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BRUHAT-TITS BUILDINGS AND ANALYTIC GEOMETRY

by

Bertrand Rémy, Amaury Thuillier & Annette Werner

Abstract. — This paper provides an overview of the theory of Bruhat-Titsbuildings. Besides, we
explain how Bruhat-Tits buildings can be realized inside Berkovich spaces. In this way, Berkovich
analytic geometry can be used to compactify buildings. We discuss in detail the example of the
special linear group.

Résumé(Immeubles de Bruhat-Tits et géométrie analytique). —Ce texte introduit les im-
meubles de Bruhat-Tits associés aux groupes réductifs sur les corps valués et explique comment
les réaliser et les compactifier au moyen de la géomérie analytique de Berkovich. Il contient une
discussion détaillée du cas du groupe spécial linéaire.
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Introduction

This paper is mainly meant to be a survey on two papers writtenby the same authors,
namely [RTW10] and [RTW12]. The general theme is to explain what the theory of ana-
lytic spaces in the sense of Berkovich brings to the problem of compactifying Bruhat-Tits
buildings.

1. Bruhat-Tits buildings.— The general notion of a building was introduced by J. Tits in
the 60ies [Tits74], [Bou07, Exercises for IV.2]. These spaces are cell complexes, required
to have some nice symmetry properties so that important classes of groups may act on them.
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More precisely, it turned out in practice that for various classes of algebraic groups and gener-
alizations, a class of buildings is adapted in the sense thatany group from such a class admits
a very transitive action on a suitable building. The algebraic counterpart to the transitivity
properties of the action is the possibility to derive some important structure properties for the
group.

This approach is particularly fruitful when the class of groups is that of simple Lie groups
over non-Archimedean fields, or more generally reductive groups over non-Archimedean
valued fields – see Sect. 3. In this case the relevant class of buildings is that of Euclidean
buildings (1.1).This is essentially the only situation in building theory weconsider in this
paper. Its particularly nice features are, among others, the facts that in this case the buildings
are (contractible, hence simply connected) gluings of Euclidean tilings and that deep (non-
positive curvature) metric arguments are therefore available; moreover, on the group side,
structures are shown to be even richer than expected. For instance, topologically the action
on the buildings enables one to classify and understand maximal compact subgroups (which
is useful to representation theory and harmonic analysis) and, algebraically, it enables one to
define important integral models for the group (which is again useful to representation theory,
and which is also a crucial step towards analytic geometry).

One delicate point in this theory is merely to prove that for asuitable non-Archimedean re-
ductive group, there does exist a nice action on a suitable Euclidean building: this is the main
achievement of the work by F. Bruhat and J. Tits in the 70ies [BrT72], [BrT84]. Eventually,
Bruhat-Tits theory suggests to see the Euclidean buildingsattached to reductive groups over
valued fields (henceforth calledBruhat-Tits buildings) as non-Archimedean analogues of the
symmetric spaces arising from real reductive Lie groups, from many viewpoints at least.

2. Some compactification procedures.— Compactifications of symmetric spaces were de-
fined and used in the 60ies; they are related to the more difficult problem of compactify-
ing locally symmetric spaces [Sat60b], to probability theory [Fur63], to harmonic analy-
sis... One group-theoretic outcome is the geometric parametrization of classes of remarkable
closed subgroups [Moo64]. For all the above reasons and according to the analogy between
Bruhat-Tits buildings and symmetric spaces, it makes therefore sense to try to construct com-
pactifications of Euclidean buildings.

When the building is a tree, its compactification is quite easy to describe [Ser77]. In gen-
eral, and for the kind of compactifications we consider here,the first construction is due to E.
Landvogt [Lan96]: he uses there the fact that the construction of the Bruhat-Tits buildings
themselves, at least at the beginning of Bruhat-Tits theoryfor the simplest cases, consists in
defining a suitable gluing equivalence relation for infinitely many copies of a well-chosen
Euclidean tiling. In Landvogt’s approach, the equivalencerelation is extended so that it glues
together infinitely many compactified copies of the Euclidean tiling used to construct the
building. Another approach is more group-theoretic and relies on the analogy with symmet-
ric spaces: since the symmetric space of a simple real Lie group can be seen as the space of
maximal compact subgroups of the group, one can compatify this space by taking its closure



4 BERTRAND RÉMY, AMAURY THUILLIER & ANNETTE WERNER

in the (compact) Chabauty space of all closed subgroups. This approach is carried out by
Y. Guivarc’h and the first author [GR06]; it leads to statements in group theory which are
analogues of [Moo64] (e.g., the virtual geometric classification of maximal amenable sub-
groups) but the method contains an intrinsic limitation dueto which one cannot compactify
more than the set of vertices of the Bruhat-Tits buildings.

The last author of the present paper also constructed compactifications of Bruhat-Tits
buildings, in at least two different ways. The first way is specific to the case of the general
linear group: going back to Bruhat-Tits’ interpretation ofGoldman-Iwahori’s work [GI63],
it starts by seeing the Bruhat-Tits building of GL(V) – where V is a vector space over
a discretely valued non-Archimedean field – as the space of (homothety classes of) non-
Archimedean norms on V. The compactification consists then in adding at infinity the (ho-
mothety classes of) non-zero non-Archimedean seminorms onV. Note that the symmetric
space of SLn(R) is the set of normalized scalar products onRn and a natural compactifica-
tion consists in projectivizing the cone of positive nonzero semidefinite bilinear forms: what
is done in [Wer04] is the non-Archimedean analogue of this; it has some connection with
Drinfeld spaces and is useful to our subsequent compactification in the vein of Satake’s work
for symmetric spaces. The second way is related to representation theory [Wer07]: it pro-
vides, for a given group, a finite family of compactificationsof the Bruhat-Tits building. The
compactifications, as in E. Landvogt’s monograph, are defined by gluing compactified Eu-
clidean tilings but the variety of possibilities comes fromexploiting various possibilities of
compactifying equivariantly these tilings in connection with highest weight theory.

3. Use of Berkovich analytic geometry.— The compactifications we would like to intro-
duce here make a crucial use of Berkovich analytic geometry.There are actually two different
ways to use the latter theory for compactifications.

The first way is already investigated by V. Berkovich himselfwhen the algebraic group
under consideration is split [Ber90, Chap. 5]. One intermediate step for it consists in defining
a map from the building to the analytic space attached to the algebraic group: this map
attaches to each pointx of the building an affinoid subgroup Gx, which is characterized by
a unique maximal pointϑ(x) in the ambient analytic space of the group. The mapϑ is
a closed embedding when the ground field is local; a compactification is obtained whenϑ
is composed with the (analytic map) associated to a fibrationfrom the group to one of its
flag varieties. One obtains in this way the finite family of compactifications described in
[Wer07]. One nice feature is the possibility to obtain easily maps between compactifications
of a given group but attached to distinct flag varieties. Thisenables one to understand in
combinatorial Lie-theoretic terms which boundary components are shrunk when going from
a “big" compactification to a smaller one.

The second way mimics I. Satake’s work in the real case. More precisely, it uses a highest
weight representation of the group in order to obtain a map from the building of the group to
the building of the general linear group of the representation space which, as we said before,
is nothing else than a space of non-Archimedean norms. Then it remains to use the seminorm
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compactification mentioned above by taking the closure of the image of the composed map
from the building to the compact space of (homothety classesof) seminorms on the non-
Archimedean representation space.

For a given group, these two methods lead to the same family ofcompactifications, in-
dexed by the conjugacy classes of parabolic subgroups. One interesting point in these two
approaches is the fact that the compactifications are obtained by taking the closure of images
of equivariant maps. The construction of the latter maps is also one of the main difficulties;
it is overcome thanks to the fact that Berkovich geometry hasa rich formalism which com-
bines techniques from algebraic and analytic geometry (thepossibility to use field extensions,
or the concept of Shilov boundary, are for instance crucial to define the desired equivariant
maps).

Structure of the paper. In Sect. 1, we define (simplicial and non-simplicial) Euclidean
buildings and illustrate the notions in the case of the groups SLn; we also show in these cases
how the natural group actions on the building encode information on the group structure of
rational points. In Sect. 2, we illustrate general notions thanks to the examples of spaces
naturally associated to special linear groups (such as projective spaces); this time the notions
are relevant to Berkovich analytic geometry and to Drinfeldupper half-spaces. We also pro-
vide specific examples of compactifications which we generalize later. In Sect. 3, we sum
up quickly what we need from Bruhat-Tits theory, including the existence of integral models
for suitable bounded open subgroups; following the classical strategy, we first show how to
construct a Euclidean building in the split case by gluing together Euclidean tilings, and then
how to rely on Galois descent arguments for non-necessarilysplit groups. In Sect. 4, we
finally introduce the maps that enable us to obtain compactifications of Bruhat-Tits buildings
(these maps from buildings to analytifications of flag varieties have been previously defined
by V. Berkovich in the split case); a variant of this embedding approach, close to Satake’s
ideas using representation theory to compactify symmetricspaces, is also quickly presented.
In the last section, we correct a mistake in the proof of an auxiliary lemma in [RTW10] which
requires us to introduce an additional hypothesis for two results of [RTW12].

Acknowledgements. — We warmly thank the organizers of the summer school “Berkovich
spaces" held in Paris in July 2010. We are grateful to the referee for many comments, cor-
rections and some relevant questions, one of which led to Proposition 5.11. Finally, we thank
Tobias Schmidt for pointing out that Lemma A.10 of [RTW10] needed to be corrected.

Conventions. — In this paper, as in [Ber90], valued fields are assumed to be non-
Archimedean and complete, the valuation ring of such a fieldk is denoted byk◦, its maximal
ideal is byk◦◦ and its residue field bỹk = k◦/k◦◦. Moreover alocal field is a non-trivially
valued non-Archimedean field which is locally compact for the topology given by the
valuation (i.e., it is complete, the valuation is discrete and the residue field is finite).
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1. Buildings and special linear groups

We first provide a (very quick) general treatment of Euclidean buildings; general refer-
ences for this notion are [Rou09] and [Wei09]. It is important for us to deal with the sim-
plicial as well as the non-simplicial version of the notion of a Euclidean building because
compactifying Bruhat-Tits buildings via Berkovich techniques uses huge valued fields. The
second part illustrates these definitions for special linear groups; in particular, we show how
to interpret suitable spaces of norms to obtain concrete examples of buildings in the case when
the algebraic group under consideration is the special linear group of a vector space. These
spaces of norms will naturally be extended to spaces of (homothety classes of) seminorms
when buildings are considered in the context of analytic projective spaces.

1.1. Euclidean buildings. — Euclidean buildings are non-Archimedean analogues of Rie-
mannian symmetric spaces of the non-compact type, at least in the following sense: if G is
a simple algebraic group over a valued fieldk, Bruhat-Tits theory (often) associates to G and
k a metric space, called a Euclidean building, on which G(k) acts by isometries in a “very
transitive" way. This is a situation which is very close to the one where a (non-compact)
simple real Lie group acts on its associated (non-positively curved) Riemannian symmetric
space. In this more classical case, the transitivity of the action, the explicit description of
fundamental domains for specific (e.g., maximal compact) subgroups and some non-positive
curvature arguments lead to deep conjugacy and structure results – see [Mau09] and [Par09]
for a modern account. Euclidean buildings are singular spaces but, by and large, play a similar
role for non-Archimedean Lie groups G(k) as above.

1.1.1. Simplicial definition. — The general reference for building theory from the various
“discrete" viewpoints is [AB08]. Let us start with an affine reflection group, more preciselya
Coxeter group of affine type[Bou07]. The starting point to introduce this notion is a locally
finite family of hyperplanes – calledwalls – in a Euclidean space [loc. cit., V §1 introduc-
tion]. An affine Coxeter group can be seen as a group generatedby the reflections in the
walls, acting properly on the space and stabilizing the collection of walls [loc. cit., V §3
introduction]; it is further required that the action on each irreducible factor of the ambient
space be via an infiniteessentialgroup (no non-zero vector is fixed by the group).

Example 1.1. — 1. The simplest (one-dimensional) example of a Euclidean tiling is pro-
vided by the real line tesselated by the integers. The corresponding affine Coxeter
group, generated by the reflections in two consecutive vertices (i.e., integers), is the
infinite dihedral groupD∞.

2. The next simplest (irreducible) example is provided by the tesselation of the Euclidean
plane by regular triangles. The corresponding tiling groupis the Coxeter group of
affine typẽA2; it is generated by the reflections in the three lines supporting the edges
of any fundamental triangle.
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Note that Poincaré’s theorem is a concrete source of Euclidean tilings: start with a Eu-
clidean polyhedron in which each dihedral angle between codimension 1 faces is of the form
π
m for some integerm> 1 (depending on the pair of faces), then the group generated by the
reflections in these faces is an affine Coxeter group [Mas88, IV.H.11].

In what follows, Σ is a Euclidean tiling giving rise to a Euclidean reflection group by
Poincaré’s theorem (in Bourbaki’s terminology, it can alsobe seen as the natural geometric
realization of the Coxeter complex of an affine Coxeter group, that is the affinization of the
Tits’ cone of the latter group [Bou07]).

Definition 1.2. — Let (Σ,W) be a Euclidean tiling and its associated Euclidean reflection
group. A(discrete) Euclidean builidingof type(Σ,W) is a polysimplicial complex, sayB,
which is covered by subcomplexes all isomorphic toΣ – called theapartments– such that the
following incidence properties hold.

SEB 1 Any two cells ofB lie in some apartment.
SEB 2 Given any two apartments, there is an isomorphism between them fixing their intersec-

tion in B.

The cells in this context are calledfacetsand the group W is called theWeyl groupof the
buildingB. The facets of maximal dimension are calledalcoves.

The axioms of a Euclidean building can be motivated by metricreasons. Indeed, once
the choice of aW-invariant Euclidean metric onΣ has been made, there is a natural way the
define a distance on the whole building: given any two pointsx andx′ in B, by (SEB 1) pick
an apartmentA containing them and consider the distance betweenx andx′ taken inA; then
(SEB 2) implies that the so–obtained non-negative number doesn’t depend on the choice of
A. It requires further work to check that one defines in this waya distance on the building
(i.e., to check that the triangle inequality holds [Par00, Prop. II.1.3]).

Remark 1.3. — The terminology “polysimplicial" refers to the fact that a building can be a
direct product of simplicial complexes rather than merely asimplicial complex; this is why
we provisionally used the terminology “cells" instead of “polysimplices" to state the axioms
(as already mentioned, cells will henceforth be called facets – alcoves when they are top-
dimensional).

Let us provide now some examples of discrete buildings corresponding to the already
mentioned examples of Euclidean tilings.

Example 1.4. — 1. The class of buildings of type(R,D∞) coincides with the class of
trees without terminal vertex (recall that a tree is a1-dimensional simplicial complex
– i.e., the geometric realization of a graph – without non-trivial loop [Ser77]).

2. A 2-dimensional̃A2-building is already impossible to draw, but roughly speaking it can
be constructed by gluing half-tilings to an initial one alongwalls(i.e., fixed point sets of
reflections) and by iterating these gluings infinitely many times provided a prescribed
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“shape" of neighborhoods of vertices is respected – see Example 1.7 for further details
on the local description of a building in this case.

It is important to note that axiom (ii) doesnotrequire that the isomorphism between apart-
ments extends to a global automorphism of the ambient building. In fact, it may very well
happen that for a given Euclidean buildingB we have Aut(B) = {1} (take for example a tree
in which any two distinct vertices have distinct valencies). However, J. Tits’ classification of
Euclidean buildings [Tit86] implies that in dimension> 3 any irreducible building comes –
via Bruhat-Tits theory, see next remark – from a simple algebraic group over a local field, and
therefore admits a large automorphism group. At last, note that there do exist 2-dimensional
exotic Euclidean buildings, with interesting but unexpectedly small automorphism groups
[Bar00].

Remark 1.5. — In Sect. 3, we will briefly introduce Bruhat-Tits theory. Themain outcome
of this important part of algebraic group theory is that, given a semisimple algebraic group
G over a local field k, there exists a discrete Euclidean buildingB = B(G,k) on which the
group of rational pointsG(k) acts by isometries andstrongly transitively(i.e., transitively on
the inclusions of an alcove in an apartment).

Example 1.6. — Let G as above be the groupSL3. Then the Euclidean building associated
to SL3 is a Euclidean building in which every apartment is a Coxetercomplex of typẽA2,
that is the previously described2-dimensional tiling of the Euclidean spaceR2 by regular tri-
angles. Strong transitivity of theSL3(k)-action means here that given any alcoves (triangles)
c,c′ and any apartmentsA,A′ such that c⊂ A and c′ ⊂ A′ there exists g∈ SL3(k) such that
c′ = g.c andA′ = g.A.

The description of the apartments doesn’t depend on the local field k (only on the Dynkin
diagram of the semisimple group in general), but the fieldk plays a role when one describes
the combinatorial neighborhoods of facets, or small metricballs around vertices. Such sub-
sets, which intersect finitely many facets whenk is a local field, are known to be realizations
of some (spherical) buildings: these buildings are naturally associated to semisimple groups
(characterized by some subdiagram of the Dynkin diagram of G) over the residue field̃k of k.

Example 1.7. — For G = SL3 and k= Qp, each sufficiently small ball around a vertex is
the flag complex of a2-dimensional vector space overZ/pZ and any edge in the associated
Bruhat-Tits building is contained in the closure of exactlyp+1 triangles. A suitably small
metric ball around any point in the relative interior of an edge can be seen as a projective
line overZ/pZ, that is the flag variety ofSL2 overZ/pZ.

1.1.2. Non-simplicial generalization. — We will see, e.g. in 4.1, that it is often necessary to
understand and use reductive algebraic groups over valued fields fornon-discretevaluations
even if in the initial situation the ground field is discretely valued. The geometric counterpart
to this is the necessary use of non-discrete Euclidean buildings. The investigation of such
a situation is already covered by the fundamental work by F. Bruhat and J. Tits as written
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in [BrT72] and [BrT84], but the intrinsic definition of a non-discrete Euclidean building is
not given there – see [Tit86] though, for a reference roughly appearing at the same time as
Bruhat-Tits’ latest papers.

The definition of a building in this generalized context is quite similar to the discrete one
(1.1.1) in the sense that it replaces an atlas by a collectionof “slices" which are still called
apartmentsand turn out to be maximal flat (i.e., Euclidean) subspaces once the building is
endowed with a natural distance. What follows can be found for instance in A. Parreau’s
thesis [Par00].

Let us go back to the initial question.

Question 1.8. — Which geometry can be associated to a groupG(k) whenG is a reductive
group over k, a (not necessarily discretely) valued field?

The answer to this question is a long definition to swallow, sowe will provide some
explanations immediately after stating it.

