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1 Introduction

1. The general goal of this survey paper is to introduce a class of metric spaces
with remarkable symmetry properties (buildings), and a class of finitely gener-
ated groups acting on some of them (Kac-Moody groups). Then – and mostly –
we mention what the viewpoint of geometric group theory enabled one to prove
in the very recent years. More precisely, we deal with the following topics – see
the structure of the paper at the end of the introduction to find the exact places.

– Simplicity: Kac-Moody groups provide a wide class of infinite finitely gener-
ated, often finitely presented and Kazhdan, simple groups (Caprace–Rémy).

– Rigidity: these groups enjoy strong rigidity properties, e.g., of the type
“higher-rank vs hyperbolic spaces” (Caprace–Rémy).

– Amenability: though these groups are not themselves amenable, they ad-
mit amenable actions on explicit compact spaces provided by boundaries of
buildings (Caprace–Lécureux, Lécureux).

– Quasi-morphisms: the existence of some non-standard quasi-homomorphisms
is understood in terms of the geometry of the buildings and the transitivity
of the action (Caprace–Fujiwara).

– Quasi-isometry: Kac-Moody lattices provide infinitely many quasi-isometry
classes of finitely presented simple groups (Caprace–Rémy).

This subject still has some motivating and fast developments; it follows a
general trend according to which more and more analytic topics turn out to
be relevant to geometric group theory. Therefore, in the core of the text, we
mostly focus on analytic statements. Other very interesting results are alluded
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to below, in the second and third parts of the introduction; some of them are
also described in more detail in [26].

2. We see the present paper as a kind of continuation of the previous survey
paper on the topic, written slightly less than 10 years ago [58]. This is why this
part of the introduction is dedicated to outline recent progress on some of the
questions mentioned there (in the 5th section).

We will provide later some details on the way Kac-Moody theory provides
finitely generated groups having a discrete action on the product of two (twinned)
buildings. Let Λ be such a group, with associated buildings X− and X+. The
buildings X± are locally finite, so the compact-open topology on the groups
Aut(X±) is locally compact. The Λ-action on a single factor X± has infinite
stabilizers (therefore it is not discrete), and its kernel is the finite center Z(Λ).

We denote by Λ
±
the closure of the image of Λ in Aut(X±). It was proved in [60]

that the locally compact group Λ
±

is locally pro-p, for p a well-defined prime
number (equal to the characteristic of the finite ground field of Λ). By analogy
with Lie groups over local fields of positive characteristic, some questions about

Λ
±

were addressed in [58, 5.5.2].

– Decomposition into abstractly simple factors. One of these questions is the
decomposition of these groups into direct products of abstractly simple
groups [58, Question 5.5.7] (the weaker result of a decomposition into topo-
logically simple factors had been proved in [56]). It turns out that thanks
to a clever combination of Tits’ simplicity criterion for BN-pairs [11] and
arguments from pro-p groups, Carbone et al. [21] could prove this result
for a large class of Kac-Moody groups (those for which one, or equivalently
any, cell-stabilizer is topologically finitely generated). This proves the de-
composition for instance when the generalized Cartan matrix defining Λ is
2-spherical (i.e., any two canonical reflections in the Weyl group generate a
finite group).

– Non-linearity for compact open subgroups. One other question was to decide

whether some compact open subgroups in Λ
±
are not linear (over any field)

under suitable conditions on the geometry of the buildings [58, Question
5.5.6]. Strictly speaking, this question is not answered but it is related to a
more interesting result on the Golod-Shafarevich property due to Ershov [31];
this result involves the pro-p completions of cell-stabilizers in Kac-Moody
lattices Λ – see below.

– Generalized arithmeticity. Given the inclusion of a lattice Γ in a locally
compact group G, one says that Γ is arithmetic in G if its commensurator
in G

CommG(Γ ) = {g ∈ G : Γ ∩ gΓg−1 has finite index both in Γ and in gΓg−1}
is dense in G (recall that classically, according to a well-known criterion due
to G. Margulis, a lattice in a semisimple Lie group is arithmetic if and only if
its commensurator is dense in the ambient group [73, 6.2]). Facet stabilizers
in Kac-Moody lattices provide interesting exotic examples of arithmetic non-
uniform lattices in full tree automorphism groups [4], but it seems that the
more general question asked in [58, Question 5.5.4] is still open.
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– Non-linearity for discrete subgroups. Let Γ denote the stabilizer in Λ of some
cell inXϵ (where ϵ = ±). Then Γ gives rise to a lattice for the buildingX−ϵ of
opposite sign. The subgroup Γ is much smaller than Λ; its closure in Aut(Xϵ)
is an open virtually pro-p subgroup, contained as a finite index subgroup of
a suitable maximal compact subgroup of Λ

ϵ
. The question of deciding under

which conditions Γ cannot be a group of matrices over any field [58, Question
5.5.5] is still open. Note that the only linearity to be disproved is over fields
of characteristic p [53], but it may happen that Γ is linear since for suitable
choices of generalized Cartan matrices and ground fields defining Λ, we can
have Γ ≃ SLn(Fq[t]) (for arbitrary integer n > 2 and prime power q). Note
that according to Caprace, Gramlich and Mühlherr there is another class
of very interesting lattices (for a single building) arising in this context,
namely centralizers of suitable involutions of Λ; see for instance [33, 35] for
an introduction to these lattices.

