dense subgroup G of W is said to have the congruence subgroup property if every
subgroup of finite index in G contains G ∩ Kk for some k. In this case, every finite

quotient of G is an image of some Wk and Ĝ ∼= W. In particular, it follows that
sn(G) = sn(W ) for all n.

Theorem 7.1 ([S4]). Suppose that there exists an r-generator perfect group that has
each of the groups Tn as a homomorphic image, and that each Tn is simple. Then
W contains a dense (r + 2)-generator subgroup G that has the congruence subgroup
property.

The profinite group W acts in a natural way on the spherically homogeneous rooted
tree T of type (l1, l2, . . .). In his article [G], Grigorchuk describes the construction of
certain finitely generated subgroups of Aut(T ) that he calls branch groups ; I refer to
that article for the definitions of rooted automorphism and directed automorphism, and
the requisite notation. The group G in Theorem 7.1 is generated by the two rooted
automorphisms corresponding to the permutations α, β, where T1 = 〈α, β〉 , together
with r directed automorphisms b(1), . . . , b(r) of the form

b(i) = (α(i)2, 1, . . . , 1, b(i)2),

where for each n

b(i)n = (α(i)n+1, 1, . . . , 1, b(i)n+1),

and {α(1)n, . . . , α(r)n} is a generating set for Tn that is the image of a generating set
for the given perfect group. For details of the proof, see [S4]. Now consider the groups

Tn = PSL(3, pn),

where (pn) is any sequence of primes. Each of these is generated by the images of the
six elementary matrices eij (i 6= j ∈ {1, 2, 3}), which satisfy the relations

[eij, ejk] = eik.

Hence each Tn is an image of the 4-generator perfect group

〈Xij, i 6= j ∈ {1, 2, 3}; [Xij, Xjk] = Xik〉 .
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The hypotheses of Theorem 7.1 are therefore satisfied with r = 4; and if the sequence
(pn) is chosen to grow fast enough then so are the hypotheses of Proposition 6.3. It fol-
lows that the 6-generator group G can be made to have arbitrarily slow non-polynomial
subgroup growth. This shows that the Gap Conjecture is false.
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[KL] P. Kleidman and M. Liebeck, The subgroup structure of finite classical groups, LMS Lecture
Notes vol. 129, Cambridge University Press, 1990.
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Pseudo-Finite Generalized Triangle Groups

by

E. B. Vinberg and R. Kaplinsky

A generalized triangle group (g.t.g.) is a group Γ with a fixed presentation of the form

Γ =
〈
x, y |xk = yl = W (x, y)m = 1

〉
, (1)

where k, l,m ≥ 2 and
W (x, y) = xk1yl1xk2yl2 . . . xksyls (2)

with 0 < ki < k, 0 < li < l, and s ≥ 1. It is also required that the word W should
not be a power of a shorter word. G.t.g. were introduced in [FR] and [BMS]. They
have been intensively studied by many authors (see [HMT] and references there). In
particular, all finite g.t.g. were found in [HMT] and [LRS].

One of the main tools for studying g.t.g. is constructing their essential homomorphisms
to PSL2(C). A homomorphism ϕ : Γ→ G is called essential, if

ord ϕ(x) = k, ord ϕ(y) = l, ord ϕ(W (x, y)) = m.

It was proved in [BMS] and [FHR] that any g.t.g. admits an essential homomorphism
to PSL2(C). Most of g.t.g. admit an essential homomorphism to PSL2(C) with an
infinite image. This is a key step in the classification of finite g.t.g. There are, however,
infinite g.t.g. that do not admit such a homomorphism. Let us call a g.t.g. Γ pseudo-
finite if the image of any essential homomorphisms ϕ : Γ → PSL2(C) is finite. In this
work we present some partial results on the classification of pseudo-finite g.t.g. This
problem was originally motivated by the classification problem for finite groups defined
by periodic paired relations (see the definition in [V1]). It seems, however, that it is
interesting in its own right. Our results cover the following cases:

1) m ≥ 3 (see Propositions 4 and 5);

2) s ≤ 3 (see Propositions 4 and 7 - 10).

The work was completed during our stay at Bielefeld University in August of 1999. We
thank this university for its hospitality. The work of the first author was supported by
the Humboldt Foundation and by RFBR Grant 98-01-00598.

1. Preliminaries

A pair of matrices X,Y ∈ SL2(C) is called irreducible, if they do not have a common
eigenvector; or, equivalently, if they generate an irreducible linear group. The following
facts can be found, e.g., in [VMH, Appendix] and [V2]. An irreducible pair (X,Y ) is
defined up to conjugacy by the numbers trX, trY, trXY . Moreover, for any complex
numbers a, b, c there are matrices X,Y ∈ SL2(C) such that trX = a, trY = b, trXY =
c. A pair (X,Y ) is irreducible if and only if the matrix

(
2 trX trY

trX 2 trXY
trY trXY 2

)
(3)

463
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is non-degenerate. An irreducible pair is conjugate to a pair of matrices of SU2 if and
only if trX, trY, trXY ∈ R and the (symmetric) matrix (3) is positive definite. The
latter means that

trX = 2 cosα, trY = 2 cos β (α, β ∈ (0, π)),

trXY ∈ (2 cos(α + β), 2 cos(α− β)). (4)

The boundary cases trXY = 2 cos(α±β) are realized for the pairs of diagonal matrices

X =

(
eiα 0
0 e−iα

)
, Y =

(
e±iβ 0
0 e∓iβ

)
, (5)

but also for the pairs of non-commuting matrices

X =

(
eiα 0
0 e−iα

)
, Ỹ =

(
e±iβ 1
0 e∓iβ

)
. (6)

In particular, if X, Y generate an irreducible finite subgroup of SL2(C), the conditions
(4) hold. Since

trX−1 = trX, trY −1 = trY, trX−1Y −1 = trY X = trXY,

any irreducible pair (X,Y ) is conjugate to the pair (X−1, Y −1).

For any matrix X ∈ SL2(C) we shall denote by [X] the corresponding element {±X}
of PSL2(C) = SL2(C)/ {±E}. The element [X] has order n ≥ 2 if and only if the

eigenvalues of X have the form e±
πiu
n with (u, n) = 1 or, equivalently, if

trX = 2 cos
πu

n
.