The starting point is again ad-dimensional Euclidean space, sayΣvect, together with a
finite groupW in the group of isometries Isom(Σvect) ≃ Od(R). By definition, avectorial
wall in Σvect is the fixed-point set inΣvect of a reflection inW and avectorial Weyl chamber
is a connected component of the complement of the union of thewalls in Σvect, so that Weyl
chambers are simplicial cones.

Now assume that we are given an affine Euclidean spaceΣ with underlying Euclidean
vector spaceΣvect. We have thus Isom(Σ) ≃ Isom(Σvect)⋉Σvect ≃ Od(R)⋉Rd. We also
assume that we are given a groupW of (affine) isometries inΣ such that the vectorial part of
W is W and such that there exists a pointx∈ Σ and a subgroup T⊂ Isom(Σ) of translations
satisfyingW = Wx ·T; we use here the notationWx = StabW(x). A point x satisfying this
condition is calledspecial.

Definition 1.9. — LetB be a set and letA = { f : Σ→B} be a collection of injective maps,
whose images are calledapartments. We say thatB is a Euclidean buildingof type(Σ,W) if
the apartments satisfy the following axioms.

EB 1 The familyA is stable by precomposition with any element of W (i.e., for any f ∈ A

and any w∈W, we have f◦w∈ A ).
EB 2 For any f, f ′ ∈ A the subsetC f , f ′ = f ′−1

(
f (Σ)

)
is convex inΣ and there exists w∈W

such that we have the equality of restrictions( f−1 ◦ f ′) |C f , f ′
= w |C f , f ′

.
EB 3 Any two points ofB are contained in a suitable apartment.

At this stage, there is a well-defined map d: B×B → R>0 and we further require:

EB 4 Given any (images of) Weyl chambers, there is an apartment ofX containing sub-Weyl
chambers of each.

EB 5 Given any apartmentA and any point x∈ A, there is a1-lipschitz retraction map
r = rx,A : B → A such that r|A= idA and r−1(x) = {x}.



10 BERTRAND RÉMY, AMAURY THUILLIER & ANNETTE WERNER

The above definition is taken from [Par00, II.1.2]; in these axioms aWeyl chamberis
the affine counterpart to the previously defined notion of aWeyl chamberand a “sub-Weyl
chamber" is a translate of the initial Weyl chamber which is completely contained in the latter.

Remark 1.10. — A different set of axioms is given in G. Rousseau’s paper[Rou09, §6]. It is
interesting because it provides a unified approach to simplicial and non-simplicial buildings
via incidence requirements on apartments. The possibilityto obtain a non-discrete building
with Rousseau’s axioms is contained in the model for an apartment and the definition of a
facet as a filter. The latter axioms are adapted to some algebraic situations which cover the
case of Bruhat-Tits theory over non-complete valued fields –see[Rou09, Remark 9.4]for
more details and comparisons.

Remark 1.11. — In this paper we do not use the plain word “chamber" though it is standard
terminology in abstract building theory. This choice is made to avoid confusion: alcoves
here are chambers (in the abstract sense) in Euclidean buildings and parallelism classes of
Weyl chambers here are chambers (in the abstract sense) in spherical buildings at infinity of
Euclidean buildings[Wei09, Chap. 8], [AB08, 11.8].

It is easy to see that, in order to prove that the mapd defined thanks to axioms (EB 1)-(EB
3) is a distance, it remains to check that the triangle inequality holds; this is mainly done
by using the retraction given by axiom (EB 5). The previouslyquoted metric motivation
(Remark 1.3) so to speak became a definition. Note that the existence of suitable retractions
is useful to other purposes.

The following examples of possibly non-simplicial Euclidean buildings correspond to the
examples of simplicial ones given in Example 1.4.

Example 1.12. — 1. Consider the real lineΣ = R and its isometry groupZ/2Z ⋉R.
Then a Euclidean building of type(R,Z/2Z ⋉R) is a real tree – see below.

2. For a 2-dimensional case extending simplicial̃A2-buildings, a model for an apartment
can be taken to be a maximal flat in the symmetric space ofSL3(R)/SO(3) acted upon
by its stabilizer inSL3(R) (using the notion of singular geodesics to distinguish the
walls). There is a geometric way to define the Weyl group and Weyl chambers (six
directions of simplicial cones) in this differential geometric context – see[Mau09] for
the general case of arbitrary symmetric spaces.

Here is a (purely metric) definition of real trees. It is a metric space(X,d) with the
following two properties:

(i) it is geodesic: given any two pointsx,x′ ∈ X there is a (continuous) mapγ : [0;d]→ X,
whered = d(x,x′), such thatγ(0) = x, γ(d) = x′ andd

(
γ(s),γ(t)

)
= | s− t | for any

s, t ∈ [0;d];
(ii) any geodesic triangle is a tripod (i.e., the union of three geodesic segments with a

common end-point).
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Remark 1.13. — Non-simplicial Euclidean buildings became more popular since recent
work of geometric (rather than algebraic) nature, where non-discrete buildings appear as
asymptotic cones of symmetric spaces and Bruhat-Tits buildings[KL97 ].

The remark implies in particular that there exist non-discrete Euclidean buildings in any
dimension, which will also be seen more concretely by studying spaces of non-Archimedean
norms on a given vector space – see 1.2.

Remark 1.14. — Note that given a reductive groupG over a valued field k, Bruhat-Tits the-
ory “often" provides a Euclidean building on which the groupG(k) acts strongly transitively
in a suitable sense (see Sect. 3 for an introduction to this subject).

1.1.3. More geometric properties. — We motivated the definitions of buildings by metric
considerations, therefore we must mention the metric features of Euclidean buildings once
these spaces have been defined. First, a Euclidean building always admits a metric whose
restriction to any apartment is a (suitably normalized) Euclidean distance [Rou09, Prop. 6.2].
Endowed with such a distance, a Euclidean building is alwaysa geodesic metric space as
introduced in the above metric definition of real trees (1.1.2).

Recall that we use the axioms(EB) from Definition 1.9 to define a building; moreover
we assume that the above metric is complete.This is sufficient for our purposes since we
will eventually deal with Bruhat-Tits buildings associated to algebraic groups over complete
non-Archimedean fields.

Let (B,d) be a Euclidean building endowed with such a metric. Then(B,d) satisfies
moreover a remarkable non-positive curvature property, called the CAT(0)-property(where
“CAT" seems to stand for Cartan-Alexandrov-Toponogov). Roughly speaking, this property
says that geodesic triangles are at least as thin as in Euclidean planes. More precisely, the
point is to compare a geodesic triangle drawn inB with “the" Euclidean triangle having the
same edge lengths. A geodesic space is said to have the CAT(0)-property, or to beCAT(0),
if a median segment in each geodesic triangle is at most as long as the corresponding median
segment in the comparison triangle drawn in the Euclidean planeR2 (this inequality has to
be satisfied for all geodesic triangles). Though this property is stated in elementary terms, it
has very deep consequences [Rou09, §7].

One first consequence is the uniqueness of a geodesic segmentbetween any two points
[BH99, Chap. II.1, Prop. 1.4].

The main consequence is a famous and very useful fixed-point property. The latter state-
ment is itself the consequence of a purely geometric one: anybounded subset in a complete,
CAT(0)-space has a unique, metrically characterized, circumcenter [AB08, 11.3]. This im-
plies that if a group acting by isometries on such a space (e.g., a Euclidean building) has a
bounded orbit, then it has a fixed point. This is theBruhat-Tits fixed point lemma; it applies
for instance to any compact group of isometries.
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Let us simply mention two very important applications of theBruhat-Tits fixed point
lemma (for simplicity, we assume that the building under consideration is discrete and lo-
cally finite – which covers the case of Bruhat-Tits buildingsfor reductive groups over local
fields).

1. The Bruhat-Tits fixed point lemma is used to classify maximal bounded subgroups in
the isometry group of a building. Indeed, it follows from thedefinition of the compact
open topology on the isometry group Aut(B) of a buildingB, that a facet stabilizer
is a compact subgroup in Aut(B). Conversely, a compact subgroup has to fix a point
and this point can be sent to a point in a given fundamental domain for the action of
Aut(B) onB (the isometry used for this conjugates the initial compact subgroup into
the stabilizer of a point in the fundamental domain).

2. Another consequence is that any Galois action on a Bruhat-Tits building has “suffi-
ciently many" fixed points, since a Galois group is profinite hence compact. These
Galois actions are of fundamental use in Bruhat-Tits theory, following the general idea
– widely used in algebraic group theory – that an algebraic group G overk is nothing
else than a split algebraic group over the separable closureks, namely G⊗k ks, together
with a semilinear action of Gal(ks/k) on G⊗k ks [Bor91, AG § §11-14].

Arguments similar to the ones mentioned in 1. imply that, when k is a local field, there
are exactlyd+1 conjugacy classes of maximal compact subgroups in SLd+1(k). They are
parametrized by the vertices contained in the closure of a given alcove (in fact, they are all
isomorphic to SLd+1(k◦) and are all conjugate under the action of GLd+1(k) by conjugation).

Remark 1.15. — One can make 2. a bit more precise. The starting point of Bruhat-Tits
theory is indeed that a reductive groupG over any field, say k, splits – hence in particular is
very well understood – after extension to the separable closure ks of the ground field. Then,
in principle, one can go down to the groupG over k by means of suitable Galois action – this
is one leitmotiv in[BT65]. In particular, Borel-Tits theory provides a lot of information about
the groupG(k) by seeing it as the fixed-point setG(ks)Gal(ks/k). When the ground field k is a
valued field, then one can associate a Bruhat-Tits buildingB =B(G,ks) to G⊗k ks together
with an action by isometries ofGal(ks/k). The Bruhat-Tits building ofG over k is contained
in the Galois fixed-point setBGal(ks/k), but this is inclusion is strict in general: the Galois
fixed-point set is bigger than the desired building[Rou77, III] . Still, this may be a good first
approximation of Bruhat-Tits theory to have in mind. We refer to 3.2.2 for further details.

1.2. The SLn case. — We now illustrate many of the previous notions in a very explicit
situation, of arbitrary dimension. Our examples are spacesof norms on a non-Archimedean
vector space. They provide the easiest examples of Bruhat-Tits buildings, and are also very
close to spaces occurring in Berkovich analytic geometry. In this section, we denote by V a
k-vector space and byd+1 its (finite) dimension overk.

Note that until Remark 1.23 we assume that k is a local field.
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1.2.1. Goldman-Iwahori spaces. — The materiel of this subsection is classical and could be
find, for example, in [Wei74].

We are interested in the following space.

Definition 1.16. — TheGoldman-Iwahorispace of the k-vector spaceV is the space of non-
Archimedean norms onV; we denote it byN (V,k). We denote byX (V,k) the quotient
spaceN (V,k)

/
∼, where∼ is the equivalence relation which identifies two homothetic

norms.

To be more precise, let‖ · ‖ and‖ · ‖′ be norms inN (V,k). We have‖ · ‖∼‖ · ‖′ if and
only if there existsc > 0 such that‖ x‖= c ‖ x‖′ for all x ∈ V. In the sequel, we use the
notation[·]∼ to denote the class with respect to the homothety equivalence relation.

Example 1.17. — Here is a simple way to construct non-Archimedean norms onV. Pick
a basise= (e0,e1, . . . ,ed) in V. Then for each choice of parameters c= (c0,c1, . . . ,cd) ∈

Rd+1, we can define the non-Archimedean norm which sends each vector x = ∑i λiei to
maxi{exp(ci) | λi |}, where| · | denotes the absolute value of k. We denote this norm by
‖ · ‖e,c.

We also introduce the following notation and terminology.

Definition 1.18. — (i) Let ‖ · ‖ be a norm and lete be a basis inV. We say that‖ · ‖ is
diagonalizedby e if there exists c∈ Rd+1 such that‖ · ‖=‖ · ‖e,c; in this case, we also
say that the basise is adaptedto the norm‖ · ‖.

(ii) Given a basise, we denote bỹAe the set of norms diagonalized bye:

Ãe = {‖ · ‖e,c : c∈ Rd+1}.

(iii) We denote byAe the quotient of̃Ae by the homothety equivalence relation:Ae= Ãe/∼.

Note that the spacẽAe is naturally an affine space with underlying vector spaceRd+1:
the free transitiveRd+1-action is by shifting the coefficientsci which are the logarithms of
the “weights" exp(ci) for the norms‖ · ‖e,c: ∑i λiei 7→ max06i6d{exp(ci) |λi |}. Under this
identification of affine spaces, we have:Ae ≃ Rd+1/R(1,1, . . . ,1)≃ Rd.

Remark 1.19. — The spaceX (V,k) will be endowed with a Euclidean building structure
(Th.1.25) in which the spacesAe – withevarying over the bases ofV – will be the apartments.

The following fact can be generalized to more general valuedfields than local fields but is
not true in general (Remark 1.24).

Proposition 1.20. — Every norm ofN (V,k) admits an adapted basis inV.

Proof. — Let‖ · ‖ be a norm ofN (V,k). We prove the result by induction on the dimension
of the ambientk-vector space. Letµ be any non-zero linear form on V. The map V\ {0}→

R+ sendingy to |µ(y)|
‖y‖ naturally provides, by homogeneity, a continuous mapφ : P(V)(k)→
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R+. Sincek is locally compact, the projective spaceP(V)(k) is compact, therefore there
exists an elementx∈ V \ {0} at whichφ achieves its supremum, so that

(*)
|µ(z) |
|µ(x) |

‖x‖6‖z‖

for anyz∈ V.

Let z be an arbitrary vector of V. We writez= y+
µ(z)
µ(x)

x according to the direct sum

decomposition V= Ker(µ)⊕ kx. By the ultrametric inequality satisfied by‖ · ‖, we have

(**) ‖z‖6 max{‖y‖;
|µ(z) |
|µ(x) |

‖x‖}

and

(***) ‖y‖6 max{‖z‖;
|µ(z) |
|µ(x) |

‖x‖} .

Inequality (*) says that max{‖z‖;
|µ(z) |
|µ(x) |

‖x‖} =‖z‖, so (***) implies ‖z‖>‖y‖. The

latter inequality together with (*) implies that‖ z‖> max{‖ y‖;
|µ(z) |
|µ(x) |

‖ x‖}. Combining

this with (**) we obtain the equality‖z‖= max{‖y‖;
|µ(z) |
|µ(x) |

‖x‖}. Applying the induction

hypothesis to Ker(µ), we obtain a basis adapted to the restriction of‖ · ‖ to Ker(µ). Addingx

we obtain a basis adapted to‖ · ‖, as required (note thatµ(z)µ(x) is the coordinate corresponding
to the vectorx in any such basis).

Actually, we can push a bit further this existence result about adapted norms.

Proposition 1.21. — For any two norms ofN (V,k) there is a basis ofV simultaneously
adapted to them.

Proof. — We are now given two norms, say‖ · ‖ and‖ · ‖′, in N (V,k). In the proof of
Proposition 1.20, the choice of a non-zero linear formµ had no importance. In the present
situation, we will take advantage of this freedom of choice.We again argue by induction on
the dimension of the ambientk-vector space.

By homogeneity, the map V\{0}→R+ sendingy to
‖y‖
‖y‖′

naturally provides a continuous

mapψ : P(V)(k)→ R+. Again because the projective spaceP(V)(k) is compact, there exists
x∈ V \ {0} at whichψ achieves its supremum, so that

‖y‖
‖x‖

6
‖y‖′

‖x‖′
for anyy∈ V.

Now we endow the dual space V∗ with the operator norm‖ · ‖∗ associated to‖ · ‖ on V.
Since V is finite-dimensional, by biduality (i.e. the normedvector space version of V∗∗ ≃ V),
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we have the equality‖x‖= sup
µ∈V∗\{0}

|µ(x) |
‖µ ‖∗

. By homogeneity and compactness, there exists

λ ∈ V∗ \ {0} such that‖x‖=
|λ (x) |
‖λ ‖∗

. For arbitraryy∈ V we have|λ (y) |6‖y‖ · ‖λ ‖∗, so

the definition ofx implies that
|λ (y) |
|λ (x) |

6
‖y‖
‖x‖

for anyy∈ V.

In other words, we have foundx∈ V andλ ∈ V∗ such that
|λ (y) |
|λ (x) |

6
‖y‖
‖x‖

6
‖y‖′

‖x‖′
for anyy∈ V.

Now we are in position to apply the arguments of the proof of Proposition 1.20 to both‖ · ‖

and‖ · ‖′ to obtain that‖z‖= max{‖y‖;
|λ (z) |
|λ (x) |

‖x‖} and‖z‖′= max{‖y‖′;
|λ (z) |
|λ (x) |

‖x‖′}

for anyz∈V decomposed asz= x+y with y∈Ker(λ ). It remains then to apply the induction
hypothesis (i.e., that the desired statement holds in the ambient dimension minus 1).

1.2.2. Connection with building theory. — It is now time to describe the connection between
Goldman-Iwahori spaces and Euclidean buildings. As already mentioned, the subspacesAe

will be the apartments inX (V,k) (Remark 1.19).
Let us fix a basise in V and consider first the bigger affine spacẽAe = {‖ · ‖e,c : c ∈

Rd+1} ≃ Rd+1. The symmetric groupSd+1 acts on this affine space by permuting the co-
efficientsci . This is obviously a faithful action and we have another one given by the affine
structure. We obtain in this way an action of the groupSd+1⋉Rd+1 on Ãe and, after passing
to the quotient space, we can seeAe as the ambient space of the Euclidean tiling attached
to the affine Coxeter group of typẽAd (the latter group is isomorphic toSd+1 ⋉Zd). The
following result is due to Bruhat-Tits, elaborating on Goldman-Iwahori’s investigation of the
space of normsN (V,k) [GI63].

Theorem 1.22. — The spaceX (V,k) = N (V,k)/ ∼ is a simplicial Euclidean building of
typeÃd, where d+ 1= dim(V); in particular, the apartments are isometric toRd and the
Weyl group is isomorphic toSd+1⋉Zd.

Reference for the proof. — In [BrT72, 10.2] this is stated in group-theoretic terms, so one
has to combine the quoted statement with [loc. cit., 7.4] in order to obtain the above theorem.
This will be explained in Sect. 3.

The 0-skeleton (i.e., the vertices) for the simplicial structure corresponds to thek◦-
latticesin thek-vector space V, that is the freek◦-submodules in V of rankd+1. To a lattice
L is attached a norm‖ · ‖L by setting‖ x‖L= inf{|λ | : λ ∈ k× andλ−1x ∈ L }. One
recovers thek◦-latticeL as the unit ball of the norm‖ · ‖L .