Note also that the (non-)linearity question for Λ is now solved by the answer
to the simplicity question: according to Mal’cev, a linear finitely generated group
– like Λ – is always residually finite [43], i.e. the intersection of its finite index
(normal) subgroups is trivial; in particular, it cannot be simple if it is infinite.
One difficulty, among others, for the linearity problem of the subgroups Γ is the
fact that these groups are usually not finitely generated (see [3] for sufficient
conditions, though).

3. Of course, most nice recent results on Kac-Moody groups (discrete and
completed versions) were not proved after the questions mentioned in [58]! Here
are some of them.

– Harmonic analysis. First, the analogy between the groups Λ
±
and reductive

Lie groups over local fields suggests the possibility of generalizing some re-
sults about non-commutative harmonic analysis on Lie groups. This leads to
the question of proving the existence of a Gelfand pair with respect to a suit-
able maximal compact subgroup [62], the next step being the explicit com-
putation of the corresponding spherical functions [42]. One striking result in
this vein again reveals that the geometry of the buildings is crucial: Lécureux
proved that whenever a building is not Euclidean, sufficiently transitive au-
tomorphism (i.e., sufficiently interesting) groups cannot have any Gelfand
pair with respect to any maximal compact subgroup [41]. This means that
convolution, restricted to any (Hecke) algebra of compactly supported func-
tions bi-invariant under any compact subgroup, is never a commutative law.
Actually, since maximal compact subgroups in this context are open, the
Hecke algebras here are well-understood algebraic objects defined by re-
lations closely related to infinite root systems; the resulting combinatorial
problem is eventually solved by geometric arguments similar to those shortly
described in Sect. 4.1.

– The Golod–Shafarevich condition and property (T). Roughly speaking, a pro-
p group is said to have the Golod–Shafarevich property if it (admits a relation
which) has few relations with respect to the number of generators. This con-
dition can be made technically very precise, and was initially designed to
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prove that some (Galois) groups are infinite. It turns out that this condition
implies the largeness of the pro-p group under consideration in many more
ways – we refer to [31, Introduction] for a nice and very efficient introduction
to the subject. By passing to pro-p completions, the Golod–Shafarevich con-
dition is relevant to the study of discrete groups. As already mentioned, to
data needed to define a finitely generated Kac-Moody group are a generalized
Cartan matrix and a finite field (see Sect. 2.3). If p denotes the characteristic
of the latter ground field, then the rich combinatorial structure of Λ enables
one to study the pro-p completion Γp̂ of a facet stabilizer Γ as above (note
that such a Γ is residually finite: sufficiently many finite index subgroups are
given for instance by pointwise stabilizers of combinatorial balls around the
facet). After works by Lubotzky and Sarnak, some conjectures were made by
Lubotzky and Zelmanov about the incompatibility between property (T) or
(τ) and being Golod–Shafarevich [72]. The main result of [31] disproves some
of these intuitions and says that for every sufficiently large prime number
p, there exists a finitely generated group having property (T) and which is
Golod–Shafarevich with respect to p. This is proved by using Kac-Moody
theory, and in particular the pro-p completions Γp̂ of facet stabilizers.

– Connection with the general theory of totally disconnected groups. In a some-
what different direction, Willis started to develop a thorough study of arbi-
trary locally compact totally disconnected groups [70]. The main tool he uses
to perform this study is the space of all compact open subgroups of the given
group, which is non-empty (and big) by the assumption of being totally dis-
connected [12, III, Cor. 1, p.36]. The latter space is endowed with a natural
metric which allows one to use some arguments of dynamical nature. This
theory applies of course to groups defined as closed automorphism groups of
locally finite cell complexes, and to algebraic groups over non-Archimedean
local fields. One of its outcomes is to attach some invariants of the topo-
logical group structure to any totally disconnected locally compact group;
one of them is a notion of rank, namely the flat rank, which coincides with
the usual notion of rational rank when the group is obtained as the ratio-
nal points of a reductive algebraic group over a non-archimedean local field.
When the building is not Euclidean, which excludes any algebraic group
consideration, the flat rank can still be related to another notion of rank
in connection with maximal flat (i.e., Euclidean) subspaces in the building;
see [16,24]. Another connection between Kac-Moody groups and this theory
is the study of contraction groups, which are so to speak dynamical general-
izations of unipotent radicals of parabolic subgroups in the algebraic group
case; it is proved in [15] that whenever the buildings are not Euclidean, con-
traction groups are not closed, which is another avatar, in addition to the
dichotomy “simplicity vs linearity”, of the dichotomy between Euclidean and
non-Euclidean buildings.