A pair of elements [X], [Y ] ∈ PSL2(C) is called irreducible, if the pair (X,Y ) is irre-
ducible in the above sense. An irreducible pair ([X], [Y ]) is still defined up to conju-
gacy by the numbers trX, trY, trXY , but these numbers are defined by the elements
[X], [Y ] only up to multiplying any two of them by −1. This can be applied to con-
structing essential homomorphisms ϕ : Γ→ PSL2(C), where Γ is the g.t.g. defined by
(1). Set

ϕ(x) = [X], ϕ(y) = [Y ] (X,Y ∈ SL2(C)). (7)

We are to choose X and Y satisfying the conditions

trX = 2 cos
πu

k
, trY = 2 cos

πv

l
, (8)

trW (X,Y ) = 2 cos
πw

m
, (9)

where u is prime to k, v is prime to l, and w is prime to m. Since multiplying X (resp.
Y ) by −1 leads to replacing u (resp. v) with k − u (resp. l − v), we may assume that

0 < u ≤ k

2
, 0 < v ≤ l

2
. (10)

For any matrix Z ∈ SL2(C), the Hamilton - Cayley equation gives

Z2 = (trZ)Z − E.
It follows that

Zn = Pn (trZ)Z − Pn−1 (trZ)E,
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where P1(z), P2(z), . . . are the polynomials defined by

P1(z) = 1, P2(z) = z, Pn+1(z) = z Pn(z)− Pn−1(z).
(These are the Chebyshev polynomials of second kind up to a linear substitution.) Mak-
ing use of this formula, one can express trW (X,Y ) as a polynomial in trX, trY, trXY
(with integral coefficients). Substituting the values of trX and trY from (8) and
trXY = t, we obtain a polynomial f of degree s in t [BMS]. For any (complex) root
λ of the algebraic equation

f(t) = 2 cos
πw

m
(11)

there exists an essential homomorphism ϕ : Γ→ PSL2(C) satisfying (8) and (9) such
that trXY = λ. Moreover, if λ 6= 2 cos(πu

k
± πv

l
) , the pair (X,Y ) is irreducible, so

this homomorphism is uniquely defined up to conjugacy. If λ = 2 cos( πu
k
± πv

l
), there is

an essential homomorphism of Γ to a cyclic group of diagonal matrices. This situation
will be investigated in the following section. Another way to find the polynomial f is
as follows. Set

X =

(
eiα 1
0 e−iα

)
, Y =

(
eiβ 0
τ e−iβ

)
.

with α = πu
k
, β = πv

l
. Then

trX = 2 cosα, trY = 2 cos β, trXY = τ + 2 cos(α + β).

Making use of the formulas

Xp =

(
eipα sin pα

sinα
0 e−ipα

)
, Y q =

(
eiqβ 0

sin qβ
sinβ

τ e−iqβ

)
,

one can express trW (X,Y ) as a polynomial in τ . Substituting

τ = t− 2 cos(α + β)

we obtain the polynomial f(t). Sometimes we shall extend the notation [X] to any
X ∈ GL2(C). More precisely, for any X ∈ GL2(C) we shall denote by [X] the set
{λX : λ ∈ C∗} as an element of the group PGL2(C) = PSL2(C).

2. G.t.g. admitting an essential homomorphism to a cyclic group

Any finite subgroup of PSL2(C) is one of the following groups:

Cn, the cyclic group of order n;
Dn, the dihedral group of order 2n;
T , the tetrahedral group of order 12;
O, the octahedral group of order 24;
I, the icosahedral group of order 60.

In this section, we consider g.t.g. admitting an essential homomorphism to Cn. Let Γ
be the g.t.g. defined by (1).

Proposition 1 ([BMS]). If there exists an essential homomorphism ϕ : Γ→ Cn, then
there exists an essential homomorphism ϕ̃ : Γ→ PSL2(C) with an infinite image.
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Proof. One can interpret ϕ as a homomorphism of Γ to PSL2(C), taking x to [X]
and y to [Y ] , where

X =

(
eiα 0
0 e−iα

)
, Y =

(
eiβ 0
0 e−iβ

)

with some α, β ∈ (0, π). Replacing Y with

Ỹ =

(
eiβ 1
0 e−iβ

)
,

we obtain the required homomorphism. ¤

Let us find a criterion for Γ to admit an essential homomorphism to a cyclic group. For
any prime p and non-zero integer n, set

νp(n) = max{α ∈ Z+ : pα |n }.
Let n1, n2, n3 be three divisors of n.

Lemma 1. The congruence

n1 u1 + n2 u2 + n3 u3 ≡ 0 (mod n) (12)

has a solution with u1, u2, u3 prime to n if and only if the following conditions are
satisfied:

(B1′) for any odd prime p, at least two of the numbers νp(n1), νp(n2), νp(n3) are minimal
among them;

(B2′) exactly two of the numbers ν2(n1), ν2(n2), ν2(n3) are minimal among them, unless
they all equal to ν2(n).

Proof. Decomposing n into primes, we reduce to the case when n is a power of a prime
p. Then, cancelling the congruence (12) by a power of p, we reduce to the case, when

min{ νp(n1), νp(n2), νp(n3) } = 0,

i.e., one of the numbers n1, n2, n3 equals 1. If exactly one of these numbers equals 1 (and
two others are non-trivial powers of p), then the congruence (12) has no solutions with
u1, u2, u3 prime to p. If at least two of them equal 1, one can easily find a solution of (4)
with u1, u2, u3 prime to p, except for the case, when p = 2, n1 = n2 = n3 = 1, n > 1.
This proves the lemma. ¤

Let us call a triple of non-zero integers {n1, n2, n3} balanced, if it satisfies the following
conditions:

(B1) for any odd prime p, at least two of the numbers νp(n1), νp(n2), νp(n3) are maximal
among them;

(B2) exactly two of the numbers ν2(n1), ν2(n2), ν2(n3) are maximal among them, unless
they all equal 0.
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Set
K = k1 + · · ·+ ks, L = l1 + · · ·+ ls. (13)

Proposition 2. The group Γ admits an essential homomorphism to a cyclic group if
and only if the triple

{ k

(k,K)
,

l

(l, L)
, m
}

is balanced.