Remark 1.23. — Note that the spaceN (V,k) is an extended building in the sense of
[Tit79]; this is, roughly speaking, a building to which is added a Euclidean factor in order
to account geometrically for the presence of a center of positive dimension.
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Instead of trying to prove this result, let us mention that Proposition 1.21 says, in our
building-theoretic context, that any two points are contained in an apartment. In other words,
this proposition implies axiom (SEB 1) of Definition 1.2: it is the non-Archimedean analogue
of the fact that any two real scalar products are diagonalized in a suitable common basis
(Gram-Schmidt).

Now let us skip the hypothesis thatk is a local field. Ifk is a not discretely valued, then it
is not true in general that every norm inN (V,k) can be diagonalized in some suitable basis.
Therefore we introduce the following subspace:

N (V,k)diag= {norms inN (V,k) admitting an adapted basis}.

Remark 1.24. — We will see (Remark 2.2) that the connection between Berkovich projective
spaces and Bruhat-Tits buildings helps to understand whyN (V,k)−N (V,k)diag 6=∅ if and
only if the valued field k isnotmaximally complete (one also says spherically complete).

Thanks to the subspaceN (V,k)diag, we can state the result in full generality.

Theorem 1.25. — The spaceX (V,k) =N (V,k)diag/∼ is a Euclidean building of typẽAd

in which the apartments are isometric toRd and the Weyl group is isomorphic toSd+1⋉Λ
whereΛ is a translation group, which is discrete if and only if so is the valuation of k.

Reference for the proof. — This is proved for instance in [Par00, III.1.2]; see also [BrT84]
for a very general treatment.

Example 1.26. — Ford = 1, i.e. when V≃ k2, the Bruhat-Tits building

X (V,k) = N (V,k)diag/∼

given by Theorem 1.25 is a tree, which is a (non-simplicial) real tree wheneverk is not
discretely valued.

1.2.3. Group actions. — After illustrating the notion of a building thanks to Goldman-
Iwahori spaces, we now describe the natural action of a general linear group over the valued
field k on its Bruhat-Tits building. We said that buildings are usually used to better under-
stand groups which act sufficiently transitively on them. Wetherefore have to describe the
GL(V,k)-action onX (V,k) given by precomposition on norms (that is,g. ‖ · ‖=‖ · ‖ ◦g−1

for anyg∈ GL(V,k) and any‖ · ‖∈ N (V,k)). Note that we have the formula

g. ‖ · ‖e,c=‖ · ‖g.e,c.

We will also explain how this action can be used to find interesting decompositions of
GL(V,k). Note that the GL(V,k)-action onX (V,k) factors through an action by the group
PGL(V,k).

For the sake of simplicity, we assume that k is discretely valued until the rest of this section.

We describe successively: the action of monomial matrices on the corresponding apart-
ment, stabilizers, fundamental domains and the action of elementary unipotent matrices on
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the buildings (which can be thought of as “foldings" of half-apartments fixing complementary
apartments).

First, it is very useful to restrict our attention to apartments. Pick a basise of V and con-
sider the associated apartmentAe. The stabilizer ofAe in GL(V,k) consists of the subgroup
of linear automorphismsg which aremonomialwith respect toe, that is whose matrix expres-
sion with respect toehas only one non-zero entry in each row and in each column; we denote
Ne = StabGL(V,k)(Ae). Any automorphism in Ne lifts a permutation of the indices of the vec-
torsei (06 i 6 d) in e. This defines a surjective homomorphism Ne ։Sd+1 whose kernel is
the group, say De, of the linear automorphisms diagonalized bye. The group De∩SL(V,k)
lifts the translation subgroup of the (affine) Weyl groupSd+1⋉Zd of X (V,k). Note that
the latter translation group consists of the translations contained in the group generated by
the reflections in the codimension 1 faces of a given alcove, therefore this group is (of finite
index but) smaller than the “obvious" group given by translations with integral coefficients
with respect to the basise. For anyλ ∈ (k×)n, we have the following “translation formula":

λ . ‖ · ‖e,c=‖ · ‖e,(ci−log|λi|)i ,

Example 1.27. — When d= 1 and when k is local, the translations of smallest displacement
length in the (affine) Weyl group of the corresponding tree are translations whose displace-
ment length along their axis is equal to twice the length of anedge.

The fact stated in the example corresponds to the general fact that the SL(V,k)-action on
X (V,k) is type(or color)-preserving: choosingd+1 colors, one can attach a color to each
panel(= codimension 1 facet) so that each color appears exactly once in the closure of any
alcove; a panel of a given color is sent by any element of SL(V,k) to a panel of the same color.
Note that the action of GL(V,k), hence also of PGL(V,k), onX (V,k) is not type-preserving
since PGL(V,k) acts transitively on the set of vertices.

It is natural to first describe the isotropy groups for the action we are interested in.

Proposition 1.28. — We have the following description of stabilizers:

StabGL(V,k)(‖ · ‖e,c) = {g∈ GL(V,k) : |det(g)|= 1 andlog(|gi j |)6 c j − ci},

where[gi j ] is the matrix expression ofGL(V,k) with respect to the basise.

Reference for the proof. — This is for instance [Par00, Cor. III.1.4].

There is also a description of the stabilizer group in SL(V,k) as the set of matrices stabi-
lizing a point with respect to a tropical matrix operation [Wer11, Prop. 2.4].

We now turn our attention to fundamental domains. Letx be a vertex inX (V,k). Fix
a basise such thatx = [‖ · ‖e,0]∼. Then we have an apartmentAe containingx and the
inequalities

c0 6 c1 6 · · ·6 cd

define a Weyl chamber with tipx (after passing to the homothety classes). The other Weyl
chambers with tipx contained inAe are obtained by using the action of the spherical Weyl
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groupSd+1, which amounts to permuting the indices of theci ’s (this action is lifted by the
action of monomial matrices with coefficients±1 and determinant 1).

Accordingly, if we denote byϖ a uniformizer ofk, then the inequalities

c0 6 c1 6 · · ·6 cd and cd − c0 6− log |ϖ |

define an alcove (whose boundary containsx) and any other alcove inAe is obtained by using
the action of the affine Weyl groupSd+1⋉Zd.

Proposition 1.29. — Assume k is local. We have the following description of fundamental
domains.

(i) Given a vertex x, any Weyl chamber with tip x is a fundamental domain for the action
of the maximal compact subgroupStabSL(V,k)(x) onX (V,k).

(ii) Any alcove is a fundamental domain for the natural action ofSL(V,k) on the building
X (V,k).

If we abandon the hypothesis thatk is a local field and assume the absolute value ofk is
surjective (ontoR>0), then the SL(V,k)-action onX (V,k) is transitive.

Sketch of proof. — . Property (ii) follows from (i) and from the previous description of the
action of the monomial matrices of Ne on Ae (note that SL(V,k) is type-preserving, so a
fundamental domain cannot be strictly smaller than an alcove).

(i). A fundamental domain for the action of the symmetric group Sd+1 as above on the
apartmentAe is given by a Weyl chamber with tipx, and the latter symmetric group is lifted
by elements in StabSL(V,k)(x). Therefore it is enough to show that any point of the building
can be mapped intoAe by an element of StabSL(V,k)(x). Pick a pointz in the building and
consider a basise′ such thatAe′ contains bothx and z (Proposition 1.21). We can write
x=‖ · ‖e,0=‖ · ‖e′,c, with weightsc in log |k× | sincex is a vertex. After dilation, if necessary,
of each vector of the basise′, we may – and shall – assume thatc= 0. Pickg∈ SL(V,k) such
thatg.e= e′. Sincee ande′ span the same latticeL overk◦, which is the unit ball forx (see
comment after Th. 1.22), we haveg.L = L and thereforeg stabilizesx. We have therefore
foundg∈ StabSL(V,k)(x) with g.Ae = Ae′ , in particularg−1.zbelongs toAe.

Remark 1.30. — Point (i) above is the geometric way to state the so-called Cartan decom-
position:SL(V,k) = StabSL(V,k)(x) ·T+ ·StabSL(V,k)(x), whereT+ is the semigroup of linear
automorphisms t diagonalized bye and such that t.x belongs to a fixed Weyl chamber in
Ae with tip x. The Weyl chamber can be chosen so thatT+ consists of the diagonal matrices
whose diagonal coefficients are powers of some given uniformizer with the exponents increas-
ing along the diagonal. Let us recall how to prove this by means of elementary arguments
[PR94, §3.4 p. 152]. Let g∈ SL(V,k); we pickλ ∈ k◦ so thatλg is a matrix ofGL(V,k) with
coefficients in k◦. By interpreting left and right multiplication by elementary unipotent matri-
ces as matrix operations on rows and columns, and since k◦ is a principal ideal domain, we
can find p, p′ ∈ SLd+1(k◦) such that p−1λgp′−1 is a diagonal matrix (still with coefficients
in k◦), which we denote by d. Therefore, we can write g= pλ−1dp′; and since g, p and p′
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have determinant 1, so does t= λ−1d. It remains to conjugateλ−1d by a suitable monomial
matrix with coefficients±1 and determinant 1 in order to obtain the desired decomposition.

At the beginning of this subsection, we described the actionof linear automorphisms on
an apartment when the automorphisms are diagonalized by a basis defining the apartment.
One last interesting point is the description of the action of elementary unipotent matrices
(for a given basis). The action looks like a “folding" in the building, fixing a suitable closed
half-apartment.

More precisely, let us introduce the elementary unipotent matricesui j (ν) = id + νEi j

whereν ∈ k and Ei j is the matrix whose only non-zero entry is the(i, j)-th one, equal to
1.

Proposition 1.31. — The intersectioñAe∩ui j (λ ).Ãe is the half-space of̃Ae consisting of
the norms‖ · ‖e,c satisfying cj − ci > log |λ |. The isometry given by the matrix ui j (λ ) fixes

pointwise this intersection and the image of the open half-apartmentÃe−{‖ ·‖e,c: c j − ci >

log |λ |} is (another half-apartment) disjoint from̃Ae.

Proof. — In the above notation, we haveui j (ν)(∑i λiei) = ∑k6=i λkek+(λi +νλ j)ei for any
ν ∈ k.

First, we assume that we haveui j (λ ). ‖ · ‖e,c=‖ · ‖e,c. Then, applying this equality of
norms to the vectorej providesecj =max{ecj ;eci |λ |}, hence the inequalityc j −ci > log |λ |.

Conversely, pick a norm‖ · ‖e,c such thatc j − ci > log | λ | and letx = ∑i λiei . By the
ultrametric inequality, we haveeci | λi − λ λ j |6 max{eci | λi |;eci | λ || λ j |}, and the as-
sumptionc j − ci > log | λ | implies thateci | λi − λ λ j |6 max{eci | λi |;ecj | λ j |}, so that
eci |λi −λ λ j |6 max16ℓ6d ecℓ |λℓ |. Therefore we obtain thatui j (λ ). ‖ x ‖e,c6‖ x ‖e,c for any
vectorx. Replacingλ by−λ andx by ui j (−λ ).x, we finally see that the normsui j (λ ). ‖ · ‖e,c

and‖ · ‖e,c are the same whenc j −ci > log |λ |. We have thus proved that the fixed-point set

of ui j (λ ) in Ãe is the closed half-space Dλ = {‖·‖e,c: c j − ci > log |λ |}.

It follows from this that̃Ae∩ui j (λ ).Ãe contains Dλ . Assume that̃Ae∩ui j (λ ).Ãe ) Dλ in

order to obtain a contradiction. This would provide norms‖ · ‖ and‖ · ‖′ in Ãe−Dλ with the
property thatui j (λ ). ‖ · ‖=‖ · ‖′. But we note that a norm iñAe−Dλ is characterized by its
orthogonal projection onto the boundary hyperplane∂Dλ and by its distance to∂Dλ . Since
ui j (λ ) is an isometry which fixes Dλ we conclude that‖ · ‖=‖ · ‖′, which is in contradiction

with the fact that the fixed-point set ofui j (λ ) in Ãe is exactly Dλ .

2. Special linear groups, Berkovich and Drinfeld spaces

We ended the previous section by an elementary constructionof the building of special lin-
ear groups over discretely valued non-Archimedean field. The generalization to an arbitrary
reductive group over such a field is significantly harder and requires the full development of
Bruhat-Tits, which will be the topic of Section 3. Before diving into the subtelties of buildings



20 BERTRAND RÉMY, AMAURY THUILLIER & ANNETTE WERNER

construction, we keep for a moment the particular case of special linear groups and describe
a realization of their buildings in the framework of Berkovich’s analytic geometry, which
leads very naturally to a compactification of those buildings. The general picture, namely
Berkovich realizations and compactifications of general Bruhat-Tits buildings will be dealt
with in Sect. 4).

Roughly speaking understanding the realization (resp. compactification) described below
of the building of a special linear group amounts to understanding (homothety classes of)
norms on a non-Archimedean vector space (resp. their degenerations), using the viewpoint
of multiplicative seminorms on the corresponding symmetric algebra.

A useful reference for Berkovich theory is [Tem11]. Unless otherwise indicated, we as-
sume in this section that k is a local field.

2.1. Drinfeld upper half spaces and Berkovich affine and projective spaces. —Let V
be a finite-dimensional vector space overk, and let S•V be the symmetric algebra of V.
It is a gradedk-algebra of finite type. Every choice of a basisv0, . . . ,vd of V induces an
isomorphism of S•V with the polynomial ring overk in d+ 1 indeterminates. The affine
spaceA(V) is defined as the spectrum Spec(S•V), and the projective spaceP(V) is defined
as the projective spectrum Proj(S•V). These algebraic varieties give rise to analytic spaces in
the sense of Berkovich, which we briefly describe below.

2.1.1. Drinfeld upper half-spaces in analytic projective spaces. — As a topological space,
the Berkovich affine spaceA(V)an is the set of all multiplicative seminorms on S•V extending
the absolute value onk together with the topology of pointwise convergence. The Berkovich
projective spaceP(V)an is the quotient ofA(V)an−{0} modulo the equivalence relation∼
defined as follows:α ∼ β , if and only if there exists a constantc> 0 such that for allf in SnV
we haveα( f ) = cnβ ( f ). There is a natural PGL(V)-action onP(V)an given bygα = α ◦g−1.
From the viewpoint of Berkovich geometry, Drinfeld upper half-spaces can be introduced as
follows [Ber95].

Definition 2.1. — We denote byΩ the complement of the union of all k-rational hyperplanes
in P(V)an. The analytic spaceΩ is called Drinfeld upper half space.

Our next goal is now to mention some connections between the above analytic spaces and
the Euclidean buildings defined in the previous section.

2.1.2. Retraction onto the Bruhat-Tits building. — Let α be a point inA(V)an, i.e. α is a
multiplicative seminorm on S•V. If α is not contained in anyk-rational hyperplane ofA(V),
then by definitionα does not vanish on any element of S1V = V. Hence the restriction of
the seminormα to the degree one part S1V = V is a norm. Recall that the Goldman-Iwahori
spaceN (V,k) is defined as the set of all non-Archimedean norms on V, and that X (V,k)
denotes the quotient space after the homothety relation (1.2.1). Passing to the quotients we
see that restriction of seminorms induces a map

τ : Ω −→ X (V,k).
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If we endow the Goldman-Iwahori spaceN (V,k) with the coarsest topology, so that all
evaluation maps on a fixedv ∈ V are continuous, andX (V,k) with the quotient topology,
thenτ is continuous. Besides, it is equivariant with respect to the action of PGL(V,k). We
refer to [RTW12, §3] for further details.

2.1.3. Embedding of the building (case of the special lineargroup). — Let nowγ be a non-
trivial norm on V. By Proposition 1.20, there exists a basise0, . . . ,ed of V which is adapted
to γ, i.e. we have

γ
(
∑i λiei

)
= maxi{exp(ci)|λi |}

for some real numbersc0, . . . ,cd. We can associate toγ a multiplicative seminormj(γ) on
S•V by mapping the polynomial∑I=(i0,...,id)aIe

i0
0 . . .eid

d to maxI{|aI |exp(i0c0+ . . .+ idcd)}.
Passing to the quotients, we get a continuous map

j : X (V,k) −→ Ω

satisfyingτ
(

j(α)
)
= α.

Hence j is injective and a homeomorphism onto its image. Therefore the mapj can be
used to realize the Euclidean buildingX (V,k) as a subset of a Berkovich analytic space.
This observation is due to Berkovich, who used it to determine the automorphism group ofΩ
[Ber95].

Remark 2.2. — In this remark, we remove the assumption that k is local and werecall that
the buildingX (V,k) consists of homothety classes ofdiagonalizablenorms onV (Theorem
1.25). Assumingdim(V) = 2 for simplicity, we want to rely on analytic geometry to provethe
existence of non-diagonalizable norms onV for some k.

The map j: X (V,k) → P1(V)an can be defined without any assumption on k. Given
any point x∈ X (V,k), we pick a basise= (e0,e1) diagonalizing x and define j(x) to be
the multiplicative norm onS•(V) mapping an homogeneous polynomial f= ∑ν aνeν0

0 eν1
1 to

maxν{|aν | · |e0|(x)ν0 · |e1|(x)ν1}. We do not distinguish betweenX (V,k) and its image by j
in P(V)an, which consists only of points of types 2 and 3 (this follows from [Tem11, 3.2.11]).

Let us now consider the subsetΩ′ of Ω = P(V)an−P(V)(k) consisting of multiplicative
norms onS•(V) whose restriction toV is diagonalizable. The mapτ introduced above is
well-defined onΩ′ byτ(z) = z|V . This gives a continuous retraction ofΩ′ ontoX (V,k). The
inclusionΩ′ ⊂ Ω is strict in general, i.e. if k is not local. For example, assume that k= Cp

is the completion of an algebraic closure ofQp; this non-Archimedean field is algebraically
closed but not spherically complete. In this situation,Ω contains a point z of type 4[Tem11,
2.3.13], which we can approximate by a sequence(xn) of points inX (V,k) (this is the
translation of the fact that z corresponds to a decreasing sequence of closed balls in k with
empty intersection[Tem11, 2.3.11.(iii)]). Now, if z∈Ω′, thenτ(z) = τ (lim xn) = lim τ(xn) =

lim xn and therefore z belongs toX (V,k). Since the latter set contains only points of type 2
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or 3, this cannot happen and z/∈ Ω′; in particular, the restriction of z toV produces a norm
which is not diagonalizable.

2.2. A first compactification. — Let us now turn to compactification of the building
X (V,k). We give an outline of the construction and refer to [RTW12, §3] for additional
details. The generalization to arbitrary reductive groupsis the subject of 4.2. Recall that we
assume thatk is a local field.