– Decomposition of abstract homomorphisms. The last question that was solved
and which can be mentioned in this introduction is purely of algebraic na-
ture. The intuition leading to it is not the analogy with non-Archimedean
Lie groups, but is the very starting point of the construction of Kac-Moody
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groups by Tits, namely to introduce infinite-dimensional analogues of Cheval-
ley group schemes [67]. Having this (initial) motivation in mind, one can ask
whether there is, as in the finite-dimensional case, a well understood factor-
ization for abstract group homomorphisms between groups of rational points
over fields of Kac-Moody functors. The strongest results in this direction
were obtained by Caprace [20].

1.1 Structure of the Paper

In Sect. 11.1, we recall some basic definitions in building theory and explain
how the algebraic machinery of Kac-Moody theory provides examples endowed
with interesting group actions. In Sect. 11.2, we present some recent results in
connection with quotients and actions, namely we study the problems of simplic-
ity and rigidity for Kac-Moody lattices. In Sect. 11.3, we investigate some more
topics from analytic and metric group theory, namely amenability (for actions),
existence of (exotic) quasi-characters and distortion.

1.2 Conventions

In this paper, letters like Λ and Γ denote discrete groups, letters like G and
H denote non-discrete topological groups (assumed to be locally compact) and
letters like X and Y denote metric spaces (most of the time assumed to be
complete).

2 Buildings and Kac-Moody Groups

In this section, we briefly provide the material in Kac-Moody and building the-
ory needed to understand the problems investigated in the sequel. The general
reference for building theory is [1]; for Kac-Moody groups it is [54].

2.1 (Simplicial) Buildings

In what follows, we only deal with the simplicial point of view on buildings.
This is because we are mostly interested here in new phenomena (with respect
to the classical theory of Lie groups) which occur mainly while studying groups
acting on non-affine buildings. Non-simplicial buildings are mostly interesting
(so far) when they are of Euclidean type (via the Bruhat-Tits theory of reductive
groups over non-discretely valued fields [59], or appearing as asymptotic cones
of symmetric spaces or Bruhat–Tits buildings [39]).

First, let us recall the following preliminary notions [11].

– A Coxeter group, say W , is a group admitting a presentation: W = ⟨s ∈ S |
(st)Ms,t = 1⟩ where M = [Ms,t]s, t ∈ S is a Coxeter matrix (i.e., symmetric
with 1’s on the diagonal and other entries in N> 2 ∪ {∞}).
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– For any Coxeter system (W,S) there is a natural simplicial complex Σ on
the maximal simplices of which W acts simply transitively: Σ is called the
Coxeter complex of (W,S).

We can go the other way round; namely, let us use a theorem of Poincaré’s [45,
IV.H.11] starting with a suitable tesselation and providing a Coxeter group (the
initial tesselation is eventually a geometric realization of the alluded to above
Coxeter complex):

Example 2.1. Start with a Euclidean or hyperbolic periodic tiling whose dihedral
angles are integral submultiples of π. Then the group generated by the reflections
in the codimension 1 faces of the fundamental tile is a discrete subgroup of the
full isometry group; in fact, it is a Coxeter group and the initial tiling realizes
its Coxeter complex.

The reason why we introduced Coxeter complexes is that they are so to speak
“slices” in buildings, as the following definition shows. We freely use the above
notation W and Σ (Coxeter complex).

Definition 2.2. A building of type (W,S) is a cellular complex, covered by sub-
complexes all isomorphic to Σ, called the apartments, such that:

(i) Any two simplices, called the facets, are contained in a suitable apartment;
(ii) Given any two apartments A and A′, there is a cellular isomorphism A ≃ A′

fixing A ∩A′.

The group W is called the Weyl group of the building.

When W is a Euclidean reflection group [11, V Sect. 3], one says that the
building is affine or, equivalently, Euclidean.

Example 2.3. A tree with all vertices of valency > 2 (resp. a product of such
trees) is a building with W equal to the infinite dihedral group D∞ (resp. with
W equal to a product of D∞’s).

The above examples of trees are elementary, but they are the only ones with
infinite Weyl group which can be reasonably drawn. Note that it is enough
to consider these examples to see a difficulty in producing interesting group-
theoretic situations from the theory of buildings: it may very well happen that
the automorphism group of a building be trivial (take a tree in which any two
distinct vertices have distinct valencies). It is precisely one feature of Kac-Moody
theory to give rise to buildings automatically endowed with a highly transitive
group action.

2.2 Analogies with Lie Groups and Exotic Examples

What are buildings good for? They were first designed to provide a uniform ap-
proach to simple algebraic groups whatever the ground field is, but it turned out
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that Chevalley’s scheme-theoretic approach became more popular. Still, thanks
to buildings, the idea to attach a suitable geometry to simple groups of Lie type
was pushed far beyond the classical example of the interplay between simple
real Lie groups and symmetric spaces – we refer to [26] for more details on these
historical points.