Proof. If ϕ : Γ → Cn is an essential homomorphism, then ϕ(Γ) = 〈ϕ(x), ϕ(y)〉 is a
cyclic group, whose order is the least common multiple [k, l] of k and l. This shows
that we may assume n to be any common multiple of k and l. Let us try to construct
an essential homomorphism ϕ : Γ → Zn := Z/nZ, where n is a common multiple
of k, l,m. We shall denote a coset r + nZ by [r]n. Ifϕ(x) = a and ϕ(y) = b, then
ϕ(W (x, y)) = Ka+ Lb. When a runs over all elements of order k of Zn, Ka runs over

all elements of order k
(k,K)

, i.e., the elements of the form [n(k,K)
k

u]n, where u is prime to

n. In an analogous way, when b runs over all the elements of order l, Lb runs over all

the elements of the form [n(l,L)
l
v]n, where v is prime to n. The order of an element of

Zn equals m if and only if it has the form [ n
m
w]n, where w is prime to n. Thus, the

group Γ admits an essential homomorphism to Zn if and only if the congruence

n (k,K)

k
u+

n (l, L)

l
v ≡ n

m
w (mod n)

has a solution with u, v, w prime to n. According to Lemma 1, this takes place if and
only if the triple

{n(k,K)

k
,
n(l, L)

l
,
n

m

}

satisfies the conditions (B1′) and (B2′) or, equivalently, if the triple

{ k

(k,K)
,

l

(l, L)
, m
}

satisfies the conditions (B1) and (B2). ¤

3. Generating pairs of irreducible finite subgroups of PSL2(C)

Let Γ be the g.t.g. defined by (1) and ϕ : Γ → PSL2(C) an essential homomor-
phism, whose image is an irreducible finite group F ⊂ PSL2(C), i.e., one of the groups
Dn, T, O, I. Then

ordϕ(x) = k, ordϕ(y) = l,

and ϕ(x), ϕ(y) generate F . It is not difficult to enumerate all generating pairs of each
group F of the above list up to conjugacy in PSL2(C) or, equivalently, in the normalizer
N(F ) of F in PSL2(C). Note that

N(Dn) = D2n, N(T ) = N(O) = O, N(I) = I.

In order to simplify the task, let us for any generating pair ([X], [Y ]) of a subgroup
F ⊂ PSL2(C) consider the element [Z] ∈ F , where Z ∈ SL2(C, satisfying the condition

XY Z = 1. (14)
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Then ([X], [Y ]) and ([Z], [X]) will also be generating pairs of F . So any generating triple
([X], [Y ], [Z]) of F satisfying the condition (14), gives rise to 3 generating pairs. (Of
course, some of them may be conjugate.) Note that the pair ([Y ], [X]) is conjugate to
the pair ([Y ]−1, [X]−1), which is obtained from the ”inverse” triple ([Z]−1, [Y ]−1, [X]−1)
still satisfying the condition (14). Thus, the problem reduces to a classification of
generating triples of irreducible subgroups F ⊂ PSL2C), satisfying the condition (14),
up to conjugacy, cyclic permutations, and inversion. Below is a table of all such triples.
We use the following presentation for Dn:

Dn =
〈
a, b | an = b2 = (ab)2 = 1

〉
,

and we identify the groups T,O, I with A4, S4, A5, respectively, via well-known isomor-
phisms. Note that

2 cos
π

5
=

1 +
√
5

2
, 2 cos

2π

5
=
−1 +

√
5

2
.

In the column ”Type” we provide a notation for each type of triples which includes
the notation of the corresponding group F . In the column ”Orders” the orders of
[X], [Y ], [Z] are indicated. For F = Dn, the number u is prime to n, and one may
assume that 0 < u 6 n

2
.

Table 1.

Type [X] [Y ] [Z] Orders trX trY trZ

Dn(u) au b aub n, 2, 2 2 cos πun 0 0

T (1) (123) (234) (12)(34) 3, 3, 2 1 1 0

T (2) (123) (243) (142) 3, 3, 3 1 1 1

O(1) (1234) (132) (14) 4, 3, 2
√
2 1 0

O(2) (1234) (1243) (123) 4, 4, 3
√
2

√
2 0

I(1) (12345) (142) (15)(34) 5, 3, 2 1+
√
5

2 1 0

I(2) (12354) (152) (14)(35) 5, 3, 2 1−
√
5

2 1 0

I(3) (12345) (132) (154) 5, 3, 3 1+
√
5

2 1 1

I(4) (12354) (132) (145) 5, 3, 3 1−
√
5

2 1 1

I(5) (12345) (12354) (13)(24) 5, 5, 2 1+
√
5

2
1−
√
5

2 0

I(6) (12345) (14352) (135) 5, 5, 3 1+
√
5

2
1+
√
5

2 1

I(7) (12354) (15342) (134) 5, 5, 3 1−
√
5

2
1−
√
5

2 1

I(8) (12345) (14532) (145) 5, 5, 3 1+
√
5

2
1−
√
5

2 -1

I(9) (12345) (12534) (12453) 5, 5, 5 1+
√
5

2
1+
√
5

2
1+
√
5

2

I(10) (12354) (12435) (12543) 5, 5, 5 1−
√
5

2
1−
√
5

2
1−
√
5

2
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It is clear from the very beginning, and it is seen from the table, that the set of all
unordered triples {trX, trY, trZ} considered up to multiplying by −1 of any two mem-
bers, is invariant under the Galois group (of a sufficiently large algebraic number field
including all the involved numbers).

For any generating pair ([X], [Y ]) of a finite subgroup F ⊂ PSL2(C) and for any
d|ord[X], e|ord[Y ] it is important to know the subgroup generated by [X]d and [Y ]e,
and the type of the corresponding triple ([X]d, [Y ]e, [Y ]−e[X]−d). There are only a few
non-trivial cases, which are presented in the following table.

Table 2.

Type of the Generators Their Type of the
original triple of the subgroup orders obtained triple

Dn(u) [X]d, [Y ] n
d , 2 Dn/d(u)

O(1) [X]2, [Y ] 2, 3 T (1)

O(1) [X]2, [Z] 2, 2 D4(1)

O(2) [X]2, [Y ] 2, 4 D4(1)

O(2) [X]2, [Z] 2, 3 T (1)

O(2) [X]2, [Y ]2 2, 2 D2(1)

4. Admissible transformations.
Imprimitive pseudo-finite g.t.g.

Some obvious transformations of the data defining a g.t.g. Γ lead to isomorphic g.t.g.
which are, in particular, pseudo-finite if and only if Γ is pseudo-finite. First, one can
multiply modulo k the exponents k1, . . . , ks by a factor prime to k and, in a similar
way, multiply modulo l the exponents l1, . . . , ls by a factor prime to l. These transfor-
mations can be interpreted as changes of the generators of the cyclic groups 〈x〉 and
〈y〉. Second, one can cyclically shift the sequence (k1, l1, . . . , ks, ls) by an even num-
ber. This replaces the relation W (x, y)m = 1 with an equivalent one. Third, one can
interchange k and l and simultaneously shift the sequence (k1, l1, . . . , ks, ls) by an odd
number. This can be interpreted as interchanging x and y. Fourth, one can replace the
sequence (k1, l1, . . . , ks, ls) with (ks, ls−1, ks−1, . . . , l1, k1, ls). This replaces the relation
W (x, y)m = 1 with (W (x−1, y−1)−1)m = 1, which can be interpreted as replacing the
relation (W (x, y))m = 1 with the equivalent relation (W (x, y)−1)m = 1, combined with
changing the generators x and y for x−1 and y−1. Transformations of these four types
and their combinations are called admissible. G.t.g. obtained from each other by ad-
missible transformations are called equivalent. It is reasonable to classify pseudo-finite
g.t.g. up to equivalence.