2.2.1. The space of seminorms. — Let us consider the setS (V,k) of non-Archimedean
seminorms on V. Every non-Archimedean seminormγ on V induces a norm on the quotient
space V/ker(γ). Hence using Proposition 1.20, we find that there exists a basis e0, . . . ,ed of
V such thatα

(
∑i λiei

)
= maxi{r i |λi |} for some non-negative real numbersr0, . . . , rd. In this

case we say thatα is diagonalized bye. Note that in contrast to Definition 1.18 we do no
longer assume that ther i are non-zero and hence exponentials.

We can extendγ to a seminormj(γ) on the symmetric algebra S•V ≃ k[e0, . . . ,ed] as
follows:

j(γ)
(

∑I=(i0,...,id)aIe
i0
0 . . .eid

d

)
= max{|aI |r

i0
0 . . . r id

d }.

We denote byX (V,k) the quotient ofS (V,k) \ {0} after the equivalence relation∼
defined as follows:α ∼ β if and only if there exists a real constantc with α = cβ . We equip
S (V,k) with the topology of pointwise convergence andX (V,k) with the quotient topology.
Then the associationγ 7→ j(γ) induces a continuous and PGL(V,k)-equivariant map

j : X (V,k)→ P(V)an

which extends the mapj : X (V,k)→ Ω defined in the previous section.

2.2.2. Extension of the retraction onto the building. — Moreover, by restriction to the de-
gree one part S1V = V, a non-zero multiplicative seminorm on S•V yields an element in
S (V,k)−{0}. Passing to the quotients, this induces a map

τ : P(V)an−→ X (V,k)

extending the mapτ : Ω → X (V,k) defined in section 2.1.
As in section 2.1, we see thatτ ◦ j is the identity onX (V,k), which implies thatj is

injective: it is a homeomorphism onto its (closed) image inP(V)an. SinceP(V)an is compact,
we deduce that the image ofj, and henceX (V,k), is compact. AsX (V,k) is an open subset
of X (V,k), the latter space is a compactification of the Euclidean buildingX (V,k); it was
studied in [Wer04].

2.2.3. The strata of the compactification. — For every proper subspace W of V we can ex-
tend norms on V/W to non-trivial seminorms on V by composing the norm with thequotient
map V→ V/W. This defines a continuous embedding

X (V/W,k)→ X (V,k).
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Since every seminorm on V is induced in this way from a norm on the quotient space after
its kernel, we find thatX (V,k) is the disjoint union of all Euclidean buildingsX (V/W,k),
where W runs over all proper subspaces of V. Hence our compactification of the Euclidean
buildingX (V,k) is a union of Euclidean buildings of smaller rank.

2.3. Topology and group action. —We will now investigate the convergence of sequences
in X (V,k) and deduce that it is compact. We also analyze the action of the group SL(V,k)
on this space.

2.3.1. Degeneracy of norms to seminorms and compactness. — Let us first investigate con-
vergence to the boundary ofX (V,k) in X (V,k) = (S (V,k)\{0})/ ∼. We fix a basis
e= (e0, . . . ,ed) of V and denote byAe the corresponding apartment associated to the norms
diagonalized byeas in Definition 1.18. We denote byAe⊂X (V,k) all classes ofseminorms
which are diagonalized bye.

We say that a sequence(zn)n of points inAe is distinguished, if there exists a non-empty
subset I of{0, . . . ,d} such that:

(a) For alli ∈ I and alln we havezn(ei) 6= 0.

(b) for anyi, j ∈ I, the sequence
(

zn(ej )

zn(ei)

)
n

converges to a positive real number;

(c) for anyi ∈ I and j ∈ {0, . . . ,d}− I, the sequence
(

zn(ej )

zn(ei)

)
n

converges to 0.

Here we define
(

zn(ei)
zn(ej )

)
n

as
(

xn(ei)
xn(ej )

)
n

for an arbitrary representativexn ∈S (V,k) of the class

zn. Note that this expression does not depend on the choice of the representativexn.

Lemma 2.3. — Let (zn)n be a distinguished sequence of points inAe. Choose some element
i ∈ I. We define a point z∞ in S (V,k) as the homothety class of the seminorm x∞ defined as
follows:

x∞(ej) =

{
limn

(
zn(ej )

zn(ei)

)
if j ∈ I

0 if j /∈ I

and x∞(∑ j a jej) = max|a j |x∞(ej). Then z∞ does not depend on the choice of i, and the
sequence(zn)n converges to z∞ in X (V,k).

Proof. — Let xn be a representative ofzn in S (V,k). For i, j andℓ contained inI we have

lim
n

(
xn(ej)

xn(eℓ)

)
= lim

n

(
xn(ej)

xn(ei)

)
lim

n

(
xn(ei)

xn(eℓ)

)
,

which implies that the definition of the seminorm classz∞ does not depend on the choice of
i ∈ I .

The convergence statement is obvious, since the seminormxn is equivalent to(xn(ei))
−1xn.

Hence the distinguished sequence of norm classes(zn)n considered in the Lemma con-
verges to a seminorm class whose kernelWI is spanned by allej with j /∈ I . Therefore the
limit point z∞ lies in the Euclidean buildingX (V/WI ) at the boundary.
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Note that the preceding Lemma implies thatAe is the closure ofAe in X (V,k). Namely,
considerz∈ Ae, i.e. z is the class of a seminormx on V which is diagonalizable bye. For
everyn we define a normxn on V by

xn(ei) =

{
x(ei), if x(ei) 6= 0
1
n, if x(ei) = 0

and
xn(∑

i

aiei) = max
i

|ai |xn(ei).

Then the sequence of norm classesxn = [zn]∼ in Ae is distinguished with respect to the set
I = {i : x(ei) 6= 0} and it converges towardsz.

We will now deduce from these convergence results that the space of seminorms is com-
pact. We begin by showing thatAe is compact.

Proposition 2.4. — Let (zn)n be a sequence of points inAe. Then(zn)n has a converging
subsequence.

Proof. — Let xn be seminorms representing the pointszn. By the box principle, there exists
an indexi ∈ {0, . . . ,d} such that after passing to a subsequence we have

xn(ei)> xn(ej) for all j = 0, . . . ,d,n> 0.

In particular we havexn(ei)> 0. For eachj = 0, . . . ,d we look at the sequence

β ( j)n =
xn(ej)

xn(ei)

which lies between zero and one. In particular,β (i)n = 1 is constant.
After passing to a subsequence of(zn)n we may – and shall – assume that all sequences

β ( j)n converge to someβ ( j) between zero and one. LetI be the set of allj = 0, . . . ,n
such thatβ ( j) > 0. Then a subsequence of(zn)n is distinguished with respect toI , hence it
converges by Lemma 2.3.

SinceAe is metrizable, the preceding proposition shows thatAe is compact.
We can now describe the SL(V,k)-action on the seminorm compactification of the

Goldman-Iwahori space of V. As before, we fix a basise= (e0, . . . ,en).
Let o be the homothety class of the norm on V defined by

∣∣∣∣∣
d

∑
i=0

aiei

∣∣∣∣∣(o) = max
06i6d

|ai |

and let
Po = {g∈ SL(V,k) ; g ·o∼ o}

be the stabilizer ofo. It follows from Proposition 1.28 that Po = SLd+1(k0) with respect to
the basise.

Lemma 2.5. — The mapPo×Ae → X (V,k) given by theSL(V,k)-action is surjective.
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Proof. — Let [x]∼ be an arbitrary point inX (V,k). The seminormx is diagonalizable with
respect to some basise′ of V. A similar argument as in the proof of Proposition 1.29 shows
that there exists an elementh∈Po such thathx lies inAe (actuallyhx lies in the closure, taken
in the seminorm compactification, of a Weyl chamber with tipo).

The group Po is closed and bounded in SL(V,k), hence compact. SinceAe is compact by
Proposition 2.4, the previous Lemma proves thatX (V,k) is compact.

2.3.2. Isotropy groups. — Let z be a point inX (V,k) represented by a seminormx with
kernel W⊂ V. By x we denote the norm induced byx on the quotient space V/W. By defini-
tion, an elementg∈ PGL(V,k) stabilizesz if and only if one (and hence any) representative
h of g in GL(V,k) satisfieshx∼ x, i.e. if and only if there exists someγ > 0 such that

(∗) x(h−1(v)) = γx(v) for all v∈ V.

This is equivalent to saying thath preserves the subspace W and that the induced elementh
in GL(V/W,k) stabilizes the equivalence class of the normx on V/W. Hence we find

StabPGL(V,k)(z) = {h∈ GL(V,k) : h fixes the subspace W andhx∼ x}/k×.

Let us now assume thatz is contained in the compactified apartmentAe given by the basis
eof V. Then there are non-negative real numbersr0, r1, . . . , rd such that

x(∑
i

aiei) = max
i
{r i |ai |}.

The space W is generated by all vectorsei such thatr i = 0. We assume that ifr i andr j are
both non-zero, the elementr j/r i is contained in the value group|k∗| of k. In this case, ifh
stabilizesz, we find thatγ = x(h−1ei)/r i is contained in the value group|k∗| of k, i.e. we
haveγ = |λ | for someλ ∈ k∗. Hence(λh)x= x. Therefore in this case the stabilizer ofz in
PGL(V,k) is equal to the image of

{h∈ GL(V,k) : h fixes the subspace W andhx= x}

under the natural map from GL(V,k) to PGL(V,k).

Lemma 2.6. — Assume that z is contained in the closed Weyl chamberC = {[x]∼ ∈ Ae :
x(e0)6 x(e1)6 . . .6 x(ed)}, i.e. using the previous notation we have r0 6 r1 6 . . .6 rd. Let
d− µ be the index such that rd−µ = 0 and rd−µ+1 > 0. (If z is contained inAe, then we put
µ = d+1. ) Then the space W is generated by the vectors ei with i 6 d− µ . We assume as
above that rj/r i is contained in|k∗| if i > d− µ and j> d− µ . Writing elements inGL(V)

as matrices with respect to the basise, we find thatStabPGL(V,k)(z) is the image of

{(
A B
0 D

)
∈ GLd+1(k) : D = (δi j ) ∈ GLµ(k),

with |det(D) |= 1 and|δi j |6 r j/r i for all i , j 6 µ .
}

in PGL(V,k).
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Proof. — This follows directly from the previous considerations combined with Proposition
1.28 which describes the stabilizer groups of norms.

The isotropy groups of the boundary points can also be described in terms of tropical linear
algebra, see [Wer11, Proposition 3.8].

3. Bruhat-Tits theory

We provide now a very short survey of Bruhat-Tits theory. Themain achievement of the
latter theory is the existence, for many reductive groups over valued fields, of a combinatorial
structure on the rational points; the geometric viewpoint on this is the existence of a strongly
transitive action of the group of rational points on a Euclidean building. Roughly speaking,
one half of this theory (the one written in [BrT72]) is of geometric and combinatorial nature
and involves group actions on Euclidean buildings: the existence of a strongly transitive
action on such a building is abstractly shown to come from thefact that the involved group
can be endowed with the structure of a valued root group datum. The other half of the theory
(the one written in [BrT84]) shows that in many situations, in particular when the valued
ground field is local, the group of rational points can be endowed with the structure of a
valued root group datum. This is proved by subtle arguments of descent of the ground field
and the main tool for this is provided by group schemes over the ring of integers of the valued
ground field. Though it concentrates on the case when the ground field is local, the survey
article [Tit79] written some decades ago by J. Tits himself is still very useful. For a very
readable introduction covering also the case of a non-discrete valuation, we recommend the
recent text of Rousseau [Rou09].

3.1. Reductive groups. —We introduce a well-known family of algebraic groups which
contains most classical groups (i.e., groups which are automorphism groups of suitable bi-
linear or sesquilinear forms, possibly taking into accountan involution, see [Wei60] and
[KMRT98 ]). The ground field here is not assumed to be endowed with any absolute value.
The structure theory for rational points is basically due toC. Chevalley over algebraically
closed fields [Che05], and to A. Borel and J. Tits over arbitrary fields [BT65] (assuming a
natural isotropy hypothesis).

3.1.1. Basic structure results. — We first need to recall some facts about general linear
algebraic groups, up to quoting classical conjugacy theorems and showing how to exhibit
a root system in a reductive group. Useful references are A. Borel’s [Bor91], Demazure-
Gabriel’s [DG70] and W.C. Waterhouse’s [Wat79] books.

Linear algebraic groups.— By convention, unless otherwise stated, an “algebraic group"
in what follows means a “linear algebraic group over some ground field"; being a linear
algebraic group amounts to being a smooth affine algebraic group scheme (over a field). Any
algebraic group can be embedded as a closed subgroup of some group GL(V) for a suitable
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vector space over the same ground field (see [Wat79, 3.4] for a scheme-theoretic statement
and [Bor91, Prop. 1.12 and Th. 5.1] for stronger statements but in a moreclassical context).

Let G be such a group over a fieldk; we will often consider the group Gka = G⊗k ka

obtained by extension of scalars fromk to an algebraic closureka.

Unipotent and diagonalizable groups.— We say thatg∈ G(ka) is unipotentif it is sent to
a unipotent matrix in some (a posterioriany) linear embeddingϕ : G →֒ GL(V): this means
that ϕ(g)− idV is nilpotent. The group Gka is calledunipotentif so are all its elements;
this is equivalent to requiring that the group fixes a vector in any finite-dimensional linear
representation as above [Wat79, 8.3].

The group G is said to be atorus if it is connected and if Gka is diagonalizable, which
is to say that the algebra of regular functionsO(Gka) is generated by the characters of Gka,
i.e.,O(Gka) ≃ ka[X(Gka)] [Bor91, §8]. Here, X(Gka) denotes the finitely generated abelian
group of characters Gka → Gm,ka andka[X(Gka)] is the corresponding group algebra overka.
A torus G defined overk (also called ak-torus) is said to besplit over kif the above condi-
tion holds overk, i.e., if its coordinate ringO(G) is the group algebra of the abelian group
X∗(G) = Homk,Gr (G,Gm,k). In other words, a torus is a connected group of simultaneously
diagonalizable matrices in any linear embedding overka as above, and it isk-split if it is
diagonalized in any linear embedding defined overk [Wat79, §7].

Lie algebra and adjoint representation.— One basic tool in studying connected real Lie
groups is the Lie algebra of such a group, that is its tangent space at the identity element
[Bor91, 3.5]. In the context of algebraic groups, the definition is the same but it is conve-
niently introduced in a functorial way [Wat79, §12].

Definition 3.1. — Let G be a linear algebraic group over a field k. TheLie algebraof G,
denoted byL (G), is the kernel of the natural mapG(k[ε]) → G(k), where k[ε] is the k-
algebra k[X]/(X) andε is the class of X; in particular, we haveε2 = 0.

We havek[ε] = k⊕ kε and the natural map above is obtained by applying the functor
of points G to the mapk[ε] → k sendingε to 0. The bracket forL (G) is given by the
commutator (group-theoretic) operation [Wat79, 12.2-12.3].

Example 3.2. — For G= GL(V), we haveL (G) ≃ End(V) whereEnd(V) denotes the k-
vector space of all linear endomorphisms ofV. More precisely, any element ofL

(
GL(V)

)
is

of the formidV +uε where u∈End(V) is arbitrary. The previous isomorphism is simply given
by u 7→ idV +uε and the usual Lie bracket forEnd(V) is recovered thanks to the following
computation inGL(V,k[ε]): [idV +uε, idV +u′ε] = idV +(uu′−u′u)ε – note that the symbol
[., .] on the left hand-side stands for a commutator and that(idV +uε)−1 = idV −uε for any
u∈ End(V).

An important tool to classify algebraic groups is the adjoint representation [Bor91, 3.13].

Definition 3.3. — Let G be a linear algebraic group over a field k. Theadjoint representa-
tion of G is the linear representationAd : G→ GL

(
L (G)

)
defined byAd(g) = int(g) |L (G)
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for any g∈ G, whereint(g) denotes the conjugacy h7→ ghg−1 – the restriction makes sense
since, for any k-algebraR, bothG(R) andL (G)⊗k R can be seen as subgroups ofG(R[ε])
and the latter one is normal.

In other words, the adjoint representation is the linear representation provided by differ-
entiating conjugacies at the identity element.

Example 3.4. — For G=SL(V), we haveL (G)≃{u∈End(V) : tr(u) = 0} andAd(g).u=
gug−1 for any g∈SL(V) and any u∈L (G). In this case, we write sometimesL (G) = sl(V).

Reductive and semisimple groups.— The starting point for the definition of reductive and
semisimple groups consists of the following existence statement [Bor91, 11.21].

Proposition/Definition 3.5. — Let G be a linear algebraic group over a field k.

(i) There is a unique connected, unipotent, normal subgroup inGka, which is maximal for
these properties. It is called theunipotent radicalof G and is denoted byRu(G).

(ii) There is a unique connected, solvable, normal subgroup inGka, which is maximal for
these properties. It is called theradicalof G and is denoted byR(G).

The statement for the radical is implied by a finite dimensionargument and the fact that
the Zariski closure of the product of two connected, normal,solvable subgroups is again
connected, normal and solvable. The unipotent radical is also the unipotent part of the radical:
indeed, in a connected solvable group (such asR(G)), the unipotent elements form a closed,
connected, normal subgroup [Wat79, 10.3]. Note that by their very definitions, the radical
and the unipotent radical depend only on theka-group Gka and not on thek-group G.

Definition 3.6. — Let G be a linear algebraic group over a field k.

(i) We say thatG is reductiveif we haveRu(G) = {1}.
(ii) We say thatG is semisimpleif we haveR(G) = {1}.

Example 3.7. — For any finite-dimensional k-vector spaceV, the groupGL(V) is reductive
and SL(V) is semisimple. The groupsSp2n and SO(q) (for most quadratic forms q) are
semisimple.

If, taking into account the ground fieldk, we had used a rational version of the unipotent
radical, then we would have obtained a weaker notion of reductivity. More precisely, it
makes sense to introduce therational unipotent radical, denoted byRu,k(G) and contained
in Ru(G), defined to be the unique maximal connected, unipotent subgroup in Gdefined over
k. Then G is calledk-pseudo-reductiveif we haveRu,k(G) = {1}. This class of groups is
considered in the note [BT78], it is first investigated in some of J. Tits’ lectures ([Tit92] and
[Tit93]). A thorough study of pseudo-reductive groups and their classification are written
in B. Conrad, O. Gabber and G. Prasad’s book [CGP10] (an available survey is for instance
[Rém11]).

In the present paper, we are henceforth interested in reductive groups.



BRUHAT-TITS BUILDINGS AND ANALYTIC GEOMETRY 29

Parabolic subgroups.— The notion of a parabolic subgroup can be defined for any alge-
braic group [Bor91, 11.2] but it is mostly useful to understand the structure ofrational points
of reductive groups.