Eventually, as the examples below show, there is no rule in general on what
comes first, the building or the group: spherical (resp. Euclidean) buildings are
used to better understand (isotropic) algebraic groups over arbitrary (resp. non-
Archimedean local) fields, but in some recent approaches, buildings were de-
signed first in order to provide automorphism groups for which the analogy with
reductive Lie group makes sense and is often very fruitful.

Example 2.4. Pick (the rational points of) a simple algebraic group over a non-
Archimedean local field, e.g. SLn(Qp). Then the group acts on a Euclidean
building in a suitable way: the action is strongly transitive, that is transitive on
the inclusions of a chamber (= maximal facet) in an apartment; this is one of
the main results of Bruhat–Tits theory – see [18] and [19].

Which other buildings (with an interesting group action) can be exhibited?
This question is natural. Actually, there exist lots of interesting examples which
are not relevant to Borel–Tits or Bruhat–Tits theory. We will see that some
of these buildings have apartments which are periodic tilings of real hyperbolic
spaces; here is a list of selected results concerning such hyperbolic buildings.

– According to Haglund and Paulin, for some of these hyperbolic buildings the
full isometry group is a locally compact, totally disconnected, uncountable
abstractly simple group [38].

– According to Bourdon, some of them are characterized by any group acting
discretely and cocompactly: this is a strong rigidity result “à la Mostow” [13].

– The latter result can be pushed further: according to Bourdon and Pajot,
any quasi-isometry from a right-angled Fuchsian building to itself is at finite
distance from a true isometry of the latter space – see [14,71].

All of these statements strongly support the analogy between exotic buildings
and symmetric spaces, between Lie groups and full automorphism groups of these
new geometries.

2.3 Kac-Moody Groups and Kac-Moody Buildings

The previously mentioned examples were studied from a geometric (more pre-
cisely: metric) viewpoint. We turn now to Kac-Moody theory, which can be seen
as an algebraic machinery to produce (as a first step) groups with good com-
binatorial properties – refinements of Tits systems –, and (as a second step) –
by formal and now standard arguments – buildings automatically endowed with
strongly transitive group actions. Let us briefly sum up the situation and refer
to [54] for details and constructions of twisted variants.
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– Kac-Moody groups (in the “minimal” version we are interested in, see [68])
were constructed by Tits [67] in order to generalize, as group functors, (split)
reductive algebraic group schemes initally due to Chevalley and Demazure.

– They are defined by a presentation generalizing the generators and relations
of SLn (using elementary unipotent matrices) [64].

– The defining datum for a Kac-Moody group is: a field K and a generalized
Cartan matrix, i.e., an integral matrix A = [As,t]s,t∈S such that As,s = 2 for
all s ∈ S and As,t 6 0 for s ̸= t, with As,t = 0 if and only if At,s = 0.

– Unfortunately, they have not yet been endowed with any structure from
algebraic geometry, which would/will be, by the way, infinite-dimensional

– Nevertheless, they share many combinatorial properties with groups of points
of Chevalley–Demazure group schemes: they have a (twin)BN -pair structure
[67, Sects. 5 and 6].

Example 2.5. The standard example of such a group is Λ = G
(
K[t, t−1]

)
for G

a simple (isotropic) matrix group over a field K.

Still, we will see that the groups from this example are not the most in-
teresting ones for the purposes mentioned in the first part of the introduction:
they have an obvious matrix interpretation, and as such are residually finite
groups. Note that the associated buildings are Bruhat–Tits buildings, hence are
Euclidean.

The geometric counterpart to the above BN -pair combinatorics is the fol-
lowing.

Fact 2.6 (i) Any Kac-Moody group Λ naturally acts on the product X− ×X+

of two isomorphic buildings X±.
(ii) The explicit rule for W deduces [Ms,t]s,t∈S from A = [As,t]s,t∈S. More pre-

cisely, we have Ms,t = 2, 3, 4, 6 or ∞ according to whether As,t · At,s is 0,
1, 2, 3 or is > 4, respectively.

Reference. This is [67, Sects. 5 and 6] for the group-theoretic part, and the
geometric side is explained in [54, Sects. 1 and 2]. �

Reading backwards [As,t]s,t∈S 7→ [Ms,t]s,t∈S , we can produce buildings (with
nice group actions) provided theWeyl group has its Coxeter exponents in {2; 3; 4; 6;∞}.
This is the only condition on the shape of apartments – see [55, Sect. 2] for the
application to hyperbolic buildings

– The case of affine buildings corresponds exactly to the previous examples
Λ = G

(
K[t, t−1]

)
, with a concrete matrix interpretation. We say then that

the generalized Cartan matrix A and the corresponding Kac-Moody group
Λ are of affine type.

– When W is a Fuchsian group, e.g. when W is generated by a right-angled
hyperbolic polygon or by a regular triangle of angle π

4 or π
6 , then X± carries

a negatively curved metric.