A g.t.g. is called primitive if

(k1, . . . , ks, k) = 1, (l1, . . . , ls, l) = 1.
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In the general case, set

(k1, . . . , ks, k) = d, (l1, . . . , ls, l) = e,

and consider the primitive g.t.g.

Γ̄ =
〈
x̄, ȳ | x̄ k̄ = ȳ l̄ = W (x̄, ȳ)m = 1

〉
,

where k̄ = k/d, l̄ = l/e, and W (x̄, ȳ) = x̄k̄1 ȳ l̄1 . . . x̄k̄s ȳ l̄s with k̄i = ki/d, l̄i = li/e. There
is a natural homomorphism π : Γ̄ → Γ, taking x̄ to xd and ȳ to ye. If ϕ : Γ → G is
an essential homomorphism, then ϕ̄ = ϕπ : Γ̄→ G is also an essential homomorphism,
and ϕ̄(Γ̄) = 〈ϕ(x)d, ϕ(y)e〉 ⊂ ϕ(Γ). Conversely, let ϕ̄ : Γ̄ → PSL2(C) be an essential
homomorphism. Let [X] be any d-th root of ϕ̄(x̄) and [Y ] any e-th root of ϕ̄(ȳ).
Then there is a homomorphism ϕ : Γ → PSL2(C), taking x to [X] and y to [Y ].
Obviously, ϕ is essential and ϕ̄ = ϕπ. It follows that if Γ is pseudo-finite, then Γ̄
is also pseudo-finite. Let us call a g.t.g. Γ pseudo-dihedral (resp. pseudo-tetrahedral)
if the image of any essential homomorphism ϕ : Γ → PSL2(C) is a dihedral (resp.
tetrahedral) group.

Proposition 3. . Imprimitive pseudo-finite g.t.g. are (up to equivalence) exactly the
groups of the following six types.

(I1) Γ = 〈x, y | xk = y2 = (xk1y . . . xksy)2 = 1〉,
where d > 1 and the group Γ̄ is pseudo-dihedral;

(I2) Γ = 〈x, y | x4 = y4 = (xk 1 y2 . . . xksy2)2 = 1〉,
where not all of the exponents k1, . . . , ks are even and the group Γ̄ is pseudo-
dihedral;

(I3) Γ = 〈x, y | x4 = y4 = (x2y2)2 = 1〉;
(I4) Γ = 〈x, y | x3 = y4 = (xk1y2 . . . xksy2)3 = 1〉,

where the group Γ̄ is pseudo-tetrahedral;

(I5) Γ = 〈x, y | x3 = y4 = (xk1 y2 . . . xksy2)2 = 1〉,
where the group Γ̄ is pseudo-tetrahedral;

(I6) Γ = 〈x, y | x2 = y4 = (xy2)2 = 1〉.

Proof. If an imprimitive g.t.g. Γ is pseudo-finite, then for any essential homomorphism
ϕ̄ : Γ̄ → PSL2(C) not only the group ϕ̄(Γ̄) = 〈ϕ̄(x̄), ϕ̄(ȳ)〉 is finite, but the group,
generated by a d-th root of ϕ̄(x̄) and an e-th root of ϕ̄(ȳ), is still finite. All such
possibilities are enumerated in Table 2. Consider them case-by-case. We shall use the
notation (7) and set X̄ = Xd, Ȳ = Y e. If d > 2 or k > 4, then l = 2, i.e.,

Γ = 〈x, y | xk = y2 = (xk1y . . . xksy)m = 1〉,
and trX̄Ȳ = 0 for any ϕ̄. But ifm > 2, there are at least two possibilities for trW (X̄, Ȳ )
and, thereby, at least two possibilities for the equation (11) for Γ̄, which differ only by
a constant term. At least one of these polynomials does not vanish at 0. Hence, m = 2,
and we arrive at case (I1). The cases, when e > 2 or l > 4, are obtained by interchanging
x and y. In all the other cases d, e ≤ 2 and k, l ≤ 4. By symmetry, we may (and shall)
assume that e = 2 and l = 4. Under these conditions, if k = 4 and d = 1, then again
trX̄Ȳ = 0 for any ϕ̄. Reasoning as above, we can conclude that m = 2, which gives the
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case (I2). If k = 4 and d = 2, we obtain the case (I3). If k = 3, then d = 1 and ϕ̄(Γ̄)
must be a tetrahedral group. It follows that m ≤ 3, so we obtain the case (I4) or (I5).
Finally, if k = 2, we obtain the case (I6). ¤

Note that any imprimitive g.t.g. is infinite as a non-trivial amalgamated product. Now
we are able to describe all pseudo-finite g.t.g. with s = 1.

Proposition 4. . All the pseudo-finite g.t.g. with s = 1 are, up to equivalence, the
usual triangle groups

〈x, y | xk = yl = (x y)m = 1〉
with 1

k
+ 1

l
+ 1

m
> 1, and the following imprimitive g.t.g.:

1) 〈x, y | xk = y2 = (xdy)2 = 1〉, (d | k, d > 1),

2) 〈x, y | x4 = y4 = (xy2)2 = 1〉,
3) 〈x, y | x4 = y4 = (x2y2)2 = 1〉,
4) 〈x, y | x3 = y4 = (xy2)3 = 1〉,
5) 〈x, y | x2 = y4 = (xy2)2 = 1〉.

.