Definition 3.8. — Let G be a linear algebraic group over a field k and letH be a Zariski
closed subgroup of G. The subgroupH is calledparabolicif the quotient spaceG/H is a
complete variety.

It turns outa posteriori that for a parabolic subgroup H, the variety G/H is actually a
projective one; in fact, it can be shown that H is a parabolic subgroup if and only if it contains
aBorel subgroup, that is a maximal connected solvable subgroup [Bor91, 11.2].

Example 3.9. — For G= GL(V), the parabolic subgroups are, up to conjugacy, the various
groups of upper triangular block matrices (there is one conjugacy class for each “shape" of
such matrices, and these conjugacy classes exhaust all possibilities).

The completeness of the quotient space G/H is used to have fixed-points for some sub-
group action, which eventually provides conjugacy resultsas stated below [DG70, IV, §4, Th.
3.2].

Conjugacy theorems.— We finally mention a few results which, among other things,
allow one to formulate classification results independent from the choices made to construct
the classification data (e.g., the root system – see 3.1.2 below) [Bor91, Th. 20.9].

Theorem 3.10. — Let G be a linear algebraic group over a field k. We assume thatG is
reductive.

(i) Minimal parabolic k-subgroups are conjugate over k, that isany two minimal parabolic
k-subgroups are conjugate by an element ofG(k).

(ii) Accordingly, maximal k-split tori are conjugate over k.

For the rational conjugacy of tori, the reductivity assumption can be dropped and simply
replaced by a connectedness assumption; this more general result is stated in [CGP10, C.2].
In the general context of connected groups (instead of reductive ones), one has to replace
parabolic subgroups bypseudo-parabolicones in order to obtain similar conjugacy results
[CGP10, Th. C.2.5].

3.1.2. Root system, root datum and root group datum. — The notion of a root system is
studied in detail in [Bou07, IV]. It is a combinatorial notion which encodes part of the struc-
ture of rational points of semisimple groups. It also provides a nice uniform way to classify
semisimple groups over algebraically closed fields up to isogeny, a striking fact being that the
outcome does not depend on the characteristic of the field [Che05].

In order to state the more precise classification of reductive groups up to isomorphism
(over algebraically closed fields, or more generally of split reductive groups), it is necessary
to introduce a more subtle notion, namely that of aroot datum:
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Definition 3.11. — Let X be a finitely generated free abelian group; we denote byXˇ its
Z-dual and by〈·, ·〉 the duality bracket. Let R and Rˇ be two finite subsets inX and X ,̌
respectively. We assume we are given a bijectionˇ: α 7→ α ˇfrom R onto Ř. We have thus, for
eachα ∈ R, endomorphisms

sα : x 7→ x−〈x,α ˇ〉α and sαˇ: x̌ 7→ xˇ−〈α, x̌ 〉α ˇ

of the groupsX andX ,̌ respectively. The quadrupleΨ = (X,R,X ,̌Rˇ) is said to be aroot
datumif it satisfies the following axioms:

RD 1 For eachα ∈ R, we have〈α,α ˇ〉= 2.
RD 2 For eachα ∈ R, we have sα (R) = R and sαˇ(Rˇ) = R.̌

This formulation is taken from [Spr98]. The elements ofRare called roots and the reflec-
tionssα generate a finite group W of automorphisms of X, called theWeyl groupof Ψ.

Let Q denote the subgroup of X generated byR. Up to introducing V= Q⊗Z R and
choosing a suitable W-invariant scalar product on V, we can see thatR is a root system in the
following classical sense:

Definition 3.12. — Let V be a finite-dimensional real vector space endowed with a scalar
product which we denote by〈·, ·〉. We say that a finite subset R ofV −{0} is a root systemif
it spansV and if it satisfies the following two conditions.

RS 1 To eachα ∈ R is associated a reflection sα which stabilizes R and switchesα and−α.
RS 2 For anyα,β ∈ R, we have sα(β )−β ∈ Zα.

The Weyl group ofΨ is identified with the group of automorphisms of V generated by the
euclidean reflectionssα .

Let R be a root system. For any subset∆ in R, we denote byR+(∆) the set of roots
which can be written as a linear combination of elements of∆ with non-negative integral
coefficients. We say that∆ is abasisfor the root systemR if it is a basis of V and if we have
R= R+(∆)⊔R−(∆), whereR−(∆) = −R+(∆). Any root system admits a basis and any two
bases of a given root system are conjugate under the Weyl group action [Bou07, VI.1.5, Th.
2]. When∆ is a basis of the root systemR, we say thatR+(∆) is asystem of positive rootsin
R; the elements in∆ are then calledsimple roots(with respect to the choice of∆). Thecoroot
associated toα is the linear formα∨ on V defined byβ − sα(β ) = α∨(β )α; in particular,
we haveα∨(α) = 2.

Example 3.13. — Here is a well-known concrete construction of the root system of typeAn.
Let Rn+1 =

⊕n
i=0Rεi be equipped with the standard scalar product, making the basis (εi)

orthonormal. Let us introduce the hyperplaneV = {∑i λiεi : ∑i λi = 0}; we also setαi, j =

εi −ε j for i 6= j. Then R= {αi, j : i 6= j} is a root system inV and∆= {αi,i+1 : 06 i 6 n−1} is
a basis of it for which R+(∆) = {αi, j : i < j}. The Weyl group is isomorphic to the symmetric
groupSn+1; canonical generators leading to a Coxeter presentation are for instance given
by transpositions i↔ i +1.
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Root systems in reductive groups appear as follows. The restriction of the adjoint repre-
sentation (Definition 3.3) to a maximalk-split torus T is simultaneously diagonalizable over
k, so that we can write:

L (G) =
⊕

ϕ∈X∗(T)

L (G)ϕ

where

L (G)ϕ = {v∈ L (G) : Ad(t).v= ϕ(t)v for all t ∈ T(k)}.

The normalizer N= NG(T) acts on X∗(T) via its action by (algebraic) conjugation on T,
hence it permutes algebraic characters. The action of the centralizer Z= ZG(T) is trivial, so
the group actually acting is the finite quotient N(k)/Z(k) (finiteness follows from rigidity of
tori [Wat79, 7.7], which implies that the identity component N◦ centralizes T; in fact, we
have N◦ = Z since centralizers of tori in connected groups are connected).

R= R(T,G) = {ϕ ∈ X∗(T) : L (G)ϕ 6= {0}}.

It turns out that [Bor91, Th. 21.6]:

1. theR-linear span ofR is V = Q⊗Z R, where Q⊂ X∗(T) is generated byR;
2. there exists an N(k)/Z(k)-invariant scalar product V;
3. the setR is a root system in V for this scalar product;
4. the Weyl group W of this root system is isomorphic to N(k)/Z(k).

Moreover one can go further and introduce a root datum by setting X = X∗(T) and by taking
Xˇ to be the group of all 1-parameter multiplicative subgroups of T. The rootsα have just
been introduced before, but distinguishing the coroots among the cocharacters in Xˇ is less
immediate (over algebraically closed fields or more generally in the split case, they can be
defined by means of computation in copies of SL2 attached to roots as in Example 3.15
below). We won’t need this but, as already mentioned, in the split case the resulting quadruple
Ψ = (X,R,X ,̌R )̌ characterizes, up to isomorphism, the reductive group we started with (see
[SGA3] or [Spr98, Chap. 9 and 10]).

One of the main results of Borel-Tits theory [BT65] about reductive groups over arbitrary
fields is the existence of a very precise combinatorics on thegroups of rational points. The
definition of this combinatorial structure – called aroot group datum– is given in a purely
group-theoretic context. It is so to speak a collection of subgroups and classes modulo an
abstract subgroup T, all indexed by an abstract root system and subject to relations which
generalize and formalize the presentation of SLn (or of any split simply connected simple
group) over a field by means of elementary unipotent matrices[Ste68]. This combinatorics
for the rational points G(k) of an isotropic reductive group G is indexed by the root system
R(T,G) with respect to a maximal split torus which we have just introduced; in that case, the
abstract group T of the root group datum can be chosen to be thegroup of rational points of
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the maximal split torus (previously denoted by the same letter!). More precisely, the axioms
of a root group datum are given in the following definition, taken from [BrT72, 6.1](1).

Definition 3.14. — Let R be a root system and letG be a group. Assume that we are given a
system

(
T,(Uα ,Mα)α∈R

)
whereT and eachUα is a subgroup inG, and eachMα is a right

congruence class moduloT. We say that this system is aroot group datumof type R forG if
it satisfies the following axioms:

RGD 1 For eachα ∈ R, we haveUα 6= {1}.
RGD 2 For anyα,β ∈ R, the commutator group[Uα ,Uβ ] is contained in the group generated

by the groupsUγ indexed by rootsγ in R∩ (Z>0α +Z>0β ).
RGD 3 If bothα and2α belong to R, we haveU2α ( Uα .
RGD 4 For eachα ∈ R, the classMα satisfiesU−α−{1} ⊂ UαMαUα .
RGD 5 For anyα,β ∈ R and each n∈ Mα , we have nUβ n−1 = Usα (β ).
RGD 6 We haveTU+ ∩U− = {1}, whereU± is the subgroup generated by the groupsUα

indexed by the rootsα of sign±.

The groupsUα are called theroot groupsof the root group datum.

This list of axioms is probably a bit hard to swallow in one stroke, but the example of GLn
can help a lot to have clearer ideas. We use the notation of Example 3.13 (root system of type
An).

Example 3.15. — LetG= GLn+1 and letT be the group of invertible diagonal matrices. To
each rootαi, j of the root system R of typeAn, we attach the subgroup of elementary unipotent
matricesUi, j = Uαi, j = {In + λEi, j : λ ∈ k}. We can see easily thatNG(T) = {monomial
matrices}, that ZG(T) = T and finally thatNG(T)/ZG(T) ≃ Sn+1. Acting by conjugation,
the groupNG(T) permutes the subgroupsUαi, j and the corresponding action on the indexing
roots is nothing else than the action of the Weyl groupSn+1 on R. The axioms of a root group
datum follow from matrix computation, in particular checking axiom(RGD4)can be reduced
to the following equality inSL2:(

1 0
1 1

)
=

(
1 1
0 1

)(
0 −1
1 0

)(
1 1
0 1

)
.

We can now conclude this subsection by quoting a general result due to A. Borel and J. Tits
(see [BrT72, 6.1.3 c)] and [BT65]).

Theorem 3.16. — Let G be a connected reductive group over a field k, which we assume
to be k-isotropic. LetT be a maximal k-split torus inG, which provides a root system R=
R(T,G).

(1)Though the notion is taken from [BrT72], the terminology we use here is not the exact translation ofthe French
“donnée radicielle" as used in [loc. cit.]: this is because we have already used the terminology “root datum" in the
combinatorial sense of [SGA3]. Accordingly, we use the notation of [SGA3] instead of that of [BrT72], e.g. a root
system is denoted by the letterR instead ofΦ.
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(i) For every rootα ∈R the connected subgroupUα with Lie algebraL (G)α is unipotent;
moreover it is abelian or two-step nilpotent.

(ii) The subgroupsT(k) andUα(k), for α ∈ R, are part of a root group datum of type R in
the group of rational pointsG(k).

Recall that we say that a reductive group isisotropic over kif it contains a non-centralk-
split torus of positive dimension (the terminology is inspired by the case of orthogonal groups
and is compatible with the notion of isotropy for quadratic forms [Bor91, 23.4]). Note finally
that the structure of a root group datum implies that (coarser) of a Tits system (also called
BN-pair) [Bou07, IV.2], which was used by J. Tits to prove, in a uniform way, the simplicity
(modulo center) of the groups of rational points of isotropic simple groups (over sufficiently
large fields) [Tit64].

3.1.3. Valuations on root group data. — Bruhat-Tits theory deals with isotropic reductive
groups over valued fields. As for Borel-Tits theory (arbitrary ground field), a substantial part
of this theory can also be summed up in combinatorial terms. This can be done by using the
notion of avaluationof a root group datum, which formalizes among other things the fact
that the valuation of the ground field induces a filtration on each root group. The definition is
taken from [BrT72, 6.2].

Definition 3.17. — Let G be an abstract group and let
(
T,(Uα ,Mα)α∈R

)
be a root group

datum of type R for it. Avaluationof this root group datum is a collectionϕ = (ϕα)α∈R of
mapsϕα : Uα → R∪{∞} satisfying the following axioms.

V0 For eachα ∈ R, the image ofϕα contains at least three elements.
V1 For eachα ∈ R and eachℓ ∈ R∪{∞}, the preimageϕ−1

α ([ℓ;∞]) is a subgroup ofUα ,
which we denote byUα ,ℓ; moreover we requireUα ,∞ = {1}.

V2 For eachα ∈ R and each n∈ Mα , the map u7→ ϕ−α(u)−ϕα (nun−1) is constant on
the setU∗

−α = U−α −{1}.
V3 For anyα,β ∈R andℓ,ℓ′ ∈R such thatβ 6∈ −R+α, the commutator group[Uα ,ℓ,Uβ ,ℓ′ ]

lies in the group generated by the groupsUpα+qβ ,pℓ+qℓ′ where p,q ∈ Z>0 and pα +

qβ ∈ R.
V4 If bothα and2α belong to R, the restriction of2ϕα to U2α is equal toϕ2α .
V5 For α ∈R, u∈Uα and u′,u′′ ∈U−α such that u′uu′′ ∈Mα , we haveϕ−α(u′)=−ϕα(u).

The geometric counterpart to this list of technical axioms is the existence, for a group
endowed with a valued root group datum, of a Euclidean building (called theBruhat-Tits
building of the group) on which it acts by isometries with remarkable transitivity proper-
ties [BrT72, §7]. For instance, if the ground field is discretely valued,the corresponding
building is simplicial and a fundamental domain for the group action is given by a maximal
(poly)simplex, also called analcove(in fact, if the ground field is discretely valued, the ex-
istence of a valuation on a root group datum can be conveniently replaced by the existence
of an affine Tits system [BrT72, §2]). As already mentioned, the action turns out to be
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strongly transitive, meaning that the group acts transitively on the inclusions of an alcove in
an apartment (Remark 1.5 in 1.1.1).

3.2. Bruhat-Tits buildings. — The purpose of this subsection is to roughly explain how
Bruhat-Tits theory attaches a Euclidean building to a suitable reductive group defined over a
valued field. This Bruhat-Tits building comes equipped witha strongly transitive action by the
group of rational points, which in turn implies many interesting decompositions of the group.
The latter decompositions are useful for instance to doing harmonic analysis or studying
various classes of linear representations of the group. We roughly explain the descent method
used to perform the construction of the Euclidean buildings, and finally mention how some
integral models are both one of the main tools and an important outcome of the theory.

3.2.1. Foldings and gluing. — We keep the (connected) semisimple group G, defined over
the (now, complete valued non-Archimedean) fieldk but from now on,we assume for simplic-
ity that k is a local field (i.e., is locally compact) and we denote byω its discrete valuation,
normalized so thatω(k×) = Z. Henceω(·) = −logq| · |, whereq > 1 is a generator of the
discrete group|k×|.

We also assume that G contains ak-split torus of positive dimension: this is an isotropy
assumption overk already introduced at the end of 3.1.2 (in this situation, this algebraic
condition is equivalent to the topological condition that the group of rational points G(k) is
non-compact [Pra82]). In order to associate to G a Euclidean building on which G(k) acts
strongly transitively, according to [Tit79] we need two things:

1. a model, sayΣ, for the apartments;
2. a way to glue many copies ofΣ altogether in such a way that they will satisfy the

incidence axioms of a building (1.1.1).

Model for the apartment.— References for what follows are [Tit79, §1] or [Lan96, Chap-
ter I]. Let T be a maximalk-split torus in G and let X∗(T) denote its group of 1-parameter
subgroups (orcocharacters). As a first step, we setΣvect= X∗(T)⊗Z R.

Proposition 3.18. — There exists an affine spaceΣ with underlying vector spaceΣvect,
equipped with an action by affine transformationsν : N(k) = NG(T)(k) → Aff (Σ) and
having the following properties.

(i) There is a scalar product onΣ such thatν
(
N(k)

)
is an affine reflection group.

(ii) The vectorial part of this group is the Weyl group of the root system R= R(T,G).
(iii) The translation (normal) subgroup acts cocompactly onΣ, it is equal toν

(
Z(k)

)
and

the vectorν(z) attached to an element z∈ Z(k) is defined byχ
(
ν(z)

)
=−ω

(
χ(z)

)
for

anyχ ∈ X∗(T).

If we go back to the example of GL(V) acting by precomposition on the space of classes
of normsX (V,k) as described in 1.2, we can see the previous statement as a generalization
of the fact, mentioned in 1.2.3, that for any basise of V, the group Ne of monomial matrices
with respect toe acts on the apartmentAe asSd ⋉Zd whered = dim(V).
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Filtrations and gluing.— Still for this special case, we saw (Proposition refprop -fold-
ing) that any elementary unipotent matrixui j (λ ) = Id +λEi j fixes pointwise a closed half-
apartment inAe bounded by a hyperplane of the form{ci − c j = constant} (the constant
depends on the valuationω(λ ) of the additive parameterλ ), the rest of the apartmentAe

associated toe being “folded" away fromAe.
In order to construct the Bruhat-Tits building in the general case, the gluing equivalence

will impose this folding action for unipotent elements in root groups; this will be done by
taking into account the “valuation" of the unipotent element under consideration. What for-
malizes this is the previous notion of a valuation for a root group datum (Definition 3.17),
which provides a filtration on each root group. For further details, we refer to the motivations
given in [Tit79, 1.1-1.4]. It is not straightforward to perform this in general, but it can be
done quite explicitly when the group G issplit overk (i.e., when it contains a maximal torus
which isk-split). For the general case, one has to go to a (finite, separable) extension of the
ground field splitting G and then to use subtle descent arguments. The main difficulty for the
descent step is to handle at the same time Galois actions on the split group and on its “split"
building in order to descend the ground field both for the valuation of the root group datum
and at the geometric level (see 3.2.2 for slightly more details).

Let us provisionally assume that G is split overk. Then each root group Uα(k) is isomor-
phic to the additive group ofk and for any such group Uα(k) we can use the valuation ofk to
define a decreasing filtration{Uα(k)ℓ}ℓ∈Z satisfying:

⋃
ℓ∈Z Uα(k)ℓ = Uα(k) and

⋂
ℓ∈Z Uα(k)ℓ = {1},

and further compatibilities, namely the axioms of a valuation (Definition 3.17) for the root
group datum structure on G(k) given by Borel-Tits theory (Theorem 3.16) – the latter root
group datum structure in the split case is easy to obtain by means of Chevalley bases [Ste68]
(see remark below). For instance, in the case of the general linear group, this can be merely
done by using the parameterizations

(k,+)≃ Uαi, j (k) = {id+λEi, j : λ ∈ k}.