These are only examples; the general case is a mixture.
Let us finally mention the basic results saying that over a finite ground field,

Kac-Moody groups are relevant to geometric group theory.
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Fact 2.7 (i) Any Kac-Moody group Λ over any finite field is finitely generated.
(ii) The associated buildings X±, for a suitable non-positively curved realization,

are locally finite.

Reference More technically: according to Davis, any building admits a real-
ization carrying a CAT(0) metric [29], and this realization is locally finite if and
only if the ground field if finite. �

3 Simplicity and Rigidity

In this section, we are interested in the algebraic question of simplicity for the
finitely generated groups obtained by taking Kac-Moody groups over finite fields.
It turns out that in this case – where we have a nice geometric action – there
is a simple answer to this basic question in group theory (it can be formulated
in terms of the geometry of the buildings). The question of rigidity of group
actions is less algebraic, but we review it here in order to explain the general
idea to combine simplicity, non-positive curvature and representation-theoretic
properties.

3.1 Covolume

From now on, we denote by Λ a Kac-Moody group defined by a generalized
Cartan matrix, say A = [As,t]s,t∈S , and a finite field Fq; the associated build-
ings are denoted by X±. The full automorphism groups Aut(X±) are thus lo-
cally compact for the compact open topology; therefore Aut(X±) admits Haar
measures [10]. Using the Λ-actions on X± arising from the combinatorial struc-
ture of a twin BN -pair, we can see Λ as a (diagonally embedded) subgroup of
Aut(X−) × Aut(X+). The starting point to combine Kac-Moody groups and
geometric group theory is the following result, which establishes an analogy be-
tween Kac-Moody groups over finite fields and arithmetic groups in positive
characteristics [53].

Theorem 3.1. Assume the Weyl groupW of Λ is infinite and denote byW (t) =∑
w∈W tℓ(w) its growth series. If W ( 1q ) <∞, then Λ is a lattice of X+ ×X−; it

is never cocompact.

Reference This is the result settled in [23] or in the note [52]. �

Remark 3.2. 1. When the Kac-Moody group is affine, i.e. when Λ = G
(
Fq[t, t

−1]
)
,

the condition W ( 1q ) < ∞ is empty since the virtually abelian group W has
polynomial growth: it is a Euclidean reflection group. In this case, this is in
fact a well-known consequence of a deeper result: Harder’s reduction theory
in positive characteristic [37].

2. The diagonal Λ-action on X+ ×X− is always discrete and the real number

W ( 1q ) is merely the covolume µ
(Aut(X−)×Aut(X+)

Λ

)
for a natural nor-

malization µ of the Haar measure on Aut(X−)×Aut(X+).
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Concerning computation of covolume, some natural questions are in order.
For instance, one consists in fixing a building and checking whether the infimum
of the normalized covolumes is > 0; one can also try to decide whether this
infimum is reached. This is an adaptation, in a new situation of locally compact
groups admitting lattices, of very classical questions and results going back to
Siegel, one of the most important achievements being strong finiteness results
due to Prasad [50]. In the new situation allowed by considering suitable non-
affine buildings and their automorphism groups, some partial results are already
available. For instance, Thomas exhibited, for right-angled Fuchsian buildings,
an infinite increasing sequence of lattices [66]; she also showed that in some
cases the sets of covolumes are unrestricted with respect to the classical “Lie”
situation (in particular when super-rigidity holds) [65].

3.2 Simplicity

We keep the previous notation. The fact that a finitely generated Kac-Moody
group such as Λ can be seen as a lattice of some reasonable geometry is the
starting point to prove the following simplicity result.

Theorem 3.3. Let Λ be a Kac-Moody group defined over the finite field Fq.
Assume that the Weyl group W is infinite and irreducible, and that W ( 1q ) <∞.

Then Λ is simple (modulo its finite center) whenever the buildings X± are not
Euclidean and Λ is generated by its root subgroups.

Reference This statement is contained in [27] – see in particular Sect. 4 of [loc.
cit.]. �
What follows in this subsection is dedicated to explaining the general two-step
strategy of the proof, but let us first make some comments on the statement
itself and some extensions of it.

Remark 3.4. 1. Here is a rough but striking geometric reformulation of the
above statement: whenever Λ (with irreducible Weyl group) has no obvious
matrix interpretation – because it is not affine – it is a simple finitely gen-
erated group; moreover there is a geometric (Coxeter-theoretic) explanation
for this.

2. There exist infinitely many generalized Cartan matrices A such that Λ is a
finitely presented, Kazhdan, simple group for any q >> 1.

Point 2 above is proved by combining the previous simplicity theorem to-
gether with:

(i) (Cohomological) finiteness results due to Abramenko and Mühlherr, e.g. [3]
and [2].