Proof. Changing the generators of the cyclic groups 〈x〉 and 〈y〉, we may assume that

k1 = d | k, l1 = e | l.
If Γ is primitive, i.e., d = e = 1, then Γ is a usual triangle group and, as it well-known,
it is embedded into PSL2(C). Therefore, it is pseudo-finite if and only if it is finite,
which takes place if and only if 1

k
+ 1

l
+ 1

m
> 1. If Γ is imprimitive, it belongs to one of

the types (I1) – (I6) of Proposition 3. The type (I5) is not realized, because the group
Γ̄ in this case is the dihedral group D3. The other types constitute the above list. ¤

5. Case m ≥ 3

Constructing an essential homomorphism of a g.t.g. Γ to PSL2(C) , we can vary the
parameters u, v, w in (8) and (9). Let us fix u, v, and vary w. We shall obtain ϕ(m)
different algebraic equations of the form (11) with one and the same polynomial f of
degree s in the left hand side. Obviously, they do not have common roots. Let N be
the total number of their different roots. Then the total number of their roots with
multiplicities, which is surely equal to sϕ(m), does not exceed N plus the number of
roots (with multiplicities) of f ′, whence

s(ϕ(m)− 1) ≤ N − 1. (15)

On the other hand, assuming the group Γ to be pseudo-finite, one can extract from
Table 1 all possible values of trXY for any fixed values of trX and trY . They are
presented in the following table. It contains all possible values of trX and trY up to
interchanging them, multiplying by −1, and acting by the Galois group.



472 E. B. Vinberg and R. Kaplinsky

Table 3.

k l trX trY trXY

≥ 6 2 2 cos πk 0 0

5 5 1+
√
5

2
1+
√
5

2 1, 1+
√
5

2

5 5 1+
√
5

2
−1+

√
5

2 0, 1

5 3 1+
√
5

2 1 0, 1, 1+
√
5

2 , −1+
√
5

2

5 2 1+
√
5

2 0 0, ± 1, ± 1−
√
5

2

4 4
√
2

√
2 1

4 3
√
2 1 0,

√
2

4 2
√
2 0 0, ± 1

3 3 1 1 0, 1, 1+
√
5

2 , 1−
√
5

2

3 2 1 0 0, ± 1, ±
√
2, ± 1+

√
5

2 , ± 1−
√
5

2

2 2 0 0 2 cos πum , (u,m) = 1

In the last case
Γ = 〈 x, y | x2 = y2 = (x y)m = 1 〉,

so s = 1 and Γ is a dihedral group. In all the other cases N ≤ 9 and for m ≥ 3 the
inequality (15) gives an upper bound for s. This bound can be slightly improved with
help of the following.

Lemma 2. ([HMT], the proof of Theorem 6.4). If a g.t.g. Γ admits essential homo-
morphisms onto D3 and T, it admits an essential homomorphism onto C6 and, hence,
is not pseudo-finite.

Proof. Let ϕ : Γ → D3 and ψ : Γ → T be essential homomorphisms. Then the
homomorphism

Γ→ (D3/C3)× (T/D2) ' C6,

γ 7→ (ϕ(γ)C3, ψ(γ)D2),

is also essential. ¤

Proposition 5. All the pseudo-finite g.t.g. withm ≥ 3 and s ≥ 2 are, up to equivalence,
the following two groups:

1) 〈x, y | x3 = y2 = (xyx2y)3 = 1〉;
2) 〈x, y | x3 = y2 = (xyxy x2y)3 = 1〉.

The first of these groups is pseudo-tetrahedral. It gives rise to the following imprimitive
pseudo-finite g.t.g. according to the case (I4) of Proposition 3:

〈x, y | x3 = y4 = (xy2x2y2)3 = 1〉.
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As it follows from the classification of finite g.t.g., the first of these groups is infinite,
while the second one is finite.

Proof. Under our restrictions, the inequality (15) can be satisfied only in five cases of
Table 3. In all these cases, the group ϕ(Γ) is one of the groups D3, D4, D5, T, O, I.
The orders of elements of these groups do not exceed 5. It follows that m ≤ 5. More
precisely, all possible cases are presented in the following table.

Table 4.

k l The possible groups ϕ (Γ) m s

5 3 I 3 2, 3

5 2 I 3 2, 3, 4

4 2 D4, O 4 2

3 3 T, I 3 2, 3

3 2 D3, T,O, I 3 2 - 7

The case k = 4, l = 2,m = 3 is impossible, since in this case ϕ(Γ) cannot be the
group D4, which leaves only two possibilities for trXY . The case k = 3, l = 2,m = 4 is
impossible, since in this case ϕ(Γ) can be only the group O, which again leaves only two
possibilities for trXY . In all the cases, enumerated in Table 4, and all, up to admissible
transformations, exponents k1, . . . , ks, l1, . . . , ls, we explicitly wrote the equations (11)
and found out if all their roots are among the admissible numbers indicated in Table
3. This turned out to be true only in the two cases of the proposition. ¤

6. Case m = 2, k, l ≥ 3

For m = 2, equation (11) takes the form f(t) = 0. If the group Γ is pseudo-finite, all
the roots of the polynomial f (for any u, v) must be real and lie in the interval

(
2 cos(

πu

k
+
πv

l
), 2 cos(

πu

k
− πv

l
)
)

(see (4)), whence

sgnf(2 cos(
πu

k
+
πv

l
))f(2 cos(

πu

k
− πv

l
)) = (−1)s.

We deduce from this

Proposition 6. If Γ is a pseudo-finite g.t.g. with m = 2, then

sgn(cos
2πKu

k
+ cos

2πLv

l
) = (−1)s (16)

for any u prime to k and v prime to l.

(For the notation K and L see (13).)
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Proof. Set α = πu
k

and β = πv
l
. Then the commuting matrices X and Y from (5)

satisfy the conditions

trX = 2 cos
πu

k
, trY = 2 cos

πv

l
, trXY = 2 cos(

πu

k
± πv

l
),

and, hence,

f(2 cos(
πu

k
± πv

l
)) = trW (X,Y ) = 2 cos(

πKu

k
± πLv

l
).

It follows that

f(2 cos(
πu

k
+
πv

l
))f(2 cos(

πu

k
− πv

l
)) =

4 cos(
πKu

k
+
πLv

l
) cos(

πKu

k
− πLv

l
) = 2(cos

2πKu

k
+ cos

2πLv

l
).

¤

Corollary. If k = l = 5, then s is even.

Proof. Suppose s is odd. Then

cos
2πKu

5
+ cos

2πLv

5
< 0 (17)

for any u, v ∈ {1, 2, 3, 4}. If K is divisible by 5, then the first summand is equal to 1
and the inequality (17) cannot hold. Hence, K is not divisible by 5. In the same way,
L is not divisible by 5. Consequently, one can choose u, v so that

Ku ≡ Lv ≡ 1 (mod 5).