Remark 3.19. — Let us be slightly more precise here. For a split groupG, each root group
Uα is k-isomorphic to the additive groupGa, and the choice of a Chevalley basis ofLie(G)

determines a set of isomorphisms{pα : Uα →Ga}α∈R. It is easily checked that the collection
of maps

ϕα : Uα(k)
pα // Ga(k)

ω // R

defines a valuation on the root group datum(T(k),(Uα (k),Mα )).
For eachℓ ∈ R, the condition|pα | 6 q−s defines anaffinoid subgroupUα ,s in Uan

α such
that Uα(k)ℓ = Uα ,s(k) for any s∈ (ℓ− 1, ℓ]. The latter identity holds after replacement of
k by any finite extension k′, as long as we normalize the valuation ofk′ in such a way that
is extends the valuation onk. This shows that Bruhat-Tits filtrations on root groups, inthe
split case at this stage, comes from a decreasing, exhaustive and separated filtration ofUan

α
by affinoid subgroups{Uα ,s}s∈R.
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Let us consider again the apartmentΣ with underlying vector spaceΣvect= X∗(T)⊗Z R.
We are interested in the affine linear formsα + ℓ (α ∈ R, ℓ ∈ Z). We fix an origin, sayo,
such that(α +0)(o) = 0 for any rootα ∈ R. We have “level sets"{α + ℓ= 0} and “positive
half-spaces"{α + ℓ> 0} bounded by them.

For eachx∈ Σ, we set Nx = StabG(k)(x) (using the actionν of Proposition 3.18) and for
each rootα we denote by Uα(k)x the biggest subgroup Uα(k)ℓ such thatx ∈ {α + ℓ > 0}
(i.e. ℓ is minimal for the latter property). At last, we define Px to be the subgroup of G(k)
generated by Nx and by{Uα(k)x}α∈R. We are now in position to define a binary relation, say
∼, on G(k)×Σ by:

(g,x)∼ (h,y) ⇐⇒ there existsn∈ NG(T)(k) such thaty= ν(n).x andg−1hn∈ Px.

Construction of the Bruhat-Tits buildings.— This relation is exactly what is needed in
order to glue together copies ofΣ and to finally obtain the desired Euclidean building.

Theorem 3.20. — The relation∼ is an equivalence relation on the setG(k)× Σ and the
quotient spaceB =B(G,k) = (G(k)×Σ)/∼ is a Euclidean building whose apartments are
isomorphic toΣ and whose Weyl group is the affine reflection group W= ν

(
N(k)

)
. Moreover

theG(k)-action by left multiplication on the first factor ofG(k)×Σ induces an action ofG(k)
by isometries onB(G,k).

Notation.— According to Definition 1.9, copies ofΣ in B(G,k) are calledapartments;
they are the maximal flat (i.e., euclidean) subspaces. Thanks to G(k)-conjugacy of maximal
split tori 3.10, apartments ofB(G,k) are in bijection with maximal split tori of G. There-
fore, we will speak of theapartment of a maximal split torusS of G and write A(S,k). By
construction, this is an affine space under theR-vector space HomAb(X∗(S),R).

Reference for the proof. — As already explained, the difficulty is to check the axiomsof a
valuation (Def 3.17) for a suitable choice of filtrations on the root groups of a Borel-Tits
root group datum (Th. 3.16). Indeed, the definition of the equivalence relation∼, hence
the construction of a suitable Euclidean building, for a valued root group datum can be done
in this purely abstract context [BrT72, §7]. The existence of a valued root group datum
for reductive groups over suitable valued (not necessarilycomplete) fields was announced in
[BrT72, 6.2.3 c)] and was finally settled in the second IHÉS paper (1984) by F. Bruhat and
J. Tits [BrT84, Introduction and Th. 5.1.20].

One way to understand the gluing equivalence relation∼ is to see that it prescribes stabi-
lizers. Actually, it can eventually be proved thata posterioriwe have:

ΣUα,ℓ(k) = {α + ℓ> 0} and StabG(k)(x) = Px for anyx∈ B.

A more formal way to state the result is to say that to each valued root group datum on
a group is associated a Euclidean building, which can be obtained by a gluing equivalence
relation defined as above [BrT72, §7].
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Example 3.21. — In the case whenG= SL(V), it can be checked that the building obtained
by the above method is equivariantly isomorphic to the Goldman-Iwahori spaceX (V,k)
[BrT72, 10.2].

3.2.2. Descent and functoriality. — Suitable filtrations on root groups so that an equivalence
relation∼ as above can be defined do not always exist. Moreover, even when things go well,
the way to construct the Bruhat-Tits building is not by first exhibiting a valuation on the root
group datum given by Borel-Tits theory and then by using the gluing relation∼. As usual in
algebraic group theory, one has first to deal with the split case, and then to apply various and
difficult arguments of descent of the ground field. Bruhat andTits used a two-step descent,
allowing a fine description of smooth integral models of the group associated with facets. A
one-step descent was introduced by Rousseau in his thesis [Rou77], whose validity in full
generality now follows from recent work connected to Tits’ Center Conjecture ([Str11]).

Galois actions.— More precisely, one has to find a suitable (finite) Galois extensionk′/k
such that G splits overk′ (or, at least,quasi-splitsoverk′, i.e. admits a Borel subgroup defined
overk′) and, which is much more delicate, which enables one:

1. to define a Gal(k′/k)-action by isometries on the “(quasi)-split" buildingB(G,k′);
2. to check that a building for G(k) lies in the Galois fixed point setB(G,k′)Gal(k′/k).

Similarly, the group G(k′) of course admits a Gal(k′/k)-action.

Remark 3.22. — Recall that, by completeness and non-positive curvature, once step 1 is
settled we know that we have sufficiently many Galois-fixed points in B(G,k′) (see the dis-
cussion of the Bruhat-Tits fixed point theorem in 1.1.3).

F. Bruhat and J. Tits found a uniform procedure to deal with various situations of that
kind. The procedure described in [BrT72, 9.2] formalizes, in abstract terms of buildings and
group combinatorics, how to exhibit a valued root group datum structure (resp. a Euclidean
building structure) on a subgroup of a bigger group with a valued root group datum (resp.
on a subspace of the associated Bruhat-Tits building). The main result [BrT72, Th. 9.2.10]
says that under some sufficient conditions, the restrictionof the valuation to a given sub-
root group datum “descends" to a valuation and its associated Bruhat-Tits building is the
given subspace. These sufficient conditions are designed toapply to subgroups and convex
subspaces obtained as fixed-points of “twists" by Galois actions (and they can also be applied
to non-Galois twists “à la Ree-Suzuki").

Two descent steps.— As already mentioned, this needn’t work over an arbitraryvalued
field k (even whenk is complete). Moreover F. Bruhat and J. Tits do not perform the descent
in one stroke, they have to argue by a two step descent.

The first step is the so-calledquasi-splitdescent [BrT84, §4]. It consists in dealing with
field extensions splitting an initially quasi-split reductive group. The Galois twists here (of
the ambient group and building) are shown, by quite concretearguments, to fit in the con-
text of [BrT72, 9.2] mentioned above. This is possible thanks to a deep understanding of
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quasi-split groups: they can even be handled via a presentation (see [Ste68] and [BrT84,
Appendice]). In fact, the largest part of the chapter about the quasi-split descent [BrT84,
§4] is dedicated to another topic which will be presented below (3.2.3), namely the construc-
tion of suitable integral models (i.e. group schemes overk◦ with generic fiber G) defined
by geometric conditions involving bounded subsets in the building. The method chosen by
F. Bruhat and J. Tits to obtain these integral models is by using a linear representation of
G whose underlying vector space contains a suitablek◦-lattice, but they mention themselves
that this could be done by Weil’s techniques of group chunks.Since then, thanks to the de-
velopments of Néron model techniques [BLR90], this alternative method has been written
down [Lan96].

The second step is the so-calledétaledescent [BrT84, §5]. By definition, an étale ex-
tension, in the discretely valued case (to which we stick here), is unramified with separable
residual extension; let us denote byksh the maximal étale extension ofk. This descent step
consists in considering situations where the semisimplek-group G is such that G⊗k ksh is
quasi-split (so that, by the first step, we already have a valued root group datum and a Bruhat-
Tits building for G(ksh), together with integral structures). Checking that this fits in the
geometric and combinatorial formalism of [BrT72, 9.2] is more difficult in that case. In fact,
this is the place where the integral models over the valuation ringk◦ are used, in order to find
a suitable torus in G which become maximal split in G⊗k k′ for some étale extensionk′ of k
[BrT84, Cor. 5.1.12].

Remark 3.23. — In the split case, we have noticed that the Bruhat-Tits filtrations on rational
points of root groups come from filtrations by affinoid subgroups (3.19). This fact holds in
general and can be checked as follows: let k′/k be a finite Galois extension splittingG and
consider a maximal torusT of G which splits over k′ and contains a maximal split torusS.
The canonical projectionX∗(T⊗k k′)→ X∗(S⊗k k′)=̃X∗(S) induces a surjective map

p : R(T⊗k k′,G⊗k k′)−→ R(S,G)∪{0}

and there is a natural k′-isomorphism

∏
β∈p−1(α)

Uβ × ∏
β∈p−1(2α)

Uβ ≃ Uα ⊗k k′

for any ordering of the factor.

A posteriori, Bruhat-Tits two-step descent proves that any maximal split torus S of G is
contained in a maximal torusT which splits over a finite Galois extension k′/k such that
Gal(k′/k) fixes a point in the apartment ofT⊗k k′ in B(G,k′). If the valuation onk′ is
normalized in such a way that it extends the valuation onk, then, for anyℓ ∈ R, the affinoid
subgroup

∏
β∈p−1(α)

Uβ ,ℓ× ∏
β∈p−1(2α)

Uβ ,2ℓ

of the left hand side corresponds to an affinoid subgroup of the right hand side which does
not depend on the ordering of the factors and is preserved by the natural action ofGal(k′|k);
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this can be checked by using calculations in[BrT72, 6.1] at the level of k′′ points, for any
finite extension k′′/k′. By Galois descent, we obtain an affinoid subgroupUα ,ℓ of Uan

α such
that

Uα ,ℓ(k) = Uα(k)∩


 ∏

β∈p−1(α)

Uβ ,ℓ(k
′)× ∏

β∈p−1(2α)

Uβ ,2ℓ(k
′)


 .

By [BrT84, 5.1.16 and 5.1.20], the filtrations{Uα ,ℓ(k)}ℓ∈R are induced by a valuation on the
root group datum(S(k),{Uα (k)}).

Let us finish by mentioning why this two-step strategy is well-adapted to the case we are
interested in, namely that of a semisimple group G defined over a complete, discretely valued
field k with perfect residue field̃k: thanks to a result of R. Steinberg’s [Ser94, III, 2.3],
such a group is known to quasi-split overksh. Compactifications of Bruhat-Tits buildings
fit in this more specific context for G andk. Indeed, the Bruhat-Tits buildingB(G,k) is
locally compact if and only if so isk, see the discussion of the local structure of buildings
below (3.2.3). Note finally that the terminology “henselian" used in [BrT84] is a well-known
algebraic generalization of “complete" (the latter “analytic" condition is the only one we
consider seriously here, since we will use Berkovich geometry).

Existence of Bruhat-Tits buildings.— Here is at last a general statement on existence of
Bruhat-Tits buildings which will be enough for our purposes; this result was announced in
[BrT72, 6.2.3 c)] and is implied by [BrT84, Th. 5.1.20].

Theorem 3.24. — Assume that k is complete, discretely valued, with perfect residue field.
The root group datum ofG(k) associated with a split maximal torus admits a valuation sat-
isfying the conditions of Definition 3.17.

Let us also give now an example illustrating both the statement of the theorem and the
general geometric approach characterizing Bruhat-Tits theory.

Example 3.25. — Let h be a Hermitian form of index1 in three variables, say on the vector
spaceV ≃ k3. We assume that h splits over a quadratic extension, say E/k, so thatSU(V,h) is
isomorphic toSL3 over E, and we denoteGal(E/k) = {1;σ}. Then the building ofSU(V,h)
can be seen as the set of fixed points for a suitable action of the Galois involutionσ on the
2-dimensional Bruhat-Tits building of typẽA2 associated toV⊗k E as in 1.2. If k is local and
if q denotes the cardinality of the residue field, then the Euclidean buildingB(SU(V,h),k) is
a locally finite tree: indeed, it is a Euclidean building of dimension1 because the k-rank of
SU(V,h), i.e. the dimension of maximal k-split tori, is1. The tree is homogeneous of valency
1+q when E/k is ramified, in which case the type of the group isC-BC1 in Tits’ classification
[Tit79, p. 60, last line]. The tree is semi-homogeneous of valencies1+q and1+q3 when
E/k is unramified, and then the type is2A′

2 [Tit79, p. 63, line 2]. For the computation of the
valencies, we refer to 3.2.3 below.
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Functoriality.— For our purpose (i.e. embedding of Bruhat-Tits buildingsin analytic
spaces and subsequent compactifications), the existence statement is not sufficient. We need
a stronger result than the mere existence; in fact, we also need a good behavior of the building
with respect to field extensions.

Theorem 3.26. — Whenever k is complete, discretely valued, with perfect residue field, the
Bruhat-Tits buildingB(G,K) depends functorially on the non-Archimedean extension K of
k.

More precisely, let us denote by G−Setsthe category whose objets are pairs(K/k,X),
whereK/k is a non-Archimedean extension and X is a topological space endowed with a
continuous action of G(K), and arrows(K/k,X)→ (K′/k,X′) are pairs(ι, f ), whereι is an
isometric embedding ofK into K′ and f is a G(K)-equivariant and continous map from X to
X′. We see the building of G as asectionB(G,−) of the forgetful functor

G−Sets−→
(

non−Archimedean
extensionsK/k

)
.

Remark(Reference). — It is explained in [RTW10, 1.3.4] how to deduce this from the
general theory.

One word of caution is in order here. Ifk′/k is a Galois extension, then there is a natural
action of Gal(k′/k) onB(G,k′) by functoriality and the smaller buildingB(G,k) is contained
in the Galois-fixed point set inB(G,k′). In general, this inclusion is strict, even when the
group is split [Rou77, III] (see also5.2). However, one can show that there is equality if the
extensionk′/k is tamely ramified[loc. cit.] and [Pra01].

We will need to have more precise information about the behavior of apartments. As
above, we assume thatk is complete, discretely valued and with perfect residue field.

Definition 3.27. — LetT be a maximal torus ofGand let kT be the minimal Galois extension
of k (in some fixed algebraic closure) which splitsT. We denote by kur

T the maximal unramified
extension of k in kT.

The torusT is well-adjustedif the maximal split subtori ofT and T⊗k kur
T are maximal

split tori of G andG⊗k kur
T .

Lemma 3.28. — 1. Every maximal split torusSofG is contained in a well-adjusted maximal
torusT.

2. Assume thatSandT are as above, and let K/k be any non-Archimedean field extension
which splitsT. The embeddingB(G,k) →֒ B(G,K) mapsA(S,k) into A(T,K).

Proof. — 1. For each unramified finite Galois extensionk′/k, we can find a torus S′ ⊂ G
which contains S and such that S′⊗k k′ is a maximal split torus of G⊗k k′ [BrT84, Corollaire
5.1.12]. We choose a pair(k′,S′) such that the rank of S′ is maximal, equal to the relative rank
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of G⊗k kur; this means that S′⊗k k′′ is a maximal split torus of G⊗k k′′ for any unramified
extensionk′′/k containingk′.

The centralizer of S′⊗k k′ in G⊗k k′ is a maximal torus of G⊗k k′, hence T= Z(S′) is a
maximal torus of G. By construction, S′ splits overkur

T and S′⊗k kur
T is a maximal split torus

of G⊗k kur
T . Since S⊂ S′, this proves that T is well-adjusted.

2. We keep the same notation as above. The extensionK/k containskT, hence it is
enough by functoriality to check that the embeddingB(G,k) →֒ B(G,kT) maps A(S,k) into
A(T,kT).

Let us consider the embeddings

B(G,k) →֒ B(G,kur
T ) →֒ B(G,kT).

The first one maps A(S,k) into A(S′,kur
T ) by By [BrT84, Proposition 5.1.14] and the second

one maps A(S′,kur
T ) into A(T,kT) by [Rou77, Théorème 2.5.6], hence their composite has

the required property.

3.2.3. Compact open subgroups and integral structures. — In what follows, we maintain the
previous assumptions, in particular the group G is semisimple andk-isotropic. The building
B(G,k) admits a strongly transitive G(k)-action by isometries. Moreover it is alabelled
simplicial complex in the sense that, ifd denotes the number of codimension 1 facets (called
panels) in the closure of a given alcove, we can choosed colors and assign one of them to
each panel inB(G,k) so that each color appears exactly once in the closure of eachalcove.
For some questions, it is convenient to restrict oneself to the finite index subgroup G(k)•

consisting of the color-preserving (ortype-preserving) isometries in G(k).

Compact open subgroups.— For any facetF ⊂ B(G,k) we denote by PF the stabilizer
StabG(k)(F): it is a bounded subgroup of G(k) and whenk is local, it is a compact, open sub-
group. It follows from the Bruhat-Tits fixed point theorem (1.1.3) that the conjugacy classes
of maximal compact subgroups in G(k)• are in one-to-one correspondence with the vertices
in the closure of a given alcove. The fact that there are usually several conjugacy classes
of maximal compact subgroups in G(k) makes harmonic analysis more delicate than in the
classical case of real Lie groups. Still, for instance thanks to the notion of a special vertex,
many achievements can also be obtained in the non-Archimedean case [Mac71]. Recall that
a pointx∈B(G,k) is calledspecialif for any apartmentA containingx, the stabilizer ofx in
the affine Weyl group is the full vectorial part of this affine reflection group, i.e. is isomorphic
to the (spherical) Weyl group of the root systemR of G overk.

Integral models for some stabilizers.— In what follows, we are more interested in al-
gebraic properties of compact open subgroups obtained as facet stabilizers. The following
statement is explained in [BrT84, 5.1.9].

Theorem 3.29. — For any facet F⊂ B(G,k) there exists a smooth k◦-group schemeGF

with generic fiberG such thatGF(k◦) = PF .
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As already mentioned, the point of view of group schemes overk◦ in Bruhat-Tits theory
is not only an important tool to perform the descent, but it isalso an important outcome of
the theory. Here is an example. The “best" structurea priori available for a facet stabilizer
is only of topological nature (and even for this, we have to assume thatk is locally compact).
The above models overk◦ provide an algebraic point of view on these groups, which allows
one to define a filtration on them leading to the computation ofsome cohomology groups of
great interest for the congruence subgroup problem, see forinstance [PR84a] and [PR84b].
Filtrations are also of great importance in the representation theory of non-Archimedean Lie
groups, see for instance [MP94] and [MP96].