(ii) Dymara and Januszkiewicz’s criterion for property (T) for automorphism
groups of buildings [30].
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We can now turn to roughly sketching the proof of the simplicity theorem. It
owes a lot to Burger–Mozes’ recent construction of finitely presented torsion-free
simple groups. The latter groups appear as cocompact lattices in products of two
trees (here, it is good to have in mind that trees are 1-dimensional buildings!).

The general idea in [8] is first to see the discrete groups under consideration
as analogues of lattices in Lie groups in order to rule out infinite quotients, and
finally to exploit decisive differences with the classical Lie group case in order
to rule out finite quotients too.

– The analogy part is motivated by Margulis’ normal subgroup theorem, which
says that a normal subgroup in a higher-rank lattice must have finite index
[73, Sect. 8]. The point is to obtain a generalization of this result without
relying on any algebraic group structure on the ambient topological group
given by the full automorphism group of the geometry (product of trees or,
more generally, of buildings).

– The difference part is more specific to the situation. In the case of products
of trees, it relies on the possibility of proving some non-residual finiteness
criteria involving transitivity conditions on the local actions (around each
vertex) for the projection of the lattice on each of the two trees. This part
was eventually improved by the possibility to embed explicitly well-known
non-residually finite groups into suitable cocompact lattices of products of
trees. This enabled Rattaggi to reduce a lot the size of the presentation of
some simple groups as constructed by Burger and Mozes [51].

Remark 3.5. A group all of whose quotients are finite is called just infinite;
according to Wilson, such a finitely generated group either is residually finite
(examples are given by linear groups) or contains a finite index subgroup which
is a direct product of finitely many isomorphic simple groups.

We refer to [6, Th. 5.6 p. 59] for a more refined version of Wilson’s alternative
involving the so-called branch groups (“Grigorchuk’s trichotomy”).

Here is a slightly more precise summary of the proof of simplicity in the
Kac-Moody case, with relevant references.

1. The analogy part follows Margulis’ strategy for the normal subgroup prop-
erty: any normal subgroup of a center-free Kac-Moody lattice has finite index
or is finite and central (i.e. an irreducible center-free Kac-Moody lattice is
just infinite). Actually, the crucial point to prove this is to use a criterion due
to Shalom [63] (resp. Bader and Shalom [17]) to prove property (T) (resp.
amenability) for the quotient group Λ/N , endowed with the discrete topol-
ogy, where N ▹ Λ is the normal subgroup under consideration (recall that
a group which is both Kazhdan and amenable is compact). The paper [63]
considers cocompact irreducible lattices in direct products, but Shalom notes
himself that the cocompactness assumption can relaxed to a weaker inte-
grability condition involving the induction cocycle; the latter integrability
condition is checked in [57]
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2. What can go wrong from being just infinite to being simple? Consider the
affine (linear) example Λ = G

(
Fq[t, t

−1]
)
; it has a lot of finite quotients

(given for instance by the congruence kernels). This is where non-affineness
of the Weyl group has to be used crucially. Indeed, a strengthening of Tits’
alternative for Coxeter groups (due to Margulis–Noskov–Vinberg, see [48]
and [49]) implies that non-affine Coxeter groups are “weakly hyperbolic”
in the sense that there exist lots of triples of roots with empty pairwise
intersections. This is what has to be combined together with a trick on
infinite root systems and some defining relations for Kac-Moody groups, in
order to rule out finite quotients for Λ [27, Sect. 4].

3.3 Rigidity

Why Care About Kazhdan’s Property (T) for Simple Groups? A well-
known general principle is that there is a deep connection between the repre-
sentation theory of a locally compact group and its intrinsic topological group
structure. Property (T) illustrates this perfectly: one of its features is that it has
many equivalent formulations among which are definitions by representation-
theoretic means. What we explain below may not be the strongest way to com-
bine Kazhdan’s property (T), simplicity and non-positive curvature for metric
spaces acted upon, but it provides a reasonable motivation to investigate further
rigidity questions in such situations.

Here are the main steps of the argument.

Residual Finiteness and Compactness First let us recall that a finitely gener-
ated group is residually finite (i.e. the intersection of its finite index subgroups is
trivial) if, and only if, it embeds abstractly in a compact group. One implication
is easy since residual finiteness amounts to saying that the natural homomor-
phism from the group to its profinite completion is injective. For the other di-
rection, the trick is to use the Peter–Weyl theorem decomposing representations
of compact groups – this is where the previous general principle is used (it is a
variant of the way to use Peter–Weyl’s theorem to understand general compact
groups [69, Chap.V]). In our situation, where we are most interested in finitely
generated groups, we can conclude that a finitely generated simple group Γ has
trivial homomorphic image to any compact group.

Geometric Consequence for Cell Complexes Therefore, if such a Γ acts on a
locally finite cell complex with a global fixed point, the action is actually trivial;
indeed, by definition of the compact open topology on the automorphism group
of a complex, the stabilizer of a point is (open and) compact.