Then (17) does not hold. ¤

If one of the numbers k, l equals 2 and Γ does not admit an essential homomorphism
to a cyclic group, then the condition (16) holds automatically. However, if k, l ≥ 3, it
gives rise to some restrictions on K and L for given k, l and s. They are collected in
the following table, containing all possible values of k and l (up to permutation).
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Table 5.

k l s Restrictions on K and L

5 5 even K ≡ 0 (mod 5) or L ≡ 0 (mod 5)

5 3 even K ≡ 0 (mod 5) or L ≡ 0 (mod 3)

4 4 even K ≡ 0 (mod 4) or L ≡ 0 (mod 4); K,L ≡/ 2 (mod 4)

4 3 even K ≡ 0 (mod 4) or L ≡ 0 (mod 3); K ≡/ 2 (mod 4)

3 3 even K ≡ 0 (mod 3) or L ≡ 0 (mod 3)

5 3 odd K ≡/ 0 (mod 5) and L ≡/ 0 (mod 3)

4 4 odd K,L ≡/ 0 (mod 4); K ≡ 2 (mod 4) or L ≡ 2 (mod 4)

4 3 odd K ≡/ 0 (mod 4) and L ≡/ 0 (mod 3)

3 3 odd K, L ≡/ 0 (mod 3)

For m = 2 we did not get an apriori upper bound for s, so we restricted ourselves to
the cases s = 2, 3. Under this restriction there are only few cases to be checked, taking
into account Table 5. The result is contained in the following two propositions.

Proposition 7. All the primitive pseudo-finite g.t.g. with m = 2, k, l ≥ 3, and s = 2
are, up to equivalence, the following seven groups:

1) 〈x, y | x5 = y3 = (xyx2y2)2 = 1〉;
2) 〈x, y | x5 = y3 = (xyx4y)2 = 1〉;
3) 〈x, y | x4 = y4 = (xyx2y3)2 = 1〉;
4) 〈x, y | x4 = y3 = (xyx2y2)2 = 1〉;
5) 〈x, y | x4 = y3 = (xyx3y)2 = 1〉;
6) 〈x, y | x3 = y3 = (xyx2y2)2 = 1〉;
7) 〈x, y | x3 = y3 = (xyx2y)2 = 1〉.

As it follows from the classification of finite g.t.g., the last two groups are finite, while
all the others are infinite.

Remark 1. It follows from Proposition 3 and Proposition 9 below, that there are, up
to equivalence, exactly two imprimitive pseudo-finite g.t.g. with m = 2, k, l ≥ 3 and
s = 2, namely, the groups

〈x, y | x4 = y4 = (xy2x3y2)2 = 1〉;
〈x, y | x3 = y4 = (xy2x2y2)2 = 1 〉.

Proposition 8. All the primitive pseudo-finite g.t.g. with m = 2, k, l ≥ 3 and s = 3
are, up to equivalence, the following four groups:

1) 〈x, y | x5 = y3 = (xyxyx4y2)2 = 1〉;
2) 〈x, y | x5 = y3 = (xyx2y2x3y)2 = 1〉;
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3) 〈x, y | x4 = y4 = (xyx3y3xy2)2 = 1〉;
4) 〈x, y | x3 = y3 = (xyxyx2y2)2 = 1〉.

As it follows from the classification of finite g.t.g., all these groups are infinite.

Remark 2. It follows from Proposition 3 and Proposition 10 below, that there are no
imprimitive pseudo-finite g.t.g. with m = 2, k, l ≥ 3 and s = 3.

7. The Case l = m = 2

For l = 2 we have
W (x, y) = xk1yxk2y . . . xksy.

One may assume that k ≥ 3, otherwise s = 1, and the group Γ is dihedral. Admissible
transformations in this case reduce to multiplying modulo k the exponents k1, . . . , ks by
a factor prime to k, cyclic permutations of them, and reversing their order. If, moreover,
m = 2, the action of the Galois group allows us to restrict the consideration to the case
where u = 1. Set ε = εk = e

2πi
k , and choose matrices X,Y ∈ SL2(C) as follows:

X =

(
e
πi
k 0

0 e−
πi
k

)
= e−

πi
k

(
ε 0
0 1

)
, Y = −i

(
τ 1− τ

1 + τ −τ

)
.

Then
trX = 2 cos

π

k
, trY = 0,

trXY = 2 τ sin
π

k
, (18)

and
trW (X,Y ) = e−πi (

K
k
+ s
2
) g(τ),

where

g(τ) = tr

(
εk1 0
0 1

)(
τ 1− τ

1 + τ −τ

)(
εk2 0
0 1

)(
τ 1− τ

1 + τ −τ

)
. . .

. . .

(
εks 0
0 1

)(
τ 1− τ

1 + τ −τ

)
.

Note that multiplying Y by −1 affects trX, trY and trXY in the same way as multi-
plying τ by −1. Obviously,

trW (X,−Y ) = (−1)strW (X,Y ).

Hence,
g (−τ) = (−1)s g (τ),

so

g (τ) =

{
h (τ 2) for s even,

τh (τ 2) for s odd,

where h is a polynomial of degree [ s
2
]. As it follows from Table 3 and (18), the group Γ

is pseudo-finite if and only if all the roots of the polynomial h are among the numbers
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indicated in the following table.

Table 6.

k Admissible roots of h

≥ 6 0

5 0, 1+
√
5

2
√
5
, −1+

√
5

2
√
5

4 0, 1
2

3 0, 1
3 ,

2
3 ,

3+
√
5

6
3−
√
5

6

Let us find the polynomial h explicitly. The polynomial g(τ) is the sum of all the
products of entries of the matrices

(
εk1 0
0 1

)
,

(
τ 1− τ

1 + τ −τ

)
,

(
εk2 0
0 1

)
,

(
τ 1− τ

1 + τ −τ

)
, . . .

. . . ,

(
εks 0
0 1

)
,

(
τ 1− τ

1 + τ −τ

)
, (19)

chosen so that the column number of the entry of each matrix equals the row number of
the entry of the subsequent matrix, if considering the matrices (19) ordered cyclically.
Clearly, one can take only diagonal entries of the matrices

(
εk1 0
0 1

)
,

(
εk2 0
0 1

)
, . . . ,

(
εks 0
0 1

)
. (20)

Every time, when we retain the number of the diagonal entry passing to the subsequent

matrix (20), we have to take an entry ± τ of the intermediate factor

(
τ 1− τ

1 + τ −τ

)
.

Every time, when we switch to another number, we have to take an entry 1± τ of the
intermediate factor. It follows that each product has the form

(−1) s−q−r ε k i1+ ...+ k is τ s−2q ( 1− τ 2) q,
where 1 ≤ i1 < . . . < ir ≤ s and the number q is defined as follows:

1) if the set {i1, . . . , ir} is a proper subset of {1, . . . , s}, then q is equal to the num-
ber of its “connected components”, where a connected component is a maximal
subset of {i1, . . . , ir} consisting of consecutive elements of the set {1, . . . , s} con-
sidered cyclically ordered;

2) if {i1, . . . , ir} = {1, . . . , s}, then q = 0.