Closed fibres and local combinatorial description of the building.— We finish this brief
summary of Bruhat-Tits theory by mentioning quickly two further applications of integral
models for facet stabilizers.

First let us pick a facetF ⊂B(G,k) as above and consider the associatedk◦-group scheme
GF . As a scheme overk◦, it has a closed fibre (so to speak obtained by reduction modulo k◦◦)
which we denote byGF . This is a group scheme over the residue fieldk̃. It turns out that
the rational pointsGF(k̃) have a nice combinatorial structure (even though thek̃-groupGF

needn’t be reductive in general); more precisely,GF(k̃) has a Tits system structure (see the
end of 3.1.2) with finite Weyl group. One consequence of this is thatGF(k̃) admits an action
on a spherical building (aspherical buildingis merely a simplicial complex satisfying the
axioms of Definition 1.2 with the Euclidean tilingΣ replaced by a spherical one). The nice
point is that this spherical building naturally appears in the (Euclidean) Bruhat-Tits building
B(G,k). Namely, the set of closed facets containingF is a geometric realization of the
spherical building ofGF(k̃) [BrT84, Prop. 5.1.32]. In particular, for a complete valued field
k, the buildingB(G,k) is locally finite if and only if the spherical building ofGF(k̃) is actually
finite for each facetF , which amounts to requiring that the residue fieldk̃ be finite. Note that
a metric space admits a compactification if, and only if, it islocally compact. Therefore
from this combinatorial description of neighborhoods of facets, we see thatthe Bruhat-Tits
buildingB(G,k) admits a compactification if and only if k is a local field.

Remark 3.30. — Let us assume here that k is discretely valued. This is the context where
the more classical combinatorial structure of an (affine) Tits system is relevant[Bou07, IV.2].
Let us exhibit such a structure. First, a parahoric subgroupin G(k) can be defined to be the
image of(GF)

◦(k◦) for some facet F inB(G,k), where(GF)
◦ denotes the identity component

of GF [BrT84, 5.2.8]. We also say for short that a parahoric subgroup is the connected
stabilizer of a facet in the Bruhat-Tits buildingB(G,k). If G is simply connected (in the
sense of algebraic groups), then the family of parahoric subgroups is the family of abstract
parabolic subgroups of a Tits system with affine Weyl group[BrT84, Prop. 5.2.10]. An
Iwahori subgroup corresponds to the case when F is a maximal facet. At last, if moreover k
is local with residual characteristic p, then an Iwahori subgroup can be characterized as the
normalizer of a maximal pro-p subgroup and an arbitrary parahoric subgroup as a subgroup
containing an Iwahori subgroup.
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Finally, the above integral models provide an important tool in the realization of Bruhat-
Tits buildings in analytic spaces (and subsequent compactifications). Indeed, the fundamental
step (see Theorem 4.5) for the whole thing consists in attaching injectively toanypoint x∈
B(G,K) an affinoid subgroup Gx of the analytic space Gan attached to G, and the definition of
Gx makes use of the integral models attached to vertices. But one word of caution is in order
here since the connexion with integral models avoids all their subtleties! For our construction,
only smoothk◦-group schemesGF which arereductiveare of interest; this is not the case in
general, but one can easily prove the following statement:given a vertex x∈ B(G,k), there
exists a finite extension k′/k such that the k′◦-group schemeG ′

x, attached to the point x seen
as a vertex ofB(G,k′), is a Chevalley-Demazure group scheme over k′◦. In this situation,
one can define(G⊗k k′)x as thegeneric fibreof the formal completion ofG ′

x along its special
fibre; this is ak′-affinoid subgroup of(G⊗k k′)an and one invokes descent theory to produce
ak-affinoid subgroup of Gan.

3.2.4. A characterization of apartments. — For later use, we end this section on Bruhat-Tits
theory by a useful characterization of apartments inside buildings.

Given a torus S overk, we denote by S1(k) the maximal bounded subgroup of S(k). It is
the subgroup of S(k) defined by the equations|χ |= 1, whereχ runs over the character group
of S.

Proposition 3.31. — Let S be a maximal split torus and let x be a point ofB(G,k). If the
residue field of k contains at least four elements, then the following conditions are equivalent:

(i) x belongs to the apartmentA(S,k);
(ii) x is fixed under the action ofS1(k).

Proof. — Condition (i) always implies condition (ii). With our hypothesis on the cardinality
of the residue field, the converse implication holds by [BrT84, Proposition 5.1.37].

4. Buildings and Berkovich spaces

As above, we consider a semisimple group G over some non-Archimedean fieldk. In
this section, we explain how to realize the Bruhat-Tits building B(G,k) of G(k) in non-
Archimedean analytic spaces deduced from G, and we present two procedures that can be
used to compactify Bruhat-Tits buildings in full generality; as we pointed out before, the
term “compactification” is abusive ifk is not a local field (see the discussion before Remark
3.30).

Assuming thatk is locally compact, let us describe very briefly those two ways of com-
pactifying a building. The first is due to V. Berkovich when G is split [Ber90, Chap. V] and
it consists in two steps:

1. to define a closed embedding of the building into the analytification of the group (4.1);
2. to compose this closed embedding with an analytic map fromthe group to a (compact)

flag variety (4.2).
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By taking the closure of the image of the composed map, we obtain an equivariant com-
pactification which admits a Lie-theoretic description (asexpected). For instance, there is
a convenient description of this G(k)-topological space (convergence of sequences, bound-
ary strata etc.) by means of invariant fans in(X∗(S)⊗Z R,W), where X∗(S) denotes the
cocharacter group of a maximal split torus S endowed with thenatural action of the Weyl
group W (4.3). The finite family of compactifications obtained in this way is indexed by
G(k)-conjugacy classes of parabolic subgroups.

These spaces can be recovered from a different point of view,using representation theory
and the concrete compactificationX (V,k) of the buildingX (V,k) of SL(V,k) which was
described in Section 2. It mimics the original strategy of I.Satake in the case of symmet-
ric spaces [Sat60a]: we pick a faithful linear representation of G and, relyingon analytic
geometry, we embedB(G,k) in X (V,k); by taking the closure inX (V,k), we obtain our
compactification.

Caution — 1. We need some functoriality assumption on the building with respect to the
field: in a sense which was made precise after the statement ofTheorem 3.26, this means that
B(G,−) is functor on the category of non-Archimedean extensions ofk.

As explained in [RTW10, 1.3.4], these assumptions are fulfilled ifk quasi-splits over a
tamely ramified extension ofk. This is in particular the case isk is discretely valued with
perfect residue field, or if G is split.

2. There is no other restriction on the non-Archimedean fieldk considered in 4.1. From
4.2 on, we assume thatk is local. In any case, the reader should keep in mind that non-local
extensions ofk do always appear in the study of Bruhat-Tits buildings from Berkovich’s point
of view (see Proposition 4.2).

The references for the results quoted in this section are [RTW10] and [RTW12].

4.1. Realizing buildings inside Berkovich spaces. —Let k be a field which is complete
with respect to a non-trivial non-Archimedean absolute value. We fix a semisimple group G
overk. Our first goal is to define a continuous injection of the Bruhat-Tits buildingB(G,k)
in the Berkovich space Gan associated to the algebraic group G. Since G is affine with affine
coordinate ringO(G), its analytification consists of all multiplicative seminorms onO(G)

extending the absolute value onk [Tem11].

4.1.1. Non-Archimedean extensions and universal points. — We will have to consider infi-
nite non-Archimedean extensions ofk as in the following example.

Example 4.1. — Let r = (r1, . . . , rn) be a tuple of positive real numbers such that ri1
1 . . . r in

n /∈

|k×| for all choices of(i1, . . . , in) ∈ Zn−{0}. Then the k-algebra

kr =

{

∑
I=(i1...,in)

aIx
i1
1 . . .xin

n ∈ k[[x±1
1 , . . . ,x±1

n ]] ; |aI |r
i1
1 . . . r in

n → 0 when|i1|+ . . .+ |in| → ∞

}

is a non-Archimedean field extension of k with absolute value| f |= maxI{|aI |r
i1
1 . . . r in

n }.
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We also need to recall the notion of auniversalpoint (2). Let z be a point in Gan, seen
as a multiplicativek-seminorm onO(G). For a given non-Archimedean field extensionK/k,
there is a naturalK-seminorm||.||= z⊗1 onO(G)⊗k K, defined by

||a||= infmax
i

|ai(z)| · |λi |

where the infimum is taken over the set of all expressions∑i ai ⊗ λi representinga, with
ai ∈ O(G) andλi ∈ K. The pointz is said to beuniversalif, for any non-Archimedean field
extensionK/k, the aboveK-seminorm onO(G)⊗k K is multiplicative. One writeszK for
the corresponding point in Gan⊗̂kK. We observe that this condition depends only on the
completed residue fieldH (z) of Gan atz.

Remark 4.2. — 1. Obviously, points ofGan coming from k-rational points ofG are univer-
sal.

2. Let x∈ Gan be universal. For any finite Galois extension k′/k, the canonical extension
xk′ of x toGan⊗k k′ is invariant under the action ofGal(k′/k): indeed, the k′-norm x⊗1 on
O(G)⊗k k′ is Galois invariant.

3. If k is algebraically closed, Poineau proved that every point of Gan is universal[Poi11,
Corollaire 4.10].

4.1.2. Improving transitivity. — Now let Gan be the Berkovich analytic space associated to
the algebraic group G. Our goal is the first step mentioned in the introduction, namely the
definition of a continuous injection

ϑ : B(G,k) −→ Gan.

We proceed as follows. For every pointx in the buildingB(G,k) we construct an affinoid
subgroup Gx of Gan such that, for any non-Archimedean extensionK/k, the subgroup Gx(K)

of G(K) is precisely the stabilizer ofx in the building overK. Then we defineϑ(x) as the
(multiplicative) seminorm onO(G) defined by taking the maximum over the compact subset
Gx of Gan.

If the Bruhat-Tits buildingB(G,k) can be seen as non-Archimedean analogue of a Rie-
mannian symmetric space, it is not homogeneous under G(k); for example, ifk is discretely
valued, the building carries a polysimplicial structure which is preserved by the action of
G(k). There is a very simple way to remedy at this situation using field extensions, and this
is where our functoriality assumption comes in.

Let us first of all recall that the notion of a special point wasdefined in Section 1, just
before Definition 1.9. Its importance comes from the fact that, when G is split, the stabilizer
of a special point is particularly nice (see the discussion after Theorem 4.5). As simple
consequences of the definition, one should notice the following two properties: if a point
x∈ B(G,k) is special, then

(2)This notion was introduced by Berkovich, who used the adjective peaked[Ber90, 5.2]. Its study was carried on
by Poineau, who prefered the adjectiveuniversal[Poi11].
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- every point in the G(k)-orbit of x is again special;
- if moreover G issplit, thenx remains special inB(G,K) for any non-Archimedean

field extensionK/k (indeed: the local Weyl group atx over K contains the local Weyl
group atx overk, and the full Weyl group of G is the same overk and overK).

We can now explain how field extensions allow to improve transitivity of the group action
on the building.

Proposition 4.3. — 1. Given any two points x,y∈ B(G,k), there exists a non-Archimedean
field extension K/k such that x and y, identified with points ofB(G,K) via the canonical
injectionB(G,k) →֒ B(G,K), belong to the same orbit underG(K).

2. For every point x∈ B(G,k), there exists a non-Archimedean field extension K/k such
that the following conditions hold:

(i) The groupG⊗k K is split; (ii) The canonical injectionB(G,k) → B(G,K) maps x to
a special point.

We give a proof of this Proposition since it is the a key resultfor the investigation of
Bruhat-Tits buildings from Berkovich’s point of view. The second assertion follows easily
from the first: just pick a finite separable field extensionk′/k splitting G and a special pointy
in B(G,k′), then consider a non-Archimedean field extensionK/k′ such thatx andy belong
to the same G(K)-orbit. In order to prove the first assertion, we may and do assume that G is
split. Let S denote a maximal split torus of G whose apartmentA(S,k) contains bothx and
y. As recalled in Proposition 3.17, this apartment is an affinespace under X∗(S)⊗Z R, where
X∗(S) denotes the cocharacter space of S, and S(k) acts on A(S,k) by translation via a map
ν : S(k)→ X∗(S)⊗Z R. Using a basis of characters to identify X∗(S) (resp. S) withZn (resp.
Gn

m), it turns out thatν is simply the map

k× −→ Rn, (t1, . . . , tn) 7→ (− log|t1|, . . . ,− log|tn|).

By combining finite field extensions and transcendental extensions as described in Example
4.1, we can construct a non-Archimedean field extensionK/k such that the vectorx−y∈ Rn

belongs to the subgroup log|(K×)n|. This implies thatx andy, seen as points of A(S,K),
belong to the same orbit under S(K), hence under G(K).

Remark 4.4. — If |K×|= R>0, thenG(K) acts transitively onB(G,K). However, it is more
natural to work functorially than to fix arbitrarily an algebraically closed non-Archimedean
extensionΩ/k such that|Ω×|= R>0.

4.1.3. Affinoid subgroups. — Let us now describe the key fact explaining the relationship
between Bruhat-Tits theory and non-Archimedean analytic geometry. This result is crucial
for all subsequent constructions.

Theorem 4.5. — For every point x∈ B(G,k) there exists a unique k-affinoid subgroupGx

of Gan satisfying the following condition: for every non-Archimedean field extension K/k,
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the groupGx(K) is the stabilizer inG(K) of the image of x under the injectionB(G,k) →
B(G,K).

The idea of the proof is the following (see [RTW10, Th. 2.1] for details). If G is split and
x is a special point in the building, then the integral modelGx of G described in (3.2.3) is a
Chevalley group scheme, and we define Gx as the generic fibrêGxη of the formal completion
of Gx along its special fibre. This is ak-affinoid subgroup of Gan, and it is easy to check that
it satisfies the universal property in our claim. Thanks to Proposition 4.3, we can achieve
this situation after a suitable non-Archimedean extensionK/k, and we apply faithfully flat
descent to obtain thek-affinoid subgroup Gx [RTW10, App. A]. Let us remark that, in order
to perform this descent step, it is necessary to work with an extension which is not too big
(technically, the fieldK should be ak-affinoid algebra); since one can obtainK by combining
finite extensions with the transcendental ones described inExample 4.1, this is fine.

4.1.4. Closed embedding in the analytic group. — The k-affinoid subgroup Gx is the
Berkovich spectrum of ak-affinoid algebra Ax, i.e., Gx is the Gelfand spectrumM (Ax)

of bounded multiplicative seminorms on Ax. This is a compact and Hausdorff topological
space over which elements of Ax define non-negative real valued functions. For any non-zero
k-affinoid algebra A, one can show that its Gelfand spectrumM (A) contains a smallest
non-empty subset, called itsShilov boundaryand denotedΓ(A), such that each elementf of
A reaches its maximum at some point inΓ(A).

Remark 4.6. — (i) If A = k{T} is the Tate algebra of restricted power series in one variable,
thenM (A) is Berkovich’s closed unit disc and its Shilov boundary is reduced to the point o
defined by the Gauss norm: for f= ∑n∈N anTn, one has| f (o)|= maxn |an|.

(ii) Let a ∈ k with 0 < |a| < 1. If A = k{T,S}/(ST− a), thenM (A) is an annulus of
modulus|a| andΓ(A) contains two points o,o′: for f = ∑n∈Z anTn, whereT−1 = a−1S, one
has| f (o)|= maxn |an| and| f (o′)|= maxn |an|.|a|n.

(iii) For any non-zero k-affinoid algebraA, its Shilov boundaryΓ(A) is reduced to a point
if and only if the seminorm

A → R>0, f 7→ sup
x∈M (A)

| f (x)|

is multiplicative.

For every pointx of B(G,k), it turns out that the Shilov boundary of Gx = M (Ax) is
reduced to a unique point, denotedϑ(x). This is easily seen by combining the nice behavior
of Shilov boundaries under non-Archimedean extensions, together with a natural bijection
between the Shilov boundary ofVη and the set of irreducible components ofV ⊗k◦ k̃ if V is
a normalk◦-formal scheme; indeed, the smoothk◦-group schemeGx has a connected special
fibre when it is a Chevalley group scheme. Let us also note thatthe affinoid subgroup Gx is
completely determined by the single pointϑ(x) via
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Gx = {z∈ Gan ; ∀ f ∈ O(G), | f (z)| 6 | f (ϑ(x))|}.

In this way we define the desired map

ϑ : B(G,k)→ Gan,

and we show [RTW10, Prop. 2.7] that it is injective, continuous and G(k)-equivariant (where
G(k) acts on Gan by conjugation). Ifk is a local field,ϑ induces a homeomorphism from
B(G,k) to a closed subspace of Gan [RTW10, Prop. 2.11].

Finally, the mapϑ is also compatible with non-Archimedean extensionsK/k, i.e., the
following diagram

B(G,K)
ϑK // (G⊗k K)an

pK/k

��
B(G,k)

ϑ
//

ιK/k

OO

Gan

whereιK/k (resp. pK/k) is the canonical embedding (resp. projection) is commutative. In
particular, we see that this defines asectionof pK/k over the image ofϑ . In fact, any point
z belonging to this subset of Gan is universal (4.1.1) andϑK(ιK/k(x)) coincides with the
canonical liftϑ(x)K of ϑ(x) to (G⊗k K)an for anyx∈ B(G,k).

Moreover, ifK/k is a Galois extension, then the upper arrow in the diagram is Gal(K/k)-
equivariant by [RTW10, Prop. 2.7].

4.2. Compactifying buildings with analytic flag varieties. — Once the building has been
realized in the analytic space Gan, it is easy to obtain compactifications. In order not to misuse
the latter word, we assume from now one thatk is locally compact.

4.2.1. Maps to flag varieties. — The embeddingϑ : B(G,k) → Gan defined in 4.1.4 can
be used to compactify the Bruhat-Tits buildingB(G,k). We choose a parabolic subgroup P
of G. Then the flag variety G/P is complete, and therefore the associated Berkovich space
(G/P)an is compact. Hence we can map the building to a compact space bythe composition

ϑP : B(G,k)
ϑ

−→ Gan−→ (G/P)an.

The mapϑP is by construction G(k)-equivariant and it depends only on the G(k)-conjugacy
class of P: we haveϑgPg−1 = gϑPg−1 for anyg∈ G(k).