Non-Positive Curvature The situation is better if we make some assumption on
the curvature properties (in a singular sense) of the metric space acted upon. In-
deed, Bruhat–Tits fixed point theorem says that a bounded subset in a complete
non-positively curved space has a barycenter which is uniquely characterized by



234

purely metric properties [18, Sect. 3.2]; this can be applied to bounded orbits
of isometric group actions. In our situation, this implies that if Γ (simple) acts
non-trivially on a CAT(0) locally finite space, then any of its orbits is unbounded.

Negative Curvature Recall that the CAT(0) property for a geodesic metric space
is that all geodesic triangles be at least as thin as in the Euclidean plane [7,
II.1]. The similar comparison with the real hyperbolic plane H2

R instead of R2

leads to the notion of a CAT(−1)-space. Now let Y be a proper CAT(−1)-space
with Isom(Y ) acting cocompactly (the properness assumption here means that
closed metric balls are compact and the cocompactness assumption is a variant
of requiring bounded geometry). Then according to Burger–Mozes, the stabilizer
of any ξ ∈ ∂∞Y is amenable, so any non-trivial action of a finitely generated
Kazhdan simple group Γ on Y has no global fixed point in the compactification
Y ∪ ∂∞Y (recall that “Kazhdan + amenable” implies “compact”).

Super-Rigidity By convention in this paper, the terminology super-rigid applies
to group actions on non-positively curved spaces (or spaces derived from them).
It means that if a discrete group has a “nice” action on a specific geometry, then
it cannot have a non-degenerate action on a space which doesn’t look like the
initial geometry (“nice” means for instance that the action of the discrete group
enables one to see it as a lattice of the full isometry group of the geometry).
A well-known result by Margulis [44, VII.5] says that higher-rank lattices in
semisimple Lie groups are super-rigid; this means that the lattice actions on
the symmetric spaces associated to the ambient Lie groups are super-rigid with
respect to actions on symmetric spaces (or Bruhat–Tits buildings) of other type.

Example 3.6. There are many results disproving the existence of actions of higher-
rank lattices, e.g. SLn(Z) for n > 3, on the circle (which can be seen as the
boundary at infinity of H2

R = SL2(R)/SO(2), the Poincaré plane).

We refer to Ghys’ paper [34] for a general report about group actions on the
circle.

Let us go back to our specific topic: what makes a Kac-Moody lattice be of
higher-rank? For non-affine buildings, Kazhdan’s property (T) and the existence
of flats of dimension > 2 in the buildings are independent conditions (this is a
difference with the classical case of non-Archimedean simple Lie groups). Once
these two conditions are fulfilled, we can draw strong consequences on actions
on some hyperbolic spaces in the sense of Gromov [7, Sect. III.H.1].

Theorem 3.7. Let Λ be a simple Kac-Moody lattice and let Y be a proper
CAT(−1)-space with cocompact isometry group. If the buildings X± of Λ contain
flat subspaces of dimension > 2 and if Λ is Kazhdan, then the group Λ has no
nontrivial action by isometries on Y .

Reference This statement is contained in [27, Sect. 7]. �
The intuition behind this result is of course that the algebraic group structure

of Λ encodes a substantial part of the geometry of the buildings, so that there
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is not “enough room” in a hyperbolic space to be compatible with existence
of higher-dimensional flats in the buildings of Λ. One crucial ingredient for the
proof is a general super-rigidity result due to Monod and Shalom [47].

4 Amenability, Quasi-Homomorphisms and
Quasi-Isometry

This section is finally dedicated to reviewing some more advanced topics in
geometric group theory, such as the existence of non-standard quasi-characters,
or the beginnings of the (still widely open) quasi-isometric classification of Kac-
Moody lattices. We start be mentioning another vein of very interesting results,
relevant to an analytic approach to geometric group theory, namely the study
of amenability properties for actions of building lattices.

4.1 Amenability

We first report on Caprace and Lécureux’s work on the classification of amenable
subgroups in automorphism groups of buildings, and then mention Lécureux’s
work on amenability of group actions on suitably compactified buildings.

Compactifications and Amenable Subgroups Once again, the beginning
of the story is the situation of semisimple real Lie groups and their associated
symmetric spaces. Given a simple real Lie group G, like SLn(R), families of
compactifications of the symmetric space X = G/K (where K is a maximal
compact subgroup) were defined in different ways – and for different puposes – by
Furstenberg [32] and Satake [61] in the 1960s. These families depend on the choice
of a conjugacy class of parabolic subgroups, and for the same choice of conjugacy
class, they were eventually shown to be isomorphic. We are here interested in
the fact that, given G, the maximal Satake–Furstenberg compactification of X
provides a geometric (virtual) parametrization of maximal amenable subgroups
in G: according to Moore, any point stabilizer in G is an amenable subgroup;
conversely, any amenable subgroup of G has a finite index subgroup stabilizing
a point in the maximal compactification X [46]. This result was extended later
to the case of non-Archimedean simple Lie groups acting on their Bruhat–Tits
buildings [36].

In view of the analogy described in Sect. 2.2, it is then natural (though not
obvious at all!) to try to prove the following statement.