Thus, the polynomial h has the form

h(σ) =

[ s
2
]∑

q=0

(−1)qhq σ[
s
2
]−q(1− σ)q, (21)
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where
h0 = εK + (−1)s (22)

and, for q > 0,

hq =
∑

1≤i1<···<ir≤s
{i1,...,ir}has q connected components

(−1)s−r εki1+...+kir . (23)

In particular, for s = 2, we have

h(σ) = (εK + 1)σ + (εk1 + εk2)(1− σ) = (εk1 − 1)(εk2 − 1)σ + εk1 + εk2

Proposition 9. All the primitive pseudo-finite g.t.g. with l = m = 2 and s = 2 are,
up to equivalence, the following groups:

1) 〈x, y | x2n = y2 = (xyxn+1y)2 = 1〉 (n ≥ 2);

2) 〈x, y | x5 = y2 = (xyx2y)2 = 1〉;
3) 〈x, y | x3 = y2 = (xyx2y)2 = 1〉.

The groups of the first type are pseudo-dihedral. They give rise to some imprimitive
pseudo-finite g.t.g. according to the cases (I1) and (I2) of Proposition 3. The last group
is pseudo-tetrahedral. It gives rise to an imprimitive pseudo-finite g.t.g. according to
the case (I5) of Proposition 3. As it follows from the classification of finite g.t.g., the
groups of the first type are infinite, while the last two groups are finite.

Proof. The root of h equals 0 if and only if εk1 + εk2 = 0, which means that k is even
and

k1 − k2 ≡
k

2
(mod k).

Under this condition, if Γ is primitive, at least one of the integers k1, k2 must be prime
to k, and we may assume that it is equal to 1. In this way we obtain the groups of the
first type. In all the other cases k ≤ 5. Only 5 such cases are to be tried. This gives
the two last groups of the proposition. ¤

For s = 3 we have

h(σ) = (εK − 1)σ + (ε k2+k3 + ε k3+k1 + ε k1+k2 − ε k1 − ε k2 − ε k3) (1− σ) =
(ε k1 − 1)(ε k2 − 1) (ε k3 − 1)σ + ε k2+k3 + ε k3+k1 + ε k1+k2 − ε k1 − ε k2 − ε k3 .

Proposition 10. All the primitive pseudo-finite g.t.g. with l = m = 2 and s = 3 are,
up to equivalence, the following groups:

1) 〈x, y | x2n = y2 = (xyxn+1yxn+2y)2 = 1〉 (n ≥ 3);

2) 〈x, y | x3n = y2 = (xyxn+1yx2n+1y)2 = 1〉 (n ≥ 2);

3) 〈x, y | x6n = y2 = (xdyxnyx5ny)2 = 1〉 (d | 6, (d, n) = 1);

4) 〈x, y | x30 = y2 = (x2yx3yx26y)2 = 1〉;
5) 〈x, y | x5 = y2 = (xyx2yx3y)2 = 1〉;
6) 〈x, y | x5 = y2 = (xyxyx4y)2 = 1〉;
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7) 〈x, y | x4 = y2 = (xyx2yx3y)2 = 1〉;
8) 〈x, y | x4 = y2 = (xyxyx3y)2 = 1〉;
9) 〈x, y | x3 = y2 = (xyxyx2y)2 = 1〉.

The groups of the first three types and the group under 4) are pseudo-dihedral. They
give rise to some imprimitive pseudo-finite g.t.g. according to the case (I1) of Proposi-
tion 3. As it follows from the classification of finite g.t.g. the groups of the first three
types and the groups under 4) and 7) are infinite, while the groups under 5), 6), 8),
and 9) are finite. To prove the proposition, we need some lemmas.

Lemma 3. Let z1, z2, . . . be complex numbers with modulus 1. Then

a) z1 + z2 + z3 = 0 if and only if z1, z2, z3 divide the unit circle into equal parts;

b) z1 + z2 + z3 + z4 = 0 if and only if z1, z2, z3, z4 decompose into two pairs of
opposite numbers.

Proof. The lemma is easily proved by a geometrical reasoning. ¤

Let εk = e
2πi
k as above, and let ϕ be a Laurent polynomial with rational coefficients.

The following lemma provides an algorithm for finding out if ϕ(εk) = 0. Let p be a
prime divisor of k.

Lemma 4. a) If p2 | k, write the polynomial ϕ in the form

ϕ(z) = ϕ0(z
p) + ϕ1(z

p) z + ϕ2(z
p) z2 + . . .+ ϕp−1(z

p) zp−1,

where ϕ0, ϕ1, . . . , ϕp−1 are Laurent polynomials (with rational coefficients). Then
ϕ(εk) = 0 if and only if

ϕ0(εk/p) = ϕ1(εk/p) = . . . = ϕp−1(εk/p) = 0. (24)

b) If p2 - k , write the polynomial ϕ in the form

ϕ(z) = ψ0(z
p) + ψ1(z

p) z
k
p + ψ2(z

p) z
2k
p + . . .+ ψp−1(z

p) z
(p−1)k

p ,

where ψ0, ψ1, . . . , ψp−1 are Laurent polynomials (with rational coefficients). Then
ϕ(εk) = 0 if and only if

ψ0(εk/p) = ψ1(εk/p) = . . . = ψp−1(εk/p). (25)

Proof. a) If p2 | k, then [Q(εk) : Q(εk/p)] = p, and 1, εk, ε
2
k, . . . , ε

p−1
k constitute a basis

of Q(εk) over Q(εk/p).

b) If p2 - k, then [Q(εk) : Q(εk/p)] = p − 1, and 1, ε
k
p , ε

2k
p , . . . , ε

(p−1)k
p linearly span

Q(εk) over Q(εk/p) with the only linear dependence

1 + ε
k
p + ε

2k
p + · · ·+ ε

(p−1)k
p = 0.

¤
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The conditions (24) can be interpreted as follows. Decompose the set of exponents of
the polynomial ϕ into congruence classes modulo p. Then the equalities (24) mean that
the sum of terms of ϕ corresponding to each class vanishes at εk. In case b), if not all the
residues modulo p are represented by the exponents of non-zero terms of ϕ (e.g. if the
number of these terms is less then p), at least one of the polynomials ψ0, ψ1, . . . , ψp−1
is (identically) equal to 0, and the conditions (25) turn out to be equivalent to the
conditions (24).