However,ϑP may not be injective. By the structure theory of semisimple groups, there
exists a finite family of normal reductive subgroups Gi of G (each of them quasi-simple),
such that the product morphism

∏
i

Gi −→ G
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is a central isogeny. Then the buildingB(G,k) can be identified with the product of all
B(Gi ,k). If one of the factors Gi is contained in P, then the factorB(Gi ,k) is squashed down
to a point in the analytic flag variety(G/P)an.

If we remove fromB(G,k) all factorsB(Gi ,k) such that Gi is contained in P, then we
obtain a buildingBt(G,k), wheret stands for the type of the parabolic subgroup P, i.e., for
its G(k)-conjugacy class. The factorBt(G,k) is mapped injectively into(G/P)an via ϑP.

Remark 4.7. — If G is almost simple, thenϑP is injective wheneverP is a proper parabolic
subgroup inG; hence in this case the mapϑP provides an embedding ofB(G,k) into (G/P)an.

4.2.2. Berkovich compactifications. — Allowing compactifications of the building in which
some factors are squashed down to a point, we introduce the following definition.

Definition 4.8. — Let t be aG(k)-conjugacy class of parabolic subgroups ofG. We define
Bt(G,k) to be the closure of the image ofB(G,k) in (G/P)an underϑP, whereP belongs to
t, and we endow this space with the induced topology. The compact spaceBt(G,k) is called
theBerkovich compactification of typet of the buildingB(G,k).

Note that we obtain one compactification for each G(k)-conjugacy class of parabolic sub-
groups.

Remark 4.9. — If we drop the assumption that k is locally compact, the mapϑP is contin-
uous but the image ofBt(G,k) is not locally closed. In this case, the right way to proceed
is to compactify each apartmentAt(S,k) of Bt(G,k) by closing it inGan/Pan and to define
Bt(G,k) as the union of all compactified apartments. This set is a quotient ofG(k)×At(S,k)
and we endow it with the quotient topology[RTW10, 3.4].

4.2.3. The boundary. — Now we want to describe the boundary of the Berkovich compact-
ifications. We fix a typet (i.e., a G(k)-conjugacy class) of parabolic subgroups.

Definition 4.10. — Two parabolic subgroupsP and Q of G are calledosculatoryif their
intersectionP∩Q is also a parabolic subgroup.

Hence P and Q are osculatory if and only if they contain a common Borel group after a
suitable field extension. We can generalize this definition to semisimple groups over arbitrary
base schemes. Then for every parabolic subgroup Q there is a variety Osct(Q) overk repre-
senting the functor which associates to any base scheme S theset of all parabolics of typet
over S which are osculatory to Q [RTW10, Prop. 3.2].

Definition 4.11. — LetQ be a parabolic subgroup. We say thatQ is t-relevantif there is no
parabolic subgroupQ′ strictly containingQ such thatOsct(Q) = Osct(Q′).

Let us illustrate this definition with the following example.
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Example 4.12. — Let G be the groupSL(V), whereV is a k-vector space of dimension
d+1. The non-trivial parabolic subgroups ofG are the stabilizers of flags

(0( V1 ( . . .( Vr ( V).

LetH be a hyperplane inV, and letPbe the parabolic subgroup ofSL(V) stabilizing the flag
(0⊂ H ⊂ V). We denote its type byδ . LetQ be an arbitrary parabolic subgroup, stabilizing
a flag(0( V1 ( . . . ( Vr ( V). ThenQ andP are osculatory if and only ifH contains the
linear subspaceVr . This shows that all parabolic subgroupsQ stabilizing flags contained in
the subspaceVr give rise to the same varietyOscδ (Q). Therefore, a non-trivial parabolic is
δ -relevant if and only if the corresponding flag has the form0( W ( V.

Having understood how to parametrize boundary strata, we can now give the general de-
scription of the Berkovich compactificationBt(G,k). The following result is [RTW10, The-
orem 4.1].

Theorem 4.13. — For every t-relevant parabolic subgroupQ, let Qss be its semisimplifica-
tion (i.e.,Qss is the quotientQ/R(Q) whereR(Q) denotes the radical ofQ). ThenBt(G,k)
is the disjoint union of all the buildingsBt(Qss,k), whereQ runs over the t-relevant parabolic
subgroups ofG.

The fact that the Berkovich compactifications of a given group are contained in the flag
varieties of this group enables one to have natural maps between compactifications: they
are the restrictions to the compactifications of (the analytic maps associated to) the natural
fibrations between the flag varieties. The above combinatorics oft-relevancy is a useful tool
to formulate which boundary components are shrunk when passing from a compactification
to a smaller one [RTW10, Section 4.2].

Example 4.14. — Let us continue the discussion in Example 4.12 by describingthe stratifi-
cation ofBδ (SL(V),k). Anyδ -relevant subgroupQ of G= SL(V) is either equal toSL(V)

or equal to the stabilizer of a linear subspace0(W ( V. In the latter caseQss is isogeneous
to SL(W)×SL(V/W). NowSL(W) is contained in a parabolic of typeδ , henceBδ (Qss,k)
coincides withB(SL(V/W),k). Therefore

Bδ (SL(V),k) =
⋃

W(V

B
(
SL(V/W,k)

)
,

whereW runs over all linear subspacesW ( V.

Recall from 3.21 that the Euclidean buildingB(SL(V),k) can be identified with the
Goldman-Iwahori spaceX (V,k) defined in 1.16. HenceBδ (SL(V),k) is the disjoint union
of all X (V/W,k). Therefore we can identify the seminorm compactificationX (V,k) from
2.2 with the Berkovich compactification of typeδ .
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4.3. Invariant fans and other compactifications. —Our next goal is to compare our ap-
proach to compactifying building with another one, developed in [Wer07] without making
use of Berkovich geometry. In this work, compactified buildings are defined by a gluing pro-
cedure, similar to the one defining the Bruhat-Tits buildingin Theorem 3.20. In a first step,
compactifications of apartments are obtained by a cone decomposition. Then these com-
pactified apartments are glued together with the help of subgroups which turn out to be the
stabilizers of points in the compactified building.

Let G be a (connected) semisimple group overk andB(G,k) the associated Bruhat-Tits
building. We fix a maximal split torus T in G, giving rise to thecocharacter spaceΣvect =

X∗(T)⊗R. The starting point is a faithful, geometrically irreducible representationρ : G→

GL(V) on some finite-dimensionalk-vector space V.
Let R= R(T,G)⊂ X∗(T) be the associated root system. We fix a basis∆ of Rand denote

by λ0(∆) the highest weight of the representationρ with respect to∆. Then every other (k-
rational) weight ofρ is of the formλ0(∆)−∑α∈∆ nα α with coefficientsnα > 0. We write
[λ0(∆)−λ ] = {α ∈ ∆ : nα > 0}. We call every such subsetY of ∆ of the formY = [λ0(∆)−λ ]
for some weightλ admissible.

Definition 4.15. — LetY ⊂ ∆ be an admissible subset. We denote byC∆
Y the following cone

in Σvect:

C∆
Y =

{
x∈ Σvect ;

α(x) = 0 for all α ∈ Y, and
(λ0(∆)−λ )(x)> 0 for all weightsλ such that[λ0(∆)−λ ] 6⊂ Y

}

The collection of all cones C∆Y , where∆ runs over all bases of the root system and Y over all
admissible subsets of∆, is a complete fanFρ in Σvect. There is a natural compactification of
Σvect associated toFρ , which is defined asΣvect=

⋃
C∈Fρ Σvect/〈C〉 endowed with a topology

given by tubular neighborhoods around boundary points. Fordetails see [Wer07, Section 2]
or [RTW10, Appendix B].

We will describe this compactification in two examples.

Example 4.16. — If the highest weight ofρ is regular, then every subsetY of ∆ is admissible.
In this case, the fanFρ is the full Weyl fan. In the case of a root system of typeA2, the
resulting compactification is shown on Figure 1. The shaded area is a compactified Weyl
chamber, whose interior contains the corresponding highest weight ofρ .

Example 4.17. — Let G = SL(V) be the special linear group of a(d+ 1)-dimensional k-
vector spaceV, and letρ be the identical representation. We look at the torusT of diagonal
matrices inSL(V), which gives rise to the root system R= {αi, j} of typeAd described in
Example 3.13. Then∆= {α0,1,α1,2, . . . ,αd−1,d} is a basis of R andλ0(∆) = ε0 in the notation
of Example 3.13. The other weights of the identical representation areε1, . . . ,εd. Hence the
admissible subsets of∆ are precisely the setsYr = {α0,1, . . . ,αr−1,r} for r = 1, . . . ,d, and
Y0 = ∅. Let η0, . . . ,ηd be the dual basis ofε0, . . . ,εd. ThenΣvect can be identified with
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⊕d
i=0Rηi/R(∑i ηi), and we find

C∆
Yr

= {x= ∑
i

xiηi ∈ Σvect : x0 = . . .= xr and x0 > xr+1,x0 > xr+2, . . . ,x0 > xd}/R(∑
i

ηi)

The associated compactification is shown in Figure 2. The shaded area is a compactified
Weyl chamber and its codimension one face marked by an arrow contains the highest weight
of ρ (with respect to this Weyl chamber).
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FIGURE 1. Compactification of an apartment: regular highest weight

The compactificationΣvect induces a compactificationΣ of the apartmentΣ = A(T,k),
which is an affine space underΣvect. Note that the fanFρ and hence the compactification
Σ only depend on the Weyl chamber face containing the highest weight of ρ , see [Wer07,
Theorem 4.5].

Using a generalization of Bruhat-Tits theory one can define asubgroup Px for all x ∈ Σ
such that forx∈ Σ we retrieve the groups Px defined in section 3.2, see [Wer07, section 3].
Note that by continuity the action of NG(T,k) on Σ extends to an action onΣ.

Definition 4.18. — The compactificationB(G,k)ρ associated to the representationρ is de-
fined as the quotient of the topological spaceG(k)×Σ by a similar equivalence relation as
in Theorem 3.20:

(g,x)∼ (h,y) ⇐⇒ there exists n∈ NG(T,k) such that y= ν(n).x and g−1hn∈ Px.

The compactification ofB(G,k) with respect to a representation with regular highest
weight coincides with the polyhedral compactification defined by Erasmus Landvogt in
[Lan96].



BRUHAT-TITS BUILDINGS AND ANALYTIC GEOMETRY 53

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

FIGURE 2. Compactification of an apartment: singular highest weight

The connection to the compactifications defined with Berkovich spaces in section 4.2 is
given by the following result, which is proved in [RTW12, Theorem 2.1].

Theorem 4.19. — Letρ be a faithful, absolutely irreducible representation ofGwith highest
weightλ0(∆). Define

Z = {α ∈ ∆ : 〈α,λ0(∆)〉= 0},

where〈 , 〉 is a scalar product associated to the root system as in Definition 3.12. We denote
byτ the type of the standard parabolic subgroup ofG associated toZ. Then there is aG(k)-
equivariant homeomorphism

B(G,k)ρ → Bτ(G,k)

restricting to the identity map on the building.

Example 4.20. — In the situation of Example 4.17 we haveλ0(∆) = ε0 and Z =

{α1,2, . . . ,αd−1,d}. The associated standard parabolic is the stabilizer of a line. We
denote its type byπ . Hence the compactification of the building associated toSL(V)

given by the identity representation is the one associated to typeπ by Theorem 4.19. This
compactification was studied in[Wer01]. It is isomorphic to the seminorm compactification
X (V∨,k) of the buildingX (V∨,k).

4.4. Satake’s viewpoint. — If G is a non-compact real Lie group with maximal compact
subgroup K, Satake constructed in [Sat60b] a compactification of the Riemannian symmetric
space S= G/K in the following way:
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– (i) First consider the symmetric space H associated to the group PSL(n,C) which can
be identified with the space of all positive definite hermitian n×n-matrices with deter-
minant 1. Then H has a natural compactificationH defined as the set of the homothety
classes of all hermitiann×n-matrices.

– (ii) For an arbitrary symmetric space S= G/K use a faithful representation of G to
embed S into H and consider the closure of S inH.

In the setting of Bruhat-Tits buildings we can imitate this strategy in two different ways.
Functoriality of buildings—- The first strategy is a generalization of functoriality results

for buildings developed by Landvogt [Lan00]. Let ρ : G→ SL(V) be a representation of the
semisimple group G. Let S be a maximal split torus in G with normalizer N, and let A(S,k)
denote the corresponding apartment inB(G,k). Choose a special vertexo in A(S,k). By
[Lan00], there exists a maximal split torus T in SL(V) containingρ(S), and there exists a
pointo′ in the apartment A(T,k) of T in B(SL(V),k) such that the following properties hold:

1. There is a unique affine map between apartmentsi : A(S,k)→ A(T,k) such thati(o) =
o′. Its linear part is the map on cocharacter spaces X∗(S)⊗Z R → X∗(T)⊗Z Z induced
by ρ : S→ T.

2. The mapi is such thatρ(Px)⊂ P′
i(x) for all x∈ A(S,k), where Px denotes the stabilizer

of the pointx with respect to the G(k)-action onB(G,k), and P′i(x) denotes the stabilizer
of the pointi(x) with respect to the SL(V,k)-action onB(SL(V),k).

3. The mapρ∗ : A(S,k) → A(T,k) → B(SL(V),k) defined by composingi with the
natural embedding of the apartment A(T,k) in the buildingB(SL(V),k) is N(k)-
equivariant, i.e., for allx∈ A(S,k) andn∈ N(k) we haveρ∗(nx) = ρ(n)ρ∗(x).

These properties imply thatρ∗ : A(S,k) → B(SL(V),k) can be continued to a mapρ∗ :
B(G,k) → B(SL(V),k), which is continuous and G(k)-equivariant. By [Lan00, 2.2.9],ρ∗

is injective.
Let F be the fan in X∗(T)⊗Z R associated to the identity representation, which is de-

scribed in Example 4.17. It turns out that the preimage ofF under the mapΣvect(S,k) →
Σvect(T,k) induced byρ : S→ T is the fanFρ , see [RTW12, Lemma 5.1]. This implies that
the mapi can be extended to a map of compactified apartmentsA(S,k)→A(T,k). An analy-
sis of the stabilizers of boundary points shows moreover that ρ(Px)⊂ P′

i(x) for all x∈ A(S,k),

where Px denotes the stabilizer ofx in G(k), and P′i(x) denotes the stabilizer ofi(x) in SL(V,k)

[RTW12, Lemma 5.2]. Then it follows from the definition ofB(G,k)ρ in 4.18 that the em-
bedding of buildingsρ∗ may be extended to a map

B(G,k)ρ −→ B(SL(V),k)id.

It is shown in [RTW12, Theorem 5.3] that this map is a G(k)-equivariant homeomorphism
of B(G,k)ρ onto the closure of the image ofB(G,k) in the right hand side.

Complete flag variety—- Satake’s strategy of embedding the building in a fixed compact-
ification of the building associated to SL(V,k) can also be applied in the setting of Berkovich
spaces. Recall from 3.21 that the buildingB(SL(V),k) can be identified with the space
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X (V,k) of (homothety classes of) non-Archimedean norms on V. In section 2.2, we con-
structed a compactificationX (V,k) as the space of (homothety classes of) non-zero non-
Archimedean seminorms on V and a retraction mapτ : P(V)an−→ X (V,k).

Now let G be a (connected) semisimplek-group together with an absolutely irreducible
projective representationρ : G→ PGL(V,k). Let Bor(G) be the variety of all Borel groups
of G. We assume for simplicity that G is quasi-split, i.e., that there exists a Borel group
B defined overk; this amounts to saying that Bor(G)(k) is non-empty. Then Bor(G) is
isomorphic to G/B. There is a natural morphism

Bor(G)−→ P(V)

such that any Borel subgroup B in G⊗K for some field extensionK of k is mapped to the
uniqueK-point in P(V) invariant under B⊗k K, see [RTW12, Proposition 4.1]. Recall that
in section 4.2.1 we defined a map

ϑ∅ : B(G,k)→ Bor(G)an

(∅ denotes the type of Borel subgroups). Now we consider the composition

B(G,k)
ϑ∅

−→ Bor(G)an→ P(V)an τ
−→ X (V,k).

We can compactify the buildingB(G,k) by taking the closure of the image. Ifρ∨ denotes
the contragredient representation ofρ , then it is shown in [RTW12, 4.8 and 5.3] that in this
way we obtain the compactificationB(G,k)ρ∨ .

5. Erratum to [RTW10] and [RTW12]

5.1. Tobias Schmidt pointed out that Lemma A.10 in Appendix A to [RTW10] needed to
be corrected. The problem comes from the fact that, for a finite Galois extensionℓ/k of
non-Archimedean fields, the canonical map

λ : ℓ⊗k ℓ−→ ∏
Gal(ℓ|k)

ℓ, a⊗b 7−→ (g(a)b)g∈Gal(ℓ|k)

is not always an isometry when the left-hand side is equiped with the tensor product norm;
this is the case if and only the extension is tamely ramified.

A first observation is that the algebraic isomorphismλ is an isometry with respect to spec-
tral norms on both sides since we are working with finite dimensionalk-algebras. Therefore,
the question amounts to understanding when the tensor product norm|.|⊗ on A= ℓ⊗kℓ coin-
cides with the spectral norm, which is the case if and only if|.|⊗ is power-multiplicative. Let
us consider M. Temkin’sgraded reductionof (A, |.|⊗) [Tem04], which is to say the graded
ring

Ã• =
⊕

r∈R>0

A6r/A<r

where A6r = {a ∈ A ; |a|⊗ 6 r} and A<r = {a∈ A ; |a|⊗ < r}. The norm|.|⊗ is power-
multiplicative, hence coincides with the spectral norm, ifand only if Ã• is reduced. This



56 BERTRAND RÉMY, AMAURY THUILLIER & ANNETTE WERNER

graded ring is isomorphic tõℓ•⊗k̃•
ℓ̃• [Sch13, proof of Lemma 2.12] and therefore is reduced

if and only if the extension of graded fieldsℓ̃•/k̃• is separable (sinceℓ/k is Galois, separability
of ℓ̃/k̃ can be checked overℓ̃). This is the case if and only if the field extensionℓ/k is tamely
ramified [Duc13, Proposition 2.10].

5.2. By the arguments in 5.1, both the statement and the proof of Lemma 1.10 are correct if
we restrict to a tamely ramified Galois extension.

5.3. Lemma A.10 was not used in [RTW10]. In the second paper [RTW12], we used it
in Lemma 4.6 of [RTW12], a technical step in the proof of Proposition 4.5; therefore, both
statements are proved only if the group G splits over a tamelyramified extension. Finally, the
same restriction applies to Theorem 4.8 since the proof relies on Proposition 4.5.
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