Theorem 4.1. Any locally finite building X admits a compactification providing
the same “classification” for amenable subgroups in G = Isom(X) as above.

Reference This is one of the main results of [25]. �
The main difficulty is actually to define suitably the compactification, which

is done by a clever use of projections onto residues in buildings; this idea enables
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Caprace–Lécureux to obtain an embedding of the set of residues of a given build-
ing to a space of maps between sets of residues, the latter space being compact
whenever the building is locally compact. Note that this compactification is not
the one given by asymptotic classes of geodesic rays [7, Sects. II.8 and III.H.3];
it is related to the combinatorics of infinite root systems. Caprace and Lécureux
also define a compactification by using the (compact) Chabauty topology [10]
on the space of closed subgroups of a given locally compact group, and relate it
to the previous one.

From Amenable Groups to Amenable Actions Roughly speaking, a G-
action on a space S is called amenable if there is a sequence of maps
{µn : S → M1(G)}n>0 (where M1(G) denotes the space of the probability
measures on G) such that

lim
n→∞

∥µn(g.x)− g∗µn(x)∥= 0

uniformly on compact subsets of G× S. In other words, there exists a sequence
of maps S → M1(G) which is “asymptotically” equivariant.

In the situation of the previous theorem, the group G = Isom(X) itself is not
amenable in general, but we have the following.

Theorem 4.2. For any building X, any proper action by a locally compact group
on the above compactification X is amenable.

Reference This is the main result of [40]. �
The main idea is to use the non-positive techniques already shown to be

useful in the study of the strong Tits alternative and the weak hyperbolicity of
Coxeter groups as mentioned at the end of Sect. 3.2. This enables Lécureux to
embed an apartement (Coxeter complex) into a product of trees and then to
define the desired family of measures.

Remark 4.3. Admitting an amenable action on a compact space is an important
property in analytic group theory: for instance, it is related to the Novikov
conjecture; it also provides theoretical resolutions in bounded cohomology and
boundary maps in rigidity theory (which, by the way, might be useful in the
study of the linearity of certain building lattices).

4.2 Quasi-Homomorphisms

In this subsection, we mention quickly some results by Caprace and Fujiwara
about quasi-characters of automorphism groups of buildings (again seen as ana-
logues of semisimple Lie groups).

(i) A quasi-character for a group G is by definition a map f : G→ R such that
sup

g,h∈G
|f(gh)− f(g)− f(h) |<∞.

(ii) The set of all quasi-characters of G is denoted by QH(G).
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(iii) The set of non-trivial quasi-characters is by definition

Q̃H(G) =
QH(G)

Hom(G,R)⊕ ℓ∞(G)
.

Quasi-homomorphisms are related to rigidity questions; according to Burger
and Monod, higher-rank lattices in Lie groups don’t have non-trivial quasi-
characters [9]. As we saw for rigidity questions in Sect. 3.3, it is not clear what to
require to consider that a building is of higher rank. The next result shows that
many buildings are not of higher-rank with respect to quasi-homomorphims.

Theorem 4.4. Let (W,S) be an infinite, irreducible, non-affine Coxeter sys-
tem and let X be a building of type (W,S). Let G be a group acting on X by
automorphisms so that at least one of the following conditions is satisfied:

(i) The G-action on X is Weyl-transitive.
(ii) For some apartment A ⊂ X, the stabilizer StabG(A) acts cocompactly on A.

Then Q̃H(G) is infinite-dimensional.

Reference This is the main result of [22]. �
The main idea is to combine Coxeter-theoretic ideas together with a criterion

due to Bestvina and Fujiwara [5]; the key notion is that of a rank-one isometry
in a CAT(0)-space (that is, an isometry with certain contraction properties).

Combined with Kac-Moody theory, this implies that, up to isomorphism,
there exist infinitely many finitely presented simple groups of strictly positive
stable commutator length.

4.3 Quasi-Isometry

Let G be a locally compact group admitting a finitely generated lattice Γ . This
implies that G admits a compact generating subset, say Σ̂; we denote by dΣ̂ the

word metric associated with Σ̂. Similarly, we fix a finite generating set Σ for Γ
and denote by dΣ the associated word metric. The lattice Γ is called undistorted
in G if dΣ is quasi-isometric to the restriction of dΣ̂ to Γ . This amounts to
saying that the inclusion of Γ in G is a quasi-isometric embedding from (Γ, dΣ)
to (G, dΣ̂).

Theorem 4.5. Any Kac-Moody lattice Λ < Aut(X+)×Aut(X−) is undistorted.

Reference This is the main result of [28]. �
Again, combined with simplicity results from Kac-Moody theory, this implies

that there exist infinitely many pairwise non-quasi-isometric finitely presented
simple groups.

The above result uses the metric and combinatorial shape of the apartments
in a rough way; in particular, it is far from solving the question of quasi-isometric
classification of Kac-Moody lattices.
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