Corollary. Assume that among the exponents of non-zero terms of ϕ there is one that
is not congruent modulo p to any of the others. Let, moreover, p2 | k or the number of
non-zero terms of ϕ is less than p. Then ϕ(εk) 6= 0.

Proof of Proposition 10. The root of the polynomial h equals 0 if and only if

εk1 + εk2 + εk3 = εk2+k3 + εk3+k1 + εk1+k2 . (26)

Let p be a prime divisor of k. Assume that p2 | k or p ≥ 7. Due to the preceding
corollary the equality (26) can hold only if each of the integers

k1, k2, k3, k2 + k3, k3 + k1, k1 + k2 (27)

is congruent modulo p to some of the others. It is easy to see that such a situation
takes place only in the following cases, up to permutation of k1, k2, k3:

1) k1 ≡ k2 (mod p), k3 ≡ k1 + k2 (mod p);

2) k1 ≡ k2 ≡ k3 (mod p);

3) k2 ≡ k3 ≡ 0 (mod p);

4) k3 ≡ k1 + k2 ≡ 0 (mod p).

Consider all these cases.

Case 1. In this case, if p 6= 2, the decomposition of the set of integers (27) into
congruence classes modulo p looks as follows:

{k1, k2} ∪ {k3, k1 + k2} ∪ {k1 + k3, k2 + k3}.
By Lemma 4, equality (26) holds only if

εk1 + εk2 = εk3 − εk1+k2 = −εk1+k3 − εk2+k3 = 0,

which means that k is even and

k1 − k2 ≡
k

2
(mod k), k3 ≡ k1 + k2 (mod k).

If the group Γ is primitive, at least one of the integers k1, k2 must be prime to k, and
we may assume that it is equal to 1. This gives case 1) of the proposition. If p = 2,
two of the above congruence classes must glue together. It is easy to see that these are
the first and the third classes. We get

εk1 + εk2 − εk1+k3 − εk2+k3 = εk3 − εk1+k2 = 0.

Since
εk1 + εk2 − εk1+k3 − εk2+k3 = (εk1 + εk2) (1− εk3)

and εk3 6= 1, we come to the same result as above.
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Case 2. The decomposition of the set (27) into congruence classes is

{k1, k2, k3} ∪ {k2 + k3, k3 + k1, k1 + k2},
whence

εk1 + εk2 + εk3 = −εk2+k3 − εk3+k1 − εk1+k2 = 0.

Due to Lemma 3, it follows that k is divisible by 3 and εk1 , εk2 , εk3 divide the unit circle
into equals parts. At least one of the integers k1, k2, k3 must be prime to k, and we may
assume that it is equal to 1. This gives case 2) of the proposition.

Case 3. The decomposition of the set (27) into congruence classes is

{k1, k1 + k2, k1 + k3} ∪ {k2, k3, k2 + k3},
whence

εk1 − εk1+k2 − εk1+k3 = εk2 + εk3 − εk2+k3 = 0.

It follows that
εk2 + εk3 = εk2+k3 = 1,

which means that k is divisible by 6 and, up to interchanging k2 and k3,

k2 ≡
k

6
(mod k), k3 ≡

5k

6
(mod k).

Multiplying k1, k2, k3 modulo k by an integer prime to k, one may assume that k1 | k .
But, if Γ is primitive, ( k1,

k
6
) = 1, whence k1 | 6 . This gives case 3) of the proposition.

Case 4. If k1 ≡ k2 (mod p), we come to Case 1. Otherwise, the decomposition of the
set (27) into congruence classes is

{k1, k1 + k3} ∪ {k2, k2 + k3} ∪ {k3, k1 + k2},
whence

εk1 − εk1+k3 = εk2 − εk2+k3 = εk3 − εk1+k2 = 0,

which is impossible. If k has no prime divisors satisfying the above conditions, then
k | 30 . For all such k and all, up to admissible transformations, k1, k2, k3 we tried the
equality (26) with help of a computer. It turned out that it held, beyond the series 1)
- 3), only in case 4) of the proposition.

Cases 5 – 9. Finally, if Γ is pseudo-finite, but the root of h does not equal 0, then k ≤ 5
and the root of h must belong to the numbers indicated in Table 6. There are only few
cases to be tried. This gives the remaining 5 cases of the proposition. 2

8. Two families of pseudo-dihedral g.t.g.

Finite g.t.g. exist only for s ≤ 8. The following propositions show that pseudo-finite
g.t.g. exist for any s.

Proposition 11. The group

Γ(s, n, c) =
〈
x, y | xsn = y2 = (xcyxn+cyx2n+cy . . . x(s−1)n+cy)2 = 1

〉

is pseudo-dihedral (and thereby pseudo-finite) for every choice of s, n, c with 0 < c < n.
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Proof. One has to prove that all the roots of the polynomial h (see (21)) equal 0, i.e.,
that hq = 0 for q = 1, . . . , [ s

2
]. We have (see (23))

hq =
∑

1≤i1<···<ir≤s
{i1,...,ir}has q connected components

(−1)s−r ε(i1+...+ir−r)n+cr.

We shall prove that the sum hq,r of terms of hq with fixed r vanishes for each r. Consider
the transformation i 7→ i + 1 of the set {1, 2, . . . , s} (where s + 1 is taken modulo s).
It does not change the number of connected components of a subset of {1, 2, . . . , s}, so
hq,r is invariant under this transformation. But, on the other hand, each term of hq,r is
multiplied by εrn 6= 1. Hence, hq,r = 0. ¤

Proposition 12. The group

∆(s, n, c) =
〈
x, y | x2sn = y2 = (xnyx3ny . . . x(s−2)nyxcyx(s+2)n

y . . . x(2s−3)nyx(2s−1)ny)2 = 1
〉

is pseudo-dihedral for any choice of s, n, c with s odd and 0 < c < 2sn.

Proof. One has to prove that hq = 0 for q = 1, . . . , [ s
2
]. Obviously, hq = h′q ε

c + h′′q ,
where h′q and h

′′
q do not depend on c. Hence, it suffices to prove that hq = 0 for c = 0

(when εc = 1) and for c = sn (when εc = −1). For c = sn we have

∆ (s, n, c) = Γ (s, 2n, n),

so hq = 0 by Proposition 11. For c = 0 we have W (x, y) = y, so trW (X,Y ) = trY = 0
(identically). ¤

Note that the above two families cover the series 1) of Proposition 9 and the series 2)
and 3) of Proposition 10. Moreover, they cover all the series that we know for s = 4, 5.